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ABSTRACT In this paper, we propose a method that shows how phase portraits rendered by a controller

can inform the development of a physical adaptation at a single degree of freedom (DoF) for a given control

task. This approach has the advantage of having physical adaptations sharing the responsibility of control

to accomplish a task. We use an inverted pendulum which is reminiscent of the trunk of a biped walker to

conduct numerical simulations and hardware experiments to show how our method can innovate a physical

adaptation at the pivot joint to reduce the control effort. Our method discovered that a torsional spring at

the pivot joint would lead to a lower input effort by the regulator type feedback controller. The method can

tune the spring to minimize the total cost of control up to about 32.81%. This physical adaptation framework

allows multiple degrees of freedom robotic system to suggest local physical adaptations to accomplish a

given control objective.

INDEX TERMS Computer numerical control, embodied control, robotics and automation, robot motion.

I. INTRODUCTION

There is an increasing interest among the robotics commu-

nity to co-design the physical embodiment and the feed-

back controllers due to its merit in stable and efficient

behaviour [1], [2]. Very often these approaches are based

on biological inspirations as the dynamic synergy between

biomechanical structures and neural control in animals play

a pivotal role to exhibit efficient, robust, and compliant

locomotion [3]–[5]. For instance, human walking energetics

cost about 75% less than chimpanzees’ quadrupedal and

bipedal locomotion [6]. Studies suggest the aforementioned

efficiency in locomotion in human is due to developing longer

legs (hind limbs) and extended hip compared to their earlier

ape-like primates [6], [7].

In many robotic examples and bioinspirations [8]–[10],

the sharing of control responsibility between the physi-

cal structures and the sensory-motor control loops is such

that there is no clear boundary or distinction between the

two biomechanical and the neural controller [11], [12].

In other words, the ‘‘controller’’ and ‘‘controlled’’ are not

explicitly detached from one another [13]. This opens the

The associate editor coordinating the review of this manuscript and
approving it for publication was Saeid Nahavandi.

possibility that controllers and physical adaptations can

co-evolve [11], [12], [14], [15].

We adopt an embodied and embedded view of a

robotic system [3], [5], [16] where the robotic system’s

behaviour emerges from the interplay between physical

structure/hardware, the controller and the environment. Ref-

erence [12], [16] refer to the distribution of control task

between the controller and the physical body/morphology

as morphological computation. Reference [9] addresses this

integrated/embodied approach by use of "templates and

anchors" where some of the control task is delegated to a

distributed mechanical feedback.

Suitable changes in physical/hardware parameters assist

the closed loop controller to minimize energy consumption.

Related examples such as the RHex robot [10], the pure

passive dynamic model of a goat’s hoof, with no sen-

sors or actuators [17], and various models of passive dynamic

walkers [1], [14], [18] all clearly demonstrate how the phys-

ical mechanisms can simplify control and control algorithms

to deal with unstructured environments. On the other hand,

studies in control theory and automation have made advances

in co-design by taking into account the interplay between

the physical body and controller through adaptive control

schemes [19], [20].
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One challenge in developing methods to share the control

responsibility between physical mechanisms and feedback

controllers is the difficulty to model dynamics of com-

plex systems with multiple degrees of freedom. To tackle

this, studies have provided evolutionary algorithms for sys-

tem design [1], [2], self-assembly, and reproduction of

robotic systems where the robotic systems are evolved

using an algorithm based on some predefined elemen-

tary segments/building blocks to be used as physical solu-

tions [11], [21]. Such modular systems [22] are currently

more easily adapted than non modular systems [23], [24]

because modular systems evolve by changing a sub-section

of the system without disturbing other parts. We propose

a method to identify possible physical adaptations for a

non-modular robotic system which results in a reduction

of feedback control effort. The focus is on implement-

ing physical adaptations in just one DoF/joint at a time

without disrupting the performance of other joints in the

system. The method attempts to bypass the complexities

of analytical dynamic modelling by considering the pro-

jection of the dynamics on the phase portrait of a single

joint.

Another challenge in apportioning the numerical control

task to physical system is quantifying [25] how much of

control task should be allocated to the physical structure

and what shape or size [13] should the additional physical

components take. Here we propose a method which focuses

on adapting one DoF of the system at a time with the goal

of reducing the controller’s effort. An optimal range for size

and shape of the physical adaptation emerges naturally from

the information obtained from the behaviour of the embodied

robotic agent.

Here, we propose amethodical approach to identify a range

of possible local physical adaptations with the goal of reduc-

ing the control effort in second order systems. Given that the

proposed method considers one DoF at a time, it can easily

be extended to higher order systems with multiple degrees of

freedom. This method attempts to resolve the aforementioned

challenges to some extent or at least to simplify them to a

degree. We use the uniqueness property of phase portraits

and categorize the dynamic behavior of a robotic system

based on the phase portrait at a single DoF. This will give

us an insight into the behavior of the controller, the robot’s

physical structure and the interactions with the environment.

This is done by focusing on the phase portrait of one DoF and

proposing a physical solution by looking at local information

without the need for a detailed knowledge of the global

dynamics or kinematics of the robot. In the following section

we refer to suggested physical components/hardware by the

method as a physical adaptations of the system which reduce

the control input. In the following sections, this paper first

demonstrates theoretically, how to interpret the shape or form

of energy needed to reach stability in a given system using

phase portraits. Our method will then identify a physical

solution that will complement required form of phase portrait.

