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Abstract

The increasing interest in using quantum error correcting codes in practical devices has heightened

the need for designing quantum error correcting codes that can correct against specialized errors, such

as that of amplitude damping errors which model photon loss. Although considerable research has been

devoted to quantum error correcting codes for amplitude damping, not so much attention has been paid

to having these codes simultaneously lie within the decoherence free subspace of their underlying phys-

ical system. One common physical system comprises of quantum harmonic oscillators, and constant-

excitation quantum codes can be naturally stabilized within them. The purpose of this paper is to give

constant-excitation quantum codes that not only correct amplitude damping errors, but are also immune

against permutations of their underlying modes. To construct such quantum codes, we use the nullspace

of a specially constructed matrix based on integer partitions.

1 Introduction

The ability to manipulate quantum information promises to speed up algorithms such as factoring [1, 2],

simulate physical systems more efficiently [3], and unlock the ability to perform cryptographic schemes

with unprecedented security [4, 5]. However the inherent fragility of quantum information is a major

obstacle in realizing the full potential of these quantum schemes. To overcome this, one may rely on

quantum error correction codes, which offer the possibility of reversing the effects of decoherence [6].

However, if an arbitrary quantum error correction code were used in a physical system, it is invariably

affected by the underlying system’s natural dynamics. Therein lies the allure of constructing quantum

error correction codes within an energy eigenspace of the physical system’s underlying Hamiltonian,

because errors may then be avoided at a fundamental level.

We consider here the problem of quantum error correction in quantum harmonic oscillators, which,

as we shall see, is not just of theoretical interest. In recent years, superconducting qubits have been ex-

tensively studied, and are considered as one of the leading candidates for realizing quantum information

in a physical system. In the superconducting electrical circuits that superconducting qubits are based on,

each superconducting qubit is localized around a cluster of Josephson junctions, and can interact with

other spatially separated superconducting qubits when coupled with microwave-frequency photons in a

quantum bus [7, 8, 9]. It is well-known that this quantum bus is in turn just a microwave-frequency elec-

trical transmission line [9][Appendix A.3], with a Hamiltonian described by a sum of quantum harmonic

oscillators.

If we restrict our attention to using photons of identical frequencies within a quantum bus, its Hamil-

tonian is up to a constant effectively given by H = ∑ j a
†
ja j. Here, a j denotes the lowering operator for

the j-th mode. Now let |x1〉⊗ · · ·⊗ |xn〉 denote a quantum state with x j excitations in the j-th mode, and

let x1+ · · ·+xn denote the total excitation number of such a state. Then the eigenspaces of H are spanned
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by states |x1〉⊗ · · ·⊗ |xn〉 with a constant total excitation number. If a quantum code is spanned by states

with a constant total excitation number, we call it a constant-excitation quantum code. In this paper,

we design constant-excitation quantum codes which can be stabilized by the Hamiltonian of quantum

harmonic oscillators.

We consider two common types of errors that may afflict our physical system modeled by quantum

harmonic oscillators, particularly in a quantum bus. The first type of errors are amplitude damping

(AD) errors, which can arise when the system weakly interacts with a zero temperature bosonic and

Markovian bath. The second type of errors are permutation errors, which may arise especially during

transmission when modes are unexpectedly permuted either spatially or temporally. In this paper, we

consider quantum error correction codes that offer protection against not only amplitude damping errors

but also permutation errors.

Amplitude damping errors model energy relaxation in quantum harmonic oscillator systems and

photon loss in photonic systems. In this paper, we will consider amplitude damping errors that occur in-

dependently and identically on every mode. To see how amplitude damping errors may arise in quantum

harmonic oscillators from the underlying physics, consider the coupling Hamiltonian on the j-th mode

given by

Hint, j = χ j(a
†
jb j +b

†
ja j).

Here, b j is the lowering operator of the bath that couples to the j-th mode, and so Hint, j couples each

unique quantum harmonic oscillator to a unique bath, thereby ensuring that the amplitude damping errors

occur independently for each mode. There are two reasons why we do not consider couplings between

the harmonic oscillators. First the Hamiltonian of an ideal transmission line naturally comprises of

uncoupled harmonic oscillators. Second, even if there is some spurious linear coupling between the

harmonic oscillators, it has later been shown that dynamical decoupling can homogenize the system, and

render the effective Hamiltonian to be that of a sum of identical uncoupled harmonic oscillators [10].

In this paper, we assume that AD errors afflict every mode identically, which can be the case when the

coupling strength χ j is independent of j, so that χ j = χ . By assuming that the system and the bath are

initially in a product state, and subsequently applying a Born-Markov approximation 1, one can show

that the noise process can be modeled using the Kraus operators

Ak =
∞

∑
m=k

√(
m

k

)√
(1− γ)m−kγk|m− k〉〈m|, (1.1)

where k indicates the number of AD errors that afflict a mode, and γ = 1− cos2(χ∆t) is the strength of

the AD error that corresponds to time ∆t [12].

Permutation errors model the stochastic reordering and coherent exchange of quantum packets as

well as out-of-order delivery of packets of information, which plausibly occur due to imperfections in a

communication channel [13]. More precisely, we denote a permutation channel to be a quantum channel

with each of its Kraus operators Pα proportional to eiθα π̂α =∑k≥0(iθα π̂α)
k/k!, where θα is the parameter

corresponding to the infinitesimal generator iπ̂α
2, and π̂α , is any linear combination of operators that

permute the underlying modes with real coefficients. We also emphasize that we are interested in the

scenario where θα takes an arbitrary value from the real numbers, so it need not be small.

Amplitude damping errors are prevalent in bosonic systems. If a single bosonic mode were left

unprotected against AD errors, the incurred error as quantified by one minus the fidelity is of order γ .

If a quantum error correction code allows reduction of the order of this error to γ t+1, we say that the

quantum code corrects t AD errors. Unsurprisingly, there has been extensive work on quantum error

correction codes specialized against correcting amplitude damping errors [15, 12, 16, 17, 18, 19, 20, 21,

22]. Of special note are some previously constructed constant-excitation quantum codes that do offer

immunity against the natural dynamics of quantum harmonic oscillators [12, 23, 24]. Chuang, Leung and

Yamamoto restricted their study of bosonic quantum codes to constant-excitation quantum codes, and

found that the fidelity after quantum error correction for such codes that correct t AD errors with total

1See [11] for a detailed exposition.
2The matrix iπ̂α is called an infinitesimal generator because it is a bounded operator, and generates the unitary matrix eiθα π̂α in

the sense consistent with [14, Theorem 1.2].
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excitation number N can be made to be ∑
t
k=0

(
N
k

)
γk(1− γ)N−k = 1−

(
N

t+1

)
γ t+1 +O(γ t+2) [12]. Hence

for constant-excitation quantum codes, minimizing N for fixed t is the primary goal. In their paper [12],

Chuang, Leung and Yamamoto also found constant-excitation quantum codes correcting 1, 2 and 3 AD

errors with total excitation numbers equal to 4, 9 and 16 respectively. Wasilewski and Banaszek later

introduced a constant-excitation quantum code with N = 3 correcting 1 AD error [23], thereby improving

on the construction of the N = 4 code in [12]. The code of Wasilewski and Banaszek is also notably the

first known constant-excitation quantum code that not only corrects amplitude damping errors, but is also

permutation invariant. Recently, Bergmann and van Loock found constant-excitation quantum codes that

can correct any number of AD errors [24]. Namely, their codes can correct t AD errors using N = (t+1)2

excitations and are very elegant in the sense that these codes can be encoded simply by using NOON

states and beamsplitters. Unfortunately the codes of Bergmann and van Loock are not invariant under

arbitrary permutations, and are hence vulnerable to certain permutation errors.

