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Security Optimization of Exposure Region-based

Beamforming with a Uniform Circular Array
Yuanrui Zhang, Roger Woods, Senior Member, IEEE, Youngwook Ko, Alan Marshall, Senior Member, IEEE,

and Junqing Zhang

Abstract—This paper investigates the impact of a uniform
circular array (UCA) in the context of wireless security via
exposure region (ER)-based beamforming. An improvement is
demonstrated for the security metric proposed in our previous
work, namely, the spatial secrecy outage probability (SSOP), by
optimizing the configuration of the UCA. Our previous work
focused on formalizing the SSOP concept and exploring its
applicability using a uniform linear array example. This paper
proposes the UCA as a superior candidate because it is more
robust against the effects of mutual coupling. The UCA’s SSOP
configuration is explored and a special expression is derived
from the general expression for the first time, and a closed-
form upper bound is then generated to facilitate analysis. By
carefully designing the UCA structure particularly the radius,
an SSOP optimization algorithm is derived and explored for
mutual coupling. It is shown that the information leakage to
eavesdroppers is reduced while the legitimate user’s received
signal quality is enhanced due to the use of beamforming.

Index Terms—Physical layer security, beamforming, exposure
region, spatial secrecy outage probability, uniform circular array.

I. INTRODUCTION

Wireless communication is vulnerable to passive eaves-

dropping due to its broadcast nature. Physical layer security

exploits the unique and unpredictable features of wireless

channels such as fading and has shown a great potential to

secure future wireless technologies [1], [2]. This technique

dates back to Wyner’s seminal work on the wiretap channel

model [3], which has triggered much fruitful research and

has been extended to various channel models, such as fading

channels and multiple antenna channels [4]–[7].

In the physical layer security scenario with legitimate users

wishing to carry out secure communication with eavesdroppers

observing the transmissions, the channel of the legitimate user

in Wyner’s wiretap channel model is required to be better than

that of the eavesdroppers, at least for a fraction of realizations

in the case of fading channels [4]. When the legitimate

transmitter is equipped with multiple antennas or an antenna

array, beamforming is an effective technique to enlarge the

difference of the legitimate users’ and eavesdroppers’ channel
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Fig. 1. The enclosed area surrounding Bob illustrates the ER created using
a circular antenna array

quality and can be achieved by exploiting the channel state

information (CSI) [8] or the location information [9].

Beamforming can be used to create physical regions within

which any user can correctly receive the message [10]–

[13]; the area was defined as an ‘exposure region’ (ER)

in [10]. However, these regions were not based on information-

theoretic parameters, such as secrecy capacity or secrecy

outage probability (SOP) [4], and thus lacked a quantitative

measure of the security level. On the other hand, some

information theoretical based methods lacked of the analysis

from a physical perspective, for example, the aspect of antenna

arrays [14]–[18].

In our previous work [19], we proposed an ER-based beam-

forming approach which led to the derivation of the spatial se-

crecy outage probability (SSOP) from an information-theoretic

perspective and links with the antenna array configuration.

Fig. 1 illustrates a transmitter (Alice) with an antenna array

that communicates to a legitimate user (Bob) in the presence of

eavesdroppers (Eves) with their location distribution following

a Poisson point process (PPP); this hints towards the utilization

of location in the Wyner’s channel model. The ER is defined

by the physical region where any PPP distributed Eve causes

secrecy outage to the legitimate transmission in the Rician

fading channel. In [19], the secrecy outage caused by PPP

distributed Eves is quantitatively measured by the SSOP that

is derived from the ER. The general expression of the SSOP

for any type of array is derived and the uniform linear array

(ULA) is used as an example to explore the properties of the

array parameters.

Based on the knowledge of the previous work, we advance

knowledge in this paper by optimizing the array parameters.

The uniform circular array (UCA) is chosen rather than

the ULA because of practical considerations, namely mutual

coupling. Mutual coupling is the electromagnetic interaction

between the antenna elements of an array and is always
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associated with multiple antenna techniques [20], [21]. In [22],

it has been shown that linear arrays are susceptible to mutual

coupling, thus rendering no effective optimum solution for

minimizing the SSOP. On the other hand, the UCA is less

affected and produces a more symmetric beam pattern around

360◦ [23]. Thus, it is chosen as the candidate to exhibit the

optimization of the array parameters, especially the radius.

We assume that Bob’s location information is available at

Alice, which is similar to that used in [9]. For example,

Bob could send his own location information to Alice, if

he wishes to be served by Alice with additional security

features. Alice exploits Bob’s location information to perform

the beamforming.

In fading channels, the security performance of the afore-

mentioned system, i.e., Alice using beamforming to enlarge

the difference between Bob’s and Eves’ channels, can be

expressed in terms of secrecy outage. In [24], the secrecy

outage probability (SOP) for a single Eve is given by the

probability that Eve’s channel capacity is higher than a certain

threshold; this is defined by the difference between the rate

of the transmitted codewords and that of the confidential

information, conditioned on Bob’s channel capacity being

larger than the rate of the transmitted codewords. In other

words, the ER is an enclosed area within the boundary where

Eve’s channel capacity is just equal to that threshold. As Eve’s

channel capacity is random due to fading, the boundary of the

ER shifts. In Fig. 1, the dashed curve depicts an ER boundary

for a deterministic channel, which resembles the shape of the

array pattern.

Intuitively, the smaller the ER is, the less possible that

Eves are located inside the ER, and therefore the more secure

the transmission will be. The overall secrecy outage caused

by PPP distributed Eves, i.e., SSOP, is calculated with the

aid of stochastic geometry theory, which links the security

performance with the UCA parameters. This paper builds

substantially on our previous work [19], [25] by investigating

the SSOP with respect to UCA parameters in Rician fading

channel and creating an optimization algorithm which min-

imizes the SSOP by adjusting the radius. In addition, the

impact of mutual coupling is examined on the SSOP using

a numerical simulation tool, i.e., NEC [26]. In essence, this

sets the scene for setting secure regions in wireless networks.