We use an inverted pendulum to conduct simulations and

experiments.

II. ANALYTICAL MODELLING

A. ANALYTICAL INSIGHTS INTO A PHYSICAL

CONTRIBUTION IN CLOSED LOOP CONTROL

A nonlinear dynamical system q̇ = f(q,u) with n linearly

independent Degrees of Freedom (DoF), generalized coor-

dinates q, can be linearized to obtain the state space form

ẋ = Ax + Bu. The state vector is described by x =
(

q1 q̇1 q2 ... qn q̇n
)

⊺
and u =

(

u1 u2 ... ur
)

⊺
is the control

vector.

In the case of a linear feedback controller, the control input

u can be written in terms of state vector; u = −Kx where

K ∈ R
r×2n. Therefore the closed loop model of the system

takes the form [26]

ẋ = (A− BK)x (1)

Matrix A holds the physical system’s information, relating

to the physical system parameters, while BK contains infor-

mation relating to the numerical controller. We introduce

matrix M ∈ R
2n×2n to re-write BK as a summation of two

matrices; BK = BK −M .M represents a physical addition

to the original dynamical system to lower the control effort

contributed by BK . Then, the closed loop state space system

becomes

ẋ = (A+M − BK)x (2)

Since matrix addition is associative and commutative,

M can be subsumed in either matrices A or BK or both.

The linear feedback controller becomes

ẋ = (Ã− BK)x, (3)

where Ã = A + M . On that account, one can infer that the

control effort can be decomposed into two sources; an internal

and an external effort. The former comes from the internal

dynamics; we refer to addition of a physical change in the

hardware of the robot as physical adaptation represented by

matrix M and the external effort is the controller input BK .

This can be demonstrated by

Bu = −BKx

= −(BK −M)x. (4)

AddingM to matrixAmeans changing the physical system

in the following two ways: 1) by varying the existing physical

parameters, i.e. mass, length to centre of mass, and/or size of

components. This involves changing the magnitude of these

parameters which appear in both state matrix A and input

matrix B. 2) Adding or tuning parameters such as mass,

damping or anything in general that affect the kinetic energy

parameters ( kinetic part T of Lagrangian L = T − V ) can

affect multiple degrees of freedom. Moreover, these param-

eters appear in control input matrix B and changing them

results in changing the control gains or controller.
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TABLE 1. Classification of phase portraits.

The idea here is to find a new physical solution or com-

ponent at one local joint such that it reduces the control

effort. Therefore, the choice of new components should cause

minimum changes to the overall dynamics (macro-dynamics)

of the system.

Additional component should only introduce a change in

the potential energy V , and have minimal effect on kinetic

energy. for example, negligible mass, momentum, viscosity,

damping, etc. Thus, it is essential to identify the dynamic

behaviour of the states at the chosen DoF and to find physical

equivalents (new components) to be added to the robotic

system.

B. IDENTIFYING PHYSICAL SYSTEM ADAPTATION BASED

ON THE LOCAL INFORMATION AT A SINGLE DOF

Modeling the dynamics becomes increasingly complex with

the increase in DoF. Therefore, we use a method that focuses

on the phase portrait of one single DoF. Phase portraits reflect

the qualitative behaviour of the solutions to a dynamic sys-

tem [27], [28]. The method is based on a pattern match of

the experimental phase portrait of the real dynamical system

with predefined templates to identify a closest known class

of dynamics for each DoF [28], [29]. The phase portraits are

obtained from the states of the system at one single DoF and

it encompasses the physical structure of the robot and how it

interacts with the environment.

In summary, the following four steps should be carried out:

Step-1: Obtain Phase Portrait: From experiment/

simulation obtain the state trajectories of the chosen ith DoF,

xi(t) = [qi(t), q̇i(t)]
⊺ for i = 1, . . . , n and time t ∈ [0, tf ]

where the final time tf is a user defined time window. Plot

the phase portrait.

Step-2: Find Closest Model at Single DOF: Fit data from

step 1 to each template solution [q̂(j), ˆ̇q(j)], where q̂(j) and ˆ̇q(j)

are states from template solutions j = 1, . . . , 6 in table 1.

Compute cost function [26]

C (j) =

∫ tf

0

(qi(t) − q̂(j)(t))2 + (q̇i(t) − ˆ̇q(j)(t))2dt. (5)

Choose the best fit model from table 1 using argmin
j

C (j).

Step-3: Find Physical Parameter Equivalence: Once the

optimal model from step 2 is obtained, we find a range of

equivalent physical components that can render the chosen

phase portrait behavior. Depending on the existing physical

system and available resources, the human user or manufac-

turer can choose a component such as a magnet, a spring, or a

light pulse.

Step-4: Determine Magnitude of Physical Parameter:

In successive trials, adapt the magnitude/size of the cho-

sen physical parameter at the ith DoF to maximize the user

defined reward function.

Step-5: Maintain Macro-Dynamics: Compare the phase

portrait in ith DoF after physical adaptation to the phase

portrait of the original system. They should both follow the

same category from table 1.

