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aSapienza Università di Roma, Pzz.le Aldo Moro 5, Rome, Italy
bSheffield University Management School, Conduit Road, Sheffield, United Kingdom

cIstituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19,

Rome, Italy

Abstract

In the literature on Network Optimization, k-splittable flows were introduced to enhance modeling

accuracy in cases where an upper bound on the number of supporting paths for each commodity

needs to be imposed, thus extending the suitability of network flow tools for an increased number of

practical applications. Such modeling feature has recently been extended to dynamic flows with the

introduction of the novel strongly NP -hard Quickest Multicommodity k-splittable Flow Problem

(QMCkFP ). Such a flows over time problem asks for routing and scheduling of each commodity

demand through at most k different paths in a dynamic network with arc capacities per time step,

while minimizing the time required by the overall process. In this work, we propose the first exact

algorithm for solving the QMCkSFP . The developed technique falls within the Branch and Price

class and is based on original relaxation, pricing and branching procedures. Linearization and

variable substitution are used to obtain the relaxation problem from the path-based formulation

of the QMCkSFP . The pricing problem is modeled as a Shortest Path Problem with Forbidden

Paths with additional node-set resources on a time expansion of the original digraph and is solved

via a tailored dynamic programming algorithm. Two branching rules are designed for restoring

feasibility whenever k-splittable or binary variable domain constraints are violated. The results

of an extensive batch of computational experiments conducted on small to medium-size reference

instances are presented, showing a highly satisfactory performance of the proposed algorithm. The

paper concludes with a discussion on further lines of research.

Keywords: Networks, Flows over time, Quickest flow, k-splittable flow, Branch and Price

∗Corresponding author. Sheffield University Management School, Conduit Road, Sheffield (UK), S10 1FL , Phone:
+ 44 (0) 114 222 3393

Email addresses: a.melchiori@iac.cnr.it (Anna Melchiori), a.sgalambro@sheffield.ac.uk (Antonino
Sgalambro)

Preprint submitted to European Journal of Operational Research October 14, 2019



1. Motivation and background

Despite the renowned impact of static network flow modeling tools in an extremely broad variety of

applications, some structural limitations prevent them from providing actionable decisional support

in those contexts where monitoring of the system’s transitional regime represents a crucial require-

ment. Indeed, static flows are well fitted to represent average steady flow behavior, whereas they

fail to represent the evolution of dynamic phenomena occurring over a considered time horizon.

In contrast, dynamic flows, often referred to as flows over time, allow to capture the time dimen-

sion in network flow modeling, hence enabling the representation and optimization of an increasing

amount of real-world processes whose efficiency nowadays heavily depends on time. This is the

case for application fields such as telecommunication networks, emergency management, advanced

logistics and production scheduling, see [2, 34].

A relevant family of dynamic optimization problems is represented by the Quickest Flow class, where

the completion time for flow transshipment operations is minimized on a capacitated network with

transit time labels on arcs and a discretized time horizon. The practical interest in this class of

problems is widely recognized in the literature, see for example [14, 39]. Limitations associated with

the Quickest Flows as a planning tool include the possible use of a large and unrestricted number

of active paths in optimal solutions. This is unrealistic in all those contexts where availability of

resources is limited and a tight supervision of the various operations is needed. Therefore, effective

practical applications require limitation of the number of support paths to be activated for flows

transshipment.

From a methodological point of view, introducing such an additional feature translates into the in-

tegration of the well-known concept of k-splittable flows, enabling a transshipment process through

at most the prefixed number of paths, within dynamic network flow models. The interest in this

setting is motivated by the large variety of applications that share the common requirement of

thorough control of both the time spent for flow transshipment and the number and characteristics

of the activated support paths. This can be observed, for instance, in distribution planning, where

time-efficient goods dispatch has to be achieved by a limited number of fleet vehicles [32], in emer-

gency transportation management, where an unsupervised evacuation can lead to fatal congestion

episodes and thus drastically preclude its overall success [39], and in the telecommunication field,

where cost-efficient use of the network for quick data packets transmission is crucial [6, 29]. This

novel combination of k-splittable and dynamic flows has rarely been addressed in the literature and

only recently Melchiori and Sgalambro [40] provided a formal introduction of the Quickest Multi-

commodity k-splittable Flow Problem (QMCkSFP ). This strongly NP -hard problem explicitly

accounts for a limited number (k) of paths to be allowed in flow routing in a dynamic network,
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combining the requirement of a quickest (dynamic) multicommodity flow with restrictions on the

number of active paths on each distinct commodity. The authors designed an original V LNS-based

matheuristic approach that was provably effective in identifying high quality solutions in short com-

putational times for medium to large-size instances of the QMCkSFP .

The design of an exact algorithm to identify optimal solutions to the QMCkSFP was so far an

open research problem, as the limitations of such resolution approaches to tackling complex and

increasing-size instances are well known in the scientific literature. However, the potential availabil-

ity of exact tools represents a strict requirement in many real-life situations where a precise quality

measure is a significant prerequisite for actual and more conscious implementation of the identified

solutions. Moreover, for those particular situations where obtaining even a small decrease in the

objective function for the QMCkSFP might represent a goal of the utmost relevance, such as in

strategic or tactical planning of emergency operations, the need to obtain optimal solutions provides

valid and strong motivation for adopting exact methods whilst allowing very large computational

times.

With this work we provide a complete answer to such relevant questions by developing the first

exact resolution approach to solve the QMCkSFP to optimality. Hence, our research activity is

focused on the design, development, implementation and testing of a tailored Branch and Price

algorithm which exploits the path-based formulation of the problem and copes with the exponen-

tial number of path-related mixed integer variables to identify provably optimal solutions to the

considered problem.

The remainder of this section presents the main literature contributions on Quickest Flow opti-

mization problems and static variants of the k-Splittable Flow Problem and sets out the structure

of our paper.

1.1. Related results from the literature

The first contribution integrating time into mathematical modelization of network flows can be

traced back to the Sixties when Ford and Fulkerson developed the concept of dynamic flows, more

recently known as flows over time [19, 20]. The introduced dynamic digraph structure associates

to each arc a transit time/delay and a capacity arc attributes, expressing the units of time required

for the flow to travel through the arc and the maximum inflow that can enter the arc at every time

instant, respectively. In the case of a finite discrete time horizon, Ford and Fulkerson showed that

it is always possible to model and tackle a general dynamic flow problem as an equivalent static

one on a specific Time-Expanded Network (TEN), obtained by replicating for each time step the

original underlying dynamic digraph and by connecting consecutive time layers through holdover

arcs to model flow storage. Although this novel network allows employment of classical and efficient
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algorithms from static flow problems, the resulting algorithms might be pseudo-polynomial due to

the possible non-linear dependence of the time horizon in the input size.

Relevant static problems have been extended to the dynamic case by allowing the transshipment

to span a fixed time horizon, such as the Maximum Dynamic Flow Problem, the Minimum Cost

Dynamic Flow Problem and some of their variants [19, 20, 27, 31]. Moreover, entirely novel network

flow problems have emerged in the dynamic environment: the Quickest Flow Problem, the Quick-

est Path Problem, the Quickest Transshipment Problem and the Earliest Arrival Problem among

others, [8, 13, 18, 28, 45]. We refer to Aronson [2], Kotnyek [35] and Skutella [47] for a complete

survey of flows over time. Hall et al. [27] conducted a broad study on the multicommodity version

of dynamic flow problems, proving their weak NP -hardness even in the case of two commodities

and the strong NP -hardness when flow storage is forbidden and only elementary paths are allowed.

