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Abstract: A dichroic dye-doped liquid crystal Fresnel lens was fabricated and investigated to
observe the combination of phase and amplitude modulation based focusing. An anthraquinone
dichroic dye was doped into a liquid crystal host, which when in the Fresnel lens con�guration,
generates a Fresnel zone plate with alternating �transparent� and �opaque� zones. The zones
were induced by using photo-alignment of a light-sensitive alignment layer to generate the
alternating pattern. The voltage dependency of e�ciency for the dye-doped and pure liquid
crystal Fresnel devices were investigated. Incorporation of dyes into the device yielded a
signi�cant 4% improvement in relative e�ciency in the lens, giving a maximum of 37% achieved
in the device, much closer to the theoretical 41% limit when compared with the non-dye-doped
device. The input polarization dependence of e�ciency was also investigated, showing very
small �uctuations (� 1.5%), allowing further insight into the e�ect of fabrication method on these
liquid crystal Fresnel devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further

distribution of this work must maintain attribution to the author(s) and the published article's title, journal

citation, and DOI.

1. Introduction

The electro-optical properties of liquid crystals [1] (LC) make them incredibly e�cient and
versatile light manipulators, so that they are ubiquitous in display and non-display technologies.
The ease of refractive index modulation, through the application of electric �elds (E-�eld) or
external light stimuli, makes them ideal for use in Fresnel technology. The lack of moving parts in
LC devices is a clear advantage allowing for simple and direct control of light. Switchable Fresnel
lenses are utilised in optical communications, display systems, optical information processing,
imaging, and projection. LC Fresnel lens technology has been previously demonstrated through
a multitude of methods including; electrode patterning [2� 8], polymer-stabilisation [9� 14],
polymer-relief structures [15� 17], polymer-dispersed LCs [18,19], light induced phase e�ects of
azo-doped LCs [20,21], alignment microrubbing [22], UV modi�cation of alignment anchoring
strength [23,24], photo-alignment through azo-dopant alignment layer absorption [25� 27], and
direct substrate photo-alignment [28� 33].

The LC Fresnel lens reported here was fabricated using direct substrate photo-alignment [34].
Alternating zones of orthogonal director alignment were created on one surface, which generated
the Fresnel pattern, with the other surface treated for homeotropic alignment, Fig.1(a). This
device geometry creates an alternating hybrid aligned nematic (HAN) director �eld inside the
device. Previous dye-doped LC Fresnel lens devices have focused on the use of doped dyes
either to generate alternating alignment directions [25� 27] or to photo-induce zone speci�c phase
transitions [20,21], and have not investigated their potential impact on e�ciency. Use of the
dichroic dyes in the LC will generate alternating �opaque� and �transparent� zones which is in

#373436 https://doi.org/10.1364/OE.27.026799
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e�ect a Fresnel zone plate. Fresnel zone plates focus light via amplitude modulation (similar
to a standard di�raction grating). However, when considering a dye doped LC Fresnel lens the
amplitude modulation focusing will combine with the phase focusing e�ects of the birefringent
material. This report investigates the direct e�ect of an anthraquinone dichroic dye [35] amplitude
modulation based focusing on the e�ciency of a switchable dye-doped guest-host LC Fresnel
lens.

Fig. 1. (a) Schematic of the HAN director �eld inside the photo-patterned LC Fresnel lens.
(b) The photo-patterning process used to generate the Fresnel director pattern in the LC
device.

Anthraquinone dichroic dyes have a transition moment approximately parallel to the molecular
long axis, which results in a polarization angle dependent absorption. When doped into a LC
(host) the dichroic dye (guest) will be oriented by the bulk LC director [36], with the dye long-axis
parallel to the director. Therefore, when a LC Fresnel device con�guration is considered, a Fresnel
zone plate with alternating strongly absorbing and weakly absorbing zones is generated. Fresnel
zone plates have a maximum theoretical relative e�ciency (ratio of the focused spot intensity to
the total transmitted intensity, used commonly in LC Fresnel characterization [4, 10, 16, 19, 20,
23, 25, 30 & 33]) of� 21% (� 10.5% absolute e�ciency). The light transmitted through this LC
Fresnel device will therefore undergo amplitude modulation based focusing due to the alternating
absorption caused by the dichroic dye guest-host e�ect, determined by components of the parallel
and perpendicular absorption coe�cients,aj j anda? . Under application of a su�ciently large
E-�eld (the threshold voltage of the device must be exceeded) the director will re-orient and
approach the homeotropic (HT) alignment state. This will remove the contrast between zones
and the dye absorption will become constant across the device, removing the amplitude-focusing
e�ect. The LC Fresnel device will also focus light due to the inherent birefringence of the LC
that causes a phase-shift between alternate zones,� =2� � nd/� , where� n is the birefringence, d
is the cell gap, and� the wavelength. The peak in e�ciency due to the phase e�ect occurs when
� =� (maximum theoretical e�ciency� 41%). The refractive index di�erence between zones
can also be controlled via E-�eld application, and eventually reduced to zero when the device
approaches the HT state.

