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Unsupervised Machine Intelligence for Automation

of Multi-Dimensional Modulation
Youngwook Ko, and Jinho Choi

Abstract—In this letter, we propose a new unsupervised ma-
chine learning technique for a multi-dimensional modulator that
can autonomously learn key exploitable features from significant
variations of multi-dimensional wireless propagation parameters,
followed by a real-time prediction of the best multi-dimensional
modulation mode to be used for the next resilient transmission.
The proposed method aims to embrace the potential of the
unsupervised K-means clustering into the physical layer of non-
coherent multi-dimensional transmission. Simulation results show
that the proposed scheme can outperform the benchmarks at a
cost of simple offline training.

Index Terms—Unsupervised machine learning, non-coherent
prediction, autonomous multi-dimensional modulation

I. INTRODUCTION

Due to the limited resources of machine type commu-

nications (MTC) devices, new analytics techniques such as

machine learning and data analytics are emerging to support

reliable connectivity of such MTC networks, which involve

big data typically in unknown locations [1].

Since the 3rd Generation Partnership Project (3GPP) sys-

tems’ MTCs are based on a group of multi-carriers [2], the

index modulation for orthogonal frequency division multiplex-

ing (IM-OFDM) that was studied to enhance the reliability

and energy efficiency (e.g., see [3], [4]) can be employed

for MTC. In IM-OFDM, both index and sub-carrier domains

were used in modulation and various approaches have been

proposed to improve the reliability. For example, [5] proposed

the transmit diversity for IM-OFDM, while [6] studied the

adaptive modulation for IM-OFDM with the use of channel

information. The cooperative IM-OFDM for relay networks

was investigated in [7], while the potentials of spread IM-

OFDM were studied to increase the reliability and efficiency in

[8], [9]. However, the existing works only consider pre-defined

transmission protocols that do not adapt to their deployment

environments. Furthermore, since MTC devices are usually

affected by diverse physical layer features, which are difficult

to be uniquely characterized by a few parameters across

diverse MTC’s surrounding, the existing works may hardly

guarantee the expected reliability with limited knowledge of

surrounding.

Machine learning techniques have been very recently ex-

plored at the physical layer of wireless communications [10]–

[13]. For example, [11] developed a deep-learning (DL) au-

toencoder for single-input multiple-output (SIMO) communi-

cation systems with deep neural networks (DNNs). In OFDM
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systems, the DL was also utilized to design a joint channel

estimation and signal detection receiver [12]. [13] used the DL

for single-dimensional modulation recognition at the receiver.

In this paper, we focus particularly on the potential of

unsupervised machine learning techniques in the physical

layer of multi-carrier communications. To the best of our

knowledge, this work is the first attempt to embrace the

potential of machine learning into an autonomous IM-OFDM

in specific, and generally, autonomous multi-dimensional mod-

ulation (MDM) where data bits are mapped to several domains.

We develop multiclass clustering, as a primary task in machine

learning, for automation of MDM transmission in a non-

coherent manner. So-called, Auto-MDM aims to automatically

adapt a modulation mode by clustering variations of multi-

dimensional training channel vectors, which is not feasible

at the classical adaptive modulation under limitation of an

established one-dimensional threshold between modes. From

such training, we learn exploitable physical layer features

and offline obtain a clustering set that is used to cluster

a new multi-dimensional observation and to autonomously

predict the best mode for the next resilient communications

(i.e., learning-driven prediction). Over the existing multicarrier

transmissions that are limited to the fixed modulation with

lack of knowledge on the surroundings, novel contribution of

the Auto-MDM is three-fold: (i) to embrace the unsupervised

learning (i.e., a simple end-to-end training and unsupervised

K-means clustering) into the multi-dimensional modulation

design; (ii) to automatically predict the best mode for Auto-

MDM across variations of multiple sub-carrier signals with a

non-coherent observation; and (iii) to obtain a better reliability

with variable rates, outperforming the existing IM-OFDM

alternatives at the cost of simple, offline training. The proposed

work provides insights into a convergence of machine learning

and MDM transceiver.

II. SYSTEM MODEL

Consider a multi-carrier system which consists of a block

of Nc sub-carriers in a time division duplexing (TDD)-based

MTC application [2]. Each block can be divided into G groups

of N sub-carriers, i.e., Nc = GN . Denote by M and C
a set of complex data constellations and a codebook of N

codewords, respectively, where M = {M0,M1, · · · ,MT },

C = {c1, · · · , cN} and Mt = |Mt| denotes the cardinality of

Mt-ary constellation, ∀t.
For every transmission, p (= p1 + p2) data bits per group

are divided to two parts such that p1 and p2 bits are used

to modulate k(≤ N) data symbols (s = [s1, · · · , sk]
T ) and
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indices of k active codewords (θi = {i1, · · · , ik}), respec-

