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Abstract—This paper proposes a new framework that com-
bines Bayesian SegNet with adversarial learning to obtain high-
quality segmented objects of interest. The proposed architecture
takes in the form of two discriminator networks that are trained
separately. The first network discriminates between segmentation
maps coming either from the SegNet or the ground truth. The
second network discriminates between the model uncertainty
obtained from SegNet and an ideal solution that does not include
uncertainty. The process is very similar to the fusion of sensor
information for better decision making. Uncertainty is considered
as a measure of mistakes. Hence, learning from it will help
improve the performance of neural networks. Our results show
that we obtain higher accuracies compared to Bayesian SegNet.
Training is performed on a small-sized dataset called CamVid
and a large-sized dataset Sun RGB-D. The paper shows that
dealing with uncertainties is beneficial for decision making in
neural networks, especially in applications with highly uncertain
environments. Examples include self-driving cars and medical
imaging in cancer treatment.

Index Terms—segmentation, adversarial learning, deep neural
networks, Bayesian SegNet, epistemic uncertainty

I. INTRODUCTION

Recently, deep learning (DL) has emerged as a prominent

technology in the use of modern-day artificial intelligence

(AI) applications. Deep neural networks (DNNs) can be seen

widely used in applications such as medical imaging [1], [2]

autonomous driving [3], [4], [5], machine translation [6] and

weather forecasting [7] etc. When focusing on the area of

segmentation, a popular task in generic scene understanding,

we find that DNNs have celebrated a wide variety of contribu-

tions. Some of these are in the form of architectures, such as

SegNet [8], PSPNet [9], U-Net [10] and Deep Lab [11], that

have shown to achieve higher performance than their non-deep

learning counterparts. Segmentation is a difficult task since it

requires classifying each pixel of an image (or images) into

an instance (or a category) corresponding to an object.

Despite its popularity, deep learning frameworks are yet to

be trained to deal with highly uncertain environments. Major-

ity of the performance of deep learning is blindly assumed

to be accurate. There have been two specific incidents that

outline the failure of DNNs in uncertain environments; firstly

a fatality caused by self-driving cars due to false perception

and error in classification results [12], secondly a failure in an

image classification system that incorrectly identified human

examples with animals which lead to a concern of racial

discrimination [13].

To address such challenges, the deep learning community

has adopted Bayesian models. Such models are capable of

highlighting the confidence of their predictions in the form

of uncertainties. One specific example in segmentation is

the Bayesian SegNet [14]. Bayesian modelling allows en-

coding for two types of uncertainty; aleatoric and epis-

temic [15]. Aleatoric represents uncertainty present in the

dataset/observations e.g. sensor noises. Epistemic, or model

uncertainty, represent noise in the model. The general rule of

thumb in dealing with the two is that aleatoric uncertainty

can be made redundant if the dataset is small and epistemic

uncertainty can be reduced if more dataset is collected [15].

The two objectives are clearly contradictory and to the best of

our knowledge, there is no DNN system available that can deal

with epistemic uncertainty in the presence of small dataset.

A. Contributions

In this paper, we propose a novel framework as an example

of an add-on architecture that improves the performance of a

DNN system (Bayesian SegNet) by teaching it to reduce its

model uncertainty without the aid of additional dataset. We

first build a simplified version of Bayesian SegNet [14] as

a toy example and use dropout layers to output uncertainty

[16]. We then build two discriminator networks that train

independently; the quality critic (QC) and the uncertainty critic

(UC). QC focuses on penalizing SegNet’s weights if SegNet

produces segmented output maps that are different to ground

truth samples. UC, on the other hand, penalizes the weights

if SegNet fails to reduce its uncertainty. The framework is

analogous to a simple case of two sensors fusing information

to overcome uncertainty in the operating environment [17].

We train the models on CamVid [18], a small-sized dataset on

outdoor scenes. Our main aim is to confirm if there exists

a relation between dealing with uncertainty and increased

performance without feeding additional data. The novelties of

our paper are as follows:

• Firstly, we build a novel DNN based model that can learn

to adapt to model uncertainty without the need of the user

to increase dataset size.



• Second, the proposed DNN network achieves perfor-

mance accuracy higher than its more uncertain, frequen-

tist counterpart model.