C. A REFLECTION ON METHODOLOGY

Step-2 uses the uniqueness property of phase portraits [29].

The set of solutions to (1) can be classified into a finite

number of groups based on the nature of the eigenvalues of

A as shown in table 1. The table contains 6 classes of phase

portraits [28], [29]. For the purpose of the dynamic system

discussed in (1) and model in section III, i.e. the inverted

pendulum, we focus on the non-singular case of matrix A.

The classes of solutions represent both the original system

and the control parameters. Therefore, the physical solution

derived from the template is specific to the original system

and the control objective.

This leads us to Step-3. The phase portraits are solutions

to differential equations of motion. The phase portrait of a

dynamic system is formed by a collection of representative
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integral curves and is a geometric representation of the trajec-

tories of the system [27], [30] and therefore indicate the form

of energy a system follows at a particular joint. For example,

the model solutions in table 1 exhibit a harmonic motion.

Such attracting and repelling behavior can be obtained by

adding a spring or a magnet at the corresponding degree of

freedom.

In this work, the user will choose an appropriate phys-

ical component, which follows the suggested energy form,

depending on the existing physical system and available

resources. In future research, it is possible to build a library

including some information reflecting the type of hardware

and link it to possible physical components. For example,

a capacitor for an electrical system with current and voltage,

a spring for a mechanical system or a magnet depending on

the hardwarematerial. Such a librarywill enable the system to

be more autonomous in the process of selecting the physical

component.

Table 1 is only an example of solution phase portraits for

systems with a dynamic behaviour described by equation (1).

Therefore the physical solutions from this table follow a

visco-elastic force field giving rise to physical solutions such

as spring and magnet. The physical parameter will only adapt

the part corresponding to the potential energy for example,

stiffness with negligible damping as it is not physically plau-

sible to have zero damping/friction. Just to name a few exam-

ples of dynamic systems with a different category of phase

portraits, we can refer to a duffing oscillators, subharmonic

oscillator and van der poll portraits [31]. In these categories,

this can be interpreted as physical components such as non-

linear springs, capacitors, light pulses, semiconductors and

magnetic nanodots.

It is essential for the new system to maintain the same

macro-dynamics as the original system. Hence, it should

maintain the shape and category of original phase portrait

after addition of the suggested physical component. There-

fore, the magnitude of parameters in the suggested compo-

nent should be chosen such that

1) After identifying the physical components, the param-

eter’s magnitude should be determined (Step-4). For

example the size of spring stiffness or magnetic flux

density in the case of the visco-elastic force field, both

analogous to impedance [32]. Although the primary

role of the new component is to reduce the control

input, it should not interfere with the performance

of other DoF. Therefore, an initial estimated mag-

nitude of new physical component is optimized by

minimizing the following cost function such that the

control input, the error in states and settling time is

minimized.

J = e(x)⊺λe(x) + u⊺γu + ηt0 (6)

where e(x) ≡ x − x∗ is the error vector, x∗ is the

desired states vector, t0 is the settling time and u is

the control/input vector as defined in II. λ, γ and η are

FIGURE 1. Experimental Setup. The inverted pendulum can swing in the
plane of the belt. The belt is driven by a servo motor to move the base of
the pendulum back and forth. The pendulum is hinged on the axis of a
back drivable servo motor used to simulate the suggested physical
system adaptations.

the normalization factors for state vector errors, control

vector and settling time respectively.

There is a range of possible values for the magnitude

of physical parameters which satisfy the above cost

function. The number of solutions for the physical

parameter magnitude satisfying equation (6) is too high

and therefore there is no proof of optimality. It is suf-

ficient to choose one optimal solution that minimizes

equation (6) to suggest possible modifications. The

human user can then choose the physical component

based on what is available to them within a range of

parameters satisfying equation (6).

2) The system stays within the same category of phase

portrait after physical adaptations (Step-5).

The practical implementation of the physical component is

heavily user dependant for the purpose of this research and

achieving system autonomy in this aspect is out of the scope

of this study. There are much research in the field of robotics

to realize autonomy in physical adaptation and solution such

as use of thermally tunable composites [33] and electroadhe-

sive materials [34].

III. INVERTED PENDULUM EXAMPLE

Inverted pendulum is an inherently unstable, non linear,

under-actuated system. Therefore, it is a good candidate to

test the proposed method of using the phase portrait of a sin-

gle DoF under any given controller for discovering a physical

solution which lowers the burden of the controller.

An inverted pendulum, modeled in Fig. 1 was used in

experiments. The pendulum rod can swing around a passive

pivot joint mounted on a motor-driven cart. A regulator type

controller has been chosen to stabilize the pendulum in the

vertical upright position. The governing equations of motion

are as follows;

(M + m)ẍ + ml cos θ θ̈ − ml sin θ θ̇2 = fn.c − βx ẋ (7)

mlẍ cos θ + (ml2 + I )θ̈ + mgl sin θ = 0 (8)
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TABLE 2. Parameter description of model.

where all the symbols are defined as per table 2. Linearization

around the equilibrium point xe =
(

xe 0 0 0
)

⊺
obtains the

state-apace equation;

ẋ=

















0 1 0 0

0
−(I + ml2)βx

I (M + m) +Mml2
m2l2g

I (M + m) +Mml2
0

0 0 0 1

0
−mlβx

I (M + m) +Mml2
(M + m)mgl

I (M + m) +Mml2
0

























x

ẋ

θ

θ̇









+

















0

(I+ml2)

I (M + m) +Mml2

0
ml

I (M+m) +Mml2

















U . (9)

The goal is to identify suitable physical components that

can be added to a chosen joint in the system in order to reduce

the size of control input. In this study we consider the passive

joint of the pendulum. Themethod was carried out as follows:

1) The phase portraits of pendulum joint were obtained

from simulation (section IV) and experimental data

(section V).

