
This is a repository copy of Fault-tolerant Transmission of Messages of Differing
Criticalities Across a Shared Communication Media.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/151968/

Version: Accepted Version

Conference or Workshop Item:
Agrawa, Kunal, Baruah, Sanjoy and Burns, Alan orcid.org/0000-0001-5621-8816 (2019)
Fault-tolerant Transmission of Messages of Differing Criticalities Across a Shared
Communication Media. In: Real-Time Networks and Systems, 06-08 Nov 2019.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Fault-tolerant Transmission of Messages of Differing
Criticalities Across a Shared Communication Media

Kunal Agrawal
Washington University in St. Louis

kunal@wustl.edu

Sanjoy Baruah
Washington University in St. Louis

baruah@wustl.edu

Alan Burns
The University of York
alan.burns@york.ac.uk

ABSTRACT

We discuss the motivation behind, and the design and analysis of,

an algorithm for synthesizing communication schedules for shared

media networks in some safety-critical hard-real-time applications

such as autonomous navigation and factory automation. Communi-

cation media may be inherently noisy in many such environments,

and occasional transmission errors hence inevitable. Therefore it

is essential that some degree of fault-tolerance be built into the

communication protocol that is used Ð in some safety-critical appli-

cation domains, fault-tolerance requirements may be mandated by

statutory certification requirements. Since the severity of the conse-

quences of failing to successfully transmit different messages may

be different, we consider a mixed-criticality setting in which the

fault-tolerance requirement specification for messages are depen-

dent on their criticality: more critical messages are required to be

able to tolerate a larger number of faults. We advocate that commu-

nication schedules be łas static as possiblež in safety-critical appli-

cations in order to facilitate verification and validation, and discuss

the synthesis of semi-static schedules ś schedules that are driven

by precomputed lookup tables ś with the desired fault-tolerance

properties for such applications.

KEYWORDS

Fault-tolerantmessage transmission;Mixed criticalities; Static sched-

uling.

ACM Reference Format:

Kunal Agrawal, Sanjoy Baruah, and Alan Burns. 2019. Fault-tolerant Trans-

mission of Messages of Differing Criticalities Across a Shared Communica-

tion Media. In Proceedings of X. ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION

The research described in this document is motivated by some ques-

tions that arose in attempting to provide some fault-tolerance in

a proposed communication protocol designed for IoT application-

s [1]. Consider the following data transmission problem. We have a

communication medium (such as a wireless network, a shared bus,

CAN, etc.) which is shared amongst several communicating entities

(łnodesž) that seek to communicate messages amongst themselves.

Each message is characterized by a source node and a destination

nodes (i.e. point-to-point communication, not broadcast), and takes

the same duration ś a łslotž. We assume that the local clocks in all

the nodes are adequately synchronized such that each node knows

when each slot begins and ends. The set of messages that is to

be transmitted is known beforehand. We wish to pre-compute a

X, 2019,

2019.

static schedule1 denoting whichmessage is to be transmitted during

which slot, and distribute this schedule to all the nodes beforehand.

During run-time, each message will only be transmitted in a slot to

which it has been assigned in this schedule.

Example 1. Suppose that n messages H1,H2, . . . ,Hn are to be

transmitted. We can represent a schedule by a sequence

⟨{H1}, {H2}, . . . , {Hn }⟩,

denoting that the message Hi is to be transmitted during the i’th

slot. We assume that this schedule is precomputed and made known

to all the nodes beforehand, so that the source node for message

Hi transmits the message during the i’th slot and all nodes that

may be the recipient of this message are aware that they should be

listening in to receive the message during this slot. �

Transmission failures. If each transmission is successful, it is

evident that a schedule such as the one in Example 1 above (i) suf-

fices for transmitting all the messages, and (ii) is optimal from the

perspective of schedule duration: assuming that at most one mes-

sage can be transmitted successfully per slot, we cannot generate a

shorter schedule for transmitting all n messages.

Now, let us consider what happens if transmissions may fail. We

assume that a failure of a transmission may arise from two factors:

(1) A collision ś multiple messages (presumably from different

nodes) are transmitted during the slot. All the messages that

are transmitted during the slot are lost when such a collision

occurs.

(2) A transmission error ś this is some (external) fault in the

transmission medium. If such an error occurs during a slot

then even a single (and hence non-colliding) message sent

during the slot will not be successfully received, and must

therefore be retransmitted.

Fault-tolerant scheduling. Collisions are caused by a communi-

cation protocol sending multiple messages during the same time-

slot, and are therefore under the control of the algorithm responsible

for scheduling the transmission of these messages. Transmission

errors, however, are caused by external factors and hence not under

the algorithm’s (or protocol’s) control. It is of course not possible

to make any non-trivial guarantees for timely transmission if trans-

mission errors may occur arbitrarily often; guarantees can only be

given if bounds are placed on the occurrence of transmission errors.

Such bounds are usually expressed as a fault model. In this paper, we

consider fault models of the following form: Given n messages and

a fault-tolerance parameter f ∈ N, we desire to generate a schedule

for the messages that guarantees the successful transmission of

all the messages in the presence of up to f transmission errors.

1See [6, Section 2] for a discussion on the benefits and drawbacks of using static
schedules versus dynamic ones for safety-critical communication.

X, 2019, Kunal Agrawal, Sanjoy Baruah, and Alan Burns

(We emphasize that fault-tolerance requirements are specified with

respect to the number of transmission errors and not the number of

transmission failures: since collisions are a consequence of schedul-

ing policy, transmission failures that are caused by collisions are

not covered by fault-tolerance specifications.)

