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Abstract 

In this paper we experimentally validate a new micromechanical modelling scheme for 

predicting the five independent viscoelastic constants of a unidirectional carbon fibre epoxy 

resin composite. This study has built on a number of previous papers by these authors, where 

extensive finite element calculations were used to validate a much more easily implemented, 

classical analytical micromechanical approach for predicting the viscoelastic properties of 

composite materials. For formulating the viscoelastic predictions, the elastic-viscoelastic 

correspondence principle is used to convert the static elastic solutions to their complex steady 

state viscoelastic forms simply by replacing static elastic moduli of the matrix and the fibers 

by their complex viscoelastic moduli 

To formulate accurate micromechanical predictions for comparison and validation by 

experimental measurements, appropriate values for the five independent elastic constants of 

the reinforcing carbon fibres in the experimental materials are required. To obtain them, we 

have used the ultrasonic immersion method (UIM) and an inverse modelling scheme as 

previously described by Smith. The UIM allows the full stiffness tensor to be determined for 

both the carbon fibre composite and the epoxy resin matrix at a frequency of 2.25MHz. The 

validated Hashin-Rosen composite cylinders micromechanical model was then used to 
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determine the best fit elastic constants of the carbon fibres. Once these were determined, the 

‘viscoelastic properties’ of both the pure epoxy matrix and the carbon fibre composite were 

studied using low frequency measurements (1Hz). The results showed that for the two 

viscoelastic constants that can be routinely measured experimentally, namely the longitudinal 

and transverse Young’s moduli, these are very well predicted by the same micromechanical 

model. Most importantly, following this validation, the micromechanical model can then easily 

provide all of the five independent viscoelastic composite stiffness constants. These values are 

critical for accurate vibration damping and noise cutting design of advanced engineering 

composite parts exposed to oscillatory loading such as aircraft wings and tails or wind turbine 

blades. 

 

1 Introduction 

Carbon fibre composites are being increasingly used in a wide range of applications that make 

use of the excellent specific stiffness and strength properties of these materials. Amongst these 

include commercial and military aircrafts [1], high performance automotives [2, 3] and wind 

turbine blades [4, 5]. A common theme to these applications is that they are routinely subjected 

to oscillating or vibrational loading [6], meaning that the damping properties of these 

composite materials can be equally as important as their elastic stiffness constants (which is 

fairly often taken as the exclusive driver for composite design). In fact, it can be stated that if 

the viscoelastic properties of these composite materials were more readily understood, or more 

pertinently if they could be accurately predicted, then more optimal, viscoelastic design 

solutions could be attained in these increasingly important end uses. For this, analytical 

theoretical solutions available for laminated composite plates and shells [7-9] and then 

converted to the viscoelastic domain using the elastic-viscoelastic correspondence principle 
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[10] could be employed to achieve more optimal, viscoelastic design solutions. Alternatively, 

numerical finite element calculations (e.g., by calculating the natural frequencies and the 

corresponding mode shapes of damped structural vibrations directly in the frequency domain 

using complex arithmetic solvers [11-14]) could be used in the same way.   

As far as we are aware, there is very little published on the prediction (and experimental 

validation) of the viscoelastic properties of unidirectional composites. In particular on a method 

to obtain all five independent viscoelastic constants (both the real and the imaginary 

components, which are often termed as the storage and the loss moduli, respectively) which 

are required for designers. One of the critical reasons is that the loss moduli of carbon fibre 

composites are two to four orders of magnitude smaller than their respective storage moduli so 

it is experimentally demanding to measure the loss moduli accurately. Nonetheless, despite 

their relatively small values, it is exactly these loss moduli that determine the vibration damping 

and noise cutting performance of advanced engineering structures from such composite 

materials (airplane wings and tails, wind turbine blades, racing cars spoilers, etc.). 