tively, where for a given Mt, sa ∈ Mt and ia ∈ {1, · · · , N}
for a = 1, · · · , k. Denote by x the signal vector to be

transmitted over N sub-carriers with the aid of precoder matrix

Cθ = [ci1 , · · · , cik ], where x = Cθs and details on the choice

of k are addressed in Section III. Notice that p1 = k log2(Mt)
bits correspond to k data symbols (DS) while p2 = ⌊log2 |Σθ|⌋
bits to codeword index symbol (CIM), θi, where Σθ denotes

the constellation of θi’s. Due to the fact that each group

performs independently, without loss of generality, we present

only one group hereinafter. The downlink received signal for

each group can be given, in the frequency domain, by

y = Hx+ v, (1)

where x = [x1, · · · , xN ]T , xn =
∑k

a=1 ciansa, cian repre-

sents the n-th entry of cia , H = diag(H1, · · · , HN ) denotes

the fading channel matrix of N sub-carriers, Hn represents the

channel coefficient of sub-carrier n, and v = [v1, · · · , vN ]T is

the additive white Gaussian noise vector, i.e., vn ∼ CN (0, 1).
Assume the followings: A1) the transmitter does not know

the channel matrix H, while the uplink received signal energy

per sub-carrier is available to the transmitter; A2) the trans-

mitter adapts a modulation order Mt of each group, learning

multi-dimensional physical layer features in a non-coherent

manner, with no use of pre-defined switching thresholds;

and A3) codewords cn are orthogonal to each other with

‖cn‖
2 = 1 and ‖c‖0 = N, ∀n. Even through non-coherent

manner and without any pre-defined switching thresholds, the

transmitter intends to automatically predict and choose Mt

used for the transmit vector x, which differs from the existing

multi-carrier transceivers that use a fixed modulation mode.

Due to the fading channel ambiguity and A1)- no channel

state information at the transmitter (CSIT), Mt cannot be

uniquely selected from the variations of uplink signal across

N -dimensional sub-carriers, even in the noiseless case. In such

unknown real-time wireless environments, multi-dimensional

randomness and fading channel ambiguity are the dominating

factors that limit the performance of non-coherent multi-

dimensional transceiver. This is the main problem to resolve

through the unsupervised machine learning, jointly developed

by the non-coherent multi-dimensional modulator.

III. LEARNING-DRIVEN AUTO-MDM

We propose new unsupervised learning–driven algorithms

for Auto-MDM. To this end, the manipulation of end-to-end

training sets to be embraced for the proposed Auto-MDM

transceiver is firstly presented, followed by multi-dimensional

clustering and online prediction test for Auto-MDM.

A. End-to-End Training Set of Auto-MDM

The structure of the proposed Auto-MDM is depicted in

Fig. 1. It consists of training and testing procedures, taking into

account clustering and learning-driven MDM automation, re-

spectively. Specifically for the clustering in training procedure,

we propose an end-to-end training structure, the key advantage

of which is that the training becomes straightforward. In the

training structure, the channel observation at a given time is

(a) Classification model of Auto-MDM

(b) Learning-driven Auto-MDM framework

Fig. 1: The structure of machine learning Auto-MDM

assumed to be known at the receiver. Consider Q simulated

training data (H1, · · · ,HQ) based on a stochastic channel

model, and denote by mt = (N, k(t),M(t)) the t-th possible

modulation mode that is related to k(t) ∈ {1, · · · , k} active

CIMs and M(t) ∈ M constellation. For each simulative

observation Hq , the transmitter and receiver collaborate to

supervise a right choice of mt so that the bit error probability

(BEP) (denoted by Pe) remains less than or equal to the target

level µ (i.e., Pe ≤ µ), at the largest data bits (Rt) that rely on

mt. Note that the value for Q trades off complexity against

learning accuracy, as the common overfitting problem.

In particular, prior to the clustering of training proce-

dure, we need to constitute a training data set. Denote

by z = {z1, · · · , zQ} the training data set, where zq =
(|H1q|

2, · · · , |HNq|
2, q∗) determines the q-th simulated train-

ing data, |Hnq| is a real-valued amplitude of n-th sub-carrier

of Hq , and q∗ ∈ {0, · · · , k T} an index for one of (1 + kT )
mts. The key idea is to train the automated MDM over

substantial variations across the N -dimensional boundaries of

each simulative channel vector and then to adopt the index

of most potential modulation mode (denoted by mq∗ ). Here,

we train by the channel vectors, not the received signals y,

because y are additionally distorted by the background noise

in less relation to surrounding. So, after the Q simulative

training observations, we will obtain the data set z based

on a stochastic channel model and the collaboration between

transmitter and receiver. Intuitively, such training data set

can help relate N dimensional variations of simulated fading

channel coefficients in Hq to a supervised index of the chosen

mq∗ , for each training observation.

