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which describes a universe formed by a ‘condensate’ of quanta of geometry. This idea

has been successfully applied within the setting of group field theory (GFT), a quantum

field theory of ‘atoms of space’ which can form such a condensate. We further clarify the

interpretation of this mean-field approximation, and show how it can be used to obtain a

semiclassical description of the GFT, in which the mean field encodes a classical statistical

distribution of geometric data. In this sense, GFT condensates are quantum homogeneous

geometries that also contain statistical information about cosmological inhomogeneities.

We show in the isotropic case how this information can be extracted from geometric GFT

observables and mapped to quantities of observational interest. Basic uncertainty relations

of (non-commutative) Fourier transforms imply that this statistical description can only

be compatible with the observed near-homogeneity of the Universe if the typical length

scale associated to the distribution is much larger than the fundamental ‘Planck’ scale. As

an example of effective cosmological equations derived from the GFT dynamics, we then

use a simple approximation in one class of GFT models to derive the ‘improved dynamics’

prescription of holonomy corrections in loop quantum cosmology.
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1 Introduction

The most promising hope for connecting theories of quantum gravity with observation is

to understand their consequences for early universe cosmology. Conversely, input from

quantum gravity may be needed in order to complete or replace the standard paradigm of

inflation. Open theoretical issues of inflation, such as the choice of initial conditions or the

origin of the inflationary potential [1] or the need for a resolution of the past singularity of

inflationary universes [2], should ultimately be addressed in a more complete framework.

More generally, with a deeper understanding of quantum gravity, one might obtain a dif-

ferent physical picture for the very early universe that does not require introducing scalar

fields, but is at the same time compatible with observations such as made by Planck [3].

In order to obtain clear predictions from quantum gravity-inspired approaches to cos-

mology, it is essential to understand their precise relation to an underlying quantum gravity

theory. One such approach is loop quantum cosmology (LQC) [4–6], in which the classical

Big Bang singularity is resolved [7] and the issue of initial conditions for inflation can be

addressed [8], but whose relation to the full theory of loop quantum gravity (LQG) [9–

11], or the closely related group field theory (GFT) [12, 13], a second quantised version of

LQG [14], is not fully clear. In LQC, a symmetry reduction to a minisuperspace model is

performed before quantising the remaining degrees of freedom with LQG techniques, lead-

ing to quantisation ambiguities and obscuring the potential embedding into the full theory.

One perspective on addressing this issue, advocated in [15], is to view LQC and minisu-

perspace quantum cosmology as ‘single-patch theories’ in which an elementary small chunk

of space is quantised in order to capture the dynamics of an exactly homogeneous universe.

One expects a more complete picture, rich enough to also capture inhomogeneities, to arise

from a ‘many-patch theory’ in which many such chunks can interact. Depending on the

physical length scales one associates with these chunks, one might think of this as related
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to the separate-universe approach in cosmology [16]. This perspective then calls for an ap-

plication of concepts and methods from many-body quantum systems in condensed matter

physics to quantum cosmology, as it suggests thinking of a macroscopic universe as a con-

densate of many such ‘atoms’ of space. This idea had been discussed in various contexts,

from the perspective of analogue gravity [17] as well as in quantum gravity [18, 19]. It was

then explored in [20] in a lattice model starting from classical general relativity.

The viewpoint that a cosmological universe arises from the condensation of many

‘atoms of space’ is most naturally investigated in the setting of group field theory (GFT),

which provides a quantum field theory language for discrete (simplicial) geometry in which

the concept of a condensate can be made sense of: a GFT condensate defines a non-

perturbative ground state, describing a phase away from the Fock vacuum around which

perturbative physics is defined in LQG. This Fock vacuum is analogous to the Ashtekar-

Lewandowski vacuum [21] of LQG, and the excitations around it form the vertices of LQG

spin networks. This vacuum corresponds to a degenerate geometry (zero expectation value

for areas, volumes etc), and a non-degenerate continuum must be sought away from it.

The idea of deriving quantum cosmology models from the dynamics of a GFT conden-

sate was explored in a series of papers [22–25] (see also the related work [26–29]). In [22, 23],

approximating a physical state with a (generalised) coherent state of the GFT field opera-

tor, and hence working, in the simplest case, in a mean-field approximation, it was shown

that Schwinger-Dyson equations encoding the GFT dynamics reduce to nonlinear, nonlocal

differential equations for the mean field, or ‘condensate wavefunction’. Furthermore, in the

simplest approximation, one obtains a linear equation that resembles a Wheeler-DeWitt

equation in standard quantum cosmology. In a WKB limit for the isotropic case, one can

reproduce the Friedmann equation of classical vacuum GR. One might view these results as

suggesting a direct derivation of quantum cosmology models from the dynamics of suitable

GFT Fock states, reproducing exactly the usual formalism in terms of a ‘wavefunction of

the universe’ annihilated by a Hamiltonian constraint operator [30].