The research presented here was split into two distinct segments, both of which used a 

combination of micromechanical modelling and experimental measurements. In the first 

procedure, following the strategy proposed by Smith [15], the ultrasonic immersion technique 

was used to determine the elastic properties of a unidirectional carbon fibres composite and its 

associated pure epoxy matrix component at a frequency of 2.25MHz. A previously validated 

[11], classical Hashin-Rosen’s composite cylinders micromechanical model was then used to 

find the best ‘fit’ five carbon fibre constants to match the experimentally measured composite 

elastic constants. In the second part, the objective was to predict the viscoelastic constants of 

the same carbon fibre epoxy composite but at a much lower frequency of 1Hz, based on 

viscoelastic measurements of the epoxy matrix and the previously determined carbon fibre 

elastic constants. For validation purposes, experimental viscoelastic measurements were 
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carried out for two of the five viscoelastic constants of the composite, namely the in-plane 

longitudinal and transverse Young’s moduli. Agreement between the micromechanical 

predictions and the experimental measurements for these two viscoelastic engineering moduli 

(for both their storage and loss parts) was excellent within the experimental uncertainties, 

validating the approach and also offering predictions of all five viscoelastic constants, some of 

which are very difficult to measure experimentally. 

 

2 Experimental 

2.1 Materials 

The unidirectional composite used in this study comprised Hexcel AS4 carbon fibres [16] in a 

913 epoxy resin [17]. Importantly, in addition to a cured composite sample (made using the 

recommended manufacturer’s conditions) a sample of the pure epoxy resin (made using the 

same processing conditions) was also obtained. Typical values given by the manufacturers for 

these two materials are shown in Table 1. It should be noted that Young’s moduli will be 

measured independently in this work at the two relevant measurement frequencies: a high 

ultrasonic frequency of 2.25Mhz for determining the carbon fibre elastic constants and a lower 

frequency of 1Hz for predicting and validating the composite viscoelastic constants. It is worth 

a comment at this point regarding these two different test frequencies used. For determining 

the carbon fibre elastic constants, the ultrasonic immersion test was chosen (2.25MHz), as it 

allows for the determination of all five independent elastic constants of the carbon fibres (and 

the carbon fibre constants are not significantly frequency dependent). However, for evaluation 

the elastic constants of a typical carbon fibre reinforced epoxy laminate, a more representative 

frequency of 1 Hz was used, as the epoxy resin matrix elastic constants are significantly 

frequency dependent. 



5 

 

3

1
2

 AS4 carbon fibre 913 epoxy resin 
Young’ Modulus 

(GPa) 231 3.39 

Density 
(kg/m3) 

1800 1230 

 

Table 1: Typical manufacturer’s values for AS4 carbon fibre and 913 epoxy resin for 

reference (test frequency and method unknown). 

Accurate density measurements on a large sample cut from the composite plate, together with 

the density values for the two component phases shown in Table 1 above, gave a measured 

value for the fibre volume fraction of 0.58 using the density rule of mixtures. This value was 

also verified using the image analysis procedure to measure the fraction of the fibres, see Figure 

1. 

 

                          

Figure 1: Typical cross section through the unidirectional carbon fibre epoxy composite 
(bottom length = 200m). 
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2.2 Experimental testing methods 

2.2.1 Ultrasonic immersion method 

In a number of previous studies, aimed at developing and validating both analytical, numerical 

and finite element models to understand the elastic properties of fibre reinforced composites, 

this group has made extensive use of the ultrasonic immersion method (UIM) [15, 18]. This is 

due to the ability of the technique to measure simultaneously the five individual elastic 

constants of a unidirectional fibre composite material (as the off axis terms of the stiffness 

matrix can often be difficult to measure by traditional static techniques). The first use of the 

technique at Leeds was described in detail in the work of Dyer [19] and the PhD study of Lord 

[20], which were based upon the seminal works of Markham [21], Smith [15] and Read and 

Dean [18]. Such studies included understanding negative Poisson’s ratios in angle ply 

laminates [22, 23], extracting the elastic constants of anisotropic polymeric fibres [24, 25] and 

investigating the effects of random transverse packing in unidirectional fibre composites [26].  

