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introDuCtion

Breast cancer is the second leading cause of cancer deaths 

in females in the developed countries.1 While screening 

mammography is the best available tool for early detection 

of cancer, sensitivity and specificity are lower than what 

is desirable,2 with false negative rates of 20–30% and false 

positive rates of about 10% reported in North America.3,4 

We seek to exploit perception of the “gist” of abnormality to 

improve performance.

The human visual system quickly extracts the global struc-

ture and statistical regularities from everyday scenes, 

allowing us to "get the gist" of our environment before 

selective attention captures the details.5 Anecdotal reports 

of experts, supported by eye-tracking and psychophysical 

measures, indicate that similar gist processing operations 

occur in the assessment of a mammogram6,7 and, indeed, in 

other medical image perception tasks.8 Radiological images 

can be thought of as a specialized class of scenes and radiol-

ogists are medical experts who have learned to apply the 

processes of visual cognition to these unusual scenes.9,10 

In a series of experiments, Evans and colleagues have 

demonstrated that expert radiologists can classify mammo-

grams as normal or abnormal at above chance levels after 

just 500 ms exposure.11 There may be two types of global 

processing. Kundel and Nodine propose that initial 

“global analysis” guides attention to lesions12 and, under 

some circumstances, observers can localize lesions after 

a 500 ms exposure.13 However, in the Evans et al studies, 

experts separate abnormal from normal images at above 

chance levels without an ability to localize the lesion.11 This 

non-localizable global gist signal represents a different type 
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objectives: After a 500 ms presentation, experts can 

distinguish abnormal mammograms at above chance 

levels even when only the breast contralateral to the 

lesion is shown. Here, we show that this signal of abnor-

mality is detectable 3 years before localized signs of 

cancer become visible.

Methods: In 4 prospective studies, 59 expert observers 

from 3 groups viewed 116–200 bilateral mammograms 

for 500 ms each. Half of the images were prior exams 

acquired 3 years prior to onset of visible, actionable 

cancer and half were normal. Exp. 1D included cases 

having visible abnormalities. Observers rated likelihood 

of abnormality on a 0–100 scale and categorized breast 

density. Performance was measured using receiver oper-

ating characteristic analysis.

results: In all three groups, observers could detect 

abnormal images at above chance levels 3 years prior 

to visible signs of breast cancer (p < 0.001). The results 

were not due to specific salient cases nor to breast 

density. Performance was correlated with expertise 

quantified by the number of mammographic cases read 

within a year. In Exp. 1D, with cases having visible action-

able pathology included, the full group of readers failed 

to reliably detect abnormal priors; with the exception of 

a subgroup of the six most experienced observers.

Conclusions: Imaging specialists can detect signals of 

abnormality in mammograms acquired years before 

lesions become visible. Detection may depend on exper-

tise acquired by reading large numbers of cases.

advances in knowledge: Global gist signal can serve as 

imaging risk factor with the potential to identify patients 

with elevated risk for developing cancer, resulting in 

improved early cancer diagnosis rates and improved 

prognosis for females with breast cancer.
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of signal of abnormality. Perhaps the clearest evidence for the 
existence of a non-localizable global gist signal is that it can be 
detected in the breast contralateral to the lesion where, of course, 
there is nothing to localize.14 This signal is not correlated with 
breast density nor is it based on asymmetry between left and 
right breasts.14

Of course, radiologists would never screen mammograms using 
just this global gist signal. However, if this global gist signal could 
be detected prior to onset of a visible lesion, it could serve as 
an imaging risk factor whose detection could modulate subse-
quent management of a patient. Consequently, we ask whether 
the global gist signal is detectable years before the cancer pres-
ents as a localized actionable mammographic lesion. In previous 
work, we have reported evidence that this is possible. Brennan et 
al15 found that radiologists were able to detect gist of cancer in 
mammograms years before there are any overt signs of cancer 
when these make up one-fifth of the cases examined. In the 
present study, our aim was to replicate and extend those findings, 
testing the viability of this signal in different reading conditions. 
Specifically, here we test whether the ability to detect the gist 
signal differs across different expert populations given different 
training and screening practices in the USA and UK.