The rest of the paper is organized as follows. Section II

discusses related methods from the literature on adversarial

learning and Bayesian methods. Section III presents the

proposed framework, called AdvSegNet. Section IV presents

results and finally, Section V provides the summary.

II. RELATED WORK

A. Bayesian Methods in Deep Learning

Bayesian deep learning is a probabilistic paradigm that

views DNNs differently from their usual frequentist treatment.

The idea originated in the ‘90s in the works of Radford Neal

on Gaussian processes and Bayesian neural networks (BNNs)

(see e.g. [19]). Bayesian methods were, to some extent,

overshadowed by the recent overwhelming success of their

frequentist counterpart which proved to be superior in terms

of computational load. However, some of the deep learning

approaches are very sensitive to pixel errors [20]. Even a

slight modification to a single-pixel can lead to erroneous

classification prediction in DNNs. Additionally, considering

the previously highlighted incidences and the recent develop-

ment of faster and more computationally light approximations

to Bayesian models [16], [21], [22], [23], there has been a

sudden rebirth in the interest of the field.

Bayesian neural networks often require extrinsic modifica-

tion to network layers and are also difficult to scale. One popu-

lar example is BNNs that use variational inference (VI) [24] as

an approximated means to obtain posterior distribution. Such

methods require alteration of the DNN architecture which

can add complexity and sacrifice test accuracy. Additionally,

the number of model parameters can increase [22], without

increasing model capacity. The uncertainties arising in such

methods cover the entire hypothesis space of the DNN’s

weights [25] or some of the subspaces. Though there are other

numerous approximations and workarounds [21], [22], [23],

the simplest of which is dropout’s uncertainty [16].

Dropout’s uncertainty sidesteps complexity introduced by

BNNs and other extrinsic methods by utilizing the dropout

layers within a DNN model. These layers randomly inhibit

activation of nodes in the previous layers within a user

assigned probability range [26]. Furthermore, it has been

proved in [16] that “dropout applied before every weight

layer, is mathematically equivalent to an approximation to

the probabilistic deep Gaussian process”. Therefore, obtaining

a variance from these dropout samples is mathematically

equivalent to obtaining uncertainty from variational inference

in Gaussian processes. In a hypothetical sense, this theoretical

framework is shadowing footsteps of Bayesian inference in

deep Gaussian processes, but, within frequentist domains.

This allows DNNs to benefit from the best of both worlds.

Furthermore, since dropout layers can be sequentially added to

numerous diverse architectures, it is also true that uncertainties

scale much more easily than in BNN architectures.

The dropout’s uncertainty can be characterised as follows.

Consider an output of a DNN model as fW (x) with weight

distribution W which takes in a data sample x from the

data distribution X . The model inference (i.e. posterior prob-

ability) can be defined as p(W |X,Y ) and the likelihood as

p(y|fW (x)). Here, Y represents the ground truth distribution

of which y is a sample of. Using Monte Carlo integration, we

can obtain the epistemic uncertainty, (3), from the variance of

the output of the softmax layer, (1), as an approximation.

p(ŷ|x,X, Y ) ≈
1

T

T∑

t=1

Softmax(fWt(x)). (1)

The role of the softmax layer is to ‘squash’ the inputs

to probabilities. Here, ŷ is the predicted sample that must

resemble the label sample y and Wt is the tth sampled model

weight, where t = 1, . . . , T and T is the total number of

sample runs. Obtaining the mean or the expected value of ŷ,

E(ŷ), and the variance, Var(ŷ), from the sample runs allows

us to calculate the prediction and the model uncertainty. This

is shown in (2) and (3) respectively:

E(ŷ) ≈
1

T

T∑

t=1

fWt(x), (2)

Var(ŷ) ≈
1

T

T∑

t=1

fWt(x)T fWt(x)− E(ŷ)TE(ŷ). (3)

The choice of the number of sample runs depends on the user.

Increasing sample runs does give a more accurate representa-

tion of both prediction and uncertainty, however, at the price of

increased computational cost. An ideal value would be one that

balances both. For the experimentation in the paper, T is set

to 30. We also discuss later how this affects the performance

of the two critics that use adversarial learning to improve the

architecture.