In this report we investigate the coupling of the phase and amplitude modulation focusing
e�ects on the e�ciency of this switchable dye-doped LC Fresnel lens.
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2. Materials and methods

The LC Fresnel lens described here was fabricated using a masked photo-alignment technique.

The photomask was designed with rings of radii;Rn =
q

n�
�
f + n�

4

�
, where� =532 nm, n is

the ring number (156 total rings, Rmax=5 mm), and f the focal point is 0.3 m. A polyamic acid-
containing azobenzene in the backbone structure (Azo-PAA, obtained from JNC Petrochemical
Co.) [34] was spin coated onto indium tin oxide (ITO) glass before being treated with a 3-step
patterning technique, depicted in Fig.1(b). Initial irradiation of the substrate with linearly
polarised light (150 Jcm� 2) gives homogenous planar alignment perpendicular to the irradiation
polarization. The substrate is then irradiated with unpolarised UV light at 45° incidence angle
(220 Jcm� 2), inducing a pre-tilt angle of� 2 °. The pre-tilt is induced due to the a�nity for the
Azo-PAA to orient perpendicular to the UV irradiation polarization. In this case it is unpolarised
and therefore results in a preferred orientation into the irradiation direction, more information
on this alignment technique can be found in [34]. This step is introduced into the fabrication
process to remove defect lines generated by reverse-splay HAN domains which would occur
for 0 ° pre-tilt and cause scattering in the �nal implementation of the device. Finally, a chrome
photomask is placed in contact with the substrate and then irradiated with linear polarised light at
90 ° to the �rst irradiation (720 Jcm� 2). This generates orthogonal alignment in the photomask
transparent zones with a 0° pre-tilt angle. The substrate is then baked at 250°C for 2 hours to �x
the alignment. To create the bottom HT aligned substrate, a side-chain-containing AZO-PAA
[37] was spin coated onto ITO glass and then baked. The device was then assembled using 50
µm spacer �lm, chosen to give optimal contrast between orthogonal dye doped zones, calculated
from 15NB3 guest-host absorption coe�cients and the Beer-Lambert law (a•• =0.11%� 1µm� 1

and a? =0.0087%� 1µm� 1).
The LC host chosen for this study was MLC-7023 (� n= 0.0609 and� � =7.9) obtained from

Merck Chemicals Ltd.. This LC was doped, close to the solubility limit, with 0.50%(w/w)
15NB3 anthraquinone dye (� max=540 nm) synthesized at the University of York [38]. Both pure
and dye doped devices were fabricated for direct comparison.

3. Results and discussion

The e�ective birefringence (� ne� ) for each sample was measured in the HAN device (� =589 nm)
con�guration with varying voltage from 0 to 20 Vrms (Fig. 2(a)). For MLC-7023,� ne� varies
from 0.034! 0.001, whilst 15NB3-doped MLC-7023 has a slightly lower birefringence, varying
from 0.031! 0.001, due to the di�erence in composition. The measurements of birefringence
allow the phase shift in the device to be calculated, allowing a direct comparison of e�ciency
measurements between samples. The absorption of green laser light (� =543.5 nm) polarised
parallel and perpendicular to the bulk director (A•• and A? ) was characterized as a function
of voltage through use of a photodiode, Fig.2(b). At 0 Vrms A•• =(0.95� 0.02) OD, much
larger compared to A? =(0.372� 0.005) OD. Upon increasing voltage, the contrast in absorption,
� A = A•• -A? , decreases as each zone approaches the HT state, going from� A=(0.57� 0.02)
OD to � A=(0.029� 0.001) OD. Thus, a continuous reduction in amplitude modulation focusing
is generated in the dye doped LC Fresnel lens device.