To obtain a better training data set in relation to the

prediction accuracy of mt, y and Hq can be processed offline

before the clustering. Referring to the simulative knowledge

of the non-adaptive MDM (e.g., the existing IM-OFDM [4]),

firstly, the well-known maximum likelihood (ML) detector

is employed to estimate the transmitted vector as follows:

x̂ = argmin ‖y −Hqx‖
2. Based on x̂ = Ĉθ ŝ, this optimum

ML scheme is expected to improve the detection of index

symbol θi from the active codeword indices in Ĉθ, as well
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as the k non-zero M -ary data symbols from ŝ. Based on

such pre-processing before the clustering, estimated data bits

can result in Pe. Secondly, the simulative results of Pe can

be used to reveal the choice of mq∗ whose index satisfies

q∗ = argmax
t

{Rt |Pe(mt) ≤ µ} for t = 0, · · · , k T .

B. Multi-Dimensional Clustering by Manipulated Training

In order to run the proposed automated MDM, we need

to train the transceiver with the data set collected from the

training observations. We employ the simple but effective

unsupervised learning algorithm (i.e., K-means clustering)

because of its linear complexity, suitable to low-complexity

device applications. Once the training data set z is collected,

the Auto-MDM is trained offline by clustering variations of

N -dimensional training data into one of the clusters that

represents the best modulation mode.

Given the set z = {z1, · · · , zQ}, each observation zq is a

(N + 1)-dimensional real-valued vector. K-means clustering

aims to partition the Q observations into Kc clusters, as shown

in Algorithm 1.

Algorithm 1 K-means clustering algorithm

1: Select Kc(≤ Q), and generate a set of input data zq, ∀q.

2: procedure CLUSTERING(z,u,Kc)

3: repeat

4: i = i+ 1.

5: Form Kc clusters by assigning all points zq, ∀q
into the clostest centroid.

6: Recompute the centroid of each cluster, u(l), ∀l.
7: until Σi = Σi−1 ⊲ We have the answer if the

centroids don’t change

8: return Σi

Notice that in the above algorithm, the initial centroids are

chosen randomly. Clusters produced vary from one iteration

to another. In every iteration, the centroid indicates the mean

of the points within the cluster. Specifically at step 5 of the

algorithm, the closest centroid is determined by measuring the

squared Euclidean distance, which is written, for given zq , by

d2e,l = ‖u(l) − zq‖
2, for l = 1, · · · ,Kc. (2)

Thus, the index of the closest cluster that zq will belong to

at each iteration becomes (l) = argminl d
2
e,l. Accordingly, at

step 6, if cluster (l) contains n(l) (N +1)-dimensional points

at a given iteration, then the centroid of cluster (l) is

u(l) =
1

n(l)

n(l)∑

j=1

zj,(l), (3)

where zj,(l) is the j-th point within the cluster (l).
In Fig. 2, an exemplary clustering set along with four cen-

troids is depicted, experimentally finding multiple boundaries

between clusters in the two-dimensional space. Notice that

once the iterations are over, the (N + 1)-th entries of u(l) at

each cluster (l) for l = 1, · · · ,Kc are re-computed to provide

an integer index of the modulation mode that appears most

likely within the cluster (l), denoted by u(l),N+1.
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Fig. 2: An exemplary clustering set for the Auto-MDM when

(N, k) = (2, 1), Mt ∈ {0, 2, 4}, and Kc = 4. For illustration,

only two dimensional sub-carrier vector is used: each ’star’

marker represents the centroid of each cluster.

C. Online Prediction Test for Auto-MDM

Given the clustering set of (u(1), · · · ,u(Kc)), we are now

ready to test a prediction for the modulation mode to be

applied into automated MDM in real-time. According to

A1-A2), refer to the energies of new uplink signals ỹu =
(|yu,1|

2, · · · , |yu,N |2) and the clustering set is applied to firstly

determine the closest cluster, whose index satisfies:

l∗ = argmin
l

‖ỹu − u(l),1:N‖2, (4)

where u(l),1:N is the vector of the first N entries of u(l)

– trained N dimensional channel energies– and l∗ denotes

the index of the cluster which produces the trained channel

energies closest to the given uplink energy observation. Based

on the choice of cluster l∗, we secondly predict u(l∗),N+1 to

be the best mode index for the next Auto-MDM transmission.

Note that u(l∗),N+1 represents the one appearing most often

within the cluster (l∗). Such prediction is highlighted in Al-

gorithm 2. Notice that the complexities of training and testing

for the proposed algorithms grow linearly as O(NKcQnit)
and O(NKc), respectively, where nit denotes the number of

iterations for K-means algorithm.