B. Adversarial Learning in Segmentation

Adversarial learning is a form of unsupervised learning

in which the learning system is challenged by an adver-

sary (called the discriminator). It penalizes the system for

producing fake or undesired outcomes (labelled ‘0’ by the

discriminator) as opposed to real or desired outcomes (labelled

‘1’). In deep learning terminology, the words discriminator

and critic are used interchangeably. Learning is accomplished

when the learning system successfully manages to confuse the

discriminator so that it predicts 0.5 [27].

Much like Bayesian deep learning, adversarial learning has

also given a sudden boost to the progress of deep learning,

specifically in image generation where generative adversarial

networks (GANs) [27] are popular. The problem of image

generation is challenging as it involves the construction of

pixel-rich information, on a higher dimension, which is based

on lower-dimensional feature information encoded within the

deep hidden layers of neural networks.

Before the rise of GANs, the issue of image generation

was addressed with undirected graphical models such as deep



Boltzmann machines (DBMs) [28]. Such methods involve

making inferences from potential functions which capture the

interactions within the models that have intractable gradients.

Also before GANs, graphical models such as deep belief

networks (DBNs) [29] and noise-contrasting estimation [30]

were used. These involve learned probability densities to be

specified explicitly. With such methods, training with back-

propagation is impossible.

Alternatively, GANs use adversarial learning to learn in-

tractable real distributions by side-stepping the complex infer-

ence methods by having a discriminator as a guiding principle.

This network, D(x), then discriminates whether the produced

sample x comes from the generator distribution pz(z) or the

real distribution pdata(x). Here, z represents the generator

sample. In doing so, a mini-max game is established where we

train D to maximize the probability of assigning the correct

labels to both training and generator samples. We then train

the generator G to minimize log(1−D(G(z)). The following

two-player mini-max game with value function V (G,D) is

formed:

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))].
(4)

For object segmentation, GANs have led to the development

of supervised and semi/weakly-supervised learning algorithms

that either improve the segmentation performance or assist in

producing labelled examples. Few notable examples are from

the work of Wei et al. [31] in semi/weakly-supervised and Luc

et al. [32] in a supervised setting. Both Wei et al. and Luc

et al. treat the segmentation network as a generator network

and propose a coupling of adversarial loss with standard

cross-entropy (see [33] for the definition of cross-entropy).

Furthermore, they propose a fully convolutional discriminator

that learns ground truth label maps from probability maps of

segmentation predictions. The only difference between their

approaches is that Luc et al. focuses more on the label

quality and uses the adversarial framework as a supervisor for

improving the accuracy of the segmentation network, while

Wei et al. propose a semi-supervised setting where the prior

framework adds additional input images without labels, thus

increasing segmentation accuracy. This also avoids manually

constructing more dataset samples.

Our work follows a similar approach to Luc et al. except that

we utilize Bayesian methods to output uncertainty and then

use adversarial learning to teach the network to learn to deal

with uncertainty. Specifically, we use two discriminators; one

penalizes segmentation network for output labels that differ

from ground truth (QC) and the other penalizes if there is

uncertainty in the prediction (UC). We discuss our method in

more detail in the following section.

III. THE PROPOSED FRAMEWORK: ADVSEGNET

A. Network Layers

The proposed adversarial form of SegNet (AdvSegNet)

architecture, as shown in Figure 1, is a simplified version of the

original Bayesian SegNet [14]. The differences can be listed

as follows. The input receptive field is reduced to 128x128x3

(height, width, depth). This is done to simulate an attack. The

encoder consists of a series of convolutional layers and 2x2

sized pooling layers inserted after every duo of convolutional

layers. The initial kernel size of the convolutional layers is set

to 3 with 64 number of filters. The number of filters is doubled

after every duo. Additionally, dropout layers are inserted after

the 3rd, 4th and the 5th pooling layer. The probability of

dropout is set to 0.5 for each dropout layer. Convolutional

layers convolute the features of an image and hierarchically

learn them, starting from simple features in the earlier layers

and more complex ones in the later layers. Pooling layers

downsample these features.

Batch normalization layers are added to SegNet after every

convolutional layer. These layers scale and adjust the acti-

vations of network layers and help in the stabilizing of the

training process. These are followed by rectified linear units

(ReLU) [34] that introduce the non-linearities in the network.

The decoder architecture follows a similar style. However,

it uses upsampling layers that increase the window size back

to 128x128. Dropout layers are added before the start of the

decoder and before the 1st and the 2nd upsampling layer.