Polarizing optical microscopy (POM) was used to image the LC Fresnel lens, as shown in
Figs.2(c) and 2(d). Excellent alignment in each device is observed. Figure2(c) is the MLC-7023
sample viewed between crossed polarisers, with a� -plate allowing the orthogonal alignment
to be observed. Figure2(d) shows the dye doped sample viewed with a single input polariser,
clearly demonstrating the alternating zone absorption e�ects that are under investigation here.
The colour intensity alternates between zones due to orthogonal director alignment.

The focusing e�ciency of the device was measured as a function of voltage (0 - 20 Vrms,
frequency= 10 kHz) using an expanded green laser (� =543.5 nm, flens=0.29 m). The relative
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Fig. 2. (a) The birefringence as a function of voltage is shown for MLC-7023 and 15NB3
doped MLC-7023. (b) The absorption of 15NB3 doped MLC-7023 as a function of voltage
for parallel and perpendicular light polarisations. (c) POM image showing the LC Fresnel
devices MLC-7023 between crossed polarisers with a� -plate (director(s) at� 45°). Example
device in bulk shown between crossed polarisers. (d) POM image showing the central and
radial regions of the LC Fresnel device 15NB3 doped MLC-7023 with a single polariser
(director(s) at 0/90 °). All data can be found athttps://doi.org/10.5518/588.

e�ciency ( � ) is de�ned as the ratio of the focused spot intensity (I) (measured using a 200µm
pinhole situated at the focal point) to the total intensity transmitted through the device (I0), � =I/I0.
This de�nition of di�raction e�ciency is commonly used in measuring Fresnel e�ciency [4, 10,
16, 19, 20, 23, 25, 30, & 33] and ignores optical re�ections or absorption. The absolute e�ciency
measured in the device will also be demonstrated. The device will exhibit losses with respect to
the initial intensity due to dye absorption, and therefore lower absolute e�ciency maxima as
observed in other amplitude based focusing systems.

To account for the di�erence in the birefringence of the mixtures (Fig.2(a)), as well as the
small cell gap di�erences between the devices (50.3 and 50.5µm), the applied voltage was
converted to the equivalent phase shift,� /� =2� nd/� , to allow a clear comparison between
measurements. The maximum phase focusing e�ciency component will theoretically occur
when� =� (� /� =1), with � continuously decreasing with increasing voltage. It is noted that
the small (� 3%) wavelength dispersion and temperature dependence of the LC birefringence
will impact the calculated phase shift, and therefore the peak in e�ciency vary slightly from
� /� =1; nonetheless this calculation gives a facile comparison of devices. The amplitude-focusing
e�ciency component will theoretically start at a maximum at 0 Vrms, corresponding to maximum
dye contrast, and will then decrease continuously with increasing voltage.

Figure3(a) shows how the relative e�ciency varies with� /� for the MLC-7023 and 15NB3
doped MLC-7023 devices (this parameter varies as the applied voltage increases). The dye doped
sample provides a 4% increase in e�ciency in the phase-focusing states, which correspond to the
peaks in e�ciency. Away from the phase-focusing states,� , n� , a 3.5% improvement is also
observed. The improvements to e�ciency are a result of the addition of the amplitude-focusing
e�ects, which are independent of the phase shift. Table1 demonstrates how these values for
e�ciency compare with previous literature. Whilst the pure LC Fresnel lens demonstrated here
is slightly lower than similar devices (likely due to device imperfections e.g. scattering from zone
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boundaries), the dye doped device shows a clear improvement, moving the device towards the
top end of currently achieved e�ciencies. When comparing devices this close to the maximum
theoretical e�ciency an improvement of� 4% can provide quite an advantage over other devices.
The measured e�ciency is lower at low voltages due to the scattering at the zone boundaries
where the director �eld is less ordered at these lower voltages. Figure3(b) demonstrates the
di�erence between the absolute and relative e�ciencies of the dye doped Fresnel device. The
absorption caused by the dichroic dye in the system results in a lower overall transmission through
the device and therefore a lower absolute e�ciency.