2) The phase portraits are then compared to the given

models in table 1 and the best fit solution is found.

Numerous methods can be chosen for this pattern

matching such as different pattern recognition algo-

rithms and regression. For the experiments in this

paper, we fitted the simulation/experimental data to a

set of solutions

x(t) = κeλt (10)

to the system described in (1) [27], [28]. In accordance

with table 1, six categories of solutions to (1) emerge

depending on the form of eigenvalues of the system.

Given that the control objective is stability of inverted

pendulum, only stable solutions from table 1 were con-

sidered here; Complex Conjugate Eigenvalues (CCE)

(λ = χ ± iψ) with nonzero real part and ψ < 0,

CCE with χ = 0, Repeated Real Eigenvalues (RRE)

with linearly independent eigen vectors κ1 6= κ2,

λ < 0, RREwith one linearly independent eigen vector

κ1 = κ2 = κ and Distinct Real Eigenvalues (DRE)

TABLE 3. List of experimental parameters.

with negative eigen values λ1,2 < 0. The simulation/

experimental time data was substituted in these solu-

tions and their derivatives to obtain q̂(t) and ˆ̇q(t)

referred to in equation (5) respectively. A matlab fmin-

con function was used to find the optimal parameter

values λ and κ to minimize cost C (j) for each template

solution. The template with the least cost function is the

best fit template.

3) Each phase portrait represents a range of possible phys-

ical solutions that follow the same behaviour. Depend-

ing on the physical system, the human user can then

choose a component such as a magnet, a spring, or an

elastic band/tension belt.

4) The magnitude of the physical parameter is optimized

to minimize the cost function given by (6). This ensures

that the Physical adaptation reduces the control input

while it does not have an adverse effect on the per-

formance of other DoF. e.g. Translational position and

velocity errors should be minimized.

5) The phase portrait of the system after physical adapta-

tion was compared to the original portrait from step 1 to

ensure they both fall under the same category in table 1.

IV. SIMULATION

The simulation of modeling and control of inverted pendulum

has been developed using MATLAB-R2016a (ODE45 func-

tion). A Linear Quadratic Regulator (LQR) controller was

used for simulations. Table 3 gives the parameters of the

inverted pendulum set-up used for experiments.

After Linearization, the system matrices are computed as;

A =









0 1 0 0

0 −0.1739 2.1326 −0.2899

0 0 0 1

0 −0.3106 21.3261 −0.5176









B =









0

0.5797

0

1.0352









C =

(

1 0 0 0

0 0 1 0

)

,D =

(

0

0

)

. (11)

where state matrix A and input matrix B are as defined

in section II. C and D are the output and feedforward

matrices respectively such that output vector y = Cx+ Du.

Using the control law u = −Kx and with the choice

of LQR weighting parameters Q = diag
(

1 1 1 1
)

and

R = 1, the computed LQR gain vector is K =
(

−3.1623 −6.5988 66.4903 14.8010
)

. The simulation was
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FIGURE 2. (a) Phase portraits of simulated controller at an initial angle of
0.2 radians. The dotted lines demonstrate how five stable model
solutions fit to simulation data. CCE, RRE and DRE denote complex
conjugate eigenvalues, repeated real eigenvalues and distinct real
eigenvalues respectively. The blue dotted line shows the best fit model to
this data; Complex Conjugate Eigenvalue (CCE) with nonzero real part.
(b) Compares the velocity trajectory of the simulated data (solid black
line) against the velocity trajectories of the model solutions.
(c) Demonstrates the phase portrait of the system after physical
adaptation. The closest template is the same as that of the original
system; CCE with nonzero real part. (d) Compares phase portraits of the
controller in its original form, stiffness k = 0 with the evolved system at
six different stiffness values.

TABLE 4. Cost C of fitting simulation phase portraits.

started at an small initial angle deviation; xinitial =
(

0 0 0.2 0
)

⊺
.

Fig. 2(a) shows the phase portrait of the simulated pen-

dulum joint in solid black line (Methodology: Step-1). The

dotted curves are the phase portraits obtained by substitut-

ing simulation time data t = [0, 2000] in equation (10)

for different eigenvalue solutions as per table 1. Sampling

interval of T = 0.002s was used. A Matlab fmincon function

was used to minimize the cost function given in (5) for

finding the best phase portrait match between the simulated

data and model solutions in table 1 (Methodology: Step-2).

Table 4 includes the cost values associated with each solution.