This is then passed through a softmax layer. The softmax

layer ‘squashes’ the logits of AdvSegNet to probabilities of

class predictions. Then, the architecture is run several times

to output dropout samples.

B. Uncertainty & Quality Critics

After the dropout samples are obtained from the decoder,

the sample mean and the sample variance is calculated:

µn ≈
1

T

T∑

t=1

gn,t, (5)

σn ≈
1

T

T∑

t=1

gTn,tgn,t − µT
nµn. (6)

We denote the output of the decoder to be gn,t for the tth

run on the nth input image xn. Here, n = 1, . . . , N and N is

the number of training images. We then define the mean of the

dropout samples as µn and the model uncertainty (variance)

as σn both obtained from (2) and (3). The mean is fed to QC

and the model uncertainty to UC.

We define QC as a discriminator and represent its logits

as dQC
n . QC learns to map the ground truth sample yn to

‘1’ (real) and dropout samples µn to ‘0’ (fake). We show

this as DQC : {yn, µn} → {0, 1}. Then, we define UC as

a discriminator that learns to map the perfect solution (no

uncertainty), σp, to ‘1’ (real) and the uncertainty coming from

SegNet, σn, to ‘0’ (fake). We represents its logits as dUC
n .

This can be shown as DUC : {σp, σn} → {0, 1}. The perfect

solution is considered to be a blank white image of dimensions

128x128.



Fig. 1. The proposed architectural framework of adversarial SegNet (AdvSegNet) during train time. Image adapted from [14]

C. Loss Functions

To define loss functions, we follow a similar style to Luc et

al. [32] with the term SegNet loss denoting both cross-entropy

(based on SegNet’s logits) and the adversarial loss (based on

critic’s logits). The SegNet loss is shown below.

LSEG = −xn log(µn) +
1
2E[d

QC
n − 1]2 + 1

2E[d
UC
n − 1]2

(7)

The cross-entropy term encourages SegNet to produce labels

that match ground truth. The first term in the square brackets

in (7) defines the adversarial loss from QC and the term in the

second square brackets from UC. These losses both encourage

SegNet to: a) improve quality of segmented label outputs,

b) learn to deal with uncertainty. Furthermore, the individual

loss functions of the critics that ensure that both QC and UC

discriminate effectively are calculated in (8) and (9).

LQC = 1
2E[d

QC
n − 1]2 + 1

2E[d
QC
n ]2 (8)

LUC = 1
2E[d

UC
n − 1]2 + 1

2E[d
UC
n ]2 (9)

The adversarial losses assosciated to SegNet in (7) and the

adversarial loss functions in (8) and (9) are trained separately.

They differ from the vanilla GAN loss in (4) and are specif-

ically used in Least Squares (LSQ) GAN [35]. LSQ GAN

based losses are chosen in our experiment over the traditional

loss because they provide stability in terms of training. The

traditional GAN loss suffers from vanishing gradient problem

[36] and is proven to output images of low quality [37].

D. Optimization & Training

In our experiment, we use Adam optimizers [38] to

train both the SegNet and the two discriminators. We train

the discriminators at a lower learning rate than SegNet

(see Algorithm 1) in order to ensure stable training, as

reviewed in [39]. The training regime adopted for training

the discriminators is inspired from [36]. Here, for each

episode, the number of optimization steps taken by both

discriminators is denoted by tcritic. After that the SegNet

takes an optimization step. The default value of tcritic is

set to 5. However, for episodes less than 25 and on the

500th episode, tcritic is set to 25. Furthermore, after the

discriminators take an optimization step, their weights (i.e.

θQC and θUC) are clipped to values in between -0.01 and

0.01. This is done in order to stabilize the training process

[36]. The weights of SegNet, represented as θg , are not

clipped in this experiment.

IV. EXPERIMENTAL RESULTS & DISCUSSION

A. Experiment

We test our proposed framework on small-sized dataset

CamVid [18]. CamVid is an outdoor road scene understanding

dataset of both day and evening scenes taken from camera-

rigged automobile. It has a total of 367 training images and

233 validation images. The segmented classes amount to 12

and consist of common outdoor objects such as road, cars,

buildings, signs and poles. An extensive experiment is also

performed on the dataset SUN RGB-D [40]. This dataset is

very challenging as it consists of 5285 training and 5050

testing images of indoor scenes that come in various shapes

and sizes. SUN RGB-D consist of 37 classes of common

indoor objects e.g. laptop, chair, door, bed, kitchen utensils

e.t.c.