Example 2. Consider once again the n messages H1,H2, . . . ,Hn

of Example 1; suppose we desire to transmit them successfully in

the presence of a single transmission error (f = 1). A schedule of

duration 2n, obtained by transmitting each message twice, would

be able to tolerate any single error. �

Efficient fault-tolerant scheduling. Example 2 above illustrates

an obvious upper bound on the number of transmissions needed

in order to be able to tolerate up to f errors, for any constant f :

in is evident that a schedule of duration (f + 1) × n, obtained by

transmitting each individual message (f + 1) times, suffices for

tolerating up to f transmission errors. (This is in fact the exact

scheme that was used in [4] to incorporate fault-tolerance in the

Time-Triggered Protocol [3, 5].) The question wewish to investigate

in this paper is ś can we in general do better than this upper bound?

The answer, it turns out, is łyes,ž provided the transmission medium

and method satisfies certain additional conditions. Specifically, we

require that at the end of each slot all the nodes can determine (by

monitoring the communication medium during the slot interval)

whether a successful transmission has occurred during that slot or

not, and not retransmit any successfully-transmitted message. That

is, although our schedule is indeed static as desired in the sense that

the mapping of messages to slots is statically performed prior to run-

time, during run-time each node monitors the transmissions so that

a successfully-transmitted message is not transmitted again even if

it assigned to another slot later on for reasons of fault tolerance.

We illustrate in the following example.

Example 3. Consider an instance with n = 2 and f = 1; i.e., we

have twomessagesH1 andH2 that are to be transmitted in a manner

that is tolerant to one transmission error. The straightforward way

of achieving this would be to transmit each message twice, resulting

in a schedule length of four slots.

Consider now a schedule of length three that is denoted as fol-

lows:

⟨{H1}, {H2}, {H1,H2}⟩.

The interpretation of this schedule for the third slot is that both

messagesH1 andH2 are assigned to this slot. However, let us assume

that a source node transmits a message during a slot to which it

has been assigned in the static schedule if and only if this message

has not already been successfully transmitted prior to that slot. Let

us examine how this schedule would play out during run-time:

• If the first two transmissions are both successful, we are done

(and hence nothing is transmitted during the third slot).

• If the first transmission is unsuccessful but the second trans-

mission succeeds, then only H1 is transmitted during the

third slot. This second transmission of H1 is guaranteed to

be successful under the fault-tolerance assumption that at

most one transmission error may occur, since an error has

already occurred (during the first slot).

Analogously if the first transmission succeeds but the second

one fails, then only H2 is transmitted during the third slot.

This second transmission of H2 is guaranteed to be success-

ful under the fault-tolerance assumption that at most one

transmission error may occur.

• If both the first and the second transmissions fail both will

be transmitted during the third slot and we will have a colli-

sion; hence no message is successfully transmitted. However,

observe that in this scenario the fault-tolerance assumption

that at most one transmission error may occur is violated,

and hence we are not obliged to ensure correct transmission

of either message.

We thus see that in this case we can achieve the desired degree of

fault-tolerance using just three slots, which is strictly fewer than

the n × (f + 1) = 2 × (1 + 1) = 4 of the upper bound stated in

Example 2 above. �

Introducing mixed criticalities. Suppose now that we had mes-

sages of two different criticalities [7], that are required to be fault-

tolerant to different degrees: high-criticality messages must be able

to tolerate a larger number of faults than low-criticality ones. Specif-

ically, suppose that we have nH high-criticality messages that must

be able to tolerate up to fH faults and nL low-criticality messages

that must be able to tolerate up to fL faults (with fH > fL). A naive

fault-tolerant scheduling strategy, which directly generalizes the

idea illustrated in Example 2 above to the mixed-criticality case,

would replicate each high-criticality message (fH + 1) times and

each low-criticality message (fL + 1) times, to yield a schedule of

length equal to
(

(fH + 1) × nH + (fL + 1) × nL

)

slots.

But one can often do better, as illustrated in the following example.

Example 4. Suppose we had one low-criticality message L1 and

one high-criticality message H1 (i.e., nH = nL = 1). Suppose

that the low-criticality message is required to be tolerant to one

transmission error (fL = 1), while the high-criticality message is

required to be tolerant to up to three transmission errors (fH = 3).

The naive strategy would yield a schedule of length
(

(fH + 1) × nH + (fL + 1) × nL

)

= 4 × 1 + 2 × 1 = 6 slots.

Consider now the following schedule of length four:

⟨{H1}, {H1}, {H1, L1}, {H1, L1}⟩,

and let us examine how it would play out during run-time:

• If either of the first two transmissions succeeds, then H1 will

not transmit during the third and fourth slots and hence

L1 gets to transmit twice if needed, thereby being able to

tolerate one error.

• If both of the first two transmissions fail, then the source node

of message L1, having determined that two faults have already

occurred, does not transmit during the third or fourth slots,

thereby allowing messageH1 four transmissions if necessary

(and hence guaranteeing H1 the desired tolerance of up to

three faults).

We point out that the fault-tolerance requirement of the high-

criticality message H1 determines a lower bound of four on the

schedule length; hence in a sense the low-criticality message L1

Fault-tolerant Transmission of Messages of Differing Criticalities Across a Shared Communication Media X, 2019,

in this specific example is getting to łpiggy-backž onto these slots

that are needed by message H1 for free. �

This research. In this work we seek to develop a systematic ap-

proach towards synthesizing fault-tolerant static schedules of the

kind discussed above, for mixed-criticality collections of messages.

Our optimization objective is to have schedules of short duration,

as measured by the number of slots ś the fewer the number of slots,

the better the schedule.

Organization. The remainder of this paper is organized in the

following manner. In Section 2, we formally define the problem

that we are seeking to solve. In Section 3 we derive an algorithm

that solves a simpler version of this problem ś in essence, the sim-

plification of considering all messages to have the same criticality.

We use this algorithm in Section 4 to solve the mixed-criticality

version under certain restrictions on the parameters specifying the

instance. We conclude in Section 5 by providing some context to

this work, and by discussing some ways in which our work can be

extended to solve more general versions in which the restrictions

on the parameters are no longer necessary,

2 WORKLOAD AND FAULT MODEL

We now formally define the problem that we have informally de-

scribed above. We are concerned with synthesizing fault-tolerant

static schedules for transmitting messages across a shared commu-

nication medium.