The CCE solution with nonzero real parts (spiral portrait) has

the least cost and is therefore the best match. Fig. 2(b) shows

how different solutions in table 1 compare with the angular

velocity trajectory of the simulated system. The velocity

profile has been shown to offer clarity. It can be seen that

the model with Complex Conjugate Eigenvalues (CCE) with

non-zero real part is the best fit.

This solution describes a damped harmonic motion, sug-

gesting that a visco-elastic component is a good candidate as

a new physical component at the pivot joint (Methodology:

Step-3). For the specific case of the pendulum, we chose to

add a simulated spring.

A spring with a small spring constant was initially intro-

duced to the system and the cost J associated with this stiff-

ness was obtained using (6). The stiffness value was increased

in steps while computing cost J for each stiffness value

(Methodology: Step-4). Fig. 3 shows the effect of adding

a spring at the pendulum joint and how control effort and

cost J vary with stiffness. The control effort, Root Mean

Square (RMS) of input force, decreases with the addition of

physical adaptation. However, this does not imply an infinite

stiffness maximizes the system’s performance as the effect of

the physical adaptation on other DoF should not be ignored.

Computing cost J given by (6) ensures that besides the control

input effort, the performance of other DoF and settling time

is also taken into account. An optimal range of solutions

for the spring stiffness can be found by comparing cost J

as pendulum pivot joint stiffness is varied. In the case of

the inverted pendulum, cost J starts to decrease as stiffness

is introduced at the pendulum joint. however, a very high

stiffness increases the state vector errors e(x) in (6) causing

cost J to increase after a threshold.

Fig. 2(d) compares the original controller to several itera-

tions of adapting the magnitude of physical parameter (spring

constant adaptations). It is important to choose the magni-

tude of the new component parameters such that the macro-

dynamics of the system do not change. I.e. the phase portrait

should stay within the same category of solutions in table 1.

A very high spring stiffness, k = 18N/m, changes the shape

of the phase portrait. Fig. 2(c) is the phase portrait of the sys-

tem after physical adaptation with spring stiffness k = 9N/m

(solid black line). The dotted curves are the phase portraits

of different templates (stable cases) from table 1. The blue

dotted curve corresponds to the CCE solution with nonzero

real parts. Table 4 confirms that this solution is the best fit to

the simulated model after physical adaptation with the least

value of cost C . Therefore, the requirement for the system

to follow the same phase portrait prior and after physical

adaptations is satisfied (Methodology: Step-5).

V. EXPERIMENT

Maxon EC60 brushless motor (part number 167132) was

used with Maxon epos 50/5 controller to drive the belt

which moved the base of the inverted pendulum back and

forth to balance the pendulum. A T2.5 pulley with diameter

of 23.87 mm was used to connect a 6mm belt and the servo

motor shaft. The pendulum was fabricated using a hollow

cardboard cylinder(1.1 m long with diameter of 0.024 m)

mounted on the motor shaft. A Maxon EC-i52 brushless

motor (part number: 574741) was used with Maxon epos

70/10 controller to simulate the behaviour of any suggested

physical adaptations. Both motors had Maxon HEDL5540

joint encoders with resolution of 500 counts per turn (CPT).
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FIGURE 3. (a) The Input force (top), angle error (middle), and position error(bottom) decreases as a spring is introduced to the system at the
pendulum joint. After a stiffness threshold, the state errors start to increase (only angle and position errors shown as representatives). (b) Shows
a comparison of cost J given in equation (6) between stiffness variations. The cost decreases as a spring is introduced to the system at the
pendulum joint. After a stiffness threshold, the state errors start to increase. (c) Shows the numerical controller’s effort, root mean square of input
force, tends to decrease as stiffness is increased. Despite the reduction in the input effort, a more stiff joint is not favourable as cost J increases
after a threshold. The simulation is repeated for different spring constants k = 0, 3, 6, 9, 12, 15, 18 N/m.

A. SCENARIO 1: REGULATOR TYPE CONTROLLER WITH

LINEAR QUADRATIC OPTIMAL FEEDBACK GAINS

We used a state feedback regulator with feedback gains

K =
(

−10 −30 100 25
)

to balance the pendulum. The

experimental gains were tuned around the optimal gain sug-

gested by LQR simulation. These gains were higher than

those of the simulation due to the higher friction in the

system, the nonlinearities and disturbances. Initially, the pen-

dulum was balanced at the upright position and a current

disturbance was applied for 200milliseconds. Four different

current disturbances (I = 1.0, 1.5, 2.0 and 2.5 A equivalent

to 5.68, 8.51, 11.35 and 14.15 N respectively) were applied

to the cart to initiate the experiment. An ‘‘fmincon’’ Matlab

function was used to find the best fit between experimental

data and model solutions in table 1. An impedance controller

was used to simulate the stiffness [32] of the suggested phys-

ical solution. The P gain relates to the stiffness and the D

gain relates to damping. It can be noticed that when P = 0

and D = 0, the joint behaves as a pure revolute joint and

the numerical controller is fully responsible for balancing the

pendulum.

The experiment was repeated for six values of P gain

(stiffness-0 = 0, stiffness-1 = 5, stiffness-2 = 10, stiffness-

3 = 20, stiffness-4 = 30, stiffness-5 = 50) at the pendulum

joint. A small D gain of 2 Ns/rad was used. Each experiment

was repeated for 20 trials.