In the UIM, the sample to be studied is placed between ultrasonic transducers (2.25MHz) in a 

temperature controlled water both (set at 30.0  0.1C). By measuring the difference in the 

arrival time with and without a sample in the transducers path, the velocity of the sound wave 

in the sample can be determined. The unique aspect of the technique is that if the sample is 

rotated at a critical angle, then the longitudinal sound wave from the transmitter is converted 

into a shear wave in the sample (termed mode conversion). In this way the velocity of both the 

longitudinal wave (VL) and the shear wave (VS) can be investigated. 

The previously published papers showed that these two wave velocities are controlled by the 

four elastic constants in the plane of the propagation of the two waves and the direction of 

travel in the plane (given by the angle of refraction r). 
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For example, for propagation in the 23 plane (see Figure 2), the following two relationships 

predict the variation in sound wave speed with elastic constants and the angle of wave 

propagation in the sample (angle of refraction r). 

௅ܸଶ ൌ ଶଶܤ ൅ ଷଷܤ ൅ ൣሺܤଶଶ െ ଷଷሻଶܤ ൅ Ͷܤଶଷଶ൧ଵଶʹ                                               ሺͳሻ 

ௌܸଶ ൌ ଶଶܤ ൅ ଷଷܤ െ ൣሺܤଶଶ െ ଷଷሻଶܤ ൅ Ͷܤଶଷଶ൧ଵଶʹ                                               ሺʹሻ 

 

where   ܤଶଶ ൌ ݎଶݏ݋ଶଶܿܥ ൅  ݎଶ݊݅ݏସସܥ

ଷଷܤ   ൌ ݎଶ݊݅ݏଷଷܥ ൅  ݎଶݏ݋ସସܿܥ

ଶଷܤ   ൌ ሺܥସସ ൅  ݎ ݏ݋ܿ ݎ ݊݅ݏଷଷሻܥ

r is the angle of sound propagation in the composite sample and  is the sample density. 

Once the dependence of the two sound velocities (VL and VS) is determined with respect to r, a 

computer programme finds the ‘best’ values of the four stiffness constants to fit the data. To 

obtain a full set of composite elastic constants (and hence determine the elastic constants of the 

carbon fibres), three experiments for sound propagation in the 23, 13 and 12 planes are 

required, as shown schematically in Figure 2. Here the 1 axis is the fibre direction. For 

propagation in the 12 plane, strips were cut from the composite panel and then glued together 

with the 1 axis to the front to create a sample of sufficient dimensions to carry out the 

experiment in the 12 plane. 
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Figure 2: The three planes of propagation for the UIM experiments and the stiffness constants 

derived for each. For the left and middle diagrams, the blue lines indicate the fibre direction. 

For the diagram on the right, the lines indicate that the sample is composed of several sample 

strips cut and reassembled. 

The ultrasonic immersion method was also used to determine the elastic constants of a sample 

of the pure 913 epoxy resin at the same frequency (2.25MHz). As this sample was isotropic, 

this required only one plane of propagation. 

2.2.2 Dynamical mechanical testing 

Pure epoxy resin sample 

For informing the viscoelastic micromechanical predictions at a lower frequency (1Hz), 

dynamic mechanical analysis experiments were carried out (DMA). In order to carry out the 

micromechanical predictions, two independent viscoelastic constants were required. The 

viscoelastic torsion properties (shear modulus G and tan) were determined using a rectangular 

geometry and a Rheometrics RDSII. The viscoelastic tensile properties (Young’s modulus E 

and tan) were determined in three-point bend also using a Rheometrics RDAII. Both tests 

were carried out at room temperature (20C) and a frequency of 1Hz.  

 

1 axis vertical 

Propagation in the 23 plane 

C22, C33, C23, C44 

2 axis vertical 

Propagation in the 13 plane 

C11, C33, C13, C55 

3 axis vertical 

Propagation in the 12 plane 

C11, C22, C12, C66 
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Composite samples 

DMA viscoelastic measurements were also carried out on the unidirectional composite samples 

in both the longitudinal direction (1 axis) and the transverse direction (2 axis) using a three-

point bend geometry (span = 48mm) at the same frequency of 1Hz. 