Apart from specialized quantum codes that correct amplitude damping errors, permutation-invariant

quantum codes have also been studied in recent years, both with respect to arbitrary errors [25, 26, 27, 28]

and also amplitude damping errors [23, 27, 13]. Permutation-invariant quantum codes are important

because they are inherently immune to permutation errors. After Ruskai first introduced a 9 qubit

permutation-invariant quantum code correcting one arbitrary error [25], Pollatsek and Ruskai later im-

proved this in [26] with a 7 qubit permutation-invariant code that corrects one arbitrary error. Later

in [27], Ruskai’s 9 qubit permutation-invariant quantum code was generalized to yield permutation-

invariant quantum codes correcting t arbitrary errors or t AD errors while encoding a single qubit. In

[13] and [28], the permutation-invariant codes were generalized in different directions to allow the cor-

rection of 1 AD error and encoding of a qudit, and correction of arbitrary errors and encoding of a qudit

respectively. However, aside from Wasilewski and Banaszek’s quantum code, none of these permutation-

invariant codes are also constant-excitation quantum codes.

The purpose of this paper is to construct constant-excitation quantum codes that not only correct any

t AD errors, but are also permutation-invariant (PI). Using the techniques from linear algebra and by

counting the sizes of integer partitions, we construct PI constant-excitation quantum codes that correct t

AD errors for any integer t. For our codes, the total number of modes used is equal to the total excitation

number, so n = N. For example, when the total excitation number N satisfies the following inequality,

p

(
N

t +1

)
+

(
t

2

)
≥ p(1)+ · · ·+ p(t) (1.2)

where p(t) denotes the number of integer partitions of t, there are corresponding PI constant-excitation

quantum codes that correct t AD errors. The inequality in (1.2) allows us to easily find code parameters

for PI constant-excitation quantum codes.

Among the PI constant-excitation quantum codes that we construct, we have codes that correct 2,3,4

and 5 AD errors using 6,12, 20 and 30 total excitations respectively. These codes are given explicitly

in Example 1, Example 2, Example 3, Example 4 and Example 5 respectively. We wish to emphasize

that these codes are not only permutation-invariant, but also have lower total excitation numbers than the

constant-excitation codes of Bergmann and van Loock, which require 9,16,25 and 36 total excitations

respectively. In this sense, for small values of t, our constructed codes give the best performance in

terms of fidelity among the constant-excitation quantum codes. Moreover for large values of t, we

numerically find that our constructed PI constant-excitation quantum codes that correct t AD errors have

total excitations N =C(t +1)2 where C is slightly larger than one (see Figure 1). This suggests that our

code parameters are asymptotically similar to those of Bergmann and van Loock. The value of this result

lies in the fact that permutation-invariance can be imbued to constant-excitation quantum codes while

minimally affecting their output fidelities.

In this paper, we construct our PI constant-excitation quantum code using partitions of a well-chosen

integer and a real vector given explicitly in (4.3). Independently, we define a matrix A in (4.1) that

depends only on the partitions that label the AD errors that are to be corrected and the partitions that

label the permutation-invariant states of constant-excitation that our code is to be supported on. We

prove in Theorem 3 that any non-trivial solution to the linear system of equations Ax = 0 leads to a PI

constant-excitation quantum code. Intuitively, the matrix A quantifies the extent in which AD errors,
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after acting on Dicke states, can shrink their norms. By obtaining a lower bound on the nullity of A, we

prove (1.2) in Corollary 6.

2 Preliminaries and notation

We begin by introducing terminology related to vectors of non-negative integers. First define N to be the

set of non-negative integers and let n be a positive integer denoting the number of modes and the total

excitation number that will be used for the quantum code. For any integer a and non-negative integer b,

let a(b) = (a)(a− 1)...(a− b+ 1) denote the falling factorial symbol. Here, (a)(0) = 1. Let (y1, . . . ,yn)

denote a column vector and (y1, . . . ,yn)
T denote a row vector. Define 1u and 0u as column vectors of

length u with all components equal to 1 and 0 respectively. For y = (y1, . . . ,yn), let wt(y) = y1 + · · ·+yn

denote the weight of y. For non-negative integers t such that 0 ≤ t ≤ n, let Kn,t = {(y1, . . . ,yn) ∈ Nn :

y1+ · · ·+yn = t} denote the set of non-negative vectors of weight t. Also define K n,t =Kn,0∪·· ·∪Kn,t

to be the set of non-negative vectors with weights from 0 to t.

We now introduce terminology related to the constant-excitaton quantum codes that we will study.

Let the orthonormal vectors | j〉 for j ∈ N span the Hilbert space of a single bosonic mode, which we

denote as H . The quantum codes that we consider in this paper are two-dimensional subspaces of the

n-mode Hilbert space Hn. Given a vector y = (y1, . . . ,yn) ∈ Nn, define the computational basis state

|y〉= |y1〉⊗ · · ·⊗ |yn〉 ∈ Hn. The weight, or a total excitation number of a computational basis state |y〉
is the weight of y. We say that a quantum code is also a constant-excitation quantum code if it can be

spanned by linear combinations of states with a constant total excitation number.

In this paper, we deal with the matrices A
†
kAk repeatedly, and hence we evaluate them first.

Proposition 1. For all non-negative integers k, we have A
†
kAk = ∑

∞
j=k

(
j
k

)
(1− γ) j−kγk| j〉〈 j|.

We now require notation for representing AD errors that occur on n modes. Given a vector k =
(k1, . . . ,kn) ∈ Kn,κ , let Ak = Ak1

⊗·· ·⊗Akn
. We say that Ak has a weight of κ . We can then find that the

diagonal matrix elements of ∑k∈Kn,κ
A

†
kAk in the computational basis |x1〉⊗· · ·⊗|xn〉 only depends on κ

and x1 + · · ·+ xn. The following proposition, which essentially follows the same logic as the equations

from (7.6) to (7.11) in [12], makes this precise.

Proposition 2. Let x = (x1, . . . ,xn) be a vector of non-negative integers, and let χ = x1 + · · ·+ xn. Then

∑
k∈Kn,κ

〈x|A†
kAk|x〉= (1− γ)χ−κ γκ

(
x1 + · · ·+ xn

κ

)
.

Proof. Obviously, 〈x|A†
kAk|x〉= 〈x1|A†

k1
Ak1

|x1〉 . . .〈xn|A†
kn

Akn
|xn〉. Using Proposition 1, we get

〈x|A†
kAk|x〉=

n

∏
i=1

(
xi

ki

)
(1− γ)xi−kiγki = (1− γ)χ−κ γκ

n

∏
i=1

(
xi

ki

)
.

Note that this equality holds even when xi < ki for some i, because the above equality does show that

〈x|A†
kAk|x〉 is zero in this case, which is a simple consequence of the fact that

(
xi
ki

)
= (xi)(ki)/ki! =

(xi) . . .(0) . . .(xi −ki +1)/ki! = 0 whenever xi < ki. The result follows conditioned on the combinatorial

identity

∑
k∈Kn,κ

n

∏
i=1

(
xi

ki

)
=

(
x1 + · · ·+ xn

κ

)
, (2.1)

which is stated in [12, (7.10)] for example. We can see that (2.1) holds combinatorially, since the number

of ways to select κ balls from bags with x1, . . . ,xn balls is sum of the product of the number of ways

to select ki balls from the ith bag, where the total number of selected balls is κ . Alternatively, we can

also prove (2.1) algebraically using the method of generating functions. Given any formal power series
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f (z) = ∑ j≥0 f jz
j where z is indeterminate, let [zk] f (z) = fk. Then we can write

(
xi
ki

)
= [zki

i ](1+ zi)
xi for

indeterminates zi. Hence, we can rewrite the left hand side of (2.1) as

∑
k∈Kn,κ

[zk1
1 ](1+ z1)

x1 . . . [zkn
n ](1+ zn)

xn = [zκ ](1+ z1)
x1 . . .(1+ zn)

xn

= [zκ ](1+ z1)
x1+···+xn

=

(
x1 + · · ·+ xn

κ

)
,

which proves (2.1).