B. SCENARIO 2: A WEAK REGULATOR TYPE CONTROLLER

This scenario was tested to demonstrate that the method can

identify the intention of the controller even when the phase

portrait provides sub-optimal steady state behavior. In this

scenario, the controller is only capable of balancing the pen-

dulum for very small disturbances I ≈ 0.8 A and therefore

the system is not capable of reaching the control goal for

larger disturbances. A state feedback regulator with feedback

gains K =
(

0 0 100 25
)

was used to balance the pendu-

lum. Similar to the first experiment, pendulum was balanced

at the upright position. Four different current disturbances

(I = 0.8, 1.1, 1.4 and 1.7 A equivalent to 4.54, 6.25, 7.95

and 9.66 N respectively) were applied to the cart to initiate

the experiment.

A small current pulse of I = 0.8 A was applies to the

pendulum cart for a duration of 200ms. The proposedmethod

in section II-B was carried out. The phase portrait of the

pendulum joint state trajectories was obtained and a best fit

to the models in table 1 was computed. Any larger distur-

bance would not bring the pendulum to the upright equi-

librium position within the available range of cart position

x ∈ [−0.35, 0.35]m. The phase portrait match was the

same as the one in scenario 1; CCE model with nonzero

real parts. Therefore, we used an impedance controller at

pendulum joint. The experiment was carried out for five

different values of P gain (stiffness-0 = 0, stiffness-1 = 200,

stiffness-2 = 300, stiffness-3 = 350, stiffness-4 = 400) at the

pendulum joint. A small D gain of 10 Ns/rad was used. Each

experiment was repeated for 20 trials.

VI. RESULTS

A. SCENARIO 1

Fig. 4 shows phase portraits of the original system and the

portrait of the system after physical adaptation. Fig. 4(a)

demonstrates the phase portrait of one representative trial of

the original system (top), with no stiffness at pendulum joint

in solid black line (Methodology: Step-1). The dotted lines

are phase portraits of model solutions as referred to in table 1.

We set the maximum velocity reached after the initial current

disturbance as the starting point for the pattern match. The

experimental time data was substituted in equation (10) for

each of the five stable solutions described in section III

(Methodology: Step-2). Table 6 includes the cost values C (j),

computed using (5), associated to each solution. The best fit

model with the least cost is CCE with nonzero real parts.

This solution is in agreement with simulation and suggests

an addition of a component that would follow a visco-elastic

force field (Methodology: Step-3). In this case, a mechan-

ical impedance at the pivot joint best suits this particular
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FIGURE 4. (a) The phase portrait for one representative experimental trial with initial current disturbance of I = 2.0A under LQR control. The solid
black curve represents the experimental data from the original system, prior to physical system adaptation(top) and the phase portrait of the
system after physical adaptation, at optimal stiffness(bottom). The dotted lines demonstrate how five stable model solutions fit to experimental
data. CCE, RRE and DRE denote complex conjugate eigenvalues, repeated real eigenvalues and distinct real eigenvalues respectively. The blue
dotted line shows the best fit model to this data; Complex Conjugate Eigenvalue (CCE) with nonzero real part. The phase portrait of the system
after physical adaptation follows the same template solution as the original system. (b) Average phase portraits (over 20 trials) for the original
system and after physical adaptations for different stiffness levels. The chosen ranges are k = 0, 5, 10, 20, 30, 50 N/rad . Each plot corresponds to
a particular initial disturbance given at balance. The chosen current disturbances are I = 1.0, 1.5, 2.0, 2.5 A (equivalent to 5.68, 8.51, 11.35 and
14.15 N respectively). Each disturbance was applied for 200 ms. In the case of I = 2.5A the original system could not balance the pendulum.

dynamic solution. Therefore, we used a back-drivable motor

at the pendulum joint to simulate a spring.

A small stiffness was initially applied at the pendulum

joint and the control cost associated with this stiffness was

obtained using equation (6). The stiffness value was increased

gradually while computing cost J (Methodology: Step-4).

The phase portraits in fig. 4(b) were obtained from the aver-

age angle deviation and average velocities over 20 trials

for each category of stiffness and for four different initial

current disturbances. A comparison of average (over 20 trials)

input force by the state feedback controller at each particular

stiffness and the corresponding behavior of average angle

and position deviation is presented in fig. 5(a). In this figure,

only the case of I = 2.0 A has been shown as a repre-

sentative. 5(b) demonstrates the optimal cost obtained from

equation (6).

Similar to simulation results, Cost J decreases with

the addition of physical solution up to a threshold and

therefore, an optimal stiffness range for this system is

about 10 − 20 N/rad . As discussed in section II-C, there

is no necessity to be limited to one single optimal stiffness

value but a range of possible stiffness values are available

as long as they decrease cost J and controller input u. The

user can choose one value depending on the design require-

ments. Fig. 4(c) shows the evolution of RMS values of input

force as stiffness is increased. Table 5 includes the average

(over 20 trials) values of cost J and average RMS values of

control input for each stiffness and current disturbance.

Fig. 4(a) shows the portraits after physical adapta-

tion (bottom). This figure along with table 6 show that the

inverted pendulum system after physical adaptation follows

the same form of solution as the original system with no

added stiffness (Methodology: Step-5).