MethoDs anD Materials

Stimuli and apparatus

The stimuli consisted of 116 (Experiments 1A–1C) and 200 
(Experiment 1D) bilateral, full-field digital mammograms. 
Mammograms of 1980 × 2294 pixels were downsized to 800 × 
1000 pixels to fit the computer display. Mammograms, drawn 
from 70 patients from Bradford (UK) Teaching Hospitals NHS 
Foundation Trust, were anonymized, adhering to ethical research 
governance standards. The 35 patients whose prior exams were 
used as "abnormal" cases, had histologically verified visible and 
actionable cancer. At the time of diagnosis, visible abnormalities 
were “subtle” masses and architectural distortions as determined 
by the independent radiologists who acquired the cases. The 
"abnormal" prior images did not contain visible, localized signs 
of cancer. The 58 “abnormal” images (29 mediolateral oblique 
(MLO) views, 29 craniocaudal (CC)) shown to observers, were 
acquired 3 years prior to the mammograms that had revealed 
visible and actionable cancer (Table 1). Thus, these “abnormal” 
images would have been considered “normal” mammograms at 
the time, since, of course, no one would have known that these 
patients would later develop breast cancer. The 58 abnormal 
cases were intermixed with 58 normal mammograms (29 MLO, 
29 CC), taken from patients who showed no sign of disease for at 
least 3 years after the images were acquired.

Experiment 1D included an additional 100 mammograms (50 
normal and 50 abnormal with visible cancerous lesions) taken 
from 100 patients. The abnormal mammograms were a mixture 
of obvious and subtle masses, architectural distortions and calci-
fications. The sets of abnormal and normal images consisted of 
25 MLO and 25 CC views. By mixing these cases of visible cancer 
with the priors from females who would later develop cancer, we 
could determine if the presence of visible disease on some cases 
would block detection of the gist of abnormality in the priors.

All the experiments were conducted on a Dell Precision™ M6500 

laptop using MATLAB R2012b. The experiment was displayed 

on a 17” screen at a viewing distance of 53 cm. The display 

monitor had a resolution of 1440 × 900 (Dell, Round Rock, 

Texas.) and a refresh rate of 85 Hz. In clinical practice, images 

would be presented on a monitor of higher resolution, but the 

benefits of a clinical grade monitor are minimal in a 500 ms 

exposure.

Observers and procedure

The four experiments had institutional review board approval, 

and each was conducted with a different sample of observers. 

All participants had normal or corrected-to-normal vision and 

gave informed consent. The observers in Exp. 1A and 1D were 

recruited at the Radiological Society of North America annual 

meeting (USA). While for Exp. 1B and 1C, observers were 

recruited at NHS Trust Hospitals in north of England (UK). The 

sample sizes for the experiments were dictated by the availability 

of the observers (Table 2).

Study participants in Experiment 1A were 21 attending radiolo-

gists (10 female; average age 46 years) recruited during the RSNA 

2016 meeting and all practicing in the USA. Study participants in 

Experiment 1B were 9 attending radiologists (8 female; average 

age 46 years), practicing and recruited in the UK. Study partic-

ipants in Experiment 1C were 11 female reading radiographers 

(non-MD) specializing in breast imaging (average age 46 years) 

primarily engaged in active case reading in the UK National 

Health Service Breast Screening Program. Study participants in 

Experiment 1D were 18 attending radiologists (9 female; average 

age 49 years) recruited during the RSNA 2017 meeting and all 

practicing in the USA.