Because the quantum codes that we study are invariant under any permutation of the underlying

modes, we proceed to define some permutation-invariant states that we will use to construct our quantum

codes. To do so, we have to first introduce notation related to integer partitions. Given a positive integer

n, let p(n) denote the number of its partitions, and denote every partition of n as an n-tuple of non-

increasing non-negative integers. For example with 5 = 2+2+1, we denote the corresponding partition

of 5 as (2,2,1,0,0). We denote the set of partitions of n with P(n). Given tuples x = (x1, . . . ,xa) and

y = (y1, . . . ,yb), let (x|y) = (x1, . . .xa,y1, . . . ,yb) denote the pasting of tuples x and y. For all positive

integers t, let

P(t) = {(q|0t−k) : q ∈ P(k),k = 1, . . . , t −1}∪P(t), (2.2)

and let

p(t) = p(1)+ · · ·+ p(t) = |P(t)|. (2.3)

Given any positive integer w, let Q be an arbitrary subset of partitions P(w), i.e Q ⊆ P(w). The integers u

and w are such that the number of modes n satisfies the constraint n = uw. Furthermore, given a positive

integer u, let Qu be the set of vectors in Q multiplied by u component-wise and extended to length uw,

and appended by a ones vector, so that we have

Qu = {(uq|0uw−w) : q ∈ Q}∪{1n}. (2.4)

We will see later how our quantum codes can be constructed using linear combinations of states labeled

by vectors in Qu. For example, the ones vector in Qu will correspond to the permutation-invariant state

|1〉⊗uw. We proceed to illustrate this definition with some examples.

1. When Q = P(1) = {(1)}, we have Q3 = {(3,0,0),(1,1,1)}. The set Q3 will later correspond to

the permutation-invariant basis
{
|1,1,1〉, |3,0,0〉+ |0,3,0〉+ |0,0,3〉√

3

}
. (2.5)

2. When Q = P(2) = {(2,0),(1,1)}, we have Q3 = {(6,0,0,0,0,0),(3,3,0,0,0,0)}. The set Q3 will

later correspond to the permutation-invariant basis {|1,1,1,1,1,1〉, |φ1〉, |φ2〉} where

√
6|φ1〉= |(6|05)〉+ |(0,6|04)〉+ |(02|6|03)〉+ |(03|6|02)〉+ |(04|6,0)〉+ |(05|6)〉√

15|φ2〉= |(3,3|04)〉+ |(0,3,3|03)〉+ |(02|3,3|02)〉+ |(03|3,3,0)〉+ |(04|3,3)〉+ |(3|04|3)〉
+ |(3,0,3|03)〉+ |(0,3,0,3|02)〉+ |(02|3,0,3,0)〉+ |(03|3,0,3)〉+ |(3|03|3,0)〉+ |(0,3|03|3)〉
+ |(3,0,0,3,0,0)〉+ |(0,3,0,0,3,0)〉+ |(0,0,3,0,0,3)〉. (2.6)

Given a partition q = (q1, . . . ,qn) of a positive integer n, we first define q̃ as the set of all permutations

of q. For any set of non-negative vectors Q, we define Q̃ to be a union of all the sets q̃ for which q ∈ Q.

Formally, denoting Sn as the symmetric group of order n, we have

q̃ = {(qπ(1), . . . ,qπ(n) : π ∈ Sn}, (2.7)

Q̃u =
⋃

q∈Qu

q̃. (2.8)
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For example,

˜(1,1,1,0) = {(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1)}.

Next we define |q̃〉 as a uniform superposition over all permutations of the n-mode state |q1〉⊗· · ·⊗|qn〉,
so that

|q̃〉= 1√
|q̃| ∑

y∈q̃

|y〉. (2.9)

As an example using this notation,

| ˜(2,2,0,0)〉= 1√
6
(|(2,2,0,0)〉+ |(0,2,2,0)〉+ |(0,0,2,2)〉+ |(2,0,0,2)〉+ |(2,0,2,0)〉+ |(0,2,0,2)〉).

The codes that we consider lie within the span of these Dicke states |q̃〉 where q are partitions of n. In

particular, span{|q̃〉 : q ∈ P(n)} is the space of all permutation-invariant states with a total-excitation

number n.

Let us denote the distance between any two vectors u = (u1, . . . ,un) and v = (v1, . . . ,vn) in Nn as

d(u,v) =
n

∑
j=1

|u j − v j|. (2.10)

This distance, also known as the Manhattan distance, is distinct from the usual Hamming distance. Let

C ⊆ Nn. Then we define the minimum distance of C to be

d(C) = min
u,v∈C

{d(u,v) : u 6= v}. (2.11)

Our non-standard definition of minimum distance arises because we use a metric induced by the Manhat-

tan distance as opposed to the Hamming distance. We will later be interested in the minimum distance

of the set Q̃u for Q ⊆ P(w) for some positive integer w.

3 Quantum error correction criterion

Here, we review some of the underlying theory of quantum error correction for AD errors on constant-

excitation quantum codes, beginning from the Knill-Laflamme (KL) quantum error correction criterion

[6] . Given that we wish to correct t AD errors on n modes, it is both necessary and sufficient to have

the KL conditions satisfied for the AD errors Ak for which k1 + · · ·+ kn ≤ t. Just as in [12], for the KL

quantum error correction criterion to hold for a quantum code with logical codewords |0L〉 and |1L〉 on n

modes with respect to t AD errors, it suffices to require that the following equations hold.

〈0L|A†
xAx|0L〉= 〈1L|A†

xAx|1L〉 ∀x ∈ K n,t , (3.1)

〈0L|A†
xAy|0L〉= 〈1L|A†

xAy|1L〉= 0 ∀ distinct x,y ∈ K n,t , (3.2)

〈0L|A†
xAy|1L〉= 0 ∀x,y ∈ K n,t . (3.3)

In the usual KL quantum error correction criterion, the right hand side of (3.2) does not have to be

zero. We have made this restriction just as in [12] to make the construction of our quantum codes

more tractable. For convenience, we hereby call the constraints (3.1) the non-deformation quantum

error correction criterions, and the constraints (3.2) and (3.3) the orthogonal quantum error correction

criterions.

For us, the condition (3.2) always holds as long as the logical codewords are linear combinations of

vectors |v〉 for which v ∈C ⊂Nn and d(C)≥ 2t +1. To see this, note first that from [12, Theorem 2], as

long as v and w are distinct vectors from Nn where d(v,w)≥ 2t +1, then for every x and y in K n,t , we

have 〈v|A†
xAy|w〉 = 0. Second, when x and y are distinct elements from K n,t , it is clear that Ax|v〉 and

6



Ay|v〉 are either zero or αx|u〉 and αy|u′〉 respectively for real numbers αx,αy and vectors u,u′ in Nn.

Since u 6= u′ from the distinctness of x and y, it follows that 〈v|A†
yAx|v〉 = 0 for all distinct x and y in

K n,t . Hence it follows that if |ψ〉 is any vector that is a linear combination of basis states |v〉 for which

v ∈C with d(C)≥ 2t +1, for all distinct x and y in K n,t , we must have 〈ψ|A†
yAx|ψ〉= 0.

When the condition (3.2) holds for a quantum code and 〈iL|A†
xAx|iL〉> 0 for all i = 0,1 and x ∈K n,t ,

the quantum code is non-degenerate. To see this, note that

∑
x∈K n,t

〈iL|A†
xAx|iL〉|x〉〈x|

is diagonal with positive diagonal entries. Since this matrix is invertible and hence full rank, Gottesman’s

definition [29, Page 7, line 1], implies that such quantum codes are non-degenerate.