In the Quickest Flow Problem (QFP ) the aim is to route a given amount of flow between a pair

of nodes in a capacitated network as quickly as possible, i.e. minimizing the number of time steps

required to complete the demand transshipment process, equivalently referred to as makespan. The

problem can be solved in strongly polynomial time by integrating the repeated flows technique of

Ford and Fulkerson within Megiddo’s parametric search [8]. See the work of Lin and Jaillet [36] for

a QFP formulation and a cost-scaling algorithm.

A rich variety of contributions focused on the specific case of restricting quickest flow to a single

path, the so-called Quickest Path Problem (QPP ). We refer to the following contributions for

models and algorithms for the QPP and some of its variants [9, 13, 25, 39, 42, 44, 46]. The mul-

ticommodity version of the problem has been introduced in the work by Melchiori and Sgalambro

[39] motivated by a specific application to emergency evacuation management. We refer to Sedeño-

Noda and González-Barrera [46] for a recent labeling algorithm for the QPP that has been proved

to outperform all of the previously developed approaches.

The related problem of ranking K-quickest (loopless) paths w.r.t. their transmission time has been

widely investigated, among others by Chen [12] and Pascoal et al. [41, 42, 43], and applied to the

routing of data packets in Internet networks by Cĺımaco et al. [14].

The concept of bounding the number of support paths in flow routing has been widely addressed

in the static environment with the so-called k-Splittable Flow Problems (kSFP ), starting from the

work of Baier et al. [3]. Problems in this class explicitly limit to the parameter k the number of

paths that each distinct commodity can use for flow routing. In general, their strong NP -hardness

has been proved even for the single commodity case, both in directed and undirected graphs and for

different constant values of k, see [3]. A comprehensive overview of approximation and complexity

results for kSFPs can be found in [32].
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The specific case of k = 1, namely the Unsplittable Flow Problem (UFP ), has been introduced

by Kleinberg [30] and its multicommodity version investigated by Barnhart et al. in [4] through

development of a Branch and Price and Cut algorithm. The designed branching strategy is based

on the notion of divergence node for a fractional solution, i.e. the first vertex at which a commodity

flow splits into two or more paths, and involves the construction of a binary decisional tree by for-

bidding the usage of subsets of arcs leaving the divergence node. The pricing problem is modeled

and efficiently solved as a Shortest Path Problem (SPP ) for each single commodity by setting a

very high value on the costs of the forbidden arcs.

Truffot et al. presented Branch and Price algorithms for the Maximum kSFP [48, 49], where

the amount of transshipped flow is to be maximized. The problem, formulated with path-flow

and path-design variables for each of the (at most) k path positions, is linearized and simplified

by focusing on the solution space where coupling constraints are saturated. The designed pricing

problem looks for the shortest path with highest capacity and is solved by means of a polynomial

algorithm. A first branching strategy works on the arc-flow space and resembles that developed by

Barnhart et al. [4], whereas a second imposes a subset of path positions for the possible use of a

certain arc. Further Branch and Price approaches for the Multicommodity Maximum kSFP and

the minimum cost version, where the total cost of used arcs is to be minimized, have been discussed

and compared in [23] and [24]. In particular, novel branching strategies have been introduced for a

2-index formulation of the problem: a first rule forbids the transshipment on subpaths emanating

from the divergence node, while a second, proved to outperform all others, forbids the usage of

certain paths while forcing the activation of others. Their computational results present better

performances of the complete toolbox developed for the 2-index formulation. Finally, a Branch and

Price approach based on a different Dantzig-Wolfe decomposition can be found in [22]. Specifically,

each column in the master problem represents a collection of at most k paths carrying a given

amount of flow and the pricing problem, resulting in the NP -hard single-commodity Maximum

kSFP , is solved through heuristic method and an exact algorithm. The branching rule forces and

forbids different subpaths and the cuts so generated are accounted for in both resolution methods

with slight modifications. The method is competitive but presents some scaling issues due to the

complexity of the pricing problem.

Caramia and Sgalambro dealt with the multicommodity Maximum Concurrent kSFP , where the

aim is to maximize the routable demand fraction. They presented a 3-index arc-flow formulation

and a Branch and Bound algorithm. It performs binary branchings on k-splittable-related variables

and fathoming rules are designed to speed up the process and to reduce the size of the decisional

tree [10]. To address the same problem, a fast two stage heuristic algorithm has been designed in

5



[11], whereby flow routing is initialized through a tailored augmenting path algorithm and then

refined by a local search routine.

The first contribution integrating k-splittable flow tools in dynamic networks flows involved a

(3 + 2
√

2)-approximation algorithm for the single commodity Dynamic k-Splittable Flow Problem

with a continuous time parameter [38]. Recently, Melchiori and Sgalambro [40] formally introduced

the Quickest Multicommodity k-splittable Flow Problem (QMCkSFP ), presenting a Mixed-Integer

Linear Programming path-based formulation and proving its strong NP -hardness. This entailed

developing an original resolution matheuristic algorithm, by hybridization of a Very Large-scale

Neighborhood Search metaheuristic strategy using a Mathematical Programming-based technique.

1.2. Contribution of this paper

In this paper we focus on the Quickest Multicommodity k-splittable Flow Problem (QMCkFP ) as

presented in the work by Melchiori and Sgalambro [40]. In more detail, we consider a discretized

time horizon, time- and flow-independent arc attributes, and require transshipment operations

without flow storage at intermediate nodes and only through elementary paths, i.e. paths such

that each node is visited at most once. The main contribution of our research lies in the design of

the first exact algorithm for the resolution to optimality of the QMCkSFP . The proposed strategy

exploits the path-based formulation of the problem provided in [40] and is based on the Branch

and Price paradigm to cope with the exponential number of path-related mixed integer variables.

The work is organized as follows: Section 2 presents the path-based formulation of the QMCkSFP ;

Section 3 concentrates on description of the algorithm, starting from the procedure for constructing

the so-called Restricted Relaxed Master Problem (RRMP ), which is obtained by linearizing some

binary variables and substituting those related to k-splittable path restrictions, see Subsection

3.1. Subsection 3.2 presents the algorithm selected from the literature for initializing the pool

of variables employed by the Branch and Price algorithm. Subsection 3.3 discusses the Column

Generation procedure for identification of promising new variables, i.e. pairs (path,departure time),

on a time expansion of the original dynamic digraph. The next section presents the branching rules

designed for restoring feasibility. An original branching rule, performed whenever k-splittable flow

constraints are violated, forces the usage of some paths and simultaneously forbids the activation of

others over the discretized time horizon. Working on path-based variables, the generated branching

cuts are included in RRMP s of the child nodes. A second rule implements a refined version of the

standard 0-1 branching on fractional variables. In Subsection 3.5 the pricing oracle is presented,

modeled for each commodity as a Shortest Path Problem with Forbidden Paths (SPPFP ) and with

an additional resource for each node introduced to secure the generation of elementary paths. It is

solved in a time extension of the original digraph via a tailored dynamic programming algorithm
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that tracks the consumption of the entire set of limited resources. In Section 3.6, we propose an

enhanced version of this strategy that dynamically includes node-set and forbidden path-related

resources only when needed to restore feasibility. Finally, Section 4 presents discussion of the

computational experience. Subsection 4.1 focuses on small to medium-size instances to verify the

correctness of the strategy and provide measures of quality of the solutions identified by both of

the versions of the algorithm, while Subsection 4.2 explains the use of our exact algorithm on a set

of medium to large-size instances to assess quality of the solutions provided by the matheuristic

approach introduced in [40].