 

3 Micromechanical modelling 

3.1 Inverse calculation for determining the carbon fibre elastic constants 

3.1.1 Transversely isotropic material 

The stiffness of a transversely isotropic material is completely described by a set of five 

independent elastic moduli, e.g., ܥଵଵ, ܥଵଶ, ܥଶଶ, ܥଶଷ, and ܥହହ. However, in many practical 

situations, this is not necessarily the most convenient form of stiffness characterization. For 

this reason, directly measurable engineering moduli are commonly used. In this work, the 

longitudinal Young’s modulus (uniaxial modulus), Poisson’s ratio under longitudinal load 

(major Poisson’s ratio), longitudinal shear modulus, plane-strain bulk modulus, and transverse 

shear modulus are employed. In terms of the elastic moduli, they are expressed as, respectively 

ଵଵܧ ൌ ଵଵܥ െ ଶ஼భమమ஼మమା஼మయ ଵଶߥ ൌ ஼భమ஼మమା஼మయ ଵଶܩ ൌ ହହܥ ݇ଶଷ ൌ ଵଶ ሺܥଶଶ ൅ ଶଷሻܥ ଶଷܩ ൌ ଵଶ ሺܥଶଶ െ  ଶଷሻ (3)ܥ

To simplify analytical results, ߭ଵ and ߭ ଶ are used to designate matrix and fiber volume 

fractions, respectively, and shorthand notations 

ܧ  ൌ ଵଵܧ ߥ ൌ ଵଶߥ ܩ ൌ ଵଶܩ ݇ ൌ ݇ଶଷ ߤ ൌ  ଶଷ (4)ܩ

are used for the engineering moduli of the two homogeneous phases, which are differentiated 

by using subscripts 1 and 2 for matrix and fibers, respectively. 
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3.1.2 Composite cylinders model  

 

Figure 3: Composite cylinders model. 

 

The composite cylinders model consists of a volume filling assemblage of infinitely long 

parallel composite cylinders of different radii down to infinitesimal, see Figure 3a. Each 

composite cylinder is made up of an inner circular fiber of radius ܽ embedded in outer 

concentric matrix shell of radius ܾ, see Figure 3b. The ratio of the two radii is chosen from ߭ଶ ൌ ሺܽ ܾΤ ሻଷ in order to reproduce the fiber volume fraction of the considered unidirectional 

composite. Then it follows that all such different composite cylinders have the same elastic 

moduli. For some certain uniform displacement boundary conditions such as axial extension, 

longitudinal shearing and radial displacement in the transverse plane, every composite cylinder 

behaves indistinguishably from some effective transversely isotropic homogeneous cylinder. 

For these boundary conditions, the related effective moduli are determined using known 

homogeneous elasticity solutions with the undetermined coefficients obtained from satisfaction 

of internal interface displacement and stress continuity conditions and external homogeneous 

boundary conditions, by requiring the average strain energy density in the composite cylinder 

be the same as in the equivalent homogeneous cylinder. The resulting effective moduli are 

given by 

EFFECTIVE MEDIUM 

2 
1 

3 

a) b) c) 
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ଵଵܧ  ൌ ଵ߭ଵܧ ൅ ଶ߭ଶܧ ൅ ସሺఔమିఔభሻమజభజమజభ ௞మΤ ାజమ ௞భାଵ భீΤΤ  (5) 

ଵଶߥ  ൌ ଵ߭ଵߥ ൅ ଶ߭ଶߥ ൅ ሺఔమିఔభሻሺଵ ௞భΤ ିଵ ௞మΤ ሻజభజమజభ ௞మΤ ାజమ ௞భାଵ ீభΤΤ  (6) 

ଵଶܩ  ൌ ଵܩ ൅ జమଵ ሺீమିீభሻାజభ ଶீభΤΤ  (7) 

 ݇ଶଷ ൌ ݇ଵ ൅ జమଵ ሺ௞మି௞భሻାజభ ሺ௞భାீభሻΤΤ  (8) 

 

where on the right hand side subscript 1 is matrix and 2 fibers. Exactly the same results are 

obtained using uniform traction boundary conditions so with regard to those four effective 

moduli, to an external observer the composite cylinder is indistinguishable from a 

homogeneous cylinder with the so-defined effective moduli. 