Exp.1A–1C differed only in the composition of the expert 

observer group. All observers viewed the same images. Half were 

mammograms acquired 3 years prior to the mammograms that 

had showed visibly actionable abnormalities. The other half were 

priors of normal cases. Order of images was randomized for each 

observer. After three practice trials, participants completed two 

blocks of 116 experimental trials in which they viewed bilateral 

mammograms. On each trial (Figure  1), a fixation cross-ap-

peared in the center of the screen for 500 msec followed by a 

500 msec presentation of the images. After the brief presenta-

tion, observers saw a white outline of the previously presented 

breasts. Observers rated the likelihood of an abnormality on a 

scale from 0 (clearly normal) to 100 (clearly abnormal). In the 

second block of trials the observers gave a density rating on a 

4-point scale after another 500 msec presentation of the same 

images in a different random order. The scale was modeled on 

the BIRADS density scale (1, fatty; 2, scattered fibroglandular; 

3, heterogeneously dense; 4, extremely dense). Feedback was 

provided only for the three initial practice trials. We collected 

density scores in order to determine if abnormality scores were 

a proxy for density, a known risk factor for cancer. If our readers 

were going to base their abnormality score on an assessment of 

density, that assessment would have been based on their 500 

msec exposure to the images.
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Table 1. Specification about 58 abnormal cases whose prior mammograms acquired 3 years before any screen visible cancer was 
detected

Age at prior 

screening 

mammogram

Study 

reader had 

examinations 

for comparison 

when the prior 

was viewed

View of 

the prior 

presented

Lesion type 

when cancer 

detected 3 years 

later

Lesion 

size Pathology BIRAD Parenchymal density

65 YES CC MASS ILL DEFINED 35 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

64 YES MLO MASS, LOBULAR & 
SMOOTH

20 × 15 
mm

IDC, DCIS HETEROGENEOUSLY DENSE

64 NO MLO MASS ILL DEFINED 6 mm DCIS FATTY

63 1 YEAR EARLIER MLO MASS ILL DEFINED 35 mm ILC FATTY

70 3 YEARS EARLIER MLO MASS, IRREGULAR 14.5 mm DCIS FATTY

64 1 YEAR EARLIER MLO MASS OVAL & 
SMOOTH

8 mm IDC, DCIS FATTY

61 NO MLO MASS, IRREGULAR 11 mm IDC, DCIS FATTY

62 NO MLO ASYMMETRY 9 mm IDC, HETEROGENEOUSLY DENSE

70 YES CC MASS LOBULAR & 
IRREGULAR

9 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

62 NO MLO ASYMMETRY 10 mm IDC FATTY

66 NO MLO MASS IRREGULAR 
& DISTINCT

8.7 mm DCIS WITH 
MICROINVA-
SION

SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

63 NO CC ASYMMETRY 7 mm IDC SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

62 YES MLO FOCAL 
ASYMMETRY

4 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

58 NO MLO FOCAL 
ASYMMETRY

12 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

60 YES CC MASS IRREGULAR 17 mm IDC, DCIS FATTY

56 NO MLO MASS IRREGULAR 5 mm DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

51 NO MLO FOCAL 
ASYMMETRY

17 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

57 YES MLO MASS OVAL & 
SPECULATED;

16 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

57 NO MLO MASS OVAL & 
INDISTINCT

6 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

65 YES MLO MASS IRREGULAR 20 mm IDC, DCIS EXTREEMLY DENSE

57 NO MLO MASS ROUND & 
IRREGULAR

7 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

47 NO MLO ASYMMETRY 4 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

74 NO MLO FOCAL 
ASYMMETRY

13 mm INVASIVE 
WITH MIXED 
FEATURES

SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

75 3 YEARS EARLIER MLO MASS IRREGULAR 17 mm INVASIVE 
WITH MIXED 
FEATURES

HETEROGENEOUSLY DENSE

70 2 YEARS EARLIER MLO MASS ROUND & 
INDISTINCT

6 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

45 1 YEAR EARLIER MLO MASS ROUND & 
INDISTINCT

30 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

(Continued)
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Age at prior 

screening 

mammogram

Study 

reader had 

examinations 

for comparison 

when the prior 

was viewed

View of 

the prior 

presented

Lesion type 

when cancer 

detected 3 years 

later

Lesion 

size Pathology BIRAD Parenchymal density

68 1 YEAR EARLIER CC ARCHITECTUAL 
DISTORTION

15 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

56 2 YEARS EARLIER MLO FOCAL 
ASYMMETRY

10 mm DCIS WITH 
MICRO-
INVASION

HETEROGENEOUSLY DENSE

77 2 YEARS EARLIER MLO MASS IRREGULAR 11 mm DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