Fault and Communications Model.We make the following as-

sumptions regarding the communication infrastructure being used

for the communication.

(1) Each message is characterized by a source node and a single

destination node (i.e. messages are not broadcast).

(2) All messages are equi-sized; without loss of generality, we

assume that each message takes one time-slot to transmit.

(3) All communicating nodes have synchronized clocks and

hence share a common notion of time.

(4) The communication medium is shared (fully connected) in

that all nodes can send messages directly to all other nodes

(but of course not at the same time).

(5) A transmission may succeed or fail. There are two possible

causes of transmission failure during a slot:

i. A transmission error may occur; such occurrences are

due to external causes and the scheduling and run-time

mechanism has no control over these occurrences.

ii. Sending out multiple messages during the same time-

slot will result in a collision error .

If neither a transmission error nor a collision error occurs

during a slot, then any transmission in that slot is successful

(i.e., there are no other causes of transmission failure).

There are no additional consequences of such failure (other

than the failure to successfully transmit a message).

(6) At the end of each slot all the nodes can determine, by mon-

itoring the communication medium during the slot interval

whether a successful transmission has occurred during that

slot or not.2

2In some of our algorithms we will require nodes that are scheduled to transmit
messages in the future to monitor slots in this manner; however, nodes that only

We assume that all nodes share a common view as to whether a

message has been successfully received. A number of protocols

can provide this atomicity, for example the use of bit by bit parity

checking (as in CAN) or the use of a short ‘acknowledgement’ frame

(as in AirTight).

Structure of static schedules. A static schedule is defined as a

finite sequence of non-empty sets of messages. The interpretation of

such a schedule is as follows. The entire schedule is pre-computed

in a centralized manner and is distributed to all the nodes prior to

run-time. During the i’th time-slot, the messages that are in the i’th

set in this sequence are considered for transmission. The decision

on whether to actually transmit each message in this set is made

by the source node of the message (the node that originates that

message), based on two considerations:

(1) A message that has already been successfully transmitted is

not transmitted again; and

(2) A message that no longer needs to be transmitted because

its fault-tolerance requirements3 have been violated, is not

transmitted.

All remaining messages in the i’th set are transmitted during the

i’th slot; if there is more than one such message, a collision occurs

in this slot and the transmission is a failure.

Fault-tolerance requirements.We considermixed-criticality sys-

tems in which there are messages of two criticality levels. (Our tech-

niques and results are easily generalized to > 2 criticality levels;

we choose to not do so here in order to simplify the presentation.)

Two fault-tolerance parameters fH and fL are specified, one for

each criticality level. These parameters should be interpreted in the

following manner:

• All the low-criticality messages should be transmitted suc-

cessfully in the presence of up to fL transmission errors;

and

• All the high-criticality messages should be transmitted suc-

cessfully in the presence of up to fH transmission errors.

We require that fH ≥ fL ; hence we of course require that all high-

criticality messages also be transmitted correctly in the presence of

up to fL transmission errors.

Aproblem instance is characterized by the four-tuple (H , L, fH , fL),

where H = {H1,H2, . . . ,HnH } denotes a set of nH high-criticality

messages andL = {L1, L2, . . . , LnL } denotes a set ofnL low-criticality

messages, and fH and fL are non-negative integers with fH ≥ fL .

These messages are all equi-sized, and are to be transmitted across a

shared broadcast medium; each high-criticality message should be

successfully transmitted in the presence of up to fH transmission

errors while each low-criticality message should be successfully

transmitted in the presence of up to fL transmission errors. (A note

on notation: we will often use the notation nH and nL to denote

the cardinalities of the sets of messages H and L respectively.)

Given an instance, ourmetric for evaluating the łgoodnessž of a

correct schedule (i.e., one meeting the fault-tolerance requirements

receive but do not send messages do not need to do any monitoring except during
slots in which they are scheduled to receive messages.
3The manner in which such fault-tolerance requirements are specified is discussed
below.

X, 2019, Kunal Agrawal, Sanjoy Baruah, and Alan Burns

for all messages) for the instance is its schedule length: the shorter

the length, the łbetterž we consider the schedule to be.

3 THE SINGLE-CRITICALITY CASE

In this section we derive a strategy for generating fault-tolerant

schedules for instances in which all messages have the same crit-

icality; we will use this strategy in Section 4 below to derive a s-

trategy for generating fault-tolerant schedules for mixed-criticality

instances. For the remainder of this section, we will therefore con-

sider an instance of the form

(H , L← {}, fH ← f , fL ← 0), with |H | = n

indicating that there are n high-criticality messages and no low-

criticality ones, and that each message should be successfully trans-

mitted in the presence of up to f transmission errors.

The naive approach of replicating each message (f + 1) times

would yield a schedule of duration equal to (f + 1) × n slots; below

we derive a strategy that generates schedules approximately half

as long.

Let us assume for now that the number of messages n is consid-

erably larger than the number f of faults that must be tolerated. We

will partition the n messages into groups of size (f + 1) messages;

there will be
⌈ n

f + 1

⌉

such groups. Each group is considered separately in synthesizing

the schedule; below we describe how the messages of an individ-

ual group are considered. In order to synthesize the sub-schedule

responsible for achieving the fault-tolerant transmission of a par-

ticular group of (f + 1) messages,

(1) We first assign each message in the group separately, one to

a slot Ð this consumes a total of (f + 1) slots.

Since at most f errors are to be tolerated, we may assume

that at least one message will be successfully transmitted

upon the end of transmitting these (f + 1) slots.

(2) Next, we assign each possible pair of these (f + 1) messages,

one pair to one slot. There are
(f +1

2

)

possible pairs; hence
(f +1

2

)

such slots are needed.