Since the orthogonality condition (3.3) holds as the logical codewords are linear combinations of

vectors |v〉 for which v ∈ C ⊂ Nn and d(C) ≥ 2t + 1 and x and y in K n,t [12, Theorem 2], the only

non-trivial error correction criterion is the non-deformation condition (3.1). Because quantum codes that

we construct are permutation-invariant, it suffices to restrict the error-inducing Kraus operators that arise

from partitions of κ where κ ≤ t and t ≤ n. This is because for any permutation-invariant quantum state

|ψ〉 and any Kraus operator B, we have

〈ψ|B†B|ψ〉= 〈ψ|π†B†ππ†Bπ|ψ〉= 〈ψ|(π†Bπ)†π†Bπ|ψ〉.

Hence for every partition λ = (λ1, . . . ,λκ) in P(κ), we denote by Aλ ,n the amplitude damping operator

on n modes with respect to λ where

Aλ ,n = Aλ1
⊗·· ·⊗Aλκ

⊗A⊗n−κ
0 . (3.4)

If the conditions (3.1), (3.2), and (3.3) hold for the constant-excitation quantum code with total

excitation number n, then the worst-case fidelity is at least ∑
t
k=0

(
n
k

)
γk(1− γ)n−k, as proved in [12]. In

fact, the entanglement fidelity exhibits the same behavior, as we now illustrate.

The entanglement fidelity of a quantum code quantifies how well an entangled state

|ψ〉= |0〉⊗ |0L〉+ |1〉⊗ |1L〉√
2

is protected when the half of it which is encoded into a quantum code with logical codewords |0L〉 and

|1L〉 is exposed to noise. If the recovery channel of the quantum code is given by R, its entanglement

fidelity with respect to AD errors is

〈ψ|I ⊗ (R ◦A )(|ψ〉〈ψ|)|ψ〉= (〈0L|R(A (|0L〉〈0L|))|0L〉+ 〈1L|R(A (|1L〉〈1L|))|1L〉)/2, (3.5)

where I is the identity channel on a single qubit, and A is the quantum channel corresponding to an AD

channel that acts independently and identically on every mode in the quantum code. Now we can write

A = A ′+A ′′ where A ′ and A ′′ are both quantum operations that induce at most t AD errors and at

least t +1 AD errors respectively. Clearly if the quantum code is completely correctible with respect to

the quantum operation A ′, then Proposition 2 implies that the entanglement fidelity is at least the trace

of (
A

′(|0L〉〈0L|)+A
′(|1L〉〈1L|)

)
/2,

which is at least ∑
t
k=0

(
n
k

)
γk(1− γ)n−k, if the quantum code is a constant-excitation quantum code with

n total excitations.

4 From partitions to quantum codes

Here we will see how a PI constant-excitation quantum code can be constructed from integer partitions.

Some of the integer partitions label the AD errors, while the others label the Dicke states that our code is

supported on. It is the permutation-invariant property of our code that allows us to restrict our attention
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to AD errors that are labeled by integer partitions of the numbers from 1 to t. To be more explicit,

since the norm of an AD error acting on a permutation-invariant state is equivalent to the norm of a

permuted AD error acting on the same permutation-invariant state, in studying the non-deformation

conditions, it suffices to study only the AD errors labeled by integer partitions of the number of AD

errors. We label these AD errors with the vectors τ1, . . . ,τp(t) where τ1 = ((1),0t−1), τ2 = ((2,0),0t−2),
τ3 = ((1,1),0t−2), τ4 = ((3,0,0),0t−3), τ5 = ((2,1,0),0t−3), τ6 = ((1,1,1),0t−3), and so on. We will

consider quantum codes supported on Dicke states represented by the partitions of a suitably chosen

integer w. We then construct a matrix A with rows labeled by the AD errors and columns labeled by

Dicke states. In the paragraphs that follow, we will describe the structure of this matrix.

We now define the matrix elements of A. They are

ai, j = 〈q̃ j|A†
τi,n

Aτi,n|q̃ j〉
1

γwt(τi)(1− γ)n−wt(τi)
, (4.1)

where q j are vectors with weight equal to n. We can arrange these matrix elements into a matrix A, with

the rows labeled by the AD errors, and the columns labeled by the quantum code’s basis elements. The

indices i = 1, . . . , p(t) label the AD errors, and the indices j = 1, . . . ,c label the Dicke states that the

quantum code to be designed will be supported on. Writing down this matrix explicitly, we have

A =




a1,1 . . . a1,c
... . . .

...

ap(t),1 . . . ap(t),c


=




−aT
1 −
...

−aT
p(t)−


 . (4.2)

What is important about the matrix A is that its properties will be used to design a PI constant-excitation

quantum code that corrects AD errors. For this to be possible, it is important that A is independent of γ ,

which indeed is the case because of the normalization condition in (4.1). Properties of the code will then

be inferred from the nullity of A.

Independently from the matrix A, we can define basis states for a PI constant-excitation quantum

code. Our PI constant-excitation quantum code is thus defined only by the partitions labeling the Dicke

states on which it is supported, and a real vector x. We represent the basis states of this quantum code

in terms of linear combinations of Dicke states labeled by the partitions q1, . . . ,qc that all have the same

weight equal to n, and a non-zero real column vector x = (x1, . . . ,xc)
T such that x1 + · · ·+ xc = 0. The

basis states of our quantum code are

|0L〉=
1√
x

(√
x+1 |q̃1〉+ · · ·+

√
x+c |q̃c〉

)

|1L〉=
1√
x

(√
x−1 |q̃1〉+ · · ·+

√
x−c |q̃c〉

)
(4.3)

where x+i = max{xi,0}, x−i = max{−xi,0} and x = x+1 + · · ·+ x+c .

Roughly speaking, the matrix A can be made to encapsulate the KL quantum error correction criterion

with respect to the quantum code that we have defined in (4.3). More precisely, when a certain distance

criterion holds and when the nullity of A is at least one, there are non-trivial solutions of the linear system

of equations Ax = 0 for which x1 + · · ·+ xc = 0. This allows the derivation of a PI constant-excitation

quantum code that corrects t AD errors. This is our main result, and we state it in the following theorem.

Theorem 3. Let w,u and t be positive integers and let A be a matrix with matrix elements given by

(4.1). Let Q = P(w) with Qu be given by (2.4) and Q̃u given by (2.8). If d(Q̃u) ≥ 2t + 1 and if the

nullity of A is at least one, then there exists a permutation-invariant constant-excitation quantum code

that corrects t AD errors using uw total excitations. Moreover, such a quantum code can be derived from

(4.3); the logical codewords (4.3) derived from any non-zero vector x in the nullspace of A will span

such a quantum code.

Because bounding the nullity of A is crucial in demonstrating that the quantum code as defined by

(4.3) corrects t AD errors, we will proceed to count the number of sets of linearly dependent rows in A

to obtain such a bound. We use the fact that the rows in A that correspond to κ AD errors are linearly
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dependent. This arises because of the combinatorial identity in Proposition 2. This idea extends to

certain submatrices of A to demonstrate more linearly dependent rows. The following lemma tells us

how some rows of A are linearly dependent, where aT
i denotes the i-th row of A.

Lemma 4. Let ci denote the number of ways to permute (τi|0n−ni
), where ni is the number of components

in τi. For all k = 1, . . . , t, the sum of the rows of A corresponding to the errors that induce k photon losses

sum to cp(k−1)+1aT
p(k−1)+1

+ · · ·+ cp(k)a
T
p(k) =

(
n
k

)
1T

c .