The main contributions of this paper are:

• Deriving the expression of the SSOP for the UCA and

the closed-form expression of its upper bound for the first

time, thus revealing the relationship between the security

performance and various parameters, especially the radius

of the UCA.

• Based on the expressions of the SSOP for the UCA,

the first investigation of the security performance of ER-

based beamforming for a Rician fading channel with

respect to radius is presented. Simulation and numerical

results are covered, which show how the behavior of

averaged SSOP varies with the radius.

• An optimization algorithm is derived based on the above

analysis, which enhances the security level by optimizing

the radius for all of Bob’s possible angles. The impact of

the mutual coupling with the radius is compared with

the optimization algorithm and shows that while the

algorithm in general is valid, the optimum value needs

to be calculated using numerical data.

The rest of the paper is organized as follows. In Section II,

the system model is introduced and the definitions of the ER

and the SSOP are presented. In Section III, the closed-form

expression of the upper bound is derived and from this the

impact of the radius of the UCA is analyzed. In Section IV, the

optimization problem is established and analyzed with respect

to the UCA array parameters; an algorithm is then created with

the aim of decreasing the SSOP. In Section V, simulation and

numerical results are given. Section VI concludes the paper.

II. EXPOSURE REGION AND SPATIAL SECRECY OUTAGE

PROBABILITY

A. System Model

As the paper builds on [19], the system model is the same

except for the UCA aspect. For this reason, the essential

symbols, concepts and derivations for the UCA are described

briefly to avoid repetition. Let’s assume that Alice is equipped

with an antenna array while Bob and Eves have a single

antenna. As shown in Fig. 1, Alice is located at the origin

point. For convenience, assume that the first element of the

UCA is on the positive x-axis. The coordinate is denoted by

z = (d, θ), and subscripts B and Ei are used to represent

Bob and the ith Eve respectively, ∀i ∈ N
+. A general user’s

location is referred to by z when no subscript is specified.

Eves are assumed to be non-colluding and distributed by a

homogeneous PPP, Φe with density λe [27].

On the transmitter side, the UCA has N elements

and radius R, and the array vector of UCA is s(θ) =
[e−jφ1(θ), ..., e−jφi(θ), ..., e−jφN (θ)]T , θ ∈ [0, 2π], where

φi(θ) = kR cos(θ − ψi), and ψi = 2π(i − 1)/N is the

angular location of the ith element [28] and k = 2π/λ,

where λ is the wavelength of the carrier signal. Pt is the

transmit power. Given Bob’s location information, θB , the

beamforming weight vector can be set as w = s(θB)/
√
N .

Assume a Rician channel with factor K. The channel gain

vector is given by

h(z) = d−β/2
(

√

K

K + 1
s(θ) +

√

1

K + 1
g
)

, (1)

where d−β/2 denotes the large-scale path loss with the

path loss exponent β of typical values between 2 and 6.

The line-of-sight (LOS) component is
√

K
K+1s(θ); the non-

LOS component is
√

1
K+1g, where g = [g1, ..., gi, ..., gN ]T ,

gi ∼ CN (0, 1), and the elements of g are independent.

Thus, the received signal at z is the sum of the beamform-

ing weighted signals and noise, which can be expressed by

r(z) =
√
Pth

T (z)w∗x + nW , where x is the modulated

symbol with unit power and nW is the additive white Gaussian

noise with zero mean and variance σ2
n.

For the ease of subsequent mathematical derivations, let h̃
be an equivalent channel factor, i.e.,

h̃ = hT (z)w∗ =

√

K

K + 1
G(θ, θB) +

√

1

K + 1
g, (2)
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where G(θ, θB) = s(θ)s∗(θB)/
√
N is an array factor for any

array type and g ∼ CN (0, 1). According to (2), |h̃|2 can be

decomposed as follows:

|h̃|2 =
KG2(θ, θB)

K + 1
+
g2Re + g2Im
K + 1

+
2
√
KG(θ, θB)

K + 1
gRe,

(3)

where gRe and gIm are the real and imaginary part of g,

so, gRe, gIm ∼ N (0, 12 ). For the UCA, the array factor was

derived in [28] and is given by

G(θ, θB) =
1√
N

N
∑

i=1

ejkR[cos(θB−ψi)−cos(θ−ψi)]. (4)

The channel capacity, denoted by C(z), is given by

C(z) = log2

(

1 +
Pt|h̃|2
σ2
nd

β

)

. (5)

For convenience, let CB = C(zB) and CEi = C(zEi) denote

the channel capacities of Bob and the ith Eve hereinafter. Due

to the fact that |h̃|2 scales with G(θ, θB), a proper design of

G(θ, θB) can improve CB while decreasing CEi.

B. Definitions for ER and SSOP for UCA

As in [24], let RB and Rs be the rate of the transmitted

codewords and the rate of the confidential information, re-

spectively. A secrecy outage event occurs when Eve’s channel

capacity is higher than the difference RB−Rs conditioned on

CB ≥ RB , and the probability of such an event is the SOP.

Note that here two cases are differentiated, i.e., secrecy outage

caused by any Eve conditioned on CB ≥ RB and data outage

given by CB < RB . In the latter case, it is typical outage

with no secrecy and thus no secrecy outage. Therefore, the

data outage is not part of the secrecy outage and is beyond

the scope of this paper. In practice, Bob can transmit a one bit

feedback to Alice indicating whether the condition CB ≥ RB
is satisfied.