To measure the performance of our framework, we use the

accuracy and the mean intersection over union metrics (mIoU).

The accuracy is measured by computing the frequency of

predictions that match the labels. The mIoU is obtained by

first obtaining IoU for each of the classes and then taking an

average.

We first take a pretrained Bayesian SegNet and then

simulate a perturbation method as a simple hack attempt.
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SegNet-Basic

[8]

80.6 72.0 93.0 78.5 21.0 94.0 62.5 31.4 36.6 74.0 42.5 62.3 82.8 46.3

SegNet [8] 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 88.6 50.2

BayesianSegNet-

Basic [14]

75.1 68.8 91.4 77.7 52.0 92.5 71.5 44.9 52.9 79.1 69.6 70.5 81.6 55.8

BayesianSegNet

[14]

80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 86.9 63.1

DeepLab [11] 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 60.7 89.7 54.7

BayesianSegNet-

128x128

11.4 93.8 88.0 81.7 47.1 90.8 22.8 5.5 3.3 86.0 38.0 55.7 63.4 30.0

AdvSegNet 77.9 95.8 98.1 75.5 36.6 95.8 52.5 77.6 6.2 92.6 84.6 72.1 87.1 52.8

Fig. 2. Comparison of accuracies of state-of-art and SegNet family included those made in this experiment highlighted as bold

Though there are many forms of such attacks in the literature

of machine learning security [20], [41], we use a simple

reduction of the receptive field. Here, the input size of the

Bayesian SegNet is reduced from 360x480 to 128x128. We

then continue to train the networks to 2000 episodes, once with

the discriminators and once without. The results obtained are

presented in Figure 3. The green dashed line sets the Bayesian

SegNet performance benchmark on CamVid. The classical

training method involves simple cross-entropy loss without

considering the discriminators (blue line). The adversarial

training method involves the use of AdvSegNet (red line) on

CamVid. A separate experiment is performed on Sun RGB-D

but rather trained from scratch (black line).

Furthermore, we observe the evolution of our losses and

plot them in Figure 4. The main objective of our research

is to compare the performance of Bayesian SegNet with

AdvSegNet. To achieve this, we run a separate experiment

with SegNet using similar hyperparameter to those chosen

for AdvSegNet (see Algorithm 1). We then compare the

two frameworks side by side and with the state-of-the-art

segmentation including DeepLab [11] and original SegNet [8]

in Figure 2. Finally, the segmented label maps obtained both

from classical training and AdvSegNet are shown in Figure

6 (E, F) and the respective uncertainties from both models in

Figure 6 (G, H) for test samples A) and B).

B. Discussion & Future Works

Bayesian SegNet trained under classical training method

takes a moment to adapt to the changed receptive field of

128x128 but begins to improve its performance after 1000th

episode on CamVid. AdvSegNet, on the other hand, adapts

much faster and can achieve accuracies higher than pretrained

Bayesian SegNet. Training on Sun RGB-D dataset is more

challenging as AdvSegNet struggles to improve performance

from 300th to 1800th episode. A separate experiment to test

the sensitivity of validation accuracy on various learning rate

configurations for the Sun RGB-D dataset is shown in Figure

5. Here we see that increasing learning rate sequentially for

both SegNet and the discriminators leads to more unsteady

performance but the overall accuracy obtained is higher than

lower learning rate configurations. One of the major issues

with dropout uncertainty is that it is not calibrated well [16]

for categories. As the number of categories increases (e.g.

in large datasets), this issue becomes more prevalent. In the

future, we would like to test our method on more diverse

architectures and introduce calibration to adapt to large and

complex datasets.

Moving to Figure 4 we observe that both losses concerning

QC and UC following a similar trend and decrease at a steeper

rate than the SegNet loss. This strengthens our hypothesis

which states that the two are related since learning to deal

with uncertainty aids the improvement of the network’s per-

formance.