2. Problem definition and formulation

Consider a dynamic flow network D = (V,A, T ), with V as the set of nodes, A the set of directed

arcs, and T = {0, 1, . . . , T} the finite set of time steps into which a certain time horizon is dis-

cretized. Two time-independent labels are associated to each arc (i, j) ∈ A: a strictly positive

capacity cij , representing the maximum amount of inflow that can concurrently enter the arc from

its tail at a given time instant, and a non-negative travel time/delay λij , specifying the number of

time steps required to traverse the arc from its tail to the head. A set H of commodities is given,

each identified by an amount of demand/population σh to be routed from a designated source node

oh to a destination node dh. All elementary paths are collected in the Ph set for each commodity

h. In this setting, the Quickest Multicommodity k-Splittable Flow Problem (QMCkSFP ) asks

for a multicommodity transshipment using at most k different elementary paths for each commod-

ity while respecting shared arc capacities and minimizing the makespan of the process, i.e. the

number of time steps required to accomplish the overall multicommodity routing, assuming that

flow storage is not allowed. The three-index path-based MILP formulation for the QMCkSFP

as presented in the work of [40] follows, with the complete notation collected in the box.
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Notation:

V set of nodes,

A set of arcs,

T set of considered time intervals,

cij inflow capacity of arc (i, j) at each time instant,

λij travel time/delay of arc (i, j) at each time instant,

H set of commodities,

(oh, dh, σh) source, destination, demand/population of commodity h,

Ph set of available paths for commodity h,

up = min(ij)∈p cij bottleneck of path p,

δ
p
ij binary coefficient is 1 iff arc (i, j) is traversed by path p,

lp =
∑

(ij)∈A δ
p
ijλij travel time of path p,

t
p
i time required to reach node i following path p,

Cht = min{σh,
∑

p∈Ph:(lp≤t) up} maximal population of h allowed to arrive at time t,

xhpt amount of flow of commodity h leaving the source at time t through p,

yht binary variable is 1 iff some flow of commodity h arrives at destination at time t,

zhp binary variable is 1 iff path p is chosen by commodity h.

Fractional variables xhpt are employed to track the release of flows at each point in time for each

commodity and path. The identification of the makespan is achieved through dedicated binary

variables yht , recording arrival times at destination of each routed commodity demand. Path limi-

tations are implemented by zhp variables that identify all activated paths for each commodity. For

the sake of simplicity, whenever t+ lp > T for a given path p and time instant t, we set the related

xhpt variable to zero as no unit of flow leaving the origin at time t through path p would arrive at

destination within the observed time horizon.
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min ζ (1)

tyht ≤ ζ ∀h ∈ H, t ∈ T . (2)
∑

p∈Ph

xhp(t−lp)
≤ Chty

h
t ∀h ∈ H, t ∈ T . (3)

∑

p∈Ph

zhp ≤ k ∀h ∈ H. (4)

∑

p∈Ph

∑

t∈T

xhpt = σh ∀h ∈ H. (5)

∑

h∈H

∑

p∈Ph

δ
p
ijx

h
p(t−t

p
i )
≤ cij ∀(i, j) ∈ A, t ∈ T . (6)

xhpt ≤ upz
h
p ∀h ∈ H, p ∈ Ph, t ∈ T . (7)

yht ∈ {0, 1} ∀h ∈ H, t ∈ T . (8)

zhp ∈ {0, 1} ∀h ∈ H, p ∈ Ph. (9)

xhpt ≥ 0 ∀h ∈ H, p ∈ Ph, t ∈ T . (10)

ζ ≥ 0 (11)

The objective function minimizes the makespan of the process, represented by the ζ variable, by

imposing that transshipment of the commodity demands is to be completed as quickly as possible.

Each arrival time at destination, corresponding to an activated y variable, is imposed as a lower

bound to the makespan by Constraints (2). For each commodity, Constraints (3) relate flow support

variables x with time-arrival variables y: whenever no units of flow are detected to reach the

destination at time t, a zero flow leaving any path p at time t − lp is imposed. Parameter Cht is

adopted here to enhance the constraints’ tightness, representing the maximum amount of flow of

commodity h that can arrive at destination at a given time t. Constraints (4), namely k-splittable

constraints, bound to k the maximum number of usable paths for each commodity, while the

amounts of commodity demands to be transshipped within the time horizon are accounted for by

Constraints (5). Arc capacities at each point in time are stated by Constraints (6) and finally,

bottleneck Constraints (7) force the amount of flow on a given path to be zero at every time

instant if the path is not activated for flow transshipment. Proof of the strong NP -hardness of the

QMCkSFP can be found in [40], where a reduction from the Minimum Cost kSFP is proposed.
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3. An exact algorithmic approach

Based on integrating Column Generation and Branch and Bound in a unique framework, Branch

and Price is particularly recommended for tackling MILP problems that present a huge number

of variables, see [1, 5, 37, 50]. Indeed, working on restricted and relaxed versions of the original

problem where only certified good quality variables are considered, it allows for an implicit and

efficient exploration of the space of feasible solutions, to produce either a provably optimal solution

or proof of infeasibility. Note that this is essential in the case of solving the QMCkSFP , since

the fractional x and binary z variables are related to the number of paths for each commodity,

which grows exponentially with the size of the digraph, and to the considered discretized set of

time instants. Explicit enumeration of all these variables, and thus of all paths available for flow

transshipment, would be prohibitive for real-size instances of the problem.

The design of an efficient Branch and Price algorithm requires a high level of customization based

on the specific features of the optimization problem to be solved. The following subsections provide

full details of each procedure designed in the tailored Branch and Price approach to solve the

QMCkSFP .

3.1. The Relaxed Restricted Master Problem

The Branch and Price algorithm works on restricted versions of the path-based formulation of the

QMCkSFP , obtained by considering for each commodity only a proper subset of the available

paths, i.e. P ′

h ⊂ Ph, ∀h ∈ H, and iteratively solves a relaxation of these restricted problems

at each node of the Branch and Bound tree by a Column Generation procedure. The designed

relaxation method first linearizes all integer variables and then replaces bottleneck constraints (7)

with the following feasible constraints:

∑

t∈T

xhpt ≤ σhz
h
p ∀h ∈ H, p ∈ P ′

h (12)

obtained from (7) through an aggregation over time and by employing the commodity demand

in the right-hand side as a valid estimation of the maximum amount of flow that could be sent

through any path during the overall time horizon. The resulting problem is known as the Relaxed

Restricted Master Problem (RRMP ).

We now prove that the following Lemma holds.

Lemma 3.1. There exists an optimal solution to the RRMP saturating Constraints (12).

Proof. Let (ζ̂ , x̂hpt, ŷ
h
t , ẑ

h
p ) ∈ (R+,R

|H||P
′

h
|T

+ ,B|H|T ,B|H||P
′

h
|) be an optimal solution to the RRMP ,

and let
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0 ≤ z̄hp :=

∑

t∈T x̂hpt

σh
∀h ∈ H, p ∈ P ′

h. (13)

We must prove that the solution (ζ̂ , x̂hpt, ŷ
h
t , z̄

h
p ) is also optimal for the RRMP . Note that its

feasibility simply follows from constraints (12) i.e.:

∑

p∈P
′

h

z̄hp =
∑

p∈P
′

h

(

∑

t∈T x̂hpt

σh

)

≤
∑

p∈P
′

h

σhẑ
h
p

σh
=
∑

p∈P
′

h

ẑhp ≤ k ∀h ∈ H.