The ER, denoted by Θ, is defined by the geometric region

only where Eves cause the secrecy outage event, i.e., CEi >
RB −Rs, ∃zEi ∈ Θ conditioned on CB ≥ RB . The boundary

of ER can be derived from C(z) > RB − Rs and is given

by D(θ) = (c0Pt|h̃|2)1/β , where c0 = [σ2
n(2

RB−RS − 1)]−1

is deterministic and is assumed to be constant in this paper.

Thus, D(θ) is random as |h̃|2 varies. When the channel is

deterministic, D(θ) is also deterministic, as shown by the

dashed curve in Fig. 1.

Let A denote the size of Θ. For PPP-distributed Eves, the

probability of m Eves being inside D(θ) can be given by [27]

Prob{m Eves in Θ} =
(λeA)

m

m!
e−λeA. (6)

Thus, the SSOP, denoted by p, can be defined by the proba-

bility that any Eve is located inside D(θ).

p = 1− Prob{0 Eve in Θ} = 1− e−λeA. (7)

Note that p is computed by the complementary of the prob-

ability that no Eve is inside Θ. In polar coordinates, (7) can

be derived by

p = 1− exp
[

− λe
2
c

2
β

0 P
2
β

t

∫ 2π

0

(|h̃|2) 2
β dθ

]

. (8)

The smaller p is, the more secure the transmission to Bob is.

Due to the fact that h̃ is random channel fading, it is more

interesting to study the expectation of p in (8), which reflects

the averaged SSOP p̄,

p̄ = E|h̃|[p]. (9)

The term p̄ in (9) can be expressed by

p̄ =1−
∫ ∞

−∞

∫ ∞

−∞
exp

{

− λe
2
c

2
β

0 P
2
β

t

∫ 2π

0

[KG2(θ, θB)

K + 1

+
x2 + y2

K + 1
+

2
√
KG(θ, θB)

K + 1
x
]

2
β

dθ
}e−(x2+y2)

π
dx dy,

(10)

Notice that G(θ, θB) is a general array factor expression. For

the UCA, p and p̄ are obtained by substituting (4) into (8) and

(10).

C. An Optimization Problem

The focus of this paper is to increase the security level of

the transmission from Alice to Bob, i.e., reducing p̄. To this

end, p̄ is first analyzed against the factors in (10). Assume that

the noise variance σ2
n, channel factors β and K, the security

related parameters RB and Rs and the density of Eves λe are

fixed. The remaining factors are the transmit power Pt, the

array factor G(θ, θB) and Bob’s location (dB , θB). Thus, an

optimization problem can be expressed by

min p̄ s.t. for all dB , θB (11)

To minimize p̄, the interrelationship between parameters

related to Alice, i.e., Pt and G(θ, θB), and Bob’s location

(dB , θB) should be analyzed. Note that dB does not appear in

(10) and Pt has a monotonic relationship with p̄. In addition,

the impact of Pt and G(θ, θB) on p̄ are independent according

to (10). In this paper, when studying the impact of G(θ, θB),
Pt and dB will be not be included.

G(θ, θB) in (4) depends on the array parameters N and

R as well as Bob’s angle θB . As the number of antennas N
is normally fixed for a certain UCA, the impact of R will

be mainly discussed against θB . Due to the reflection and

rotation symmetry of the UCA, the shape of G(θ, θB) also has

reflection and rotation symmetry regarding θB . An example of

G(θ, θB) with θB = 0, π4 and N = 8 is shown in Fig. 2. As

the first element of the UCA lies on the positive x-axis, the

shape of G(θ, θB) for θB = π
4 can be obtained by shifting the

shape for θB = 0 by π4 , and vice versa. At the same time, the

two shapes are symmetric regarding to θB = π
8 . In general,

G(θ, θB) at ±(θB ± 2π/N) are of the same shape. Therefore,

it suffices to study G(θ, θB) only in θB ∈ [0, πN ] instead of

[0, 2π].
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Fig. 2. G(θ, θB) for θB = 0 and θB = π
4

. N = 8 and R = 0.8λ.

The expression of p̄ in (10) is complex and can be calculated

numerically. However, it is not tractable to obtain in closed-

form expression, except for the deterministic channel when

β = 2. Therefore, an upper bound expression for p̄, denoted

by p̄up, should be derived in closed-form for UCA in order

to facilitate detailed theoretical analysis. Notice that for other

array types, the method of analyzing p̄ via closed-from ex-

pression of p̄up still works. If closed-form expressions of p̄up
do not exist, appropriate approximations or numerical results

can be used based on the particular form of given G(θ, θB).

III. CLOSED-FORM EXPRESSION FOR THE UPPER BOUND

FOR SSOP

A. Derivation of the Upper Bound for UCA

Firstly, a general upper bound is briefly introduced as

follows, based on which the particular upper bound for UCA

can be derived. For a given λe and K, p̄up can be derived

using Jensen’s inequality.

p̄up = 1− exp
{

− λeπ
[

c0Pt
KA0 + 2π

2π(K + 1)

]
2
β
}

, (12)

where A0 denotes the pattern area and is given by,

A0 =

∫ 2π

0

G2(θ, θB) dθ. (13)

The derivation is described in [19]. According to (12), p̄up is

monotonically increasing with A0 for any K and β. Therefore,

p̄up can be analyzed via A0.

Notice that the expression of A0 in (13) contains G(θ, θB)
which is a general expression. To obtain the particular ex-

pression for the UCA, the expression of A0 needs to be

determined. We can isolate θ to solve the integral in (4).

G2(θ, θB) =
1

N

∑

i,j

ejkR[cos(θB−ψi)−cos(θB−ψj)] (14)

·e−jkR[cos(θ−ψi)−cos(θ−ψj)],

where
∑

i,j represents
∑N
i=1

∑N
j=1 and cos(θ−ψi)−cos(θ−

ψj) can be further derived by

cos(θ − ψi)− cos(θ − ψj) (15)

=2 sin(θ − i+ j − 2

N
π) sin(

i− j

N
π).