�û �Ä �Ä

�-�• �Œ�Œ �- �Œ

�û

�- �Œ

Fig. 3. (a) The relative e�ciency as a function of phase shift for MLC-7023 and 15NB3 doped
MLC-7023 Fresnel devices. (b) Comparison of absolute and relative e�ciency for 15NB3
doped MLC-7023 Fresnel device. (c) The polarization angle dependence of the relative
e�ciency for each device. 0° corresponds to alignment of the polarization with the �pre-tilted�
zone director. Fit parameters can be found in the datasethttps://doi.org/10.5518/588.

Table 1. Comparison of orthogonal HAN LC Fresnel lens ef�ciencies.

Maximum e�ciency (%) Reference/Comment

37 This work: (15NB3 doped MLC-7023)

33 This work: (MLC-7023)

34.14 [25] � Orthogonal HAN zones via methyl-red absorption onto surface.

38.5 [28] � Orthogonal HAN zones via masked photo-alignment.

35 [31] � Orthogonal HAN zones via masked photo-alignment.

35 [32] � Orthogonal HAN zones via masked photo-alignment.

34 [33] � Orthogonal HAN zones via photolithography & rubbing.

The polarization angle dependency of this device was thoroughly investigated via e�ciency
measurements at 0 Vrms (� , � ) and 3.7 Vrms (� =� ) (Fig. 3(c)). Note that 0° polarisation angle
corresponds to the alignment of the polarisation of light with the pre-tilted director. Typically, a
Fresnel device with orthogonal alignment zones would have polarization independence, however
here a small variation in the e�ciency of each device with respect to input polarization angle is
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measured (maximum� 1.5%). This is a direct result of the alignment layer pre-tilt angle (� 2 °)
that occurs only in the even zones. The polarization dependence of each device is 90° out of
phase with respect to the other, the result of the di�erent types of focal e�ects (phase or amplitude
modulation), each of which is considered here in turn.

In the case of the pure MLC-7023 device at 0 Vrms the device is not in the� =n� condition, and
increases in voltage (decrease in phase-shift/birefringence) increases the e�ciency towards the
maximum. When the input polarization is at 0° the birefringence between zones is� n= ne,� -no,
where ne,� is the pre-tilted extraordinary refractive index and no is the ordinary refractive index.
At 90 ° the birefringence between zones is simply� n= ne-no, where ne is the extraordinary
refractive index. This means that on rotating the input polarisation from 0 to 90°, a small
increase in birefringence is observed, moving the device further away from the phase-focusing
peak, e�ectively reducing the e�ciency. This can be observed in Fig.3(c) where the MLC-7023
device e�ciency without an applied voltage starts with a maximum value at 0° and decreases
slightly to a minimum at 90°. The same e�ect, although smaller due to the decrease in zone
di�erence under applied voltage, is observed when 3.7 Vrms is applied; the shift in birefringence
again moves away from the peak in e�ciency.

In the case of the 15NB3 doped MLC-7023 device at 0 Vrms we have a large di�erence
between A•• and A? . At 0 ° input polarization angle there is an e�ective contrast between zones
� A = A� -A? , where A� is the absorption parallel to the long axis of the pre-tilted director. When
the input polarization is at 90° there is an e�ective contrast between zones of� A = A•• -A? ,
which is greater than the contrast at 0°. Therefore, on rotation from 0 to 90° we get an increase
in absorption contrast and therefore an increase in the amplitude-focusing e�ect. This can be
observed in Fig.3(c) where the 15NB3 doped MLC-7023 e�ciency starts at a minimum at 0°
and increases towards a maximum at 90°. The same e�ect is observed at 3.7 Vrms, although
with a smaller amplitude, again due to the decrease in zone di�erence under an applied voltage.

4. Conclusion

Development of a dye doped guest-host LC Fresnel lens has been undertaken to investigate the
e�ect of amplitude modulation focusing on the relative e�ciency of the Fresnel device. Inclusion
of an anthraquinone dichroic dye into the LC host generates a clear improvement in the maximum
e�ciency of the device from 33 to 37%. Application of a voltage across the device allows the
e�ciency to be controlled, approaching 0% at voltages� 20 Vrms, o�ering a clear variation from
focusing to non-focusing. The polarization dependence of the device was investigated and shown
to vary due to device pre-tilt, by up to� 1.5% depending on the input polarization angle. This
can be attributed to the di�erence in the pre-tilt alignment of the di�erent zones, and it is noted
that the dependency can be removed if device fabrication ensures identical pre-tilt angle between
zones.
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