However, it was clear that this most direct equivalence of the effective condensate

dynamics and a minisuperspace quantum theory cannot be expected. The ‘condensate

wavefunction’ is not an actual wavefunction; one can think of it as a classical field, whose

amplitude and phase correspond, in the case of a Bose-Einstein condensate, to classical

properties such as the density and velocity of the condensate [31]. Its dynamics represent

the collective, hydrodynamic description of the condensate. The equations defining these

dynamics are nonlinear, both for real condensates (e.g., the Gross-Pitaevskii equation)

and for GFT condensates, and so one would have to make sense of nonlinear quantum

mechanics. It was already understood in [24, 25] that the WKB approximation for the

resulting dynamics does not capture a physically meaningful limit, even though it formally

corresponds to ~ → 0: in a Bose-Einstein condensate, in this limit one would consider a

fluid with almost constant density but very high velocity; for GFT condensates, one would

assume that the individual ‘atoms’ are very large and behave semiclassically individually.

In this paper, we further explore and clarify the interpretation of GFT condensates

in cosmological terms as outlined in [25], using not a standard (‘first-quantised’) Wheeler-

DeWitt equation or a quantum cosmology wavefunction but focussing instead on expec-
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tation values of Fock space operators that are meaningfully defined on any GFT many-

particle state. These expectation values are given a cosmological interpretation which is

used to obtain cosmological dynamics from dynamical relations between these expectation

values. We arrive at an interpretation in which, while GFT condensates are homoge-

neous as quantum states, their effective classical (statistical) description in the hydrody-

namic approximation generally includes inhomogeneities. In this hydrodynamic picture,

the single-particle wavefunction of the ‘ground state’ that all quanta are condensed into is

reinterpreted as a statistical probability distribution. For this distribution to define an ex-

actly homogeneous classical geometry, one would have to demand that condensation occurs

into an extremely peaked state, analogous to a delta distribution in position or momentum

space for a Bose-Einstein condensate.1 This requirement is an additional condition on top

of condensation, which cannot be satisfied in general, as it depends on the details of the

dynamics.

In general, the mean field has a finite spread on minisuperspace, and thus the hy-

drodynamic approximation leads to a statistical distribution of classical ‘patches’ with

different geometric data. Global information about the inhomogeneities, corresponding to

moments
∫

d3x ψ(~x)n in the approximate continuum description, can then be extracted

from ‘global’ expectation values of GFT operators. These moments are independent for

different n, and knowing them for many different n allows (in principle) the reconstruction

of the inhomogeneities ψ(~x) (in the simplest case of only isotropic scalar perturbations).2

We give an example in which, in the homogeneous case, the improved dynamics prescrip-

tion for holonomy corrections in LQC [32] can be obtained from such expectation values.

In general, the resulting equations depend on the inhomogeneities. We also show that, as

there is a fundamental limit on the minimal spread of the mean field in metric variables,

a statistically almost homogeneous classical metric (i.e. a very sharply peaked statistical

distribution on minisuperspace) can only arise if the average areas in this distribution are

large compared to the fundamental ‘Planck’ scale set by the parameter κ of the GFT. Ex-

plaining why this is the case is then the restatement in GFT condensate cosmology of the

puzzle of how to explain the smallness of inhomogeneities in our own Universe. This inter-

pretation also explains the shortcomings of the analysis of [28] in which it was suggested to

add inhomogeneities by hand and interpret the resulting ‘condensate wavefunction’ directly

as a wavefunction for background and inhomogeneities à la Halliwell-Hawking [33]. The

hydrodynamic approximation already contains statistical inhomogeneities.

2 Cosmology with group field theory (GFT) condensates

This section provides a self-contained overview of GFT, condensate states in GFT and

their relation to quantum cosmology. For more details on the general GFT formalism see

e.g. [12, 13]; full details of the construction of GFT condensates are given in [23].