76 NO MLO MASS 17 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

64 1 YEAR EARLIER MLO MASS IRREGULAR 15 mm INVASIVE 
WITH MIXED 
FEATURES, 
DCIS

HETEROGENEOUSLY DENSE

45 NO MLO ASYMMETRY 15 mm DCIS WITH 
MICRO-
INVASION

FATTY

66 1 YEAR EARLIER MLO MASS OVAL & 
IRREGULAR

27 mm IDC, DCIS HETEROGENEOUSLY DENSE

63 2 YEARS EARLIER MLO ASYMMETRY 16 mm INVASIVE 
MIXED 
FEATURES, 
DCIS

HETEROGENEOUSLY DENSE

58 1 YEAR EARLIER MLO ASYMMETRY 13 mm ILC SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

69 NO CC ARCHITECTUAL 
DISTORTION

6 mm IDC SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

55 2 YEARS EARLIER CC CALCIFICATION 9 mm DCIS HETEROGENEOUSLY DENSE

52   1 & 2 YEARS 
EARLIER

CC ARCHITECTUAL 
DISTORTION

20 mm IDC, DCIS FATTY

67 NO CC ARCHITECTUAL 
DISTORTION

13 mm DCIS HETEROGENEOUSLY DENSE

39 1 YEAR EARLIER CC ASYMMETRY 10 mm INVASIVE 
MIXED 
FEATURES, 
DCIS

FATTY

67 1 & 2 YEARS 
EARLIER

CC MASS IRREGULAR 15 mm IDC, DCIS FATTY

48 5 YEARS EARLIER CC MASS IRREGULAR 12 mm DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

77 NO CC 2 MASSES OVAL & 
IRREGULAR

23 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

77 1 & 2 YEARS 
EARLIER

CC MASS OVAL & 
IRREGULAR

12 mm IDC, DCIS FATTY

43 2 YEARS EARLIER CC MASS IRREGULAR 48 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

68 2 YEARS EARLIER CC MASS IRREGULAR 4 mm DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

57 1 YEAR EARLIER CC MASS OVAL 3 mm DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

68 1 YEAR EARLIER CC FOCAL 
ASYMMETRY

6 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

Table 1 (Continued)

(Continued)
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Experiment 1D mixed priors that would eventually develop 
cancer with cases with currently visible abnormalities. The 
procedure for Experiment 1D was otherwise similar to previous 
Experiments 1A–1C. 50 images of each type of abnormal case 
were intermixed in one block of 200 trials with 100 normal 
images.

statistiCal analysis

We converted the rating scale data to receiver operating char-
acteristic (ROC) curves and calculated d’ and area under the 
curve (AUC) measures. The statistical analysis was done on 

the d’ scores. ROCs can be calculated in two different ways, 
the conventional16 and using log linear likelihood ratios after 
smoothing (LLRs) to determine decision criterion.17 Because 
raw ratings tended to show bimodal distributions for normal 
and abnormal cases an optimal performance could not always 
be determined using a single criterion. Therefore, in addition to 
the conventional standard method we computed decision vari-
ables by first smoothing the raw data by fitting a Gaussian Kernel 
with bandwidth of 10 and calculating the log likelihood ratios 
to compute the AUC to characterize observer performance.17 
In addition, the standard d’ and AUC measures that we report 

Age at prior 

screening 

mammogram

Study 

reader had 

examinations 

for comparison 

when the prior 

was viewed

View of 

the prior 

presented

Lesion type 

when cancer 

detected 3 years 

later

Lesion 

size Pathology BIRAD Parenchymal density

56 1 & 2 YEARS 
EARLIER

CC ASYMMETRY 6 mm IDC FATTY

64 1D YEAR EARLIER CC ASYMMETRY 15 mm ILC AT TWO 
SIDES

FATTY

62 NO CC MASS 3 mm DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

68 NO CC MASS ROUND & 
INDISTINCT

9 mm IDC, DCIS FATTY

57 YES CC ARCHITECTUAL 
DISTORTION

14 mm DCIS FATTY

68 YES CC MASS IRREGULAR 15 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

72 YES CC MASS ROUND & 
IRREGULAR

6 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

64 NO CC FOCAL 
ASYMMETRY

8 mm IDC, DCIS SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

56 NO CC ASYMMETRY 18 mm ILC AT TWO 
SITES

SCATTERED AREAS OF 
FIBROGLANDULAR DENSITY

DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma.