The total number of slots needed to construct this schedule for this

block of (f + 1) messages is therefore

(f + 1) +

(

f + 1

2

)

= (f + 1) +
f · (f + 1)

2
=

(

(f + 1)
(

1 +
f

2

)
)

We will now argue that all (f + 1) messages have been successfully

transmitted by the end of these slots, assuming that at most f

transmission errors have occurred during these slots.

• Let f̂ denote the number of transmission errors during the

first (f + 1) slots ś those that had transmitted one message

per slot. (Observe that we must have f̂ ≤ f .)

• Hence, a total of (f + 1 − f̂) messages were successfully

transmitted during these first (f + 1) slots. Since

ś each message is individually paired with every other mes-

sage in the subsequent
(f +1

2

)

slots, and

ś a message that has already been successfully transmitted

is not retransmitted,

it follows that each of the messages that was not successfully

transmitted during the first (f + 1) slots is transmitted alone

(f + 1 − f̂) times in the
(f +1

2

)

subsequent slots.

• Since at most (f − f̂) additional transmission errors may

occur, it follows that each such message is therefore success-

fully transmitted during these
(f +1

2

)

subsequent slots.

We have thus shown that each group of (f + 1) messages is suc-

cessfully transmitted in an f -fault tolerant schedule of length
(

(f + 1)
(

1 +
f
2

)
)

; the total number of slots in the schedule for

all n messages is hence given by

⌈ n

f + 1

⌉

×
(

(f + 1)
(

1 +
f

2

)
)

<
(n

f + 1
+ 1

)

×
(

(f + 1)
(

1 +
f

2

)
)

= n ×
(

1 +
f

2

)

+

(

(f + 1)
(

1 +
f

2

)
)

≈ n
(

1 +
f
2

)

(1)

for n ≫ f (or for n an integer multiple of (f + 1), in which case
⌈

n
f +1

⌉

=
n
f +1

and the additional ł+1ž term introduced in the second

line of the derivation above is not needed).

Now there is no particular reason why the (f +1) single-message

slots and the
(f +1

2

)

two-message slots corresponding to each group

need to be transmitted immediately one after the other Ð the only

requirement is that the single-message slots corresponding to a

group must be transmitted before the two-message ones for that

same group. Hence in synthesizing a schedule for the n messages

we will place all n single-message slots first, followed by all the

two-message slots corresponding to all the frames; the number of

such two-message frames is

⌈ n

f + 1

⌉

×

(

f + 1

2

)

=

⌈ n

f + 1

⌉

×
(f + 1) · f

2

≈
nf

2
(For n ≫ f)

We illustrate by an example:

Example 5. Consider an instance with n = 6 and f = 2. Since

(f + 1) = 3, we will partition the six messages H1-H6 into the two

groups H1-H3 and H4-H6. The part of the static schedule that is

constructed corresponding to the first group is

⟨{H1}, {H2}, {H3}, {H1,H2}, {H1,H3}, {H2,H3}⟩,

and the part corresponding to the second group is

⟨{H4}, {H5}, {H6}, {H4,H5}, {H4,H6}, {H5,H6}⟩.

Rearranging to have all single-message slots at the beginning, the

final schedule that is distributed to the communication nodes looks

Fault-tolerant Transmission of Messages of Differing Criticalities Across a Shared Communication Media X, 2019,

sched(M, f)

1 Let Sa denote a schedule of contiguous single-message slots,

one per message inM
2 PartitionM into groups of size f each

3 Let Sb denote a schedule of contiguous two-message slots, with

each two-subset of each partition appearing exactly once in

this schedule
4 return (Sa, Sb)

Figure 1: Pseudo-code for generating an f -tolerant schedule for the
messages in M . This schedule is returned as a pair of sequences of

slots. The first sequence comprises single-message slots; the second,

two-message slots. Their concatenation yields the desired schedule.

like this:
〈

{H1}, {H2}, {H3}, {H4}, {H5}, {H6},

{H1,H2}, {H1,H3}, {H2,H3}, {H4,H5}, {H4,H6}, {H5,H6}
〉

. (2)

This schedule has length 12 slots.

Consider next an instance with the same messages (and hence

n = 6) but a more severe fault-tolerance requirement: f = 5.

All six messages are partitioned into a single group; the schedule

generated will comprise the six single-message slots followed by
(6
2

)

= 15 two-messages slots, one for each distinct pair of messages,

for a total schedule length of 6 + 15 = 21 slots4:
〈

{H1}, {H2}, {H3}, {H4}, {H5}, {H6},

{H1,H2}, {H1,H3}, {H1,H4}, {H1,H5}, {H1,H6}, {H2,H3},

{H2,H4}, {H2,H5}, {H2,H6}, {H3,H4}, {H3,H5}, {H3,H6},

{H4,H5}, {H4,H6}, {H5,H6}
〉

. (3)

�

The algorithm we have described above is also represented in high-

level pseudo-code form in Figure 1. Observe that this pseudo-code

returns a pair of sub-schedules that are to be concatenated in order

to achieve the desired schedule; this is done in order to facilitate the

presentation of the mixed-criticality schedule-generation algorithm

that we will present in Section 4 below, that makes use of the

procedure sched(M, f) of Figure 1.

An additional observation from Example 5: we point out that in this

example all the two-message slots in the 2-fault-tolerant schedule

are also present in this 5-fault-tolerant schedule (observe that the

second row in Expression 2, listing all the two-messages in the

2-fault-tolerant schedule, are exactly the underlined two-message

slots in Expression 3). One may wonder whether this observation

generalizes: for a given set of messages, are all 2-message slots in an

f -fault-tolerant schedule constructed by our algorithm also present

in f ′-fault-tolerant schedules generated by it, for any f ′ > f ? The

answer is łnož: consider, for instance, the case where f ← 2 and

f ′ ← 3:

4The reason for underlining some slots in this schedule depiction is explained below.