1This sense of exact homogeneity can at best be satisfied for either metric or connection variables, due

to uncertainty relations for canonically conjugate variables. For the purposes of this paper, we will focus

on the notion of homogeneity in the reconstructed classical metric.
2Concretely, given n such integrals, one chooses a suitable n-dimensional function space with basis {fn}

and reconstructs the αn in ψ(~x) =
∑

n
αnfn(~x); a possible choice is, e.g., fn(~x) = sin(nk0|~x|)/(nk0|~x|).

– 3 –
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Group field theory (GFT) provides a quantum field theory language for simplicial

geometry and for the kinematics and dynamics of LQG. It can also be viewed as a general-

isation and extension of matrix models which achieve a definition of 2d quantum gravity in

terms of random matrices [34]. In the formulation used so far in the construction of GFT

condensates, one uses a complex scalar field

ϕ : G4/G→ C (2.1)

where G is a Lie group fixed from the outset, which will become the gauge group of gravity.

For models of 4d quantum gravity, the conventional choices are G = SL(2,C), G = Spin(4)

or G = SU(2), the latter being the gauge group of the Ashtekar-Barbero formulation of

gravity underlying LQG. In this paper we will often assume G = SU(2).

ϕ is a function on G4/G where G acts by diagonal right action, i.e. a function on four

copies of G satisfying

ϕ(g1, . . . , g4) = ϕ(g1 h, . . . , g4 h) ∀h ∈ G. (2.2)

In the geometric interpretation of an elementary GFT quantum as a tetrahedron, gI de-

fine parallel transports along four links through the tetrahedron’s faces and (2.2) is the

invariance under a gauge transformation acting on the vertex where the links meet.

The dynamics is then defined by a choice of action S[ϕ, ϕ̄] and the functional integral

Z =

∫

Dϕ Dϕ̄ e−S[ϕ,ϕ̄] =
∑

Γ

∏

i λ
ni

i

sym(Γ)
Z[Γ] (2.3)

where λi are the coupling constants of the theory and the second equality is the perturbative

expansion of Z (around ϕ = 0) in Feynman graphs Γ, where each Γ is associated with a

symmetry factor and a Feynman amplitude Z[Γ]. Each Γ forms a two-complex that can

be interpreted as a discrete spacetime (with no boundary), or a spin foam. The amplitude

Z[Γ] is then the spin foam amplitude defining the dynamics of LQG [11, 35]; there is a

one-to-one correspondence (within a certain class of models) between spin foam models,

defined by a choice of Z[Γ], and GFT models, defined by a choice of action S [36].

In addition to the covariant formalism for GFT in terms of the functional integral,

there is also a canonical formalism that is closer to canonical LQG [14]. One defines a Fock

space by starting with a Fock vacuum |∅〉 annihilated by the field operator, ϕ̂(gI)|∅〉 = 0,

and imposing canonical commutation relations
[

ϕ̂(gI), ϕ̂(g
′
I)
]

=
[

ϕ̂†(gI), ϕ̂
†(g′I)

]

= 0 ,
[

ϕ̂(gI), ϕ̂
†(g′I)

]

= 1(gI , g
′
I) (2.4)

as in usual non-relativistic bosonic field theory. 1(gI , g
′
I) is an identity element on the space

of fields compatible with (2.2); for compact G

1
(

gI , g
′
I

)

:=

∫

dh

4
∏

I=1

δ
(

g′Ihg
−1
I

)

(2.5)

where here and in the following dh is the normalised Haar measure on G. A one-particle

state |gI〉 := ϕ̂†(gI)|∅〉 is then identified with a geometric tetrahedron, or an open 4-

valent spin network vertex in LQG; more complicated simplicial geometries or LQG spin
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networks correspond to many-particle Fock states. For an explicit construction of this

Fock space starting from LQG spin-network wavefunctions, in complete analogy to the

usual introduction of second quantisation starting from N -particle wavefunctions, see [14].

One can use this Fock space construction to define condensates in analogy with con-

densed matter physics. Such condensates can be characterised by a non-zero expectation

value for the field operator, the GFT field ϕ̂(gI), and a large number of particles (potentially

infinite) with respect to the Fock vacuum |∅〉. They are usually defined as superpositions

of states with different particle number. In the context of LQG, this means that one is not

working on a fixed graph or discretisation of space, but taking a superposition of many

discrete geometries into account.

The simplest states used to describe such a condensate are of the form

|σ〉 := N (σ) exp

(∫

(dg)4 σ(gI) ϕ̂
†(gI)

)

|∅〉 , (2.6)

which is a coherent state, an eigenstate of the field operator ϕ̂(gI) with eigenvalue σ(gI).