Let Wi,j = 2 sin( i−jN π) and Zi,j =
i+j−2
N π. Substituting (15)

into (14), G2(θ, θB) can be derived as

1

N

∑

i,j

ejkRWi,j sin(θB−Zi,j) · e−jkRWi,j sin(θ−Zi,j). (16)

According to Jn(x) =
1
2π

∫ π

−π e
j(nτ−x sin τ)dτ , where Jn(x) is

the Bessel function of the first kind with order n, the following

integration can be derived.
∫ 2π

0

e−jkRWi,j sin(θ−Zi,j) dθ

=

∫ 2π−Zi,j

−Zi,j

ej[0·τ−kRWi,j sin τ ] d(τ + Zi,j)

=

∫ π

−π
ej[0·θ−kRWi,j sin τ ] dτ

=2πJ0(kRWi,j) (17)

Note that in the second step, the upper and lower limits can be

transformed to π and −π, because sin τ is a periodic function

with a period of 2π.

Combining (16) and (17), A0 in (13) can be written as

A0 =
2π

N

∑

i,j

J0(kRWi,j)e
jkRWi,j sin(θB−Zi,j). (18)

The double summation of Bessel functions in (18) is in-

tractable to analyze. In the following, A0 will be further

simplified. Let A0,i,j denote each summation term in (18),

A0,i,j =
2π

N
J0(kRWi,j)e

jkRWi,j sin(θB−Zi,j). (19)

It is deduced that Wi,j = −Wj,i and Zi,j = Zj,i. Considering

that Jn(−x) = (−1)nJn(x) and J0(x) is a real number, it can

be deduced that A0,i,j = A∗
0,j,i. In addition, it can be shown

from the expression of Wi,j and Zi,j that Wi,j+N = −Wi,j .

Similarly, sin(θB −Zi,j+N ) = − sin(θB −Zi,j). Thus, it can

be determined found that A0,i,j = A0,i,j+N .

A table of A0,i,j is shown in Fig. 3 to illustrate how to use

the previous properties to simplify the summation of A0 in

(18). For N = 4, the table is extended to j = 8. As A0,i,j =
A0,i,j+N , the blue region is equivalent to the green region.

Instead of adding Ai,j for i, j from 1 to N , the summation

can now be executed diagonally. For convenience, let n = i−j.
Then, Wn = Wi,j = 2 sin( nN π). The terms A0,i,j on the red

diagonal lines in the table have the same Wn. In the table,
N
π Zi,j is allocated according to their indices i and j. Given

n = i− j, it can be derived that

Zn,i = Zi,j =
i+ j − 2

N
π =

2i− n− 2

N
π. (20)

Thus, it can be derived that

A0,n,i = A0,i,j =
2π

N
J0(kRWn)e

jkRWn sin(θB−Zn,i). (21)
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extened table: j > 4

2
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N

ji
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1� n 2� n 3� n0 n

1 2 3 4 5 6 7 8 

0 1 2 31

1 2 3 4 52

2 3 4 5 6 73

3 4 5 6 7 8 94

jin � 

j
i

Fig. 3. Table for Zi,j , N = 4.

A0 is the summation of all elements in the original table

(i.e., i, j = 1, ..., 4). Because A0,i,j+N = A0,i,j , the calcula-

tion of A0 can be executed by replacing the lower triangle in

the original table (i.e., i > j) with the lower triangle in the

extended table (i.e., i > j −N ). In the new formation of A0,

which is a parallelogram table, the summation can be carried

out along the diagonal lines from n = 0 to n = −(N − 1).
For any n, the summation of A0,n,i includes N terms with

Zn,i. Thus, (18) can be converted into

A0 =

N
∑

i=1

N
∑

j=1

A0,i,j =

−(N−1)
∑

n=0

N
∑

i=1

A0,n,i

=

−(N−1)
∑

n=0

N
∑

i=1

2π

N
J0(kRWn)e

jkRWn sin(θB−Zn,i)

=
2π

N

−(N−1)
∑

n=0

J0(kRWn)
N
∑

i=1

ejkRWn sin(θB−Zn,i). (22)

According to Jacobi-Anger expansion ejα sin γ =
∑∞
m=−∞ Jm(α)ejmγ , (22) can be further derived by

(23) at the top of the following page.

When m = lN , l ∈ Z, ejπ
m
N

(n+2) = ejlnπej2πl = ejlnπ

and

N
∑

i=1

e−j2π
m
N
i =

N
∑

i=1

e−j2πli = N. (24)

When m 6= lN ,

N
∑

i=1

e−j2π
m
N
i = e−j2π

m
N
1− e−j2π

m
N
N

1− e−j2π
m
N

= 0. (25)

Thus, it can be derived that

A0 =
2π

N

−(N−1)
∑

n=0

J0(kRWn)
∞
∑

l=−∞
JlN (kRWn)e

jlNθBejlnπN

= 2π

−(N−1)
∑

n=0

J0(kRWn)

∞
∑

l=−∞
JlN (kRWn)e

jlNθB (−1)ln

= 2π

N−1
∑

n=0

J0(−kRWn)

∞
∑

l=−∞
(−1)−lnJlN (−kRWn)e

jlNθB

= 2π

N−1
∑

n=0

J0(kRWn)

∞
∑

l=−∞
(−1)ln+lNJlN (kRWn)e

jlNθB .

(26)

Substituting (26) in (13), the closed-form expression for p̄up in

(12) can be obtained. Compared to (13), the expression of A0

in (26) consists of a finite summation of J0(·) and an infinite

summation of JlN (·), which can provide asymptotic analysis.