Table 1 (Continued)

Table 2. Demographic data on observers who participated in Experiment

Observer 

group Radiologist

Radiology 

residents

Reading 

radiographers

Years of 

experience

Percentage 

in breast 

imaging

Number of 

cases read in 

last year

Experiment 
1A

17 22
(5–40)

44
(15–100)

4100
(1500–10,000)

4 3
(1–4)

55
(10–100)

3200
(150–7000)

Experiment 1B 8 19
(9–33)

80
(50–100)

6200
(2000–9000)

1 1 50 5000

Experiment 
1C

11 18
(8–28)

100 5550
(1200–10,000)

Experiment 
1D

17 20
(10–40)

60
(15–100)

3900
(700–8000)

1 2 17 380
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assume equal variance for signal and noise distributions. This 
may not be a safe assumption for radiologic images.18 Accord-
ingly, we also calculated d(a) and Az, measures that do not rely 
on the equal variance assumption. The pattern of results does not 
change (Table 3). The item analysis of images used point-biserial 
correlations. Comparison between three expert groups’ perfor-
mance was done using an independent ANOVA. To examine the 
relationship between measures of expertise and performance we 
used simple linear regressions.

results

For 21 US (1A) and 9 UK (1B) radiologists, observers’ ability to 
distinguish normal from abnormal (cancer priors) was modest 
in size but statistically significant (Exp.1A d’=0.21, s.e.m. = 0.05, 
t(20) =3.947, p = 0.0008, AUC = 0.54, LLR AUC = 0.60; Exp.1B 
d’=0.22, s.e.m. = 0.06, t(8) = 4.036, p = 0.0038, AUC = 0.54, LLR 
AUC = 0.62), (Figure  2a,b). As can be seen, the LLR estimate 
of AUC’s reported give somewhat larger values. The important 
point is that there is statistically significant evidence for the 
detectability of a global gist signal regardless of which method is 
used. An item analysis showed that that the results were not due 
to any specific, salient cases.

As noted above, we obtained density ratings of the 500 ms 
exposures [inter-rater reliability 1A intraclass correlation co-ef-
ficient=0.645, 95% confidence interval (CI) (0.576 to 0.713) 
(F(115,2300)=49.41, p<.001); 1B intraclass correlation co-effi-
cient=0.558, 95% CI (0.485 to 0.635) (F(115,920)=13.23, p<.001] 
in order to determine if the gist signal might be based on a rapid 
assessment of breast density. The data show that it is not. If this 
were the case, we would expect ratings of gist abnormality to 
increase with density. Instead, it is harder to detect the gist signal 

at high density. Using the data from Experiment 1A (US radiolo-
gists), we do find a correlation between rapid density ratings and 
abnormality ratings, but it is small (average correlation of 0.10; 
t(20) = 3.51, p=0.0022 two-tailed). Note that abnormality ratings 
run from 0-abnormal to 100-normal, so the correlation of 0.1 
actually means that rated level of abnormality declines slightly as 
density increases. Looking at the data from Experiment 1B, we 
also find a significant correlation (r=0.26, t(8) =6.83, p=0.0001 
two-tailed). If we look at performance as a function of density 
rating, we find that d’ increases modestly as a function of density 

Figure 1. Experimental procedure for experiments 1 A–D.

Table 3. Average values for d’, AUC/LLC AUC, d(a), and Az for 
Experiments 1A–1C

d'

AUC/LLC 

AUC d(a) Az

US-Radiologist 0.21 0.54/0.60 0.78 0.71

UK-Radiologists 0.22 0.54/0.62 1.21 0.83

UK 
Radiographers

0.21 0.53/0.61 1.06 0.72

AUC, area under the curve.