However, for the transverse shear modulus the results obtained using the displacement and 

traction boundary conditions differ and a different approximation has been suggested by 

Christensen and Lo. In this Generalized Self Consistent Scheme (GSCS), see Figure 3c, a single 

composite cylinder is embedded in effective transversely isotropic material and homogeneous 

strain or stress boundary conditions are imposed at infinity. Satisfaction of interface continuity 

and boundary conditions at infinity yields sets of algebraic equations for determination of all 

five effective moduli. The results for ܧଵଵ, ߥଵଶ, ܩଵଶ, and ݇ ଶଷ are precisely Eqs. (5) – (8). The 

remaining transverse shear modulus ܩଶଷ is given implicitly, by the positive root of a quadratic 

equation with algebraically lengthy coefficients that are, however, easily suitable for numerical 

evaluation. It is shown that for all five moduli, the GSCS results are the same when using either 

stress or strain form homogeneous boundary conditions at infinity so to an external observer, 

for any arbitrary uniform deformation at infinity the composite cylinder behaves as a 

homogeneous cylinder with the transversely isotropic GSCS moduli. 

Results (5) – (8) were first given by Hashin and Rosen [27], with Eqs. (5) and (6) presented 

in much more complicated but equivalent forms. Refined results (5) and (6) were given by 
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Hashin [28, 29]. The correct GSCS result for ܩଶଷ was established later by Christensen and Lo 

[30]. 

 

3.2 Determination of the viscoelastic constants of the unidirectional composite 

The elastic-viscoelastic correspondence principle is used to convert the above static elastic 

solutions to their complex steady state viscoelastic forms simply by replacing static elastic 

moduli of the matrix and the fibers by their complex viscoelastic moduli defined at a given 

oscillation frequency. It has recently been shown by Gusev and Kern [11] using a frequency 

domain finite element method, that direct numerical estimates of complex effective viscoelastic 

moduli of common carbon and glass fibre reinforced unidirectional composites are in excellent 

agreement with such classical analytical results. This recent work is a part of a broad research 

program [11-14, 31-34] that has demonstrated that the GSCS predictions are generally 

remarkably accurate and technologically very helpful for design of both elastic, viscoelastic 

and thermoelastic properties of fiber and particulate composites with both uncoated and coated 

inclusions.   

 

4 Results 

4.1 Determination of the elastic constants for the Hexcel AS4 carbon fibres using the ultrasonic 

immersion technique 

In order to implement the inverse modelling scheme for determining the carbon fibre elastic 

constants, ultrasonic immersion measurements were carried out on the pure 913 epoxy sample 

and the composite plate. Figure 4 shows the measured longitudinal and transverse wave 

velocities versus the angle of wave propagation in the sample (r) for the pure epoxy sample. 

As expected, the velocities were found to be independent of the wave propagation angle, 
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confirming that the sample was isotropic. The dashed lines show the best simultaneous fit to 

Eqs. (1) and (2) (but for sound propagation in the 12 plane), which gave the following two 

independent elastic constants, C11 = 10.1GPa and C12 = 6.25GPa. This was a forced isotropic 

fit for the two elastic constants, using C66 = (C11 - C12)/2. 

 

Figure 4: Longitudinal velocity () and transverse velocity () vs angle of refraction (r) for a 
pure epoxy 913 sample. 

 

Next, the UIM experiments were carried out on the composite plate for wave propagation in 

the three planes shown in Figure 2, the results are shown in Figures 5 and 6. As for the pure 

epoxy, Eqs. (1) and (2) were simultaneously fitted to the measured velocity versus angle data. 