B. Impact of R on A0

As discussed in Section II-C, the impact of R will be used

as a starting point to formulate the optimization problem. In

the low region of x, the Bessel function JlN (x) in (26) is

negligible for high order lN , i.e., lN ≫ 1. Let x0 denote

the upper limit of the range x ∈ [0, x0] where JlN (x) is

negligible for certain lN . Then, the specific value x0 depends

on the order lN . As the order lN increases, x0 increases and

eventually exceeds the value of 2kR, which is the upper limit

of x = KRWn in (26) for a fixed R. Once x0 becomes larger

than 2kR, all JlN (x) for l ≥ 1 are negligible in the range

(0, 2kR]. Thus, for sufficiently large N , A0 in (26) can be

approximated by

A0 ≈ 2π
N−1
∑

n=0

J2
0 (kRWn). (27)

The asymptotic behavior of A0 versus R can be analyzed

through (27). As shown in the upper plot in Fig. 4, when

n = 0, J0(kRW0) = 1, because W0 = 0 and J0(0) is a

constant that is irrelevant to R. When n 6= 0, J0(kRWn)
gradually decreases with some fluctuation as R increases,

which is determined by the nature of J0(·). Notice that in the

asymptotic expression in (27), the angle θB is neglected. When

N is not large enough, the term JlN (kRWn)e
jlNθB also needs

to be considered. As Jn(x) decreases and approaches zero

with different convergence speed, the summation of a series of

Bessel functions, i.e., A0, in general decreases and approaches

a certain value as R increases. Due to the difference in the

converging speed of JlN (kRWn), there are some fluctuations.

An example of A0 versus R is shown in the lower plot

in Fig. 4 where N = 8 and θB = 0◦. It can be seen

that A0 fluctuates as R increases, because the curve is a

superposition of JlN (kRWn) with different orders lN . Thus,

in a local region, e.g., R < 2λ, the minimum value does not

necessarily correspond to a large or small R, which leads to

the optimization problem for R.

IV. OPTIMIZATION ALGORITHM

A. Refined Optimization Problem

As mentioned in Section III-B, R can be properly designed

according to θB to achieve a local minimum value in a certain

range of R. According to Section II-C, dB is not involved in

the expression of p̄. Thus, the optimization problem can be

solved by optimizing R according to θB .

It is worth noticing that although the closed-form expression

of p̄up provides an asymptotic analysis on the impact of R,

it does not provide accurate results for the optimum value for

R. As it is intractable to analyze the expression of p̄ in (10),

we will use numerical results to determine this.

Examples of p̄ versus R for different θB are shown in Fig. 5

where N = 8. For simplicity, let K → ∞ and β = 2, i.e., the
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A0 =
2π

N

−(N−1)
∑

n=0

J0(kRWn)

N
∑

i=1

∞
∑

m=−∞
Jm(kRWn)e

jm(θB−Zn,i)

=
2π

N

−(N−1)
∑

n=0

J0(kRWn)

∞
∑

m=−∞
Jm(kRWn)e

jmθB

N
∑

i=1

e−jmZn,i

=
2π

N

−(N−1)
∑

n=0

J0(kRWn)

∞
∑

m=−∞
Jm(kRWn)e

jmθBejπ
m
N

(n+2)
N
∑

i=1

e−j2π
m
N
i. (23)
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Fig. 4. Upper plot: Examples of J0(kRWn) versus R. Lower plot: A0 versus
R. N = 8, θB = 0◦.

channel is degraded to a free-space channel. More results for

Rician fading channel will be provided in Section V-A. For the

purpose of MATLAB simulation, the value of R is taken by

a step of 1 cm in the range [0.4λ, 2λ]. Typical values of θB ,

i.e., θB = 0◦, 10◦, 20◦, are taken for the UCA with N = 8.

Fig. 5 depicts the fluctuating behavior of p̄ with respect to R
for different values of θB . It can be seen that the curves for

different θB vary. Therefore, for each θB , the local minimum

of p̄ in the range R ∈ [0.4λ, 2λ] is given by a different value

of R. This suggests that by varying θB , a different R should

be chosen in order to achieve a minimum p̄. However, this is

not practical because R is usually predefined for an existing

UCA.

Since R can only be a particular value, the optimum value

Ropt needs to pre-designed. To this end, the minimum mean

error is used to find Ropt in a certain range of R that produces

the minimum p̄ for all possible θB ∼ U(0, 2π). To establish the

cost function, imagine that R is adjustable, which provides the

hypothetical function of p̄min with respect to θB . Notice that

the value of p̄min for each θB is, in fact, given by a different

value of R. To find Ropt, let the mean error, denoted by err(R),
be the mean value of the difference between p̄ and p̄min over

the range θB ∈ [0, 2π],

err(R) = EθB [p̄− p̄min]. (28)

Note that the mean error is used instead of the mean square

R/λ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

p̄

×10-3

2

2.5

3

3.5

4

θB = 0
◦

θB = 10
◦

θB = 20
◦

Fig. 5. p̄ versus R for different values of θB , N = 8, Pt/σ2
n = 15 dB,

RB = 3.4594 bps/Hz, Rs = 1 bps/Hz, λe = 1× 10−4.

error because p̄− p̄min is always non-negative. Thus, Ropt can

be found by

Ropt = argmin
R

err(R). (29)

(29) can be converted into the following expression, the

derivation of which is in Appendix A.