B. SCENARIO 2

Fig. 6(a) demonstrates the phase portraits for one represen-

tative experimental trial under the weak feedback controller.

Steps 1-5 of the method were followed similar to scenario-1.

In summary, Step-1 was to obtain the phase portrait at the

pendulum joint as shown in the top fig. 6(a).

Step-2 was fitting the experimental data (angle and angular

velocity) to the stable solutions in table 1 using equation (10)

while minimizing costC (j) given in (5). This is shown in fig. 6

and table 7.

For Step-3, we adopt the same solution as scenario-1;

simulated spring using a back-drivable motor. Step-4 found

an optimum range for the magnitude of physical parameters

by minimizing cost J given in equation (6); fig. 4.

Step-5 ensured the inverted pendulum system after physi-

cal adaptation follows the same phase portrait model as the

original system; fig. 6(a):bottom. Phase portraits in fig. 6(b)

were obtained from the average angle deviation and average
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FIGURE 5. (a) Average force, average angle and average position behaviour of the inverted pendulum, over 20 trials, with stiffness variations for
the case of current disturbance I = 2.0 A. The state errors initially decrease as stiffness is increased and starts to increase after a stiffness
threshold. Only angle and position errors are shown as representatives. The experiment was repeated for different P gains
k = 0, 5, 10, 20, 30, 50 N/rad . (b) Average cost J given in (6) over 20 trials for each stiffness and across 4 different initial current disturbance.
Initially cost J decreases however, after a threshold the cost value starts to increases. (c) Numerical controller’s effort, root mean square of input
force, averaged over 20 trials for each stiffness and initial current disturbance. The numerical controller’s effort tends to decrease as stiffness is
increased. Despite the reduction in the input effort, a more stiff joint is not favourable as cost J increases after a threshold.This experiment was
repeated for current disturbances of I = 1.0, 1.5, 2.0, 2.5 A.

TABLE 5. Scenario 1- cost J and rms value of control input for each spring stiffness.

TABLE 6. Cost C of fitting scenario-1 phase portraits.

angular velocities of all the trials for each category of stiffness

and initial current pulse. The stiffness (P gain) values in

the case of the weaker controller in this section are much

higher than the values in scenario1 and the phase portraits

do not necessarily follow the exact shape as the portrait of

the original system. This is due to the high stiffness. In this

scenario, the role of the physical system in achieving stability

is more dominant than the numerical controller in presence

of high disturbances. Therefore the phase portrait is more

similar to the case of k = 18N/m in simulations shown

in fig. 2(b).

A comparison of average input torque by the state feedback

controller at each particular stiffness and the corresponding

behavior of average angle deviation and average position

error is presented for the case of I = 1.4A in fig. 7(a).

Cost J computed as in equation (6) decreases with the addi-

tion of an optimal physical adaptation (stiffness-3) while the

pendulum is balanced within the available translational posi-

tion range. Fig.7(b) shows a comparison of cost J computed

from equation (6) at different current disturbances for a range

of stiffness. Stiffness-3 (k = 350) is one optimal candidate in

presence of the chosen disturbance range for this experiment

however it is not the optimal value for current disturbances

lower than I = 0.8 A.

Fig. 7(c) shows the evolution of average RMS values of

input force as stiffness is increased. It is noteworthy that the

controller could not balance the pendulum within the avail-

able translational distance for the cart movement for initial

current disturbances higher than 1.1A. The physical adapta-

tion enables the inverted pendulum system to reach stability

at high disturbances. In the case of experiment in scenario 2,

we set a requirement for the system to operate in an environ-

ment with higher disturbance ranges. I.e. I = 1.1, 1.4, 1.8 A

therefore, we choose the physical adaptation accordingly.

This implies that the phase portrait gives the format of

physical adaptation and the optimal solution should be cho-

sen based on the environmental factors, such as the user

defined cost function and the statistics of environment.
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FIGURE 6. (a) The phase portrait for one representative experimental trial of the system with weak controller. The solid black curve represents
the experimental data from the original system, with small initial current disturbance (top) and the phase portrait of the system after physical
adaptation, at optimal stiffness(bottom) under larger current disturbance. The dotted lines demonstrate how five stable model solutions fit to
experimental data. CCE, RRE and DRE denote complex conjugate eigenvalues, repeated real eigenvalues and distinct real eigenvalues
respectively. The blue dotted line shows the best fit model to this data; Complex Conjugate Eigenvalue (CCE) with nonzero real part. The phase
portrait of the system after physical adaptation follows the same template solution as the original system. (b) Average phase portraits (over
20 trials) for the original system and after physical adaptations for different stiffness values. The chosen stiffness values are
k = 0, 100, 200, 300, 350 N/rad . Each plot corresponds to a particular initial disturbance given at balance. The chosen current disturbances are
I = 0.8, 1.1, 1.4, 1.7 A (equivalent to 4.54, 6.25, 7.95 and 9.66 N respectively). Each disturbance was applied for 200 ms. The original system
with no stiffness could only balance the pendulum at I = 0.8A. Implementing physical adaptation allows the system to reach stability at higher
current disturbances. The pendulum can stabilize at higher angle deviations compared to the original system.