Figure 2. ROC curves for the three observer groups of experi-

ment 1A-C. Solid colored line, average ROC curve; light dotted 

lines, individual observers. (a) Performance of US radiologists 

at RSNA 2016 (b) Performance of UK radiologists (c) Perfor-

mance of UK reading radiographers. ROC,receiver operating 

characteristic.
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for moderate densities (aggregating data over all 21 observers 

and using a rating criterion of 50 to split the data; for density 1, 

d’=0.21; density 2, d’=0.24; density 3, d’=0.30. At density=4, d’ 

collapses to −0.28). Observers were unable to extract a gist signal 

from breasts in the highest density category. We repeated the d’ 

analysis including data only if the observer rated that case as a 

density of 2. This eliminates about half of the data. With all cases 

having the same density rating, average d’=0.24, t(20) =4.45, 

p<0.0025 (two tailed).

We also have standard density ratings for these images; those 

obtained without time restriction in the original clinical inter-

pretation. The density ratings obtained in a flash correlate with 

those standard ratings (1A the Pearson r = 0.40, t(20) =34.89, p 

< .0001; for 1B Pearson r = 0.36, t(8) = 14.01, p < .0001). In these 

experiments, observers would have access only to their impres-

sion of density in 500 ms. Still, it is interesting to note that the 

cases are rated as more likely to be normal as standard density 

increases, the opposite of what would be expected (t(56)=2.27, 

p=0.027) if the gist signal was a proxy for the standard density 

rating.

Exp. 1C was conducted with non-MD experts; radiographers 

who are trained to read mammograms and regularly partici-

pate in the breast screening program in the UK. Our aim was to 

determine if the ability to detect the global gist signal is due to 

primarily perceptual expertise that radiographers would have or 

whether it might depend on more the extensive medical knowl-

edge possessed by radiologists. We compared the performance 

of the three expert groups and found no difference between their 

ability to detect mammograms of females that would go on to 

develop cancer 3 years later (F(2,40 )=.035, p = .966). There was 

no difference between the UK and US radiologists (Gabriel’s 

posthoc p = .990). More notably, the radiographers’ performance 

was very similar to that of both the US (Gabriel’s posthoc p = 

.998) and UK radiologists (Gabriel’s posthoc p = .875), with a 

d’=0.21, s.e.m. = 0.05, AUC = 0.53, LLR AUC = 0.61, significantly 

above chance (t(10) = 4.253, p = .0017, see Figure 2c).

If this gist signal were ever to be used in a clinical setting, it 

would useful if it could be detected in prior exams of females 

who would develop cancer even when those priors were inter-

mixed with cases of currently visible abnormality. Alternatively, 

it is possible that the stronger signals from visible abnormalities 

would effectively mask detection of weaker signals in the prior 

images. Thus, in Experiment 1D, mammograms collected 3 years 

prior to onset of cancer were intermixed with cases that had 

visible cancers (clearly visible, as well as subtle cases). Overall, 

the observers were well above chance at distinguishing cases 

with visible cancer from normal cases (d’=0.88, s.e.m. = 0.08, 

t(17) =9.40, p < 0.0001, AUC = 0.68, LLR AUC = 0.70; Figure 3a) 

replicating previous findings. However, unlike our findings in 

experiments 1A–1C, in this intermixed design, the observers 

in Experiment 1D were unable to reliably distinguish priors of 

cases that would develop cancer in 3–5 years from those that 

would remain normal for at least 3 years (d’=0.13, s.e.m. = 0.17, 

t(17) =0.691, p = .499, AUC = 0.48, LLR AUC = 0.49; Figure 3b). 

However, in a posthoc analysis, we looked at the performance of 

the six radiologists in this group, who devoted 100% of their time 
to breast imaging and who read 6000–8000 mammograms a year. 
These observers were able to distinguish priors of cancerous and 
normal cases surprisingly well (d’=1, s.e.m. = 0.09, t(5) =10.96, 
p < 0.0001, AUC = 0.69, LLR AUC = 0.72). This level of perfor-
mance was similar to their performance with the cases of visible 
abnormality as visible cancers (d’=1.14, s.e.m. = 0.09, t(5) =12.95, 
p < 0.0001, AUC = 0.70, LLR AUC = 0.73,). The two conditions 
were not significantly different in this group (t(5) =1.022, p = 
0.354). Since we separated this group of observers out after the 
fact, one would like to see this result replicated with a group of 
observers pre-selected for high expertise.