Moreover, domain constraints z̄hp ≤ 1 ∀h ∈ H, p ∈ P ′

h are implied by population constraints (5).

Finally, the optimality follows from the observation that both solutions have the same objective

function value.

Lemma (3.1) allows for a substantial reduction of the number of variables and thus a consequent

simplification of the overall Branch and Price approach. Indeed, the z’s decision variables can be

eliminated from the RRMP by substituting each of their occurrences with their definition provided

in (13). Moreover, in this new variable space, the k-splittable constraints are always satisfied and

can therefore be excluded from the formulation. A similar reduction based on the saturation of

coupling constraints has been designed by Truffot et al. [48] for the static k-splittable Maximum

Flow Problem. The final formulation of the RRMP results in:

min ζ (14)

tyht ≤ ζ ∀h ∈ H, t ∈ T . (15)
∑

p∈P
′

h

xhp(t−lp)
≤ Chty

h
t ∀h ∈ H, t ∈ T . (π1

ht ≤ 0) (16)

∑

p∈P
′

h

∑

t∈T

xhpt = σh ∀h ∈ H. (π2
h) (17)

∑

h∈H

∑

p∈P
′

h

δ
p
ijx

h
p(t−t

p
i )
≤ cij ∀(i, j) ∈ A, t ∈ T . (π3

ijt ≤ 0) (18)

yht ∈ [0, 1] ∀h ∈ H, t ∈ T . (19)

xhpt ≥ 0 ∀h ∈ H, p ∈ P ′

h, t ∈ T . (20)

ζ ≥ 0 (21)

Note that the RRMP corresponds to the linear relaxation of the free-flow version of the problem

where each commodity flow is unrestricted during the transshipment. Dual variables, π1
ht and
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π3
ijt non-positive and π2

h unrestricted in sign, are associated to Constraints (16), (18) and (17),

respectively.

3.2. Initial columns

At the beginning of our algorithm we generate the initial subsets of paths to be included in the

RRMP at the root node. In particular, for each commodity h we select the best k oh-dh paths

w.r.t. the transmission time as they would likely lead to an overall quickest initial solution. This is

done by adopting the lazy version of Chen’s approach as presented in Pascoal et al. for ranking the

best k quickest loopless paths [42, 43], together with Yen’s algorithm [52]. The method keeps in

memory an ordered list of shortest loopless paths, each of which is obtained in a specific subgraph

of the original graph. At every iteration the best shortest path in the array w.r.t. the transmission

time is selected and replaced with the next shortest loopless path found in the related subgraph.

The same approach has been successfully used in [40] for generating a pool of good and promising

paths to be used throughout the matheuristic approach to obtain a good quality starting feasible

solution. The columns of the initial RRMP are then accordingly populated by including all path-

independent y variables and those fractional variables xhpt associated with each identified path p

and repeated for each discrete time step t ∈ T .

3.3. The Pricing Problem

The pricing problem is in charge of identifying new fractional xhpt variables to be added to the

current RRMP that present non-negative reduced costs computed as follows:

ĉ(xhpt) := −∆(t+lp≤T )π
1
h(t+lp)

− π2
h −∆(t+t

p
i≤T )

∑

(i,j)∈A

δ
p
ijπ

3
ij(t+t

p
i )
.

The identification of the best candidate variable is done separately for each commodity by mini-

mizing the reduced costs over all oh-dh elementary paths for the commodity h and all departure

instants within the considered time horizon, i.e. ĉh
p̄t̄

:= minp,t ĉ(x
h
pt) ∀h ∈ H. Therefore, if the best

identified pair (p̄, t̄) has ĉh
p̄t̄
< 0 the current solution is not optimal for the RRMP and the columns

related to variables xhp̄t ∀t ∈ T are included in the RRMP . In contrast, if ĉh
p̄t̄
≥ 0 no new columns

need to be added: in this case, feasibility of the current solution for the initial original problem has

to be checked and, when not met, the branching phase has to be performed.

In order to model the pricing problem we apply a modified version of the time expansion procedure

designed by Ford and Fulkerson [19, 20]. Their method enables the translation of flows over time

into static problems, formulated in a novel Time-Expanded Network (TEN) obtained by decoupling

the time parameter from the original dynamic digraph. In our case, the considered TEN , indicated
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as DT = (VT ,AT ), is composed of the set of original nodes replicated at each discrete time step,

VT = {it | i ∈ V , t ∈ T }, and the set of the original arcs linking copies of nodes according to their

travel time, AT = {(i, j)t | (i, j) ∈ A, t + λij ≤ T}. We furthermore introduce an additional super

source node o′ and a super sink node d′ and we connect them through outgoing arcs directed to each

time-replica of the origin, for sake of simplicity indicated as (o′, oh)t, and through incoming arcs

originating from each time-replica of the destination of the commodity, i.e. (dh, d
′)t, respectively.

Capacities of these artificial arcs are unrestricted and their lengths are set to zero. Note that a

cycle in the original dynamic digraph reaching node i at times t′ and t′′, t′′ ≥ t′, corresponds in

the TEN to a subpath starting at node it′ and finishing at node it′′ . The pricing problem in this

extended TEN graph, indicated as D′

T = (V ′

T ,A
′

T ), results thus in an extended version of the o′-d′

Shortest Path Problem (SPP ) where the length associated to arc (i, j)t ∈ A′

T equals:

bijt = (−γjdhπ
1
h(t+λij)

− π3
ijt)

and binary indicator γ
j
dh

is one if j = dh, zero otherwise, bijt = 0 ∀(i, j)t ∈ A′

T \ AT .

The explicit model of the pricing problem follows, with binary variables being ωijt = 1 if the

commodity traverses arc (i, j)t, zero otherwise.

min
∑

(i,j)t∈A
′

T

bijtωijt (22)

∑

t∈T

ωo′oht = 1 (23)

∑

t∈T

ωdhd′t = 1 (24)

∑

(j,i)t̄∈A
′

T
: t=t̄+λji

ωjit̄ −
∑

(i,j)t∈A
′

T

ωijt = 0 ∀it ∈ VT . (25)

∑

t∈T

∑

(i,j)t∈A
′

T

ωijt ≤ 1 ∀i ∈ V. (26)

ωijt ∈ {0, 1} ∀(i, j)t ∈ A
′

T . (27)

Constraints (23) and (24) impose the origin of the path at node o′ and the destination at node

d′, respectively, while Constraints (25) ensure the identification of a non-interrupted path. These

are applied to all time-replica of all original nodes, including the origin and destination nodes for

the commodity. Finally Constraints (26) are required to avoid to traverse multiple time replica of

the same node and thus to ensure the identification of an elementary path for the original dynamic

problem. The optimal solution to this problem identifies a pair (p̄, t̄) where p̄ is defined by the

sequence of selected arcs and the departure time t̄ by the time instant at which the origin node

of the commodity is traversed. In the case of an infeasible RRMP , Farkas pricing is applied to
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identify candidate pairs for path and departure time that can restore the feasibility, see [21]. If at

least one such pair exists, its related path-flow variables for each feasible time instant are added

to the RRMP . Otherwise, the current node is discarded. Note that in the case of this happening

at the root node, i.e. before any branching step is performed, the algorithm stops, having proved

the infeasibility of the original dynamic problem. As it will be explained in detail in the next

subsections, the presented linear programming formulation cannot itself be adopted straightly as a

tool for solving the pricing problem, as additional constraints deriving from the application of an

original branching strategy need to be embedded throughout the resolution process. A dynamic

programming approach is instead designed and developed to solve an ad-hoc variant of the SPP

that implicitly accounts for the above mentioned branching decisions.