Proof. Now note that A
†
τi,nAτi,n is a diagonal matrix. The number of ways to permute q j is |q̃ j|. Hence

the number of elements of the symmetric group that leave q j invariant is n!/|q̃ j|. Hence

∑
x∈q̃ j

〈x|A†
τi,n

Aτi,n|x〉=
1

n!/|q̃ j| ∑
π∈Sn

〈q j|π†A†
τi,n

Aτi,nπ|q j〉. (4.4)

From this,

ai, jγ
wt(τi)(1− γ)n−wt(τi) = 〈q̃ j|A†

τi,n
Aτi,n|q̃ j〉=

1

|q̃ j| ∑
x∈q̃ j

〈x|A†
τi,n

Aτi,n|x〉

=
1

n!
∑

π∈Sn

〈q j|π†A†
τi,n

Aτi,nπ|q j〉, (4.5)

where Sn denotes the matrix representation of the symmetric group that permutes the n modes. Using

the definition of ci, it follows that

p(k)

∑
i=p(k−1)+1

1

n!/ci
∑

π∈Sn

〈q j|π†A†
τi,n

Aτi,nπ|q j〉= ∑
y=(y1,...,yn)∈Nn

y1+···+yn=k

〈q j|A†
yAy|q j〉= γk(1− γ)n−k

(
n

k

)
, (4.6)

where the last equality follows from Proposition 2. From this, it follows that

p(k)

∑
i=p(k−1)+1

ciai, j =

(
n

k

)
, (4.7)

and hence

p(k)

∑
i=p(k−1)+1

ciai =

(
n

k

)
1c. (4.8)

To better understand the ramification of Lemma 4, we explain the structure of the rows of A in greater

detail. The rows in A are labeled by integer partitions corresponding to the AD errors. The first row of

A correspond to 1 AD errors. The second row and third corresponds to 2 AD errors with corresponding

partitions given by (2,0) and (1,1) respectively. The fourth, fifth and sixth rows corresponds to 3 AD

errors with corresponding partitions given by (3,0,0) and (2,1,0) and (1,1,1) respectively. Then Lemma

4 implies the following.

1. One photon loss: The first row of A is proportional to a vector of ones.

2. Two photon losses: A linear combination of the second and third rows of A with positive integer

coefficients is proportional to a vector of ones.

3. Three photon losses: A linear combination of the fourth, fifth and sixth rows of A with positive

integer coefficients is proportional to a vector of ones.

Certain subsets of rows in A are hence linearly dependent according to Lemma 4, namely the rows

labeled by elements from {p(k−1)+1, . . . , p(k)} for every positive integer k.

By employing a different type of counting argument, one can note that different subsets of rows

within A are linearly dependent. This is given by the following Proposition.
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Proposition 5. For any h = 1,2 . . . , t −1, the row vector aT
p̄(h) in A is linearly dependent on the rows in

A where w AD errors occur on at least h modes, for every w = h+1, . . . , t.

Proof. The crux of the proof arises from the fact that ciai, j is a non-negative integer with a combinatoric

interpretation. Namely, we can interpret q j as a column label in A that specifies a list of distinguishable

bins that all together contain n indistinguishable balls. Let wt(τi) denote the sum of the components in

the τi. Then we can interpret ciai, j as the number of ways of picking wt(τi) balls such that the number

of balls contributed by individual bins that conform to τi.

For simplicity, denote bi, j = ciai, j as entries of a matrix B with row vectors bT
i . Also denote set of rows

indices of A for which w AD errors occur on exactly m modes to be

Iw,m := {i|wt(τi) = w,τi afflicts m modes}.

To establish the proposition, we need to show that for any h = 1,2, ..., t − 1 and w > h, the row vector

bT
p̄(h) is a linear combination of bT

i , where the row indices belong to the set

Iw,h ∪·· ·∪ Iw,w.

A crucial observation is now the following: given any partition q j of n, bp̄(h), j is the number of ways

of picking h balls from h different bins. There is another way to calculate bp̄(h), j with an overcounting

argument, by first considering too many AD errors, and then counting the number of ways to remove

AD errors to get just the right number and configuration. To be precise, we first pick w > h balls from at

least h bins, and then pick h balls from the w selected. Mathematically this reads

(
n−h

w−h

)
bp̄(h), j = ∑

i∈∪w
m=h

Iw,h

bi, jdi,h,

where di,h is the number of ways of picking h balls out of exactly h bins from those given by τi. Note

that di,h and
(

n−h
w−h

)
do not depend on j. This establishes the lemma.

By identifying sets of linearly dependent rows of A and counting the number of non-intersecting

linearly dependent sets, one can obtain a lower bound on the nullity of A, from which a lower bound on

the number of basis states can be obtained. This in turns implies that whenever the inequality (1.2) is

satisfied, then we have a PI constant-excitation quantum code that corrects t AD errors.

Corollary 6. Let w and t be positive integers such that p(w)+
(

t
2

)
≥ p(1)+ · · ·+ p(t) and w ≥ 2. Then

there is a permutation-invariant constant-excitation quantum code with w(t + 1) total excitations and

which corrects t AD errors.

Proof. Let us construct the matrix A with columns labeled by the Dicke states labeled by Qu and rows

labeled by AD errors of weight from 1 to t, where Q = P(w) and u = t +1.

We first show that d(Q̃u) ≥ 2(t +1), so that the distance criterion in Theorem 3 holds. One can see

this for the following reason. The minimum distance of any set of non-negative vectors of fixed length

is trivially at least 2. Hence the minimum distance of Q̃ is at least 2u. The minimum distance between

vectors from Q̃ and the ones vector is obviously w(u− 1)+ (uw−w) = 2w(u− 1) which is at least 2u

whenever w ≥ 2.

Let us denote the rank of A and the nullity of A by rank(A) and nullity(A) respectively. Now the

rank of A is equal to its row rank, which is the number of its linearly independent rows. We will see

that the matrix A in fact has many linearly dependent rows, and hence its row rank is strictly less than

the number of its rows. More precisely, the sets of its rows which correct κ AD errors for κ = 1, . . . , t
are linearly dependent according to Lemma 4. The case for κ = 1 is trivial, because there is only one

row of A that corresponds to κ = 1. Now define Lκ = {p(κ − 1)+ 1, . . . , p(κ)}. When κ ≥ 2, the sets

Lκ of labels for the dependent row vectors of A have cardinality at least two, and we can eliminate one

dependent row from each Lκ , which leads to an elimination of t − 1 rows. According to Proposition 5,

the row of A where h AD errors afflict exactly h modes is linearly dependent with the rows in A that
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afflict w AD errors in at least h modes, for every w > h. By setting h = 2,3, . . . , we can eliminate another

t −2, t −3, . . . rows. The total number of linearly dependent rows is thus at least 1+ · · ·+(t −1) =
(

t
2

)
.

Now the dimension of the domain of A is the number of its columns, which is p(w)+ 1. The rank-

nullity theorem states that the nullity of A is precisely p(w)+1− rank(A). From an upper bound of the

rank of A, we can obtain a lower bound on the nullity of A. We have seen from the previous paragraph

that the rank of A is at most the number of its rows minus
(

t
2

)
. Hence the rank-nullity theorem implies

that nullity(A) ≥ p(w)+ 1− (p(t)−
(

t
2

)
). It follows that for the nullity of A to be at least 1, it suffices

to require p(w) + 1− (p(t)−
(

t
2

)
) ≥ 1. Theorem 3 then implies that we can use A to construct a PI

constant-excitation quantum code that corrects t AD errors.

4.1 Proof of Theorem 3

First we show that the non-deformation condition with respect to the AD error of weight zero holds.

Notice that for any quantum state |ψ〉 that is a superposition of computational basis states each of weight

k, Proposition 1 implies that 〈ψ|(A⊗n
0 )†A⊗n

0 |ψ〉 = (1− γ)k. Thus the non-deformation condition for the

AD error of weight zero trivially holds.