Clearly, the ability to see the "gist" of cancer is a learned skill 
(in earlier control experiments, novice observers performed 
at chance levels). In order to examine the effects of increasing 

Figure 3. ROC curves for the US radiologists observer group 

in experiment 1D. Solid colored line, average ROC curve; light 

dotted lines, individual observers; dark dotted line. (a) Per-

formance of observers in distinguishing cases of visible can-

cer from normal mammograms(b) Performance of observers 

when distinguishing of priors with no visible cancer but that 

would go on to develop cancer in 3 years from normal cases. 

ROC,receiver operating characteristic.
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experience, we examined the relationship of three measures 
of experience/expertise to performance on the gist task: (1) 
percentage of time devoted to breast imaging, (2) years of expe-
rience in imaging and (3) number of mammograms read each 
year. For this analysis, we combined data from all of the observer 
populations in the experiments described above. This seems 
justified, given that the different observer populations produced 
very similar performance. Thus, Figure 4 shows all 41 observers’ 
performance (d’) as a function of the number of cases reviewed in 

the last year, years of experience, and percentage of time spent in 

breast imaging. The results showed that mammogram discrimi-

nation improved with number of cases reviewed, F(1, 39) =9.8, p 

= 0.0033, R2 = 0.20, 95% CI (−0.03 to 0.18), but not with years of 

experience, F(1, 39) =.2, p = 0.8932, R2 = 0.0004, 95% CI (0.03, 

0.32), nor percentage of time spent in breast imaging, F(1, 39) 

=0.006, p = 0.9376, R2 = 0.0001, 95% CI (0.07, 0.35).

DisCussion

The results, presented above, show that a global perceptual 

signal, related to the development of breast cancer, is visible at 

least 3 years before a local, actionable sign of cancer is present. 

Surprising as this may seem, this is plausible. The ability to extract 

semantic information from brief glimpses of scenes is well estab-

lished.19 When the observer first sees a natural scene, its features 

are unbound20–22 and its objects are not explicitly recogniz-

able.23–25 Nevertheless, an observer can still extract quite a rich 

"gist" in a brief exposure.26–28 In a single glimpse (<200 ms, with 

a mask), observers can estimate average color, motion, size and 

orientation, for example.29 They can categorize complex natural 

scenes (e.g. “beach,” “office”)19,30,31 and identify the presence of 

classes of objects (e.g. animal) though observers who correctly 

detect the gist of "animal," may not know the identity or loca-

tion of that animal.19,25 With natural images, this ability appears 

to be based on classification of the raw feature statistics in the 

image.32 In mammograms, there is evidence for specific textural 

statistics associated with cancer.33 Recent evidence suggests that 

the content of scenes is predominately conveyed by high spatial 

frequencies in the image.34 Similarly, in previous studies, we have 

noted that the gist perceptual signal related to cancer is stronger 

in the high spatial frequencies.14 Given that many cancers may 

be associated with a genetic predisposition, it could well be that 

the genetics that predispose to cancer, also change the breast 

parenchyma in a manner that has perceptual consequences.

Further, we find that despite different screening/training prac-

tices in the USA and UK as well as across different expert reader 

populations we find no significant differences in signal sensi-

tivity for the global gist signal in mammograms. It appears that 

the ability to detect this signal is driven primarily by perceptual 

expertise related to the number of images that have been seen.