As discussed in more detail below, the state (2.6) describes a mean-field approximation

where the (non-zero) mean field is given by the ‘condensate wavefunction’ σ(gI).

One now observes that the domain space G4/G is a finite-dimensional space of geomet-

ric configurations, here the possible configurations of a tetrahedron, given in terms of the

parallel transports of a (discrete) connection. This space still contains gauge-variant data,

as one has to take into account gauge transformations acting from the left (on the open

ends of the spin network links). In LQG, the gauge-invariant state is defined on a ‘dipole’,

a graph given by four links and two vertices such that all links connect the two vertices, and

the space of wavefunctions is L2(SU(2)\SU(2)4/SU(2)). Accordingly, in (2.6) we require

left-invariance of the mean field σ(gI), σ(gI) = σ(hgI) (σ is already right-invariant because

of (2.2)). For G = SU(2), the space G\G4/G is six-dimensional; a parametrisation of

the resulting 12-dimensional phase space in terms of geometric variables corresponding to

metric and connection is given in [24]. Viewing the tetrahedron as a locally homogeneous

patch of the universe, one can view this phase space as the space of homogeneous (intrin-

sic and extrinsic) geometric data, i.e. of homogeneous 3-metrics and Ashtekar-Barbero

connections or second fundamental forms.

For the GFT formalism [37], as for LQG [38], there exists a dual ‘flux representation’

which is obtained using a non-commutative Fourier transformation on G defined by [39]

ϕ̃(BI) :=

∫

(dg)4

(

4
∏

I=1

egI (BI)

)

ϕ(gI) (2.7)

where BI are elements of the Lie algebra of G, and eg(B) is a choice of plane waves

on G, satisfying standard properties such as compatibility with the adjoint action of G,

eg(hBh
−1) = eh−1gh(B), and completeness

∫

dB eg(B) = δ(g). A standard choice for SU(2)

is eg(B) = exp( i
2tr(gB)/κ) (where κ and B have physical dimensions of area). In general,

the choice of plane waves corresponds to a (necessary) choice of quantisation map for the

fluxes [40], and the flux representation depends on this choice. Functions in the image of

– 5 –
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the Fourier transform are then equipped with a non-commutative ⋆-product defined by

eg(B) ⋆ eg′(B) := egg′(B) (2.8)

on plane waves and extended by linearity. In particular, from (2.2) one finds that

ϕ̃(BI) =

∫

(dg)4 dh

(

4
∏

I=1

egI (BI) ⋆ eh(BI)

)

ϕ(gI) = ϕ̃(BI) ⋆ δ⋆

(

∑

I

BI

)

(2.9)

with the non-commutative delta function δ⋆(B) :=
∫

dg eg(B); the field ϕ̃(BI) satisfies the

(non-commutative) closure constraint
∑

I BI = 0. If the BI are identified with bivectors

representing integrals of an area 2-form over the faces, BAB
I ∼

∫

△I
eA ∧ eB, the closure

constraint means that the faces close to form a tetrahedron. The dual Lie algebra vari-

ables (corresponding to ‘fluxes’ of the triad in LQG) hence represent a (discrete) metric,

canonically conjugate to the discrete connection given by gI .

The connection to cosmology is made by rewriting the GFT quantum dynamics as

dynamical equations for the mean field σ(gI) or its non-commutative Fourier transform

σ̃(BI) and by constructing macroscopic geometric observables out of the elementary group

and Lie algebra variables. Such observables are identified with cosmological variables; for

instance, the total volume in a GFT condensate defines the volume of a region of the

universe, a3V0 if a is the scale factor and V0 the coordinate volume. Such a region can be

thought of as the ‘fiducial cell’ in LQC [4–6] (which, as in LQC, can make up the whole

universe for a compact universe), and itself consists of a large number of fundamental GFT

quanta. Constraints between the cosmological variables define the effective cosmological

description of the GFT dynamics (an effective ‘Friedmann equation’).

In this paper we make this correspondence between GFT observables and cosmological

variables, the crucial step in the physical interpretation of the effective GFT dynamics, more

precise. We revisit the previous constructions, mainly given in [23, 25], and argue that, in

the hydrodynamic approximation, the effective continuum classical geometry reconstructed

from a GFT condensate is not necessarily homogeneous. We show how different GFT

observables can be used to extract statistical information both about the homogeneous

mode and the inhomogeneities. These points are general, and we illustrate them only in

the simplest case of an isotropic universe where they are clearest. This simplest case will

already be sufficient to make two points: the apparent near-homogeneity of the observed

Universe requires a statistical distribution of ‘patches’ that are ‘large’ on average; and for a

homogeneous, isotropic universe we give, under a few simplifying assumptions, a derivation

of the LQC ‘improved dynamics’ prescription for holonomy corrections. We will see how

the presence of inhomogeneities affects the effective cosmological equations.