Considering the comparison of AdvSegNet with the state-

of-the-art network DeepLab and Bayesian SegNet in Figure 2,

we find that we obtain performance closely similar to Bayesian

SegNet in terms of global average accuracy. In the majority

of per-class accuracies, we do topple both the networks, but

lose performance in the classes Sign-Symbol and Column-

Pole. This is further evident in Figure 6 F that the AdvSegNet

fails to detect the two poles present in the ground truth label

D). However, the performance of AdvSegNet is achieved with

receptive field less than half of those employed for Bayesian

SegNet and Deep Lab, making it much easier and faster to

train. On our system of GPU cluster (NVIDIA K80) provided

by the University, the wall clock time to train AdvSegNet was

three hours only.

A further key observation to notice is that in Figure 6 G and

H, we find that the “cloud” of uncertainty around a mixture of

classes Building, Fence and Trees is much higher in classical

training of Bayesian SegNet as opposed to AdvSegNet. We

believe this might have been the cause for the erroneous

prediction of a Fence, despite being labelled Building in the

ground truth. The same situation appears in the right-hand



Fig. 3. Results for training pretrained Bayesian SegNet for 2000 episodes in
both scenerios of using AdvSegNet and without in classical training

Fig. 4. The evolution of loss functions for AdvSegNet against number of
episodes

corner for the test sample of AdvSegNet, however since the

uncertainty is less cloudy in AdvSegNet, it is more successful

in isolating the Tree class from the Fence. This is perhaps

a very important test result obtained from our experiment

and in the future, we would like to study in-depth more

the relationship of reduced uncertainty and less erroneous

prediction. We would also like to explore further ways to

obtain uncertainty and experiment with different Bayesian

architectures such as BNNs and Gaussian processes.

Fig. 5. Validation accuracy comparison for various learning rate configura-
tions of AdvSegNet on Sun RGB-D dataset. The term SEG lr corresponds to
learning rate associated with SegNet and DISC lr for the learning rate of the
discriminators

Fig. 6. Qualitative results from both classical training and AdvSegNet
training. The figures on the left column (A,C,E,G) represent classical training
and AdvSegNet on the right (B,D,F,H). The first row represents input images
(A,B), the second row ground truths (C,D), the third row segmented output
labels (E,F) and the final row model uncertainty outputs (G,H)

Algorithm 1: AdvSegNet, our proposed algorithm. All ex-
periments in our paper use the following default arguments.
batch size = 1, tcritic = 5 or 25, γseg = 0.005, γdisc = 0.0005,
c = 0.01, epochs = 2000

Require: tcritic : critic episodes, γseg: AdvSegNet learning
rate, γdisc: critic learning rate, clip: clip parameter for critic
weights, epochs: training episodes for AdvSegNet

Do initialization

for epoch = 0, ..., epochs do
if epoch < 25 or epoch = 500 then

tcritic = 25

else tcritic = 5

Sample an image batch xn from the dataset of N training
samples

for epoch = 0, ..., tcritic do
Obtain mean prediction: µn from (5)

Compute loss LQC from (8)

Update loss: θQC ← θQC +γdisc ·Adam (θQC , LQC)

Clip weights: θQC ← clip (θQC ,−c, c)

end
for t = 0, ..., tcritic do

Obtain uncertainty: σn from (6)

Compute loss LUC from (9)

θUC ← θUC + γdisc ·Adam (θQC , LUC)

θUC ← clip (θUC ,−c, c)

end
Compute SegNet loss LSEG from (7)

Update loss: θg ← θg + γseg ·Adam (θg, LSEG)

end



V. SUMMARY

This paper proposes a deep learning framework called Ad-

vSegNet, that improves the performance of Bayesian SegNet

by teaching it to reduce its model uncertainty without the aid of

additional dataset. The developed add-on architecture includes

two discriminators called quality critic and uncertainty critic.

The performance of the AdvSegNet architecture is evaluated

and validated over CamVid dataset. The discriminators are

trained independently. They penalize the segmentation network

based on the quality of the label map outputs and uncertainty.

We show that dealing with epistemic uncertainty is directly

linked to the increase in performance. Improved performance

of the Bayesian SegNet approach is demonstrated on segmen-

tation by characterising the uncertainty in the model using

dropout. We compare our architecture with the state-of-the-

art DeepLab and Bayesian SegNet. We find our performance

to be similar to Bayesian SegNet with less than half of the

receptive field and our results show that AdvSegNet achieves

strong results in majority of the classes while poor in some.

More importantly, our results form an interesting relationship

between reduced model uncertainty and lesser erroneous pre-

diction, which will form basis of our future research work.
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