• For f = 2, the messages are grouped in threes: the first two

groups are {H1,H2,H3} and {H4,H5,H6}. Since H4 and H5

are in the same group, there will be a 2-message slot with

H4 and H5 assigned to it.

• However, for f ′ = 3 the messages are grouped in fours and

hence H4 and H5 end up in different groups, meaning that

they will not appear in the same two-message slot.

So in general for f ′ > f all 2-message slots in an f -fault-tolerant

schedule need not be present in f ′-fault-tolerant schedules. How-

ever, in the special case that (f ′+1) is an integer multiple of (f +1),

it is easy to show that this property does in fact hold:

Lemma 1. For a given set of messages and two fault-tolerance

requirement specifications f and f ′ such that (f ′ + 1) is an integer

multiple of (f + 1), all the two-message slots in the f -fault-tolerant

schedule are present in the f ′-fault-tolerant schedule.

Proof Sketch: If (f ′ + 1) is an integer multiple of (f + 1), then every

(f + 1)-sized group considered by our algorithm in synthesizing an

f -fault-tolerant schedule is a subset of a single (f ′ + 1)-sized group

considered by our algorithm in synthesizing an f ′-fault-tolerant

schedule. Hence each two-message pair that is assigned to a single

slot while synthesizing the f -tolerant schedule is also assigned to

a single slot while synthesizing the f ′-tolerant schedule. �

ADiscussion on Optimality. The schedule-generation algorithm

we have derived in this section is not in general optimal from

the perspective of minimizing schedule length. This is particularly

easily seen for the special case f = 1 (i.e., only a single fault needs

to be tolerated): the optimal schedule for such instances is obtained

by scheduling each message in a separate slot, followed by one

additional slot in which all the messages are scheduled together.

However, for f > 1 we do not know of such łobviousž schedule-

generation schemes that consistently beat the algorithm we are

proposing, particularly when either n ≫ f holds, or n is an integer

multiple of (f + 1). Additionally, we believe it likely (but have not

yet proved) that under the assumption that n ≫ f or n is an integer

multiple of (f + 1), optimal schedules exist that transmit either one

or the same number д > 1 of messages per slot. If this belief holds,

we are able to prove that our scheme is indeed optimal for f > 1;

we omit a proof since we would like to first prove our belief that

optimal schedules always exist in which each slot contains either

one or the same number д > 1 of messages.

4 TWO CRITICALITY LEVELS

As stated in Section 2, a mixed-criticality problem instance is char-

acterized by a four-tuple ⟨H , L, fH , fL⟩, denoting that there are

|H | = nH high-criticality messages and |L| = nL low-criticality

messages that are to be transmitted, and that the high-criticality

messages (low-criticality messages, respectively) should be tolerant

to up to fH (fL , resp.) transmission errors. We start out making the

simplifying assumption that Lemma 1 is applicable; i.e., the parame-

ters fH and fL satisfy the property that (fH +1) is an integer multiple

of (fL + 1), and develop an algorithm for generating fault-tolerant

schedules for instances satisfying this property; we will discuss the

implications of making this assumption in Section 5.

Our schedule-generation algorithm can be thought of as compris-

ing four steps, the first three ofwhich use the algorithm sched(M, f)

X, 2019, Kunal Agrawal, Sanjoy Baruah, and Alan Burns

S: S1 S2 S3 ∪ S4 S3 ∪ S5 S3

S4 S5

S1 S2 S3

Figure 2: How the sub-schedules S1śS5 are merged to obtain

the final schedule. The top row depicts the schedules gen-

erated for H , the middle row, those for L. The bottom row

shows how the final schedule S is synthesized. First, add al-

l the slots in S1. Next, add all the slots in S2. Finally, add

the slot-by-slot union of the slots in S3 and the schedule ob-

tained by concatenating S4 and S5.

described in Figure 1 (Section 3) to generate schedules for some

non-mixed-criticality instances that are derived from the mixed-

criticality instance, and the fourth łmergesž these generated sched-

ules to obtain the desired schedule. We describe these four steps

below; they are also represented in pseudo-code form in Figure 3

(and illustrated on an example instance in Example 6 Ð it may be

helpful to follow along on the example).

ğ1. First, we construct an fL-tolerant schedule of the nH high-

criticality messages, arranging this schedule to have all single-

message slots appear before all two-message slots (as discussed in

Section 3, and illustrated in Example 5). Let S1 denote the single-

message part of this schedule, and S2 the two-message part: the

schedule generated is the concatenation of S1 and S2.

This step is depicted in pseudo-code form as Line 1 of the pseudo-

code in Figure 3.

ğ2. Next, we construct an fH -tolerant schedule of these nH high-

criticality messages, again arranging all single-message slots before

all two-message slots. Since we’re assuming that (fH + 1) is an

integer multiple of (fL + 1), it follows from Lemma 1, all the two-

message slots in S2 (the two-messages slots constructed in step ğ1

above) are also contained in this schedule. Let S3 denote the remain-

ing two-message slots in this schedule. We arrange our schedule to

have all slots in S2 appear before the slots in S3, so that the schedule

generated in this step is the concatenation of S1, S2, and S3.

This step is depicted in pseudo-code form as Lines 2 and 3 of the

pseudo-code in Figure 3.

ğ3. Next, we construct an fL-tolerant schedule of the nL low-

criticality messages. Let S4 denote the single-message-per-slot part

of this schedule, and S5 the two-messages-per-slot part. This step

is depicted in pseudo-code form as Line 4 of the pseudo-code in

Figure 3.

ğ4. Our final step is to łmergež the three schedules generated in the

steps above into one integrated static schedule. This is done in the

following manner (also see Figure 2).

a) The first part of the integrated schedule is S1 (Lines 5ś6 of the

pseudo-code in Figure 3).

b) The second part is S2, the two-message slots from the fL-fault-

tolerant schedule for the high-criticality messages (Lines 7ś8 of

the pseudo-code in Figure 3).

c) In order to better motivate the synthesis of the remainder of

the schedule, let us now consider the possible scenarios during

run-time after the execution of S1 and S2.