Algorithm 2 Prediction algorithm for Auto-MDM

1: Refer to the trained clustering set Σu =
(u(1), · · · ,u(Kc)).

2: Set t∗ = 1 as an initial modulation mode index.

3: procedure ONLINE PREDICTION(ỹu,Σu)

4: Non-coherent observation of a new ỹu.

5: Find l∗ = argminl ‖ỹu − u(l),1:N‖2.

6: Update t∗ = u(l∗),N+1 where t∗ ∈ {0, · · · , k T}.

7: return t∗ ⊲ The prediction for Auto-MDM is made

8: Prediction of the next modulation mode to mt∗ .

9: Adapt x based on mt∗ for the transmission.

Remarks: Notice that in such a real-time prediction,

the learning-driven MDM adaptation benefits from (i) non-

coherent automation with no multiple CSI at the transmitter;

(ii) low complexity adaptation based on the simple Euclidean

distance of real-valued energy vectors; and (iii) high flexibility

at runtime with the absence of pre-defined switching mode
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thresholds per group, as summarized in Algorithm 2. The am-

biguities of multi-dimensional fading channel coefficients and

background noises in the prediction for every MDM adaptation

are taken into account by performing the unsupervised training

of the multiclass clustering set. The accuracy of such learning-

driven automation of MDM is simulated in Section IV.

Notice that the size of Kc can influence the sensitivity of the

clustering and thus, the prediction performance of the Auto-

MDM. Precisely speaking, a smaller Kc, a larger distance

between each trained centroid and its cluster edge points. This

may lead to an ambiguity of the clustering. Therefore, the

prediction distortion can be influenced by the ambiguity of

the clustering set Σu, which can be indicated by the average

distance between zq and its cluster’s centroid, which is given:

DKc
= Q−1

Q∑

q=1

‖zq − u<q>‖
2, (5)

where u<q> ∈ (u(1), · · · ,u(Kc)) denotes the centroid of the

cluster to whom zq belongs. Therefore, at Kc making DKc

small enough, u<q>,N+1 approaches zq,N+1. The prediction

of u(l∗),N+1 improves at the linear complexity with Kc.

IV. SIMULATION RESULTS

We present simulation results for the proposed Auto-MDM.

Provided that Nc = 256 sub-carriers are divided into G = 64
groups of N = 4 sub-carriers, the proposed machine learning

trains the Auto-MDM only at the SNR of 10 dB, along with the

number of training dataset Q = 500 and the size of zq N+1 =
5. Training only at 10 dB helps to reduce signalling burdens

but faces the overfitting problem. Consider two cases of either

three or five possible modulation modes. Given N = 4 and

k = 1, 2, for example, there are five modes, among which a

choice of the first modulation mode (m0 = (4, 2, 0)) means no

transmission, while m1 = (4, 2, 2) and m2 = (4, 2, 4) produce

the data rate of p = 4 bits/cu and p = 6 bits/cu, respectively.

In Fig. 3 the average BEP of the Auto-MDM is depicted

for the two cases of either k = 1 or k = (1, 2), when Q =
500,Kc = 100, µ = 10−2, and nit = 7 at k = 1 and nit = 8
at k = (1, 2). For given Q = 500, the value for Kc = 100 is

numerically found to decrease (5), due to the trade-off between

sensitivity and complexity. For comparison, the existing IM-

OFDM methods are depicted. As seen in Fig. 3, the Auto-

MDM benefits from the capability of automatically adjusting

its best mode. For low and moderate SNRs, the average BEP

gets higher than µ because of the overfitting problem, being

still lower than the benchmarks at variable rate less than 6

bits/cu. At high SNRs, the Auto-MDM is equally likely to the

spread IM-OFDM because the prediction of m5 gets dominant

over others, obtaining 3 dB power gain over the CI-IM-OFDM

for the average BEP of 10−3. The ripples on the BEP results

from the varying rate.

V. CONCLUSIONS

We have proposed the unsupervised machine learning tech-

nique for Auto-MDM. Exploiting the proposed off-line train-

ing and clustering algorithms, the Auto-MDM autonomously
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Fig. 3: Average BEP of the Auto-MDM when N = 4, k =
(1, 2),Mt = (0, 2, 4), Q = 500, and Kc = 100. For compar-

ison, classical IM-OFDM [3], Coordinated Interleaving IM-

OFDM [5] and spread IM-OFDM [8] are depicted.

learned key exploitable physical layer features from the wire-

less propagation environment and was able to perform the non-

coherent adaptation to multi-dimensional variations of the sig-

nal energy vector. Unlike the existing methods that lack details

of surrounding contexts and rely on pre-defined modulation

rules, the Auto-MDM is flexible to program adaptation rules

and predicts the best modulation mode without the channel

information. The simulation results showed that the Auto-

MDM benefited from the potentials of machine learning.
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