To aid fitting the results for the 13 plane, a value for the 90 point was added to the data set 

from the 0 measurement of the 12 plane. The isotropic plane (23 plane) was again fitted 

using a forced isotropic fit. 



14 

 

 

Figure 5: Longitudinal and transverse velocity vs angle of refraction for the unidirectional 
composite sample: top 13 plane, bottom 12 plane (1 is the fibre direction). 

 

Figure 6: Longitudinal and transverse velocity vs angle of refraction for the composite 
sample: 23 plane. 

Table 2 shows the fitted results for the five elastic constants of the unidirectional fibre 

reinforced epoxy composite (1 is the fibre direction) obtained by combining the measurements 

for the three propagation planes. A Voigt notation is used for the tensor components. 
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 C11 C12 C22 C23 C55 

(GPa) 138 7.40 14.2 6.70 5.1 
 

Table 2: The best fit elastic constants for the unidirectional carbon fibre composite (Vf = 
0.58) based on the ultrasonic measurements in the 13, 12 and 23 planes. 

After carrying out the inverse modelling scheme using the Hashin and Rosen’s composite 

cylinders model (as described in section 2), the five elastic stiffness constants for the 

individual carbon fibres were obtained as shown in Table 3. For convenience, Table 4 shows 

the derived engineering constants for the AS4 carbon fibres, which will be used in following 

viscoelastic studies. 

 C11 C12 C22 C23 C55 

(GPa) 231 8.62 19.7 6.04 15.5 
 

Table 3: The predicted AS4 carbon fibre elastic stiffness constants based on the composite 
and pure epoxy ultrasonic measurements. 

 

 E11 

(GPa) 
12 E22 

(GPa) 
23 G12 

(GPa) 
 225 0.335 17.7 0.295 15.5 

 

Table 4: The predicted AS4 carbon fibre engineering constants based on the composite and 
pure epoxy ultrasonic measurements. 

 

It is encouraging that the derived value for the longitudinal Young’s modulus of the carbon 

fibre (E11) is in good agreement to that of the manufacturer’s value shown in Table 1. 

Having determined the carbon fibre elastic constants for the volume fraction of the 

experimental material, the composite elastic properties (at a frequency of 2.25MHz) can now 

be determined for any fibre volume fraction. These results are shown in Figure 7, where the 

symbols show the experimentally determined composite constants.  
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Figure 7: The predicted variation of the composite stiffness constants with fibre volume 
fraction. The experimental measurements (Vf = ȣ2 = 0.58) are shown as symbols. 

 

4.2 Measuring the viscoelastic constants of the unidirectional carbon fibre epoxy composite at 

1Hz 

4.2.1 Pure epoxy measurements at 1Hz 

Having determined the elastic constants of the carbon fibres, the aim was then to predict the 

viscoelastic constants of the carbon fibre/epoxy composite. Here, the viscoelastic properties 

come only from the 913 epoxy matrix (the carbon fibres are assumed to be purely elastic) and 

so the first stage is to measure the pure epoxy viscoelastic properties. For obtaining the 

viscoelastic predictions, both the elastic component and the viscoelastic component are 

required for two  independent elastic constants. Here we have carried out testing in three-point 

bend to measure Eƍ and tan, and testing in rectangular torsion to measure Gƍ and tan. Both 

test were carried out at a frequency of 1Hz and at a temperature of 20C. 
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Table 5 shows the results of these measurements, including the uncertainties in the 

measurements from 5 repeated tests for each geometry. Again it is encouraging that the 

measured storage Young’s modulus is close to that of the manufacturers value shown in Table 

1. 

 
Storage modulus 

(GPa) 
tan Test Method 

torsion Gƍ = 1.32  0.03 0.014  0.001 Rectangular torsion measurements 

bending Eƍ = 3.56  0.09 0.016  0.001 Dual cantilever beam 

 
Table 5: Measured viscoelastic properties of the pure 913 epoxy resin using DMA 

measurements at a frequency of 1Hz. 