• If no more than fL faults have occurred thus far, then all high-

criticality messages have been successfully transmitted by

this point in time, and we should henceforth be transmitting

low-criticality messages. Therefore, the schedules S4 and S5
should be transmitted next (in this order ś i.e., S4 followed by

S5).

• However if more than fL faults have already occurred, then

the low-criticality fault-tolerance threshold has been crossed

and we hence need no longer transmit the low-criticality mes-

sages. In this case, we should be transmitting the remainder

of the fH -fault-tolerant schedule for the high-criticality mes-

sages that we had generated in step ğ2 above. The parts S1 and

S2 of this schedule have already been transmitted; it remains

to transmit the part S3.

We want to enumerate a static schedule that covers both scenar-

ios described above: if at most fL faults have occurred during the

first |S1 |+ |S2 | slots, we should transmit according to schedule S4
followed by schedule S5; otherwise, we should transmit accord-

ing to schedule S3 Therefore, the messages to be assigned to each

slot after the first |S1 |+ |S2 | slots is obtained by taking the union

of the messages assigned to that particular slot in the schedule

S3 and the schedule obtained by concatenating S5 to the end of

S4. (All this is represented in pseudo-code form in Lines 9ś17 of

the pseudo-code in Figure 3). The part of the schedule generated

in this manner achieves what we desire, since

• If no more than fL faults have occurred prior to the execution

of this part of the schedule, then all high-criticality messages

have already been successfully transmitted. Since a success-

fully transmitted message is never retransmitted by its source

node, then in each slot only the message[s] assigned to this

slot in the concatenation of S4 and S5 are potentially transmit-

ted.

• If more than fL faults have occurred, then all sources of low-

criticality messages will cease transmitting these messages,

and no messages from the concatenation of S4 and S5 will

henceforth be transmitted. Therefore, in each slot only the

message[s] assigned to this slot in S3 are potentially transmit-

ted.

This next example traces the operation of our schedule-generation

algorithm on a simple example mixed-criticality instance.

Example 6. Let us consider an instance with six high-criticality

messages (H = {H1,H2, . . . ,H6}) and three low-criticality mes-

sages (L = {L1, L2, L3}), with a high-criticality fault-tolerance re-

quirement FH = 5 and a low-criticality fault-tolerance requirement

FL = 2. We now describe the sub-schedules S1śS5 generated by

our algorithm on this example (these sub-schedules are listed in

Figure 4).

• S1 is 6 slots long, and has one slot for each message ∈ H .

Fault-tolerant Transmission of Messages of Differing Criticalities Across a Shared Communication Media X, 2019,

schedMC(H ,H , fH , fL)

1 (S1, S2) = sched(H , fL)// See Figure 1 for the pseudo-code representation of sched(M, f)

2 (S1, S
′) = sched(H , fH)

3 S3 = S ′ \ S2// Here S
′ \ S2 denotes the slots in S ′ that are not in S2

4 (S4, S5) = sched(L, fL)

// Now, construct schedule S from schedules S1śS4
5 for i = 1 to |S1 | // First, copy out schedule S1
6 S[i] = S1[i]

7 for i = 1 to |S2 | // Next, copy out schedule S2
8 S[|S1 | + i] = S2[i]

9 for i = 1 to |S4 | // Next, do a slot-by-slot union of schedules S3 and S4
10 if (|S3 | ≤ i) then tmp = S3[i] else tmp = {}

11 S[|S1 | + |S2 | + i] = (S4[i] ∪ tmp)

12 for i = 1 to |S5 | // Next, do a slot-by-slot union of schedules S3 and S5
13 if (|S3 | ≤ |S4]| + i) then tmp = S3[|S4]| + i] else tmp = {}

14 S[|S1 | + |S2 | + |S4 | + i] = (S5[i] ∪ tmp)

15 if (|S3 | > |S4 | + |S5 |) // Finally, copy out any remaining slots in schedule S3
16 for i = |S4 | + |S5 | + 1 to |S3 |

17 S[i] = S3[i]

18 return S

Figure 3: Pseudo-code representation of our algorithm for generating fault-tolerant static schedules for mixed-criticality in-

stances

• S2 is 2 ×
(3
2

)

or 6 slots long: it has one slot for each pair

of messages in {H1,H2,H3}, and one slot for each pair of

messages in {H4,H5,H6}.

• S ′ is
(6
2

)

or 15 slots long, and has one slot for each pair of

messages in H . Hence S3, which contains one slot for each

pair of messages in H that is not already contained in S2, is

(15 − 6) or 9 slots long.

• S4 is 3 slots long, and has one slot for each message ∈ L

• S5 is
(3
2

)

or 3 slots long, and has one slot for each pair of

messages ∈ L.

Merging these schedules together, we get the following schedule S

(also listed in Figure 4):

• The first six slots are identical to S1.

• The next six slots are identical to S2.

• The next three slots are obtained by taking a slot-by-slot

union of the first three slots ofS3 with the three slots in S4;

they are therefore
〈

{H1,H4, L1}, {H1,H5, L2}, {H1,H6, L3}
〉

• The next three slots are obtained by taking a slot-by-slot

union of the next three slots of S3 with the three slots in S5;

they are therefore
〈

{H2,H4, L1, L2}, {H2,H5, L1, L3}, {H2,H6, L2, L3}
〉

• The remaining three slots of S3 constitute the final three

slots of the schedule S :
〈

{H3,H4}, {H3,H5}, {H3,H6}
〉

�

Evaluation.As stated in Sections 1 and 2, our metric for evaluating

the łgoodnessž of the static schedules we generate is their length:

the number of slots in the schedules. Let us now evaluate how our

algorithm measures up with regards to this metric. We start out

enumerating some fairly obvious facts about the schedule generated

by our algorithm.

Fact 1. (|S1 | + |S2 |) is the length of an fL-tolerant schedule for the

messages in H .