3.4. Branching Strategy

The branching step occurs whenever the optimal solution to the current RRMP violates the original

problem’s constraints. Recall that the RRMP does not ensure y’s integrality and the satisfaction of

the k-splittable flow constraints as binary z’s have been discarded during the relaxation phase. In

the following we first describe the branching rule developed for restoring feasibility w.r.t. limitations

on number of paths and then we present the refined strategy related to the binary branching on

time-arrival variables.

The k-splittable branching. We discuss here the case of at least one commodity sending a positive

amount of flow on k + α paths with α ≥ 1 in the optimal RRMP solution of a given node. The

branching strategy applied to one of these commodities, say it is h, identifies k + 1 quickest paths

among the used ones, i.e. those k+1 activated paths with minimum transmission times, and collects

them in the ordered set P ′′

h . Then, it generates child nodes Nj , j = 1, . . . , k + 1 as follows: in a

given child node Nj it imposes a branching constraint that forbids the usage over time of the j-th

path and a second one that forces routing of the flow through paths pi ∈ P ′′

h , ∀i < j over the time

horizon. This results in:
∑

t∈T

xhpjt = 0
∑

t∈T

xhpit ≥ ǫ, ǫ > 0, ∀i < j.

The integration of such constraints in the RRMP of the child nodes generates additional dual

variables that must be accounted for when computing reduced costs. However, note that dual

variables related to forced paths can be excluded from this computation while still ensuring correct

implementation of the column generation procedure. The same does not apply to local forbidden

paths as the SPP formulation provided in Subsection 3.3 might not be able to avoid their repeated

generation. Subsection 3.5 presents the technique designed to deal with this issue.
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An improved binary branching. The current RRMP optimal solution might present binary time-

arrival variables with fractional values, i.e. ∃h ∈ H, t ∈ T s.t. yht ∈]0, 1[. In this case, we apply a 0-1

branching to the yht variable presenting the highest time instant among all candidates. Moreover,

we manually adjust the integrality of y’s in the following cases: if ŷtht < t ≤ ⌈ζ̂⌉, i.e. rounding

up the time-arrival variable would generate an equivalent optimal solution, we simply set this as

ŷht = 1.

3.5. A tailored Dynamic Programming Algorithm for the Pricing Problem

As detailed in the previous section, the developed k-splittable branching strategy imposes a refor-

mulation of the pricing oracle to account for local forbidden paths during Column Generation. To

this aim, we re-model the pricing problem in the TEN digraph as an extended version of the o′-d′

Shortest Path Problem with Forbidden Paths (SPPFP ), a particular variant of the well-known

Resource-Constrained SPP , that asks for the identification of the minimum length path that is

not part of a given set of forbidden paths, see [16, 17, 51]. We solve this novel pricing problem via

a dedicated label-setting algorithm that utilizes for each forbidden path a limited resource whose

consumption is checked and updated during the label extension procedure. Moreover, to avoid

the identification of subpaths corresponding to cycles in the dynamic digraph, we introduce an

additional limited resource for each group of time replica of the same node, namely a node-set

resource. The finite availability of such resources ensures that the optimal solution, if one exists,

encompasses an elementary path which is not in the forbidden list at any time. We refer the reader

to the work by Pugliese and Guerriero [15] for the original resolution technique designed for the

SPPFP and Kohl [33] for similar implementations of node-related resources applied to the Ele-

mentary Resource-Constrained SPP . Differences with these approaches lie on the specific dynamic

structure of our problem that requires to track flow, and thus consumption of resources, at each

time instant. We now provide formal details of the developed strategy; a pseudocode is provided

in Algorithm 1.
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Algorithm 1 Dynamic programming-based approach

1: Initialization

so′(q1) = (0, 0), L = {so′(q1)}, So′ = {so′(q1)}, Sit = ∅ ∀it ∈ V ′

T \ {o′};

2: Selection of the state

if L = ∅:
select the minimum cost path qk among all sd′(qk) ∈ Sd′ ;
q∗ ← qk;
return q∗;

else : select a state sit(qk) ∈ L with minimum cost;

3: State extension

for all jt′ ∈ δ+(it), j the l-th node in V:
if V l

it
= 1 : continue;

s̄← ExtendState(sit(qk), jt′);
if s̄ is not dominated in Sjt′ ;
Sjt′ ← append(s̄), L← append(s̄);
update efficient states in L and Sjt′ ;

L← L \ sit(qk);
goto 2;

Consider the set F of forbidden oh-dh paths for commodity h that are locally imposed at a certain

node in the decisional tree. To each path pk ∈ F we associate a finite amount of path-related resource

equal to P k = n(pk)−2, where n(pk) is the number of nodes in the path. All path-related resources

are collected in the vector P =
[

P 1, P 2, . . . , P |F|
]

. Given a subpath q from the super source o′ to a

node it in the TEN , we denote by Uit(q) =
[

U1
it

(q), . . . , U
|F|
it

(q)
]

the vector of path-related resources

consumed along q, being Uk
it

(q) the number of consecutive arcs of the k-th forbidden path pk that

are traversed by subpath q starting from the initial arc at a certain instant in the time horizon.

Let the multiplicity over time of a node j ∈ V in a subpath q be the number of times the node is

traversed along the path within the time horizon, i.e. mj(q) =
∑

t∈T δjt(q), where δjt(q) is one if

node jt is part of q, zero otherwise. For each node in the original digraph, say it is j with position

index l ∈ {1, . . . , n} in V, we introduce a node-set resource with limit N l equal to one. Whenever

the node is traversed at a given time by subpath q from o′ to it, the resource consumption vector

Vit(q) =
[

V 1
it

(q), . . . , V
|V|
it

(q)
]

is activated in the correspondent node-set resource, i.e. V l
it

(q) = 1. In

this way we ensure a multiplicity over time which is at most one for each original node. The complete

vector of considered resources is thus R =
[

P,N
]

=
[

n(p1) − 2, . . . , n(p|F|) − 2, 1, . . . , 1
]

. To each

subpath q from o′ to node it we associate a state sit(q) = (bit(q),Wit(q)) where bit(q) is the total

cost of the subpath expressed as the sum of its arcs’ costs and Wit(q) =
[

Uit(q), Vit(q)
]

its resources

consumption. We collect all the states associated to paths from o′ to node it w in the set Sit ,
where the element sit(qk) refers to the k-th path in the list. We extend the definition of dominance
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introduced in [15] to store only promising states to our case as follows: given sit(q1), sit(q2) ∈ Sit ,
we say that the first dominates the second iff bit(q1) ≤ bit(q2) and Wit(q1) ≤ Wit(q2), and at least

one of the inequalities is strict. A state is said to be feasible if Wit(q) ≤ R while it is efficient or

non dominated if no other state associated to the same node dominates or equals it. Note that the

definition of dominance is correctly preserved by the developed extension rule.