Now we will demonstrate that the orthogonality conditions of the KL quantum error correction crite-

rion are satisfied because of the distance criterion imposed. While this has been proved in [12][Theorem

2], we briefly state the underlying reason for this. An AD error of weight κ changes the weight of com-

putation basis states by κ . The KL quantum error correction criterion involves taking the inner product of

states both afflicted by AD errors of weight at most t. Thus, if the vectors underlying the computational

basis states form a set of distance at least 2t + 1, all the orthogonal quantum error correction criterions

will hold. Moreover, using the simple fact that xi = x+i −x−i , the non-deformation quantum error correc-

tion criterion for AD errors of weight from 1 to t with respect to the code (4.3) will be equivalent to the

constraints

c

∑
j=1

x j〈q̃ j|A†
τi,n

Aτi,n|q̃ j〉= 〈0L|A†
τi,n

Aτi,n|0L〉−〈1L|A†
τi,n

Aτi,n|1L〉= 0. (4.9)

Clearly these constraints are equivalent to the system of linear equations Ax = 0. But we still have to

show is that there is a non-zero x such that x1 + · · ·+ xc = 0 and Ax = 0.

We first show that if Ax = 0 has a non-trivial solution for x, then x1 + · · ·+ xc = 0. To see this, note

that Lemma 4 implies that the first row of A is a vector of ones. Hence Ax = 0 implies that 1T
c x = 0

which implies that x1 + · · ·+ xc = 0. Therefore if the nullity of A is at least one, the code as defined

by (4.3) exists and the non-deformation quantum error correction criterions for AD errors of weights

from 1 to t hold. Since we have argued in the previous paragraph how all the orthogonality quantum

error correction criterions hold and the non-deformation quantum error correction criterion for the AD

of weight zero holds, all the KL quantum error correction criterions hold, and the code as defined by

(4.3) corrects t AD errors.

5 Explicit code constructions

In this section, we demonstrate how one can make use of the results in the previous section to construct

quantum codes. We illustrate briefly a recipe in which quantum codes may be found. Suppose first that

we wish to construct a quantum code that corrects t AD errors. Then we will pick some integer w, and

set Q = P(w), so that Q is the set of all integer partitions of 1, . . . ,w. We will next construct the set Qu for

a suitable choice of an integer u. The basis states of our quantum codes are then labeled by the elements

of Qu. With Qu and integer partitions labeling the different types of AD errors, we can construct a matrix

A as given in (4.1). Then we define our quantum codes based on the vectors that we find in the nullspace

of A.

Example 1 (Constant energy code correcting 1 AD error [23]). Consider t = 1,w = 1,Q = P(w) with

u = 3, so that the number of modes is n = uw = 3. Then Qu = {(3,0,0),(1,1,1)}. Obviously d(Q̃u) =
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4 ≥ 2t +1.

A =
(
a1,1 a1,2

)
(5.1)

where

a1,1 = 〈 ˜(3,0,0)|A†
(1,0,0)

A(1,0,0)| ˜(3,0,0)〉/(γ(1− γ)2)

=
1

3
〈(3,0,0)|A†

(1,0,0)
A(1,0,0)|(3,0,0)〉/(γ(1− γ)2). (5.2)

Note that

a1,2 = 〈(1,1,1)|A†
(1,0,0)

A(1,0,0)|(1,1,1)〉/(γ(1− γ)2) = 1. (5.3)

Hence A =
(
1 1

)
. Note that we can obtain the same result for A from (4.8) because since the number

of ways to permute (1,0,0) is 3, 3A = 31T
2 . The vector x = (1,−1) clearly lies within the nullspace of A,

and hence we can derive from (4.3) the quantum code spanned by

|0L〉=
1√
3
(|(3,0,0)〉+ |(0,3,0)〉+ |(0,0,3)〉) (5.4)

|1L〉= |(1,1,1)〉. (5.5)

Since all of the requirements of Theorem 3 are satisfied for t = 1, the code spanned by (5.4) and (5.5) is

a constant energy code which also corrects 1 AD error and which is permutation-invariant. This is also

precisely Wasilewski and Banaszek’s 3 mode code [23].

Example 2 (Constant energy code correcting 2 AD errors). Consider t = 2,w = 2,Q = P(w) with u =
t +1 = 3, so that the number of modes is n = uw = 6. Then

Qu = {(6,0,0,0,0,0),(3,3,0,0,0,0),(1,1,1,1,1,1)}. (5.6)

Obviously d(Q̃u) = 6 ≥ 2t +1. Also,

A =




1 1 1
5
2

1 0

0 3
5

1


 . (5.7)

Now note that A( 2
5
,−1, 3

5
) = 0, and hence we can derive from (4.3) the quantum code spanned by

|0L〉=
√

2

5
| ˜(6,0,0,0,0,0)〉+

√
3

5
|1〉⊗6, (5.8)

|1L〉= | ˜(3,3,0,0,0,0)〉. (5.9)

Example 3 (Constant energy code correcting 3 AD errors with 12 excitations). Consider t = 3,w =
3,Q = P(w) with u = t +1 = 4, so that the number of modes is n = uw = 12. Then

Qu = {((12)|011),((8,4)|010),((4,4,4)|09),112}. (5.10)

Obviously d(Q̃u) = 8 ≥ 2t +1. We now proceed to evaluate the matrix elements of A. The first row of A

is a vectors of ones. By considering only the matrix elements of A
†
2A2, the second row of A is equal to

r2 =

((
12
2

)

12
,

11
(

8
2

)
+11

(
4
2

)

2
(

12
2

) ,

(
11
2

)(
4
2

)
(

12
3

) ,0

)T

=

(
11

2
,

17

6
,

3

2
,0

)T

.

By considering only the matrix elements of A
†
1A1 ⊗A

†
1A1, the third row of A is equal to

r3 =

(
0,

2
(

8
1

)(
4
1

)

2
(

12
2

) ,

(
10
1

)
42

(
16
3

) ,1

)T

=

(
0,

16

33
,

8

11
,1

)T

.
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As one can see, the first, second row and the third row are linearly dependent because
(

12
1

)
r2 +

(
12
2

)
r3 =(

12
2

)
112 as implied by Lemma 4.

Next we proceed to evaluate the fourth, fifth and sixth rows of A. By considering only the matrix

elements of A
†
3A3, the fourth row of A is equal to

r4 =

((
12
3

)

12
,

11
(

8
3

)
+11

(
4
3

)

2
(

12
2

) ,

(
11
2

)(
4
3

)
(

12
3

) ,0

)T

= (55/3,5,1,0)T .

By considering only the matrix elements of A
†
2A2 ⊗A

†
1A1, the fifth row of A is equal to

r5 =

(
0,

(
8
2

)(
4
1

)
+
(

8
1

)(
4
2

)

2
(

12
2

) ,
10
(

4
2

)(
4
1

)
(

12
3

) ,0

)T

=

(
0,

40

33
,

12

11
,0

)T

.

By considering only the matrix elements of
(

A
†
1A1

)⊗3

, the sixth row of A is equal to

r6 =

(
0,0,

(
4
1

)3

3
(

16
3

) ,1
)T

=

(
0,0,

16

55
,1

)T

.