TABLE 7. Cost C of fitting scenario-2 phase portraits.

Table 8 includes the average(over 20 trials) values of cost J

and average RMS values of input force for each stiffness and

current disturbance range.

VII. DISCUSSION

This paper gives an analytic insight and experimental evi-

dence for a new method whereby local physical adaptations

are suggested in order to reduce the input effort required from

a feedback controller to achieve a given task. We propose

using the statistical average phase portrait at a single DoF and

compare the pattern obtained from simulation/experimental

data to a set of model solutions to find the phase por-

trait which best matches and describes the dynamics at the

chosen DoF.

The phase portrait is a reflection of both the control objec-

tive and the state trajectories of the chosen DoF/joint in

a specific environment. In other words, the shape of the

phase portrait gives us an indication of the behavior of the

chosen DoF in order to achieve the global control goal of

the embodied robotic system. In this approach, the physical

adaptations are derived based on existing physical resources.

In the inverted pendulum case considered in this paper,

the physical adaptation was a visco-elastic force field on the

pendulum angle. In a generic case, this can be any physical

solution depending on the phase portrait of states of the

relevant DoF and the physical resources available at the DoF

concerned. For instance, there can be other physical solutions

like a electromagnetic solution for a simple harmonic motion

like in a fin of a fish, or a dominant spring solution like in a

frog or a cricket who would often store and release energy.

We used numerical simulations and hardware experiments

to show that this physical adaptation leads to a reduction

in a user defined cost function based on the input effort by

the external control algorithm and external disturbances on

the system from the environment. These findings based on a

mechanical system agree with recent findings on biological

systems. Studies on disturbance rejection during locomotion

show how the mechanical impedance at the muscular level

can relieve the feedback controller from micromanaging the

trajectory of each joint [9], [18].

The extent of adaptation and evolution of controller and

morphology design are more far-reaching and not limited

to locomotion. Reducing the cost of information process-

ing [8], [35]–[37] and decreasing the response time of a

controller’s action [9], [10], [38] are other advantages of
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FIGURE 7. (a) Average (over 20 trials) force, angle and position behaviour of the inverted pendulum with stiffness variations for the case of
current disturbance I = 1.4 A. The state errors initially decrease as stiffness is increased however error starts to increase after a stiffness
threshold. The experiment was repeated for different P gains k = 0, 100, 200, 300, 350 N/rad . (b)Average cost J given in (6) over 20 trials for each
stiffness and each initial current disturbance. Initially the cost J decreases, after a threshold the cost value starts to increases. (c) Numerical
controller’s effort, root mean square of input force, averaged over 20 trials for each stiffness and across 4 different initial current disturbance. The
numerical controller’s effort tends to decrease as stiffness is increased. Despite the reduction in the input effort, a more stiff joint is not
favourable as cost J increases after a threshold. This test was repeated for current disturbances (I = 0.8, 1.1, 1.4, 1.7 A).

TABLE 8. Scenario 2- cost J and rms value of control input for each
spring stiffness.

an embodied view to control. The proposed method can be

extended to autonomous robots in challenging environments

after introducing several more layers of data processing.

We envisage that a challenging environment will lead to

diverse autonomous control actions that could be clustered

using a set of user defined performance criteria. Then, statis-

tics of phase portraits in each of these clusters can be used to

generate physical adaptations suitable for each environmental

context. These physical solutions may provide a useful basis

for the next generation hardware iteration. However, develop-

ing such a comprehensive methodology is beyond the scope

of this paper.

This paper focused on a methodical approach to identify

possible physical adaptations. In order to analyze the con-

tribution of a physical adaptation in isolation, the controller

remained unchanged through out the experiments in each

scenario. The future research directions will involve a method

for co-adaptation of the controller and the physical system

as a duo and further development of the analytical basis for

autonomous hardware evolution of robotic systems based on

distributed sensor feedback of state variations under a given

control policy to survive in a given set of environments.

VIII. CONCLUSIONS

In this paper, we present a method to use the phase portrait of

states rendered by an external controller at a given degree of

freedom (DoF) to innovate a physical adaptation that gradu-

ally reduces the burden on the external control algorithm.

Experiments were conducted for 2 scenarios. In the first

scenario, a regulator type controller with optimum linear

quadratic solutions of feedback gains was used to balance

the pendulum. Implementing the suggested physical adap-

tation at the pendulum joint helps reduce the control input

effort without interrupting the performance of neither the

controller nor the other joints. As seen in table 5, an average

cost reduction of up to 32.81%, 27.13% and 29.31% was

achieved for initial current disturbance of 1.0, 1.5 and 2.0A

respectively. The corresponding average RMS value of the

input force for the aforementioned currents was reduced upto

28.52%, 30.52% and 15.58%. In the case of the weaker

controller in scenario 2, the pendulum could not reach the

upright unstable position. We used the shape of phase por-

traits of rotational DoF to have an insight into the intention

of the control objective. The physical adaptation helped the

controller achieve stability. This amounts to a gradual phasing

out of a closed loop controller with a supportive layer added

by the physical adaptation which is informed by the interplay

of the closed loop controller, the dynamical system and its

environment.
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