Fact 2. (|S4 | + |S5 |) is the length of an fL-tolerant schedule for the

messages in L.

Fact 3. Since there are no common messages in H and in L, it fol-

lows from the facts above that (|S1 | + |S2 | + |S4 | + |S5 |) is

the length of an fL-tolerant schedule for the messages in

(H ∪ L)

Fact 4. (|S1 | + |S2 | + |S3 |) is the length of an fH -tolerant schedule

for the messages in H .

Now, the length of the schedule we have generated is given by

|S1 | + |S2 | +max(|S3 |, |S4 | + |S5 |)

= max
(

|S1 | + |S2 | + |S3 |, |S1 | + |S2 | + |S4 | + |S5 |
)

From Facts 4 and 3, it follows that this is the maximum of the

lengths needed for an fH -tolerant schedule for the messages in H ,

and an fL-tolerant schedule for the messages in (H ∪ L). That is, our

schedule length is no more than the schedule length we would

use to transmit all the messages under the less conservative fault

model, or to transmit only the high-criticality messages under the

more conservative fault model. In a sense, we are paying the cost

for only the more expensive of these fault-tolerance requirements:

the other is being provided łfor freež by piggy-backing on the

already-required slots.

X, 2019, Kunal Agrawal, Sanjoy Baruah, and Alan Burns

S1 =

〈

{H1}, {H2}, {H3}, {H4}, {H5}, {H6}
〉

S2 =

〈

{H1,H2}, {H1,H3}, {H2,H3}, {H4,H5}, {H4,H6}, {H5,H6}
〉

S3 =

〈

{H1,H4}, {H1,H5}, {H1,H6}, {H2,H4}, {H2,H5}, {H2,H6}, {H3,H4}, {H3,H5}, {H3,H6}
〉

S4 =

〈

{L1}, {L2}, {L3}
〉

S5 =

〈

{L1, L2}, {L1, L3}, {L2, L3}
〉

S =

〈

S1
︷ ︸︸ ︷

{H1}, {H2}, {H3}, {H4}, {H5}, {H6},

S2
︷ ︸︸ ︷

{H1,H2}, {H1,H3}, {H2,H3}, {H4,H5}, {H4,H6}, {H5,H6},

by per-slot (S3∪S4)
︷ ︸︸ ︷

{H1,H4, L1}, {H1,H5, L2}, {H1,H6, L3},

by per-slot (S3∪S5)
︷ ︸︸ ︷

{H2,H4, L1, L2}, {H2,H5, L1, L3}, {H2,H6, L2, L3}

remainder of S3
︷ ︸︸ ︷

{H3,H4}, {H3,H5}, {H3,H6}
〉

Figure 4: Applying the schedule-generation algorithm ś see Example 6.

A possible alternative to the algorithm we have proposed in this

section would be to use the (single-criticality) algorithm of Section 3

to separately synthesize an fL-tolerant schedule for the messages

in L and an fH -tolerant schedule for the messages in H , and then

concatenate these two schedules together. Based on Equation 1, we

conclude that the length of this schedule is approximately

nL
(

1 +
fL

2

)

+ nH
(

1 +
fH

2

)

= (nL + nH)
(

1 +
fL

2

)

+ nH
(fH − fL

2

)

Now the second term in the first line represents the length of a

schedule to transmit only the high-criticality messages under the

more conservative fault model, while the first term in the second

line represents the length of a schedule to transmit all the messages

under the less conservative fault model. Since both lines have an

additional term (nL
(

1 +
fL
2

)

in the first line, nH
(fH−fL

2

)

in the

second), it follows that the new algorithm that we proposed in this

section for scheduling mixed-criticality instances is strictly superior

to the criticality-agnostic one of Section 3.

We conclude this section with some numerical comparisons

of the schedule-lengths produced by the various schemes we have

studied in this paper. Although these numerical comparisons are

not meant to be exhaustive or definitive, we do believe that they

are somewhat representative and provide a flavor of the kinds of

savings in schedule length we are able to achieve.

On an instance (H , L, fH , fL) with |H | = nH and |L| = nL , the

naive strategy [4] of replicating each message individually yields a

schedule with

nL(1 + fL) + nH (1 + fH) (4)

slots. As discussed above, the criticality-agnostic scheme of Sec-

tion 3 yields a schedule with length approximately

nL
(

1 +
fL

2

)

+ nH
(

1 +
fH

2

)

, (5)

while the algorithm derived in this section results in a schedule of

length approximately

max
(

(nL + nH) ×
(

1 +
fL

2

)

,nH
(

1 +
fH

2

)
)

(6)

The lengths of the schedules generated by these three different

algorithms upon some example instances are presented in Table 1.

The entries in the first are those of the example instance consid-

ered in Example 6 above. The next five rows are for instances

with the same fault parameters as Example 6 and the number of

high-criticality messages fixed (at 18), but with the number of low-

criticality messages varied to equal ×1,×2,×3,×4, and ×5 the num-

ber of high-criticality messages. The last five rows have fault param-

eters fH ← 8 and fL ← 2; the number of high-criticality messages

is fixed at 27 while the number of low-criticality messages varied

to equal ×1,×2,×3,×4, and ×5 the number of high-criticality mes-

sages. It can be seen from the last two columns of the table that the

criticality-cognizant algorithm generates schedules that are shorter

than the naive ones by approximately a factor of two, and shorter

than the ones generated by the criticality-agnostic algorithm by a

factor that is, on average, greater than 1.25.

5 CONTEXT & FUTURE DIRECTIONS

A tremendous body of work has been done on achieving fault-

tolerant communication in shared networks, from both a pragmatic

and theoretical perspective, see any of several surveys (e.g., [6] is a

seminal and widely-cited survey, while [2] is a more recent one) for

further detail. However, we did not find any schemes that are similar

to the one we have derived ś perhaps this is because there isn’t

much prior work on fault-tolerant algorithms for mixed-criticality

messaging considering a notion of mixed criticalities along the fault

dimension (as we are doing here).