Clearly, we have
(

12
1

)
r4 +2

(
12
2

)
r5 +

(
12
3

)
r6 =

(
12
3

)
1T

12, and hence the first, fourth, fifth and sixth rows are

linearly dependent. We now get

A =




1 1 1 1
11
2

17
6

3
2

0

0 16
33

8
11

1

55/3 5 1 0

0 40
33

12
11

0

0 0 16
55

1



. (5.11)

The matrix rank of A is 3, and the null space of A is spanned by (−21/32,99/32,−55/16,1). Thus we

have A(−21,99,−110,32) = 0. From this we can derive from (4.3) the quantum code spanned by

|0L〉=
1√
131

(√
99| ˜((8,4)|010)〉+

√
32|1〉⊗12

)
, (5.12)

|1L〉=
1√
131

(√
21| ˜((12)|011)〉+

√
110| ˜((4,4,4)|09)〉

)
. (5.13)

Example 4 (Constant energy code correcting 4 AD errors). Consider t = 4,w = 4,Q = P(w) with u =
t +1 = 5, so that the number of modes is n = uw = 20. The Dicke states are specified by

Qu = {((20)|019),((15,5)|018),((10,10)|018),((10,5,5)|017),((5,5,5,5)|016),120}. (5.14)

Then the matrix A is given by

A =




1 1 1 1 1 1
19
2

23
4

9
2

13
4

2 0

0 15
38

10
19

25
38

15
19

1

57 93
4

12 7 2 0

0 135
76

45
19

75
38

30
19

0

0 0 0 25
114

25
57

1
969

4
137

2
21 11 1 0

0 485
76

120
19

75
19

30
19

0

0 105
19

405
38

100
19

60
19

0

0 0 0 425
684

50
57

0

0 0 0 0 125
969

1




, (5.15)
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with rank 5 and nullity 1. The nullspace is spanned by
(

84
125

− 456
125

− 152
125

1368
125

− 969
125

1
)
. From

this we can derive from (4.3) the quantum code spanned by

|0L〉=
1√

1577

(√
84| ˜((20)|019)〉+

√
1368| ˜((10,5,5)|017)〉+

√
125|1〉⊗20

)
, (5.16)

|1L〉=
1√

1577

(√
456| ˜((15,5)|018)〉+

√
152| ˜((10,10)|018)〉+

√
969| ˜((5,5,5,5)|016)〉

)
. (5.17)

Example 5 (Constant energy code correcting 5 AD errors). Consider t = 5,w = 5,Q = P(w) with u =
t +1 = 6, so that the number of modes is n = uw = 30. The Dicke states are specified by

Qu = {((30)|030),((24,6)|028),((18,12)|028),((18,6,6)|027),

((12,12,6)|027),((12,6,6,6)|026),((6,6,6,6,6)|026),130}. (5.18)

Then the matrix A is given by

A =




1 1 1 1 1 1 1 1
29
2

97
10

73
10

61
10

49
10

37
10

5
2

0

0 48
145

72
145

84
145

96
145

108
145

24
29

1
406
3

1022
15

518
15

428
15

46
3

28
3

10
3

0

0 336
145

504
145

426
145

456
145

378
145

60
29

0

0 0 0 162
1015

216
1015

54
145

108
203

1
1827

2
3547

10
237

2
103 67

2
18 5

2
0

0 2104
145

2292
145

1792
145

280
29

180
29

80
29

0

0 276
29

3366
145

321
29

2112
145

243
29

150
29

0

0 0 0 729
1015

972
1015

1269
1015

270
203

0

0 0 0 0 0 96
1015

48
203

1
23751

5
1417 312 286 53 27 1 0

0 10686
145

1521
29

1248
29

606
29

333
29

60
29

0

0 276
29

3366
145

321
29

2112
145

243
29

150
29

0

0 1196
29

14586
145

1040
29

44 18 200
29

0

0 0 0 1053
406

594
145

1593
406

675
203

0

0 0 0 0 0 312
1015

120
203

0

0 0 0 0 0 0 144
2639

1




, (5.19)

with rank 7 and nullity 1. The nullspace is spanned by

(
− 21505

31104
135575
31104

39875
15552

− 55825
3888

− 25375
2592

5075
144

− 2639
144

1
)
.

From this we can derive from (4.3) the quantum code spanned by

|0L〉=
1√

1342629

(√
135575| ˜((24,6)|028)〉+

√
79750| ˜((18,12)|028)〉

+
√

1096200| ˜((12,12,6)|027)〉+
√

31104|1〉⊗30
)
, (5.20)

|1L〉=
1√

1342629

(√
21505| ˜((30)|029)〉+

√
446600| ˜((18,6,6)|027)〉

+
√

304500| ˜((12,12,6)|027)〉+
√

570024| ˜((6,6,6,6,6)|025)〉
)
. (5.21)

To illustrate the fact that A can potentially have a nullspace larger than 1, we consider in the following

a 3 AD quantum code with 16 excitations.

Example 6 (Constant energy code correcting 3 AD errors). Consider t = 3,w = 4,Q = P(w) with u =
t +1 = 4, so that the number of modes is n = uw = 16. Then

Qu = {((16)|015),((12,4)|014),((8,8)|014),((8,4,4)|013),((4,4,4,4)|012),116}. (5.22)
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Obviously d(Q̃u) = 8 ≥ 2t +1. We now proceed to evaluate the matrix elements of A. The first row of A

is a vectors of ones. By considering only the matrix elements of A
†
2A2, the second row of A is equal to

r2 =

((
16
2

)

16
,

15
(

12
2

)
+15

(
4
2

)

2
(

16
2

) ,
15
(

8
2

)
(

16
2

) ,

(
15
2

)(
8
2

)
+2
(

15
2

)(
4
2

)

3
(

16
3

) ,

(
15
3

)(
4
2

)
(

16
4

) ,0

)T

=

(
15

2
,

9

2
,

7

2
,

5

2
,

3

2
,0

)T

.

By considering only the matrix elements of A
†
1A1 ⊗A

†
1A1, the third row of A is equal to

r3 =

(
0,

2
(

12
1

)(
4
1

)

2
(

16
2

) ,

(
8
1

)(
8
1

)
(

16
2

) ,
2
(

8
1

)(
4
1

)
(14)+

(
4
1

)(
4
1

)
(14)

3
(

16
3

) ,

(
4
1

)(
4
1

)(
14
2

)
(

16
4

) ,1

)T

=

(
0,

2

5
,

8

15
,

2

3
,

4

5
,1

)T

.

As one can see, the first, second row and the third row are linearly dependent because
(

16
1

)
r2 +

(
16
2

)
r3 =(

16
2

)
116 as implied by Lemma 4.

Next we proceed to evaluate the fourth, fifth and sixth rows of A. By considering only the matrix

elements of A
†
3A3, the fourth row of A is equal to

r4 =

((
16
3

)

16
,

15
(

12
3

)
+15

(
4
3

)

2
(

16
2

) ,
15
(

8
3

)
(

16
3

) ,

(
15
2

)(
8
3

)
+2
(

15
2

)(
4
3

)

3
(

16
3

) ,

(
15
3

)(
4
3

)
(

16
4

) ,0

)T

= (35,14,7,4,1,0)T

By considering only the matrix elements of A
†
2A2 ⊗A

†
1A1, the fifth row of A is equal to

r5 =


0,

(
12
2

)(
4
1

)
+
(

12
1

)(
4
2

)

2
(

16
2

) ,

(
8
2

)(
8
1

)
(

16
2

) ,

((
8
2

)(
4
1

)
+
(

8
1

)(
4
2

))
(14)+

(
4
2

)(
4
1

)
(14)

3
(

16
3

) ,

(
4
2

)(
4
1

)(
14
2

)
(

16
4

) ,0




T

=

(
0,

7

5
,

28

15
,

23

15
,

6

5
,0

)T

.

By considering only the matrix elements of
(

A
†
1A1

)⊗3

, the sixth row of A is equal to

r6 =

(
0,0,0,

3
(

8
1

)(
4
1

)(
4
1

)

3
(

16
3

) ,

(
4
1

)3(13
1

)
(

16
4

) ,1

)T

=

(
0,0,0,

8

35
,

16

35
,1

)T

.