Ropt = argmin
R

¯̄p, (30)

where ¯̄p is the averaged p̄ over Bob’s angles and is defined by

¯̄p =
1

2π

∫ 2π

0

p̄ dθB . (31)

B. Analysis and Implementation of Optimization Algorithm

Substituting the expression of p̄ in (10) into (31), the

expression of ¯̄p can be obtained,

¯̄p = 1− 1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ 2π

0

exp
{

− λe
2
(c0Pt)

2
β

∫ 2π

0

[KG2
C(θ, θB)

K + 1
+
x2 + y2

K + 1
+

2
√
KGC(θ, θB)

K + 1
x
]

2
β

dθ
}

e−(x2+y2)

π
dθB dx dy. (32)

Although (32) can be numerically calculated, it is intractable

to analyze. Thus, the upper bound, denoted by ¯̄pup, is required

for theoretical analysis.
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Fig. 6. ¯̄p versus R for all θB , N = 8, Pt/σ2
n = 15 dB, RB =

3.4594 bps/Hz, Rs = 1 bps/Hz, λe = 1× 10−4.

Theorem 1:

¯̄pup = 1− exp
{

− λeπ
[ c0KĀ0

2π(K + 1)
+

c0
K + 1

]
2
β
}

, (33)

where Ā0 is the expectation of A0 over θB and is given by

Ā0 =
1

2π

∫ 2π

0

A0 dθB = 2π
N−1
∑

n=0

J2
0 (kRWn). (34)

The proof of Theorem 1 is given in Appendix B. It can be seen

that (34) has a similar composition to A0 in (26). Therefore,

Ā0 in general decreases with some fluctuations as R increases.

Due to the monotonically increasing relationship between ¯̄pup
and Ā0, it can be deduced that ¯̄p decreases in general with

some fluctuations as R increases.

Because ¯̄p fluctuates in a certain range of R, there must

exist at least one local minimum. Numerical results are used

to find Ropt in (30). For example, choosing N = 8 and R ∈
[0.4λ, 2λ], the results of ¯̄p shown in Fig. 6 are obtained where

the channel is chosen as a free-space channel. It can be seen

that there is more than one local minimum. In the range R ∈
[0.4λ, 2λ], Ropt = 1.76λ gives the minimum ¯̄p as 2.4× 10−3.

Compared to the maximum value of ¯̄p that is 3.6 × 10−3 in

the same range, there is a 33% reduction in the value of ¯̄p.

This indicates that by choosing an appropriate value of R, the

averaged SSOP can be dramatically reduced.

The numerical implementation of the algorithm is shown in

Algorithm 1. The continuous ranges of R, θB , θ are discretized

with steps of ∆R, ∆θB and ∆θ, respectively. In addition, a

limit value Q is used when calculating integral from −∞ to

∞ in (32). For a normal distribution, a realistic value is set

for Q, namely 3. Let NR, NθB , Nθ and NQ be the number of

samples for R, θB , θ and the integration range Q respectively,

which determines the iteration numbers.

There are two main steps in the optimization algorithm.

The first step is from line 3 to 15, where ¯̄p for a range of

discretized R is calculated. Notice that the integrals in (32)

are implemented via iterated summation from line 6 to 15. The

second step section is from line 16 to 21, where the minimum

Algorithm 1 Optimization of R for fixed N

INPUT: σ2
n, β, K, RB , Rs, λe, λ, Pt, N

INPUT: R1, R2, ∆R; θB1, θB2, ∆θB ; θ1, θ2, ∆θ; Q, ∆Q
OUTPUT: Ropt

1: discretize R, θB , θ, Q
2: calculate NR, NθB , Nθ, NQ and c0
3: create an 1×NR empty vector of ¯̄p with index idx
4: for each value of R ∈ [R1, R2], θB ∈ [θB1, θB2] do

5: S1 = 0
6: for each value of x, y ∈ [−Q,Q] do

7: S2 = 0
8: for each value of θ ∈ [θ1, θ2] do

9: S2 = S2+

10:

[

KG2(θ,θB)+x2+y2+2
√
KG(θ,θB)x

K+1

]
2
β

∆θ

11: end for

12: S1 = S1 + exp{−λe

2 (Ptc0)
2
β S2} e

−(x2+y2)

π ∆Q2

13: end for

14: ¯̄p(idx) = ¯̄p(idx) + (1− S1)/NθB
15: end for

16: initialization: Ropt = R1, ¯̄pmin = ¯̄p(1)
17: for each value of R ∈ [R1, R2] do

18: if ¯̄pmin > ¯̄p(idx) then

19: reassignment: Ropt = R, ¯̄pmin = ¯̄p(idx)
20: end if

21: end for

value ¯̄pmin in the vector ¯̄p is searched to find Ropt which is

the output of the optimization algorithm.

The accuracy of the result increases with number of sam-

ples; however, the compuational complexity also increases.

The running time of the numerical implementation is approx-

imately O(NRNθBN
2
QNθ). There is no specific restriction

on the sampling interval as long as the chosen resolution

generates a reasonable value.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we first provide simulation results for p̄ in

(10) and then numerical results for ¯̄p in (32) over the Rician

channel with a wider range of values of K and β. Next, the

numerical results of the upper bounds p̄up and ¯̄pup are shown

in comparison with p̄ and ¯̄p to demonstrate the validity of the

upper bounds. In the end, we investigate a common problem

in antenna array, i.e., the mutual coupling and its effect on p̄.

A. More Results for Rician Fading Channels

In Section IV-B, numerical results are used to show the

properties of p̄ versus R. Firstly, the simulation results are

provided to validate the expressions of p̄ in (10) that is derived

from the expression in (9) which contains Gaussian random

variables via |h̃2| according to (3). We choose K = 10 and

β = 3 as an example to compare the numerical results based

on the expression in (10) and the simulation results based

on the expression in (9). We ran Monte Carlo simulations to

generate 1 × 104 samples of gRe and gIm in (3). As stated

in Section II-C, the noise variance σ2
n, channel factors β and
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Fig. 7. Simulation and numerical results for p̄ versus R; K = 10, β = 3,
θB = 0◦ Pt/σ2

n = 15 dB, RB = 3.4594 bps/Hz, Rs = 1 bps/Hz, λe =
1× 10−4.