3 Effective classical geometry from global GFT observables

Part of the geometric information contained in any GFT Fock state, e.g. a condensate

state of the form (2.6), can be expressed in terms of expectation values of suitable second-

quantised operators. We focus on ‘one-body operators’ of the general form

Ô :=

∫

(dg)4 (dg′)4 ϕ̂†(gI)O(gI , g
′
I) ϕ̂(g

′
I) . (3.1)

– 6 –
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Such operators are extensions of operators ô of the first-quantised formulation in that the

matrix elements of ô are inserted into the integral (3.1), O(gI , g
′
I) := 〈gI |ô|g′I〉 for single-

particle states |gI〉 and |g′I〉. This is the standard procedure in second quantisation; for

further discussion of GFT as a second quantised formulation of LQG, see [14].

Equivalently, given a representation of the matrix elements of the first-quantised op-

erator ô in terms of single-particle wavefunctions,

〈Ψ|ô|Ψ′〉 =
∫

(dg)4 Ψ(gI)(OΨ′)(gI) (3.2)

where O is in general a differential operator on G4, (3.1) can be written as

Ô :=

∫

(dg)4 ϕ̂†(gI)(Oϕ̂)(gI) . (3.3)

The two expressions are equivalent as |Ψ〉 =
∫

(dg)4 Ψ(gI)|gI〉 in terms of the basis {|gI〉}.
For example, for G = SU(2) and interpreting GFT Fock states as LQG spin networks,

the one-body operators corresponding to ‘total fluxes’ are defined as

b̂iI := iκ

∫

(dg)4 ϕ̂†(gJ)
d

dt
ϕ̂
(

exp
(

τ iIt
)

gJ
)

∣

∣

∣

t=0
(3.4)

where κ is an area, the ‘Planck’ area (in kinematical LQG, κ = 8πγ~GN with the Barbero-

Immirzi parameter γ and Newton’s constant GN), and τ i is a basis of the Lie algebra of

SU(2), usually taken as τ i = i
2σ

i in terms of the Pauli matrices σi.

The total area associated to all I-th faces in a given state is the expectation value of

ÂI := κ

∫

(dg)4 ϕ̂†(gJ)
√

−∆gI ϕ̂ (gJ) (3.5)

where ∆gI denotes the Laplace-Beltrami operator on SU(2), acting on the I-th argument

of ϕ̂. The square root is to be defined in terms of eigenvalues of −∆gI , in the sense of

Dirac [41]. These eigenvalues are of the form −j(j +1) for integer or half-integer j, giving

the celebrated discrete area spectrum of LQG. More concretely, introducing the coordinate

system on (one half of) SU(2)

g =
√
1− ~π 1− i~σ · ~π , |~π| ≤ 1 (3.6)

(which associates to g ∈ SU(2) a Lie algebra element π[g] := i~σ · ~π[g] ∈ su(2)), we have

b̂iI =
iκ

2

∫ (

d~π√
1− ~π2

)4

ϕ̂(~πI)
†

(

−
√

1− ~π2I∂
I
i + ǫi

jkπIj ∂
I
k

)

ϕ̂(~πI) ,

ÂI =
κ

2

∫ (

d~π√
1− ~π2

)4

ϕ̂(~πI)
†
√

−(δij − πiIπ
j
I)∂

I
i ∂

I
j + 3πiI∂

I
i ϕ̂(~πI) , (3.7)

where there is summation over repeated indices i, j, k but not over I which is fixed. If we

identify the differential operator appearing in (3.7) with a first-quantised flux operator biI
as in (3.3), i.e.

b̂iI =:

∫

(dg)4 ϕ̂†(gI)
(

b
i
I ϕ̂
)

(gI) , (3.8)

– 7 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
0

it is easy to check that indeed

ÂI =

∫

(dg)4 ϕ̂†(gI)





√

∑

i

biIb
i
I ϕ̂



 (gI) . (3.9)

Operators of the form (3.1) or (3.3) are defined on the whole Fock space, so that quan-

tities such as ‘the expectation value of the total area’ can be associated to any state. For

states of cosmological interest, e.g. a condensate defined by (2.6), such expectation values

are identified with cosmological observables such as the scale factor, and relations between

expectation values, derived from the fundamental quantum dynamics, become relations

between cosmological observables. This allows the derivation of generalised Friedmann

equations from the fundamental GFT dynamics, for specific choices of dynamics [25].