Clearly, we have
(

16
1

)
r4 +2

(
16
2

)
r5 +

(
16
3

)
r6 =

(
16
3

)
1T

16, and hence the first, fourth, fifth and sixth rows are

linearly dependent. We now get

A =




1 1 1 1 1 1
15
2

9
2

7
2

5
2

3
2

0

0 2
5

8
15

2
3

4
5

1

35 14 7 4 1 0

0 7
5

28
15

23
15

6
5

0

0 0 0 8
35

16
35

1



. (5.23)

The matrix rank of A is 3, and the null space of A is spanned by



−17/12

115/24

0

−35/8

0

1



,




−1/3

4/3

0

−2

1

0



,




1/3

−4/3

1

0

0

0



. (5.24)

Thus we trivially have for instance A(1/3,−4/3,1,0,0,0) = 0. From this we can derive from (4.3) the

quantum code spanned by

|0L〉=
√

1

4
| ˜((16)|015)〉+

√
3

4
| ˜((8,4,4)|013)〉, (5.25)

|1L〉= | ˜((12,4)|014)〉. (5.26)
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t N (t +1)2

1 3 4

2 6 9

3 12 16

4 20 25

5 30 36

6 49∗ 49

7 72∗ 64

8 90∗ 81

9 120∗ 100

10 143∗ 121

Table 1: Table of code parameters. The first column are values for t, the number of AD errors the quantum

code can correct. The second column, N is the total excitation number for our constant-excitation quantum

code that corrects t AD errors and is permutation-invariant. The third column is (t + 1)2, which is the

total excitation number of Bergmann and van Loock’s codes [24], which are not permutation-invariant. The

numbers for N marked with an asterisk are obtained from (1.2) and are likely not to be smallest possible.

On the other hand, the numbers for N marked without an asterisk have their codes given explicitly in the

examples we provided.

In Table 5, we present parameters constant-excitation permutation-invariant quantum codes that can

be constructed using our methodology for t = 1, . . . ,10.

6 Discussions

In this paper, we study codes that lie within the decoherence-free subspace of certain Hamiltonians,

while also exhibiting the ability to reverse the effects of some amplitude damping errors. We focus on

the Hamiltonian that is a sum of quantum harmonic oscillators of identical frequencies, because it can

describe the quantum bus used by superconducting qubits. Since permutations may unexpectedly occur,

it is also advantageous for quantum codes to also exhibit permutation-invariance. Here in this paper, we

present a method where vectors from the nullspace of a matrix A can give rise to constant-excitation PI

codes that correct AD errors, which are naturally immune to the natural dynamics of both the quantum

harmonic oscillators and also arbitrary permutations.

To label the bases on which our codes are constructed on, we have used the all ones vector along

with the set Q = P(w). One might wonder if one could construct quantum codes using our method with

Q a strict subset of P(w). This is useful if certain Dicke states are unphysical to implement for example.

One can see from Example 6 that if the initial Q is chosen as a suitable strict subset of P(w), the derived

quantum code would be exactly the same. In particular, we supply Example 6 to illustrate the fact that

by choosing N to be larger than the minimum required to correct t errors, we can have some flexibility

in choosing which Dicke states our code is to be supported on.

The codes considered here are non-degenerate. The effect of different AD errors on the permutation-

invariant code are distinct. To see how this happens explicitly, let us consider the example of Wasilewski

and Banaszek’s excitation 3 code. Consider the AD errors A(1,0,0) and A(0,0,1). Notice that

A(1,0,0)|0L〉=
1√
3

√
3|(2,0,0)〉

√
γ(1− γ)2 (6.1)

A(0,0,1)|0L〉=
1√
3

√
3|(0,0,2)〉

√
γ(1− γ)2. (6.2)

One can see that the effect of A(1,0,0) and A(0,0,1) on the logical zero codeword is not the same because

(6.1) is not equal to (6.2).
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number of correctible errors, t
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1.0

1.1
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N

excitation ratio

Figure 1: We denote as NNOON = (t +1)2 and N as the number of excitations needed to correct t AD errors

using the NOON codes of Bergmann and van Loock codes [24] and our permutation-invariant constant-

excitation codes respectively. The first 5 data points corresponding to our explicit code constructions out-

perform the NOON codes, and the remaining data points suggest that N ≤ 1.3(t +1)2.
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Regarding the literature on constant-excitation quantum codes that are not necessarily PI, we have

also improved on their construction when 2,3,4 and 5 AD errors are to be corrected. Namely, our codes

require only 6,12,20 and 30 total excitations to correct 2,3,4 and 5 AD errors respectively. In contrast,

Chuang, Leung and Yamamoto constructed codes correcting 2 and 3 AD errors using 9 and 16 total

excitations [12], while Bergmann and van Loock constructed codes correcting t AD errors using (t +1)2

total excitations [24]. We construct the best constant-excitation quantum codes that can correct between

2 to 5 AD errors, as the number of excitations needed to correct t errors for t = 2,3,4,5 is t(t + 1),
which is less than the (t + 1)2 total excitations previously needed. Explicit code constructions using

our method are supplied in Example 2 and Example 3 to correct 2 and 3 AD errors using 6 and 12

total excitations respectively. Our construction can also be seen as a generalization of Wasilewski and

Banaszek’s constant-excitation PI code correcting 1 AD error [23] to PI constant-excitation quantum

codes that can correct an arbitrary number of AD errors. Asymptotically, it also appears that the number

of excitations needed to correct t AD errors for our codes exhibits the same behavior as Bergmann and

van Loock’s codes, because both require O(t2) excitations (see Figure 1).

Bosonic codes with constant excitation number were previously c+onsidered by the authors in [12],

where they established some fundamental properties of such codes. While the quantum codes considered

here are indeed a subfamily of the quantum codes considered in [12], they do not follow trivially from

[12] for the following reasons. First, in [12], quantum codes satisfying the non-deformation Knill-

Laflamme quantum error correction criterion and certain orthogonality conditions are constructed, with

explicit construction algorithms for 1 and 2 AD errors. However for at least 3 AD errors, one could only

rely on brute force search as there was no systematic way to generate such constant-excitation quantum

codes. In contrast, we see in this paper how constant excitation quantum codes for any number of

AD errors can be generated. Second, to numerically find codes in [12], the authors check if a system of

linear equations corresponding to the non-deformation conditions is satisfied. In the language used in this

paper, they essentially determine the nullity of the matrix A, but it was unclear how one could construct

the quantum code using this information. We fill this research gap in this paper by demonstrating how

the code can be explicitly constructed from the nullspace of the matrix A, therefore enriching the theory

of this nascent field. Third, in [12, Eq. (5.3)], the authors give an inequality that is asymptotically

equivalent to ours in (1.2), which tells us when constant excitation codes exist. However, since arbitrary

constant excitation codes were considered, it is a priori unclear if the inequality [12, Eq. (5.3)] holds

when the additional constraint of permutation-invariance on the codes is imposed. Here, we show that

this is in fact possible, and slightly improve their inequality. While their inequality states that constant

excitation codes exist when

p

(
N

t +1

)
≥ (p(0)+ p(1)+ . . . p(t))+2, (6.3)

we say that permutation-invariant constant excitation codes exist when

p

(
N

t +1

)
+

(
t

2

)
≥ (p(1)+ . . . p(t)). (6.4)

Just like in the case of [12], this analytical bound is not tight, as we demonstrate for small values of t.

One limitation of this paper is that our constructed PI constant-excitation quantum codes only correct

against AD errors. It would be advantageous to study when our codes can also correct against a fixed

number of arbitrary errors. Another limitation is that we have only provided a theoretical structure of

our PI constant-excitation quantum codes; the practicality of implementing our codes has yet to be fully

addressed. We expect that techniques in preparation of Dicke states and quantum cellular automata to

be useful with regards to this issue. However, this lies beyond the scope of the current paper, where

our focus lies primarily only on the mathematical structure of PI constant-excitation quantum codes that

correct AD errors.

In summary, we prove the existence of constant-excitation quantum codes that not only correct any

number of AD errors, but are invariant under any permutations. When certain distance criterion are

satisfied, we also provide a new method for obtaining quantum codes by finding vectors that lie within

the nullspace of a matrix.
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