K, the security related parameters RB and Rs and the density

of Eves λe are assumed to be constant; the transmit power

Pt does not affect the impact of the array parameters to the

SSOP. In this section, Pt and σ2
n are set to −65 dBm and

−80 dBm, respectively. The rate of the transmitted codewords

RB is set to 3.4594 bps/Hz which corresponds to a received

SNR of 10 dB for Bob. The rate of the confidential information

Rs is set to be smaller than RB , e.g., 1 bps/Hz as used in [18].

The density of Eves is set to 1×10−4 which means 100 Eves

in 1000 × 1000 m2. Finally, the radius of the UCA is set

to [0.4λ, 2λ], which corresponds to [5, 25] cm for 2.4 GHz

frequency. For comparison, a commercial uniform circular

array FCI-3710 developed by Fidelity Comtech has 15.24 cm

radius [29]. The simulation and numerical results plotted in

Fig. 7 show a good match between them, which verifies the

validity of the expressions in (10).

Secondly, a wider range of K and β for Rician channel

will be examined. We choose typical value of β = 3, 5 and

K = 1, 10. The results of ¯̄p is calculated according to (32). As

shown in Fig. 8, all curves exhibit similar trend with regard to

R to the curve in Fig. 6 where K → ∞ and β = 2. In addition,

for both curves in Fig. 8, the optimum value Ropt in the range

R ∈ [0.4λ, 2λ] is 1.76λ. It means that the optimum value of

R in a certain range is valid for Rician channels with different

K and β.

B. Numerical Results of the Upper Bounds

Next, closed-form expressions of p̄up and ¯̄pup are derived

in Section III-A and Section IV-B, respectively, in order to

facilitate analysis. Here, some numerical results are shown to

demonstrate that the upper bounds can reflect the fluctuating

behavior of p̄ and ¯̄p against R.

In Fig. 9, the results for p̄ and p̄up versus R are shown for

typical values of β = 3 and K = 1, 10. It can be seen that

the curves of p̄up have a similar shape to the curves of p̄, and

the value of p̄up is close to p̄up. This suggests that the upper

bound can very well reflect the property of p̄.

R/λ
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Fig. 8. Numerical results for ¯̄p versus R; Pt/σ2
n = 15 dB, RB =

3.4594 bps/Hz, Rs = 1 bps/Hz, λe = 1× 10−4.

R/λ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

p̄
a
n
d
p̄ u

p

×10-3

1

1.2

1.4

1.6 p̄,K = 10

p̄up,K = 10

R/λ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

p̄
a
n
d
p̄ u

p

×10-3

1.1

1.2

1.3

1.4 p̄,K = 1

p̄up,K = 1

Fig. 9. Numerical results for p̄ and p̄up versus R; β = 3, Pt/σ2
n = 15 dB,

RB = 3.4594 bps/Hz, Rs = 1 bps/Hz, λe = 1× 10−4.

In Fig. 10, the results for ¯̄p and ¯̄pup versus R are shown for

typical values of β = 3 and K = 1, 10. It can be seen that the

curves for ¯̄p and ¯̄pup have a similar shape, and the values of
¯̄p and ¯̄pup are close to each other, which means that ¯̄pup is a

good upper bound.

C. Impact of Mutual Coupling

The mutual coupling is caused by energy absorption be-

tween proximate antennas and causes distortion to the array

factor G(θ, θB), and thus affects p̄ and the optimization

algorithm. In this paper, we choose the NEC tool [26] to build

a numerical model as an example to examine the impact of

the mutual coupling, although any analytical model will apply.

The NEC tool serves as a numerical method to calculate array

patterns that include the mutual coupling effect, and its results

are well accepted in the literature [30], [31].

An example shown in Fig. 11 illustrates the difference

caused by the mutual coupling for system configurations with

N = 8, R = 0.8λ, θB = 0◦. The array pattern with the mutual
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Fig. 10. Numerical results for ¯̄p and ¯̄pup versus R; β = 3, Pt/σ2
n = 15 dB,

RB = 3.4594 bps/Hz, Rs = 1 bps/Hz, λe = 1× 10−4.

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0

w/o mutual coupling
with mutual coupling

Fig. 11. Example of theoretical and NEC simulated patterns, N = 8, R =
0.8λ, θB = 0◦.

coupling is calculated by the NEC simulation. It can be seen

that there is not much difference in the main beam, but with

deviation in the sidelobes.

To measure the array pattern distortion caused by the mutual

coupling, Pearson’s correlation coefficient, denoted by ρ, is

adopted. It measures the correlation between two variables X
and Y , as defined by

ρ =
cov(X,Y )

std(X) · std(Y )
, (35)

where cov(·, ·) stands for the covariance and std(·) the stan-

dard deviation. ρ between the theoretical array pattern and

the simulated array pattern via NEC tool can be calculated to

quantify their similarity. The larger ρ is, the more alike two

patterns are.

The patterns of the UCA with a range of radius are

simulated in NEC. For N = 8, typical values are chosen,

i.e., θB = 0◦, 10◦, 20◦ in the range R = [0.4λ, 2λ]. The

correlation coefficient, ρ, between the theoretical and NEC

R/λ
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ρ

0.8

0.85

0.9

0.95

θB = 0
◦
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◦
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◦

Fig. 12. Correlation coefficients between theoretical and NEC simulated
patterns, N = 8, Pt/σ2

n = 15 dB, RB = 3.4594 bps/Hz, Rs = 1 bps/Hz,
λe = 1× 10−4.

patterns is calculated and the results are shown in Fig. 12.

It can be seen that ρ is generally above 0.8 in the range of

R = [0.4λ, 2λ], except for R = 0.48λ. This shows that the

mutual coupling does not cause a significant distortion to the

pattern of UCA. The high correlation between the theoretical

and NEC patterns indicates that the optimization algorithm,

which is based on empirical results on the theoretical patterns,

can still work when considering the mutual coupling.