Fault-tolerant Transmission of Messages of Differing Criticalities Across a Shared Communication Media X, 2019,

nH nL fH fL Naive (Eqn 4) Sec 3 (Eqn 5) Sec 4 (Eqn 6) Naive ÷ Sec 4 Sec 3÷Sec 4

6 3 5 2 45 27 21 2.14 1.29

18 18 5 2 162 99 72 2.25 1.375

18 36 5 2 216 135 108 2 1.25

18 54 5 2 270 171 144 1.875 1.1875

18 72 5 2 324 207 180 1.8 1.15

18 90 5 2 378 243 216 1.75 1.125

27 27 8 2 324 189 135 2.4 1.4

27 54 8 2 405 243 162 2.5 1.5

27 81 8 2 486 297 216 2.25 1.375

27 108 8 2 567 351 270 2.1 1.3

27 135 8 2 648 405 324 2 1.25

Table 1: Representative numerical comparison of schedule lengths generated by the naive approach (Eqn 4), the criticality-

agnostic approach of Section 3 (Eqn 5), and the criticality-cognizant approach of Section 4 (Eqn 6).The last two columns depict

the relative efficiency of the criticality-cognizant algorithm over the other two.

The algorithms we have presented here make two simplifying as-

sumptions:

(1) The initial (non-mixed-criticality) algorithm assumes that

the number of messages to be transmitted is an integer mul-

tiple of one plus the degree of fault-tolerance required. Since

this algorithm is subsequently used in the mixed-criticality

algorithm to synthesize sub-schedules, this assumption is

required in the mixed-criticality case as well.

(2) For mixed-criticality instances, we require that (fH + 1) be

an integer multiple of (fL + 1) (recall that fH and fL are

the degrees of fault-tolerance required by high-criticality

and low-criticality messages respectively), in order that the

conditions of Lemma 1 hold.

Getting rid of the first assumption is straightforward, but rather

tedious ś one must in essence separately consider the
(

n mod (f +

1)
)

messages that are left over after all the remaining ones have

been grouped into (f + 1)-sized groups, and separately synthesize

an optimal f -fault-tolerant schedule for these messages. Choosing

to not do so, but rather simply assigning each two-subset of these
(

n mod (f + 1)
)

messages a separate slot, appears an adequate hack

that does not compromise optimality by too much provided n is

reasonably large when compared to f .

Getting rid of the second assumption is somewhat more chal-

lenging: there appear to be several different approaches possible

with different trade-offs between benefits and drawbacks. We are

currently working on examining these different approaches in order

to better understand whether one approach can be shown to strict-

ly dominate the others; meanwhile, a safe and correct (although

sub-optimal) work-around is to increase one or the other of the

fault-tolerance requirements to achieve the desired divisibility prop-

erty. For instance suppose that we had (fL = 3, fH = 9). Although

(3 + 1 =) 4 does not divide (9 + 1 =) 10 exactly, (4 + 1 =) 5 does,

and so we could consider increasing fL to 4, thereby providing

more fault-tolerance to the low-criticality messages than required.

Alternatively we could consider not changing fL but instead in-

creasing fH to 11 (since (3 + 1 =) 4 divides (11 + 1 =) 12). Thus
either (fL = 4, fH = 9) or (fL = 3, fH = 11) could be used; which

is preferred depends on the relative values of nL and nH .

In this paper we have assumed a relatively simple fault model

for specifying fault-tolerance requirements: messages should be

tolerant to up to a specified number f of faults. A more sophisti-

cated fault model would require tolerance for a specified number

of faults over a specified duration of time. In a general form, we

can think of such fault-tolerance specifications as a monotonically

non-decreasing function f : N→ N, with the interpretation that

f (t) denotes the maximum number of faults that must be tolerated

over any interval of duration t . Extending the algorithms we have

presented here to such a more general fault model seems interesting

and challenging, and provides further motivation for minimizing

the duration of the schedule.

REFERENCES
[1] Alan Burns, James Harbin, Leandro Indrusiak, Iain Bate, Robert Davis, and David

Griffin. 2018. AirTight: A Resilient Wireless Communication Protocol for Mixed-
Criticality Systems. In Proceedings of the IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA ’18). IEEE Computer
Society.

[2] Beom-Su Kim, HoSung Park, Kyong Hoon Kim, Daniel Godfrey, and Ki-Il Kim.
2017. Review Article: A Survey on Real-Time Communications in Wireless Sensor
Networks. Wireless Communications and Mobile Computing (2017).

[3] H. Kopetz and G. Bauer. 2003. The time-triggered architecture. Proc. IEEE 91, 1
(Jan 2003), 112ś126.

[4] H. Kopetz and G. Grunsteidl. 1993. TTP - A time-triggered protocol for fault-
tolerant real-time systems. In FTCS-23 The Twenty-Third International Symposium
on Fault-Tolerant Computing. 524ś533. https://doi.org/10.1109/FTCS.1993.627355

[5] Hermann Kopetz and Günter Grünsteidl. 1994. TTP ś A Protocol for Fault-Tolerant
Real-Time Systems. Computer 27, 1 (Jan. 1994), 14ś23. https://doi.org/10.1109/2.
248873

[6] John Rushby. 2001. Bus Architectures for Safety-Critical Embedded Systems. In
Proceedings of the ACM International Conference on Embedded Software (EMSOFT),
Thomas A. Henzinger and Christoph M. Kirsch (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 306ś323.

[7] Steve Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Vary-
ing Degrees of Execution Time Assurance. In Proceedings of the Real-Time Systems
Symposium. IEEE Computer Society Press, Tucson, AZ, 239ś243.

	Abstract
	1 Introduction
	2 Workload and fault model
	3 The single-criticality case
	4 Two criticality levels
	5 Context & Future Directions
	References