The proposed algorithm collects in the list L the unprocessed candidate states initialized with state

so′(q1) = (0, 0), corresponding to the initial label at the super source node. Then, it iteratively

selects the state sit(q) = (bit(q),Wit(q)) ∈ L with lower cost and extends it, generating efficient

and feasible states for each adjacent node in the TEN of node it. Suppose node jt′ ∈ δ+(it) is

selected, with j being the l-th node in V. If V l
it

(q) = 1, meaning that node j has been already

visited by subpath q over time, the related extension is not performed and the adjacent node is

skipped. Otherwise, the extension function generates a new state s̄ = (b̄, W̄ ) where b̄ = bit(q) + bijt

and:

Ūk =



















1 if (i, j) is the first arc of path pk,

Uk
it

(q) + 1 if (i, j) directly follows the last arc of subpath q in path pk,

0 otherwise

V̄ l =







1 if j is the l-th node in V,

V l
it

(q) otherwise

for each k = 1, . . . , |F| and l = 1, . . . , |V|. The novel state is added to Sjt′ iff it satisfies the

path-related resource limits and is non dominated. Finally, state sit(q) is deleted from list L after

checking all of its successors. The algorithm stops when the list L is empty, returning the least cost

state in the set Sd′ related to the super sink node and the reconstructed o′-d′ path.

3.6. An incremental approach to enhance the Pricing routine

In this section, we describe an enhanced pricing routine based on the consideration that the inclusion

of the entire set of limited resources in the dynamic programming procedure, besides provoking in

general a substantial increase in the computational effort, is redundant in all those cases where the

potential solutions do not include any forbidden path and cycle over time. Building on this intuition,

we introduce an incremental approach based on a state-space relaxation procedure that iteratively

executes the proposed dynamic programming algorithm while taking into account only a subset of

limited resources. In particular, as a first stage, none of the forbidden path and node-set resources

are considered, meaning that a simple SPP is solved in the TEN digraph for each commodity.

Whenever the identified path doesn’t fulfill the desired original requirements, i.e. it matches a
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forbidden path at a certain time step or it embeds a cycle over time, the dynamic programming

algorithm is re-executed tracking the consumption of the violated resource during the generation

and extension of the subpath labels. In particular, in the case of several nodes traversed multiple

times over the time horizon, we select the one with highest multiplicity. In the extension procedure

the dominance rule is accordingly restricted to the considered subset of resources. We refer to this

approach as the Enhanced Pricing routine while to the original one described in the previous section

as the Default Pricing routine. See the work of Boland [7] for a state-space augmenting algorithm

designed to incrementally include limited resources for the Elementary Resource-Constrained SPP .

4. Computational Experience

This section presents thorough discussion of the computational experience performed on the de-

signed Branch and Price algorithm to solve instances of the QMCkSFP . In Subsection 4.1 we

perform a comparison between the Default and the Enhanced pricing routines on a collection of

small to medium-size instances extracted from the Carbin testbed (see [23] for the original testbed

in the context of static k-splittable flows) and adapted here to fit the dynamic flow setting. Subsec-

tion 4.2 focuses on the use of the Branch and Price approach as a tool to assess the quality of the

solutions obtained by a V LNS-based matheuristic on a set of medium to large-size Grid instances

as presented in [40]. To this aim, we use the same testbed with our Branch and Price algorithm,

feeding it with results of the matheuristic as starting solutions, then measuring and comparing the

residual optimality GAP , computed as the difference between the best incumbent and the lower

bound, divided by the lower bound itself.

Our Branch and Price approach has been implemented in the C++ language and the experiments

conducted using the SCIP Optimization Suite v5.0.0 [26] in its default setting on a 64bit Intel

Xeon CPU at 2.80GHz with 64GB memory, running Ubuntu 14.04.2. In both the experiments the

k paths with lowest transmission time for each commodity have been provided as an initial set of

columns, as described in Subsection 3.2. Following the results of a preliminary batch of tuning

experiments, binary branching on the time-arrival variables has been applied as a first branching

strategy before that to restore the k-splittable feasibility.

4.1. Performance Analysis of the Branch and Price Algorithm

This experiment tests performances of our exact algorithm on a collection of Carbin instances dur-

ing three hours of computational time. The test set comprised of 8 instances with 32 nodes and

96 arcs, each of which was tested with three different levels of splittable parameter k = 1, 3, 5 and

three different levels of commodities 4, 8 and 12 for a total of 72 instances. In this experiment we
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Table 1: Average results obtained on the Carbin test set with Default and Enhanced pricing routines.

Default Pricing Enhanced Pricing
Optimal (%) 68.06 70.83
Suboptimal (%) 26.39 29.27
Not identified (%) 5.55 0.00

GAP (%) 8.12 9.27 (∗5.63)
CPU time (s) 3744.22 3206.94
Nodes 273.82 2183.67

LP calls 2186.64 1163.5
LP time (s) 1.17 4.32

Pr. calls 317.72 2224.08
Pr. time (s) 3737.74 3053.68
Pr. paths 17.94 18.86
Pr. added vars 321.56 354.88
Max labels 7747.33 1652.19
Mean labels 2660.51 43.43

Br. Y branchings 164.88 918.74
Br. K branchings 48.99 316.83

Node-set it - 243.18
Forbidden path it - 1555.44

fed our exact algorithm with a valid lower bound (LB) on the optimal makespan of the instance

provided by the free-flow relaxation of the problem, namely the Quickest Multicommodity Flow

Problem (QMCFP ), where no bound is imposed on the number of active paths. We refer to [40]

for a detailed description of the technique used for its resolution. Moreover, for each instance we

consider a tailored time horizon for flow transshipment to contain the impact of the time dimension

on the Branch and Price, especially in its pricing routine. The time horizon of a certain instance

is defined by computing a feasible solution through the matheuristic approach described in [40],

whose initialization phase provides a valid upper bound (UB) on the instance optimum.

While analyzing the computational results at different aggregation levels, we adopt the following set

of key performance indicators, which are utilized in Tables 1, 2 and 3 as row labels. In particular,

the Optimal entry refers to the percentage of instances that have been solved to optimality within

the time limit, Suboptimal to the percentage of times our method stopped with a finite but strictly

non-zero optimality GAP , and Not identified to the percentage of instances for which at least one

among the primal and the dual bounds was not identified. The average optimality GAP is pre-

sented in row GAP while the average computational time expressed in seconds is reported in CPU

Time (s) and the average number of nodes explored during the process in row Nodes. The next
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values present aggregated performance indicators w.r.t. the execution of the LP solver, the pricing

procedure, the branching rules, where Br.K refers to the branching strategy on the k-splittable

constraints and Br. Y to the one on the time-arrival variables. Finally, the last bunch of rows

report some statistics specifically focused on the performances of the Enhanced Pricer, showing the

average number of times it identified a path with loops over time (row Node-set it), or a forbidden

path (row Forbidden path it). For a detailed description of the table entries, we refer to Appendix

A where disaggregated results on the entire testbed are presented.

Analyzing aggregated results. Table 1 presents the above described key performance indica-

tors averaged on the entire Carbin testbed and compared on the basis of the Default and Enhanced

versions of the pricing routine. Column Default shows overall good performances of the developed

algorithm, with a number of instances solved to optimality equal to 68.06%, an average GAP across

the whole testbed of 8% and an average computational time of around 3700 seconds. On 5.55% of

the cases, corresponding to four instances, the Default version was not able to identify a valid dual

solution and stopped while executing the pricing routine at the root node after a contained number

of iterations. As observed from the complete tables in Appendix A, these situations correspond to

the longest time horizons. Therefore, the behavior can be attributed to a pricing problem difficulty

when working on a TEN with large dimension that requires the generation and extension of a huge

number of labels, as confirmed by the Max labels values that in these cases turned out to be one

order of magnitude higher than the average number for the total test set. Timing values show that

the strategy expended most of the computational time on performing the pricer step, while the

resolution of the LP s took a few seconds on average. Branching-related results show on average

a branching on the y variables around every two nodes while only one every five nodes for the k

branching.