One limitation of the current finding is that the measured gist 

signal is obviously quite small. However, the results shown here 

should be considered a conservative estimate of the potential of 

this signal. It is worth noting that these were 3 year prior images 

from a set of cancers that were deliberately chosen to be "subtle" 

at the time of diagnosis. Cases with calcifications or more 

obvious cancers were excluded since the original studies on the 

global gist signal did not use these types of cases. For detection 

of the gist of abnormality in prior images, the visibility of the 

cancer that eventually develops is not critical. In future work, 

it will be of interest to determine if the early-warning signal is 

larger for some types of breast cancer than for others. Different 

genetic subtypes do appear to generate different signals for 

computer vision algorithms. For example, a Bayesian Artificial 

Neural Network algorithm, can distinguish the appearance of the 

parenchyma in patients with or without BRCA1/2-related breast 

Figure 4. Observers’ performance (d’) across expert groups 

and experiments as a function of (a) the number of cases 

reviewed in the last year; (b) years of experience; (c) percent-

age of time reading mammograms.
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cancer.35,36 Potentially, the gist signal that humans detect could 
be a marker for one or more genetic subtypes. This is a ques-
tion that our current data cannot address but would be worthy of 
further investigation.

The signal might also be larger if observers could look at the 
image for a longer period of time. In our original gist studies, 
images were presented for a fraction of a second because it was 
important to minimize the possibility that the radiologist could 
search for and locate an actual lesion. With the prior images used 
here, there is nothing to search for. In future studies, prior images 
could be presented until the observer chooses to respond. In 
such a study, readers might be informed that 50% of the images 
came from females who would develop cancer within 3 years. 
Readers would then be asked to sort the images into normal and 
abnormal. Thus sensitized, readers might be able to find the gist 
of abnormality more successfully, given more time.

Another limitation to any application of this signal was observed 
in our Experiment 1D where a small gist signal in the priors 
seemed to be drowned out by stronger signals of visible cancer 
when both type of cases were read in a mixed batch, as would 
happen in real-life clinical practice. Unlike the previous report,15 
we find that the signal is hard to find in the intermixed design. 
Experience may be the critical difference between these two 
studies. Our readers had a greater range of experience levels 
than the readers in the Brennan et al15 study, both in terms 
of percentage of time spent reading mammograms and the in 
number of mammograms read in a year. When we limited 
our analysis to the radiologists who read 6000–8000 cases/
yr (approximating the expertise of the Brennan et al, readers), 
they were unimpaired; discriminating normal from abnormal 
priors just as effectively as they could discriminate normal from 
currently abnormal cases. The percentage of the time our experts 
devoted to breast imaging was correlated with the number of 

mammogram cases they read (r = 0.42, p = .006) but did not 
predict their ability to detect the global signal. It was the annual 
number of cases read that appeared to be the basis for this expert 
behavior. This suggests that the ability to detect gist in priors 
could be learned through repeated exposure (in humans or 
machines). The role of number of cases read can be seen at the 
other end of the expertise scale, as well. The 15 readers who were 
the least reliable in our studies (as seen in Figures 2a & c, and 3b) 
all read less than 2500 cases a year.

The use of a stimulus set having a 50% cancer prevalence rate may 
limit the generalizability of our result. Prevalence is much lower 
in clinical screening practice. In our earlier work on the effects 
of low prevalence, we find that the primary effect is to make 
observers more conservative.37 This might reduce the detection 
of gist abnormality at low prevalence though the effect of preva-
lence bias on gist detection remains to be studied. In any case, the 
gist signal is likely to remain fairly small; certainly, too small to 
be diagnostic in its own right. Gist seems most likely to be useful 
if treated as a risk factor, like breast density. No one would treat a 
patient based on breast density alone, but the risk factor of high 
density can change how a patient’s screening is managed: higher 
risk triggering greater vigilance. The gist signal could be similarly 
useful in a personalized risk stratified care pathway for example. 
If it is proven to be useful, it is worth noting that gist is avail-
able with no additional screening or radiation exposure and with 
very little added demand on the clinician’s time. The gist signal 
might also be a useful target for computer vision approaches. 
Deep learning methods are become increasingly common in 
radiology.38,39 Using such methods to detect a gist signal would 
be different from standard practice since the network would be 
trained to detect the warning sign, and not the actual visible 
disease. For the present, these results are evidence that there is a 
signal in some mammograms that is related to later development 
of cancer. Future work will reveal how useful this signal may be.
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