On the other hand, there exists some differences between the

theoretical and NEC patterns, which means that when calculat-

ing Ropt in the numerical implementation of the optimization

algorithm, the NEC simulation data instead of the theoretical

data should be used. To compare with Fig. 5, the same array

parameters are adopted, i.e., N = 8 and R ∈ [0.4λ, 2λ],
and p̄ with the mutual coupling is calculated based on the

NEC simulation data. The results are shown in the upper

plot in Fig. 13. Compared to Fig. 5, it is not hard to notice

the similarity between the theoretical and NEC simulated

curves for the same θB , which can be explained by the high

correlation between them, as shown in Fig. 12.

Because of the differences between the theoretical and NEC

simulated results, ¯̄p in Fig. 6 needs to be re-calculated based

on the NEC simulation data, in order to find Ropt. The lower

plot in Fig. 13 shows ¯̄p based on the NEC simulation data

in comparison with the theoretical curve. It can be seen that

the optimum value for the NEC simulation data is Ropt =
1.6λ compared to Ropt = 1.76λ for the theoretical result. By

choosing Ropt = 1.6λ, the value of ¯̄p is reduced dramatically

by about 59% compared to the maximum value of ¯̄p at R =
0.4λ.

VI. CONCLUSIONS

This paper investigated the security performance of ER-

based beamforming system with the UCA in the presence of

PPP distributed Eves in Rician fading channel. With the aid

of the expression of the averaged SSOP and the closed-form
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Fig. 13. Upper plot: p̄ versus R. Lower plot: ¯̄p versus R. N = 8, Pt/σ2
n =

15 dB, RB = 3.4594 bps/Hz, Rs = 1 bps/Hz, λe = 1× 10−4.

expression of its upper bound, an optimization algorithm with

regard to the radius was developed to minimize the SSOP.

This paper provides a mathematical relationship which allows

the radius to be optimized for a given UCA with a certain

number of elements. The optimization algorithm is still valid

for mutual coupling in practice, however, the optimum value

needs to be calculated based on the NEC simulation data. In

this work, it is assumed that Bob’s location is known by Alice

beforehand. In practice, there could be inaccuracy in Bob’s

location information at Alice, whether Bob sends his location

to Alice or Alice estimates Bob’s location. In future work,

it can be extended to include the impact of error in Bob’s

location when optimizing the array parameters in practice. We

will also extend our work considering random locations of

Bob.

APPENDIX A

CONVERSION OF OPTIMIZATION PROBLEM

Because θB ∼ U(0, 2π), err(R) can be calculated by

err(R) =
1

2π

∫ 2π

0

(p̄− p̄min) dθB . (36)

To find the minimum value of err(R), the zeros of the partial

derivative of err(R) with respect to R are calculated,

∂

∂R
err(R) = 0 (37)

⇒ ∂

∂R

1

2π

∫ 2π

0

(p̄− p̄min) dθB = 0 (38)

⇒ 1

2π

∫ 2π

0

(
∂

∂R
p̄− ∂

∂R
p̄min) dθB = 0. (39)

Because p̄min is a fixed value for certain θB and only depends

on θB , the partial derivative ∂
∂R p̄min = 0. Thus, it can be

derived that

∂

∂R
err(R) = 0 (40)

⇒ 1

2π

∫ 2π

0

∂

∂R
p̄ dθB = 0 (41)

⇒ ∂

∂R

1

2π

∫ 2π

0

p̄ dθB = 0 (42)

⇒ ∂

∂R
¯̄p = 0, (43)

where ¯̄p is the averaged SSOP over Bob’s angle and is defined

by

¯̄p =
1

2π

∫ 2π

0

p̄ dθB . (44)

Thus, we can obtain

Ropt = argmin
R

¯̄p. (45)

APPENDIX B

PROOF OF THEOREM 1

To obtain the upper bound ¯̄pup, two instances of Jensen’s

inequality will be used to derive p̄up.

E[eX ] ≥ eE[X], (46)

where X is a random variable. The equality holds if and only if

X is a deterministic value. The other one involved is expressed

by

E[X
2
β ] ≤ (E[X])

2
β , (47)

where X is a random variable and β ≥ 2. The equality holds

when β = 2 for any X .

The upper bound ¯̄pup can be derived based on p̄ ≤ p̄up.

Using (12), it can be derived that

¯̄p = EθB [p̄] ≤ EθB [p̄up]

= 1− EθB

[

exp
{

− λeπ
[ c0K

2π(K + 1)
A0 +

c0
K + 1

]
2
β
}]

.

(48)

Using (46) and (47), it can be derived that

1− EθB

[

exp
{

− λeπ
[ c0K

2π(K + 1)
A0 +

c0
K + 1

]
2
β
}]

(49)

<1− exp
{

− λeπEθB

[[ c0K

2π(K + 1)
A0 +

c0
K + 1

]
2
β
]}

(50)

≤1− exp
{

− λeπ
[ c0K

2π(K + 1)
EθB [A0] +

c0
K + 1

]
2
β
}

. (51)

The equality in (50) does not hold because θB is random in

this case. Then, ¯̄pup can be obtained by

¯̄pup = 1− exp
{

− λeπ
[ c0KĀ0

2π(K + 1)
+

c0
K + 1

]
2
β
}

, (52)

where Ā0 is the expectation of A0 over θB and is given by

Ā0 = EθB [A0] =
1

2π

∫ 2π

0

A0 dθB . (53)
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The above equation can be calculated from (26) by directly

solving the integral. Because
∫ 2π

0

ejlNθB dθB = 0, for l 6= 0 (54)

it can be obtained that

Ā0 = 2π
N−1
∑

n=0

J2
0 (2kR sin(

n

N
π)). (55)
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