 

4.2.2: Unidirectional composite measurements 

Steel calibration 

As the composite is expected to have a much higher longitudinal Young’s modulus and much 

lower tan than the pure epoxy resin, it was necessary to first measure the intrinsic stiffness 

and any internal energy loss of the DMTA apparatus, using a steel calibration sample. This has 

a known Young’s Modulus of 210GPa and is expected to be practically purely elastic (tan = 

0). 

To carry out a dynamic test in bending, the sample has to be subjected to a preload that is 

greater than the amplitude of that produced by the chosen dynamic strain. Table 6 shows results 

for the measured Young’s modulus and tan of the steel sample at three different preloads of 

300, 600 and 800g using a strain amplitude of 0.005%. The results in Table 6 show that as the 

preload is increased, the Young’s modulus increases and the tan decreases significantly. We 

attribute this to the increased preload forcing the sample to sit flatter on the knife-edges of the 

three-point bend fixtures and thus reducing contact friction. It is well known that if the sample 

does not sit perfectly flat on the testing fixture, then this can cause frictional losses that will 
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show up as an increased tan. As the maximum load range of the machine is 1000g, we have 

used a preload of 800g for all the subsequent measurements of the pure epoxy and the 

composite sample. Even with a high preload, the measured Young’s modulus did still not reach 

the expected value of 210GPa. We attribute this to machine compliance, and have corrected all 

the subsequent measurements with this small machine internal displacement. 

Preload 

(g) 

Strain amplitude 
(%) 

Eƍ 

(GPa) 
tan 

300 0.005 193 0.0035 

600 0.005 198 0.0007 

800 0.005 201 0.0001 

Table 6: The effect of preload on the real part of Young’s modulus and tan - three-point 
bend geometry. 

4.2.3 Experimental measurements of the viscoelastic constants of the composite samples 

Following the calibration, three-point bend measurements were carried out on composite 

samples cut along the two principal in-plane directions (Longitudinal (1) in the fibre direction 

and transverse (2) perpendicular to the fibres). Table 7 shows these experimental measurements 

for the Young’s modulus and tan in these two directions. As expected, the Young’s modulus 

is significantly higher in the fibre (1) direction, associated with a very low tan, with the 

opposite trend in the transverse (2) direction. 

 
Eƍ 

(GPa) 
tan comments 

E11 123 ± 1 0.0006 ± 0.0001 Measurement 

 133.0  0.04 0.00020 ± 0.00004 Prediction 

    

E22 8.28 ± 0.05 0.012 ± 0.001 Measurement 

 8.4  0.7 0.013 ± 0.02 Prediction 

Table 7: A comparison of the measured and predicted viscoelastic composite properties using 
the three-point geometry. 
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4.2.4 Comparing micromechanical predictions with the experimental measurements 

Micromechanical predictions for the same two engineering constants are also shown in Table 

7 alongside the experimental measurements. The inputs for this calculation are the carbon fibre 

elastic constants (which are assumed to be frequency independent, Table 3) and the epoxy resin 

viscoelastic constants (Table 5). It is seen that in general, the agreement between the 

predictions and the experimental measurements is excellent. The uncertainties shown for the 

micromechanical predictions were formed by determining the effect of the extreme ranges of 

the uncertainties of the input epoxy resin properties (Table 5) on the final predictions. For the 

transverse properties (E22 and tan) the agreement between experimental measurements and 

predictions is within the uncertainty ranges of the various values. For the longitudinal 

properties (E11 and tan) the agreement is close, but not within the uncertainty ranges. It could 

be suggested that the experimental measurements for this longitudinal direction are at the 

extremes of such measurements (very high stiffness and very low loss) and so we could 

hypothesise that the micromechanical predictions are more reliable. 