The second column relates to the use of the Enhanced Pricer, and provides wide evidence of a

faster and more efficient exploration of the feasible region with respect to the Default Pricer. This

is confirmed by a general improvement in the algorithm’s performance, with an increased number

of instances solved to optimality, a reduced average computational time and a number of explored

nodes 10 times higher. The moderate rise in the average GAP is due to a finite optimality GAP

available for the entire testbed, which is not the case for the Default setting, and denotes the ability

of the Enhanced pricer to cope with hard instances. When the mean GAP is computed only on the

reduced subset of instances tackled by the Default setting, the Enhanced setting prevails by almost

3%. On the average, the time spent for the pricing routine is similar for the two settings, albeit the

Enhanced setting permits more iterations of Column Generation, thanks to a considerable decrease
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Table 2: Average results on the Carbin test set aggregated by the flow split parameter

Default Pricer Enhanced Pricer
1 3 5 1 3 5

Optimal(%) 25.00 83.33 95.83 25.00 87.50 100.00
Suboptimal(%) 58.33 16.67 4.17 75.00 12.50 0.00
Not identified (%) 16.67 0.00 0.00 0.00 0.00 0.00

GAP (%) 23.86 2.67 0.46 25.87(∗19.14) 1.95 0.00
CPU time (s) 8352.23 2352.90 527.55 7925.88 1691.29 3.66
Nodes 511.63 305.96 3.88 6012.38 534.88 3.75

LP calls 3881.29 2612.92 65.71 30989.54 3891.25 25.71
LP time (s) 1.98 1.43 0.10 10.41 2.53 0.02

Pr. calls 617.13 329.96 6.08 6092.50 573.75 6.00
Pr. time (s) 8342.47 2349.34 521.41 7470.30 1687.13 3.61
Pr. paths 33.42 17.83 2.58 33.42 20.54 2.63
Pr. added vars 692.46 235.33 36.88 773.75 256.50 34.38
Max labels 17365.67 3320.13 2556.21 4497.38 379.21 80.00
Mean labels 6606.92 708.29 666.33 127.25 1.04 2.00

Br. Y branchings 334.29 158.29 2.04 2491.79 262.42 2.00
Br. K branchings 94.33 51.67 0.96 633.92 312.08 2.25

Node-set it - - - 606.25 123.08 0.21
Forbidden path it - - - 3133.75 1529.50 3.08

Table 3: Average results on the Carbin test set aggregated by number of commodities

Default Pricer Enhanced Pricer
4 8 12 4 8 12

Optimal (%) 75.00 70.83 58.33 75.00 75.00 62.50
Suboptimal (%) 25.00 20.83 33.33 25.00 25.00 37.50
Not identified (%) 0.00 8.33 8.33 0.00 0.00 0.00

GAP (%) 9.61 4.31 10.31 6.26 8.88(∗2.95) 12.68(∗6.18)
Time (s) 3054.13 3507.58 4670.96 2913.81 2599.39 4107.63
Nodes 353.54 290.46 177.46 1443.67 3859.17 1248.17

LP calls 2612.08 2711.21 1236.63 8482.46 19666.71 6757.33
LP time (s) 1.16 1.43 0.93 4.52 4.37 4.08

Pr. calls 377.75 374.75 200.67 1509.21 3880.17 1282.88
Pr. time (s) 3052.02 3495.89 4665.32 2464.99 2590.12 4105.93
Pr. paths 16.63 15.67 21.54 15.46 15.63 25.50
Pr. added vars 321.38 230.54 412.75 284.92 259.17 520.54
Max labels 2858.00 6765.54 13618.46 1450.88 1499.88 2005.83
Mean labels 1118.21 2005.96 4857.38 71.21 40.08 19.00

Br. Y branching 186.67 182.75 125.42 260.21 1932.33 563.67
Br. K branching 49.58 74.71 22.67 514.71 77.33 356.21

Node-set it - - - 440.42 198.50 90.63
Forbidden path it - - - 1807.21 1410.63 1448.50
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in the number of labels to be treated, and a number of added paths and variables that is somewhat

slightly increased. Finally it is interesting to observe how, every two pricer calls on the average,

the Enhanced Pricer identified a path falling in the forbidden list due to the restricted subset of

limited resources considered, while only in few cases cycles over time were detected.

Mid-aggregation level results. We now analyze Table 2 and 3 collecting the same key indicators

this time with a mid-aggregation level, based on number of commodities and allowed paths, respec-

tively. Results show evident performance improvements in both of the pricer versions when shifting

from the unsplittable to the 5-splittable setting, in terms of solved instances, average GAP s and

computational times. This confirms that a higher number of usable paths is associated with higher

degrees of freedom and thus with easier identification of optimal solutions for the transshipment

process. In general, the unsplittable case presents the highest average number of generated nodes,

pricer calls and both types of branching iterations, revealing that a tighter number of usable paths

entailed a consistent need for new paths and a recurrent violation of the integrality and k-splittable

constraints. Higher computational times in both of the algorithm versions might be related on one

side to a larger TEN size on which the pricer operates, this dimension being directly determined

by the considered time horizon; on the other side, to the higher number of performed branching

operations of type k which, by introducing forbidden paths at the nodes, reduce the efficiency

of the comparison rule in discarding dominated labels in the Default Pricer and requires higher

number of re-iterations in the Enhanced Pricer, as confirmed by statistics indicators at the bottom

of the table. When comparing the two strategies, it can be observed that the Enhanced Pricer

reveals its potential already in the unsplittable case, where it was able to identify a dual and a

primal bound for all instances in the testbed and improve the average GAP of around 4 point in

percentage. Moreover, in the 5-splittable case it succeeded in closing all instances to optimality in

a considerable shorter computational time, around 140 times faster than the Default version, while

constructing a similarly sized branch and bound tree.

Table 3 presents averaged results, this time aggregated by the number of commodities. The Default

Pricer algorithm presents better performances on less congested instances, i.e. when a lower num-

ber of commodities must be transshipped. Indeed, we can observe that the 4 commodities setting

presents the higher percentage of instances solved to optimality in the shortest computational time,

75.00% in around 3000 seconds, against 58.33% in more than 4600 seconds for the 12 commodities

case. Note that the apparent decrease in the GAP on the medium congestion level setting is biased

by the restricted subset of instances on which the GAP is measured. Moreover, pricing steps are

performed more quickly in the 4 commodities setting, being this behavior motivated by the fact that

22



on each call of the pricer the dynamic programming algorithm must be performed separately for

each commodity and, as in the previous analysis, on a TEN whose dimension is strongly influenced

by the considered time horizon. Finally, the larger number of columns added to the nodes reveal,

in the congested instances, that more paths are required for better multicommodity transshipment

and arc capacities usage. This resulted in fewer branching steps and thus smaller branch and

bound trees. The performance trend in the Enhanced experiment is not fully apparent, as shown

by the results on the intermediate 8 commodities case. Indeed, despite the increase in the average

GAP from 6.26% to 8.88%, it presents the same amount of instances solved to optimality with a

faster overall computational time and a larger number of explored nodes on the average, somehow

denoting a higher variability on the difficulty level of the instances within the subgroup. Finally,

improvements achieved through this pricer version are tangible in all of the three settings, thanks

to a faster identification of the entering columns and thus a more efficient exploration procedure.