Following on from this comparison, the micromechanical model can now be used to determine 

both the viscoelastic stiffness constants (Table 8) and the five viscoelastic engineering 

constants (Table 9), for the unidirectional carbon fibre reinforced epoxy resin composite (Vf = 

0.58). 
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 Real part 

(GPa) 

Imaginary part 

(GPa) 

C11 135.4 ± 1.5 0.110 ± 0.063 

C12 5.02 ± 1.75 0.111 ± 0.069 

C22 10.35 ± 2.01 0.170 ± 0.080 

C23 4.42 ± 1.91 0.111 ± 0.075 

C55 3.847 ± 0.068 0.0420 ± 0.0035 

 

Table 8: Predictions for all five stiffness constants (real and imaginary parts). Ranges based 

on the measurements uncertainty ranges for the epoxy resin sample (Table 5). 

 

 Real part Imaginary part 

E11 [GPa] 132.95 ± 0.04 0.0240 ± 0.003 

E22 [GPa] 8.4 ± 0.7 0.11 ± 0.02 

G12 [GPa] 3.85 ± 0.07 0.0420 ± 0.004 

G23 [GPa] 2.97 ± 0.06 0.030 ± 0.003 

Ȟ12 0.34 ± 0.03 0.0010 ± 0.0002 

 
Table 9: Predictions for all five independent viscoelastic engineering constants. Ranges based 

on the measurements uncertainty ranges for the epoxy resin sample (Table 5). 

 

As only four of these ten independent components can be easily determined experimentally, 

this is a significant contribution, offering a full set of viscoelastic constants for designers to 
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utilise for optimising the vibration damping and noise cutting design of advanced engineering 

structural parts from unidirectional carbon fibre composite materials. 

As a final comment, in this work, the classical micromechanical Hashin-Rosen composite 

cylinders model was used to calculate the fiber elastic moduli needed to produce the 

ultrasonically measured composite elastic moduli and the same model is then used to calculate 

the low frequency stiffness moduli. Other models, such as, for example, the self-consistent 

scheme [35-37] or the semi-empirical Halpin-Tsai equations [38], may also be used. As long 

as the same model is employed to calculate both fiber and composite moduli, the predicted 

composite moduli may be expected to be reasonably accurate. However, given that the 

composite cylinders model has been convincingly validated in our recent works on viscoelastic 

properties of unidirectional composites [11, 31], there seems to be no obvious reason for us for 

not adopting this validate classical micromechanical model in our present study. 
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5 Conclusions 

In this paper a new micromechanical modelling scheme was presented for predicting all five 

independent viscoelastic constants of a unidirectional carbon fibre reinforced epoxy resin 

composite. Two crucial aspects in any modelling study are first to base the predictions on 

representative input values and secondly, and most importantly, to validate the final model 

predictions against experimental viscoelastic measurements. 

For the first aspect, the five elastic constants of the reinforcing carbon fibres were determined 

by combining experimental ultrasonic immersion measurements of the composite and the pure 

epoxy matrix resin with a previously validated elastic micromechanical model. For the second 

aspect, namely the prediction and validation of the viscoelastic properties of the composite, 

these experimentally determined carbon fibre elastic constants were then used as model inputs 

together with the experimentally measured viscoelastic properties of the epoxy resin. The 

micromechanical modelling scheme utilised classical Hashin-Rosen composite cylinders 

model and used the elastic-viscoelastic correspondence principle to convert the static elastic 

solutions to their complex steady state viscoelastic forms simply by replacing static elastic 

moduli of the matrix and the fibres by the complex viscoelastic moduli measured at two 

different oscillation frequencies.  

Validation of the proposed micromechanical modelling scheme was achieved by 

experimentally measuring the elastic and viscoelastic components for two of the five 

independent engineering constants. These were the longitudinal Young’s modulus and its tan 

plus the transverse Young’s modulus and its tan. Excellent agreement was found between the 

micromechanical predictions and the experimental measurements for these four constants. The 

powerful aspects of the validated model is that it can then be used to predict the elastic and 

viscoelastic components for all five engineering constants, all of which are required for 
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accurate design of the vibrational damping and noise cutting performance of advanced 

engineering structures from these composite materials. 
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