4.2. Use of the Branch and Price Algorithm to assess the quality of Matheuristic results

Our Branch and Price algorithm can make a further valuable contribution through its adoption

as a tool to enrich computational analysis of heuristic methods and enhance quality assessment

of their identified solutions on QMCkSFP instances. In this section we particularly describe the

experiments using our exact algorithm in its Default setting to certify the quality of the solutions

obtained by the matheuristic approach presented in [40]. The testbed for this batch of experiments

is composed of Grid instances where the solutions of the matheuristic were not certified as being

optimal due to a lack of optimal benchmarks and the ineffectiveness of the valid lower bound

provided by the free-flow relaxation makespan. This corresponds to a testbed presenting a total of

80 instances with a number of layers ranging in {2, 3, . . . , 10}, each being a 5× 5 grid with 80 arcs,

5 different levels of commodities and a k-splittable parameter that varies in {1, . . . , 6}. For each

experiment we allowed six hours of computational time, setting the free-flow relaxation makespan

as a valid lower bound (LB) and tailoring the allowed time-horizon based on the makespan of the

best solution obtained by the matheuristic approach.

Appendix B presents the complete set of results for this Grid experiment together with detailed

description of the key indicators, while averaged results are collected in Table 4. Results show

that in 55% of the instances the Branch and Price algorithm was able to identify better optimality

GAP s with respect to those previously computed, see rows Improved GAP . In particular, all

improvements were achieved due to better certification of the lower bounds, while none of the

matheuristic best solutions were discarded for better incumbents, rows Improved LB and Improved

best sol. Note that in 65.91% of these cases the resulting GAP is equal to zero, thus proving

the previously unknown optimality of the matheuristic best solutions, see rows Optimal. In the
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Table 4: Results on the Grid test set after the application of the Branch and Price algorithm

After BP
Improved GAP 44
Improved LB 44
Improved best sol 0
Improved GAP (%) 55%
Improved LB (%) 100%
Improved best sol (%) 0%

Optimal 29
Suboptimal 15
Optimal (%) 65.91%
Suboptimal (%) 34.09%

GAP amean 4.59%
GAP improv amean 10.11%

remaining 15 cases, the new GAP reached 13.47% on average, with an improvement w.r.t. the

matheuristic results of 10.11% on average. On one hand, these results are relevant as they confirm

the very high quality of the matheuristic best solutions across the whole Grid test bed, where a

large number of certified optimal solutions were already identified, mainly on the subset of small

to medium-size Grid instances. On the other hand, this batch of experiments was instrumental in

validating the suitability of the Branch and Price algorithm as a precious tool for better assessment

of the quality of heuristic solutions in those medium to large-size instances where a purely exact

approach would not have been an option due to computational hardness.

5. Conclusions

The presented work concerns the development of the first exact algorithm, based on the Branch and

Price paradigm, for the strongly NP -hard Quickest Multicommodity k-splittable Flow Problem

(QMCkSFP ) [40]. This dynamic flow problem has been recently introduced in the scientific

literature, due to its relevance as a tool in an increasing number of real-life situations where there

is a need to minimize the completion time for a set of processes while taking account of path

number restrictions in routing flows. Its path-based formulation presents fractional flow support

variables and two sets of binary variables charged with identifying time-arrivals of demand flows at

destinations and implementing path restrictions by limiting the number of paths for each commodity

to at most k.

A restricted relaxed version of this formulation (RRMP ) is employed in the original Branch and

Price approach to explore the feasible region through alternating Column Generation and Branch

and Bound steps. In particular, a dedicated relaxation procedure is utilized to linearize binary
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variables and those related to path restrictions are discarded by substitution.

A tailored branching rule is then applied to recover feasibility when constraints related to path

limitations are violated by the optimal solution to the RRMP . Working on path-flow variables,

it forbids the usage of some paths while forcing the activation of some others over the considered

time horizon. A second strategy involves implementing a refined version of the classical fractional

binary branching on the time-arrival variables.

The pricing problem, aimed at selecting new promising entering columns, each of them identified by

a (path,departure time) pair, is modeled for each commodity in the TEN of the original dynamic

digraph as an extended version of the Shortest Path Problem with Forbidden Paths (SPPFP ),

with additional limited node-set resources required to avoid the generation of cycles over time. The

pricing problem is solved via a dynamic programming algorithm, where the consumption of limited

resources, in terms of consecutive arcs for forbidden path-related resources and of traversed nodes

for the node-set resources, is stored into labels that are extended throughout the procedure. An

enhanced version of the pricing routine is designed with the aim of containing the required amount

of resources and hence the overall computational times. The strategy iteratively solves a state-

space relaxation of the problem by taking into account only a subset of node-set and forbidden

path-related resources in the dynamic programming algorithm. The set of tracked resources is

iteratively enlarged whenever infeasible solutions are found.

A computational experiment was conducted to test quality performances of the proposed Branch

and Price algorithm in its Default and Enhanced version, examining in particular the impact of

its pricing and branching routines on the overall resolution process. The experiments performed

on small to medium-size Carbin instances show overall good performances in terms of reaching

optimality, which was achieved in 68.06% of the cases, with the average GAP reduced to less than

10% after three hours of running time. Further improvements were obtained with the Enhanced

Pricing, resulting in more instances solved to optimality or with a finite optimality GAP in shorter

computational times, and a general decrease of the mean GAP . The pricing problem showed

a significant impact on the algorithm performances, in particular on more congested instances,

revealing the difficulty of using the dynamic programming routine to solve resource constrained

SPP s on large networks. These scalability issues are motivated by the specific dynamic setting of

the problem, in particular by the considered time horizon that directly determines the size of the

TENs where the pricing problem is modeled, that in turn strongly affects the number of labels to

be generated and extended. An additional experiment was performed with the aim of enriching

computational analysis of the matheuristic approach developed in [40], using a collection of medium

to large-size Grid instances previously employed in the matheuristic computational experience.
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Our Branch and Price algorithm has improved achievement of the lower bounds, often providing a

certificate of optimality of the solutions previously provided by the matheuristic algorithm.

Future research activities will mainly concentrate on improvement of the pricing step performances.

To this aim, some preliminary experiments had already been conducted, before the development

of the Enhanced Pricing routine, by adapting state-of-the-art techniques conceived to reduce the

burden of generating and extending labels in the dynamic programming routing. In particular, a

bounding procedure encompassing costs, identifying all-pairs shortest paths w.r.t. reduced costs

in the TEN , was employed to enable early discarding of non-dominated labels based on provably

worst associated costs. We refer to the following work for the application of a similar procedure to

different static network flow problems [15]. Finally, a heuristic rule was implemented to interrupt

the dynamic programming algorithm at the first realization of a label reaching the sink node

with an associated negative reduced cost. However, these first attempts produced no relevant

achievements w.r.t. pricing computational times in the conducted experiments. Therefore, further

ad-hoc improvement strategies, specifically tailored to the problem features, will be investigated to

increase the applicability of the developed Branch and Price exact approach on increasingly larger

instances and thus on a wider range of practical applications.
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