The analysis of [25] focussed on the simplest one-body operators on the GFT Fock

space, the total flux (3.4) and a ‘total group coordinate’

Π̂I :=

∫

(dg)4 ~π[gI ] ϕ̂
†(gJ)ϕ̂(gJ) (3.10)

which are the analogue of total momentum and ‘total position’ in the GFT context (the

latter is in contrast to the physically more meaningful centre-of-mass position [25]). One

could, however, also consider other operators, e.g. the areas (3.5), or

α̂I :=

∫

(dg)4 ϕ̂†(gI)

(

∑

i

b
i
Ib

i
I ϕ̂

)

(gI) = κ2
∫

(dg)4 ϕ̂†(gJ)(−∆gI ϕ̂) (gJ) . (3.11)

αI corresponds to the sum of the squared areas associated to each I-th face in a general

many-particle state. This is a very different quantity from the square of the area (3.5),

Â2
I =

∫

(dg)4 (dg′)4 ϕ̂†(gI)





√

∑

i

biIb
i
I ϕ̂



 (gI) ϕ̂
†(g′I)





√

∑

i

biIb
i
I ϕ̂



 (g′I) , (3.12)

which is not a one-body operator of the form (3.1). In general, one cannot expect a simple

relation between expectation values of α̂I and ÂI , although in the case of a particularly

simple state such as (2.6) there is a relation, given that all expectation values are expressible

in terms of integrals involving the mean field σ.

For the state (2.6), the expectation values of ÂI and α̂I are given by

〈ÂI〉 =
∫

(dg)4 σ̄(gI)





√

∑

i

biIb
i
I σ



 (gI) , 〈α̂I〉 =
∫

(dg)4 σ̄(gI)

(

∑

i

b
i
Ib

i
I σ

)

(gI) .

(3.13)

If σ(gI) was a quantum-mechanical wavefunction, these expectation values would corre-

spond to expectation values 〈A〉 and 〈A2〉 for an operator A, and could be used to compute

the variance 〈A2〉 − 〈A〉2 which contains information about the statistics of the observable

A. But this is not the right interpretation in second quantisation. α̂I is not Â2
I and defines

an independent observable for general many-particle states. σ(gI) is a mean field on the
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‘minisuperspace’ parametrised by gI , describing the collective properties of the coherent

state (2.6). |σ(gI)|2 can be interpreted as a classical number density of classical ‘patches’;

〈χ̂C〉 :=
〈∫

(dg)4 χC(gI)ϕ̂
†(gI)ϕ̂(gI)

〉

=

∫

C
(dg)4 |σ(gI)|2 (3.14)

gives the expectation value for the number of quanta for which {gI} are in C ⊂ G4 (χC

is the characteristic function of C). Note again the difference between first and second

quantisation; the analogue of χ̂C in quantum mechanics would correspond to a projective

measurement with eigenvalues 0 and 1, whereas the set of eigenvalues of χ̂C is N0.

In this interpretation, the mean field σ(gI) is used to give a classical statistical de-

scription of the hydrodynamic approximation, in which a generic condensate state does

not describe a perfectly homogeneous universe, but rather a distribution of patches with

different values for geometric quantities such as e.g. curvature invariants constructed from

the gI . An approximately homogeneous universe arises from a sharply peaked mean field.

Let us make this more precise. In [25], for the simplest case of an isotropic condensate,

the identification of GFT expectation values with cosmological observables was

〈f̂I〉 = iκ

〈∫

(dg)4 ϕ̂†(π[gJ ])
∂

∂πI
ϕ̂(π[gJ ])

〉

=: TI a
2 ,

〈

Π̂I

〉

=

〈∫

(dg)4 ~π[gI ] ϕ̂
†(gJ)ϕ̂(gJ)

〉

=: N VI sin
(

l0N
−1/3 ω

)

, (3.15)

where TI and VI are dimensionless su(2) ≃ R
3 elements of order one, a is the cosmological

scale factor, ω the spin connection, N := 〈N̂〉 the expectation value of the number operator

N̂ :=

∫

(dg)4 ϕ̂†(gI)ϕ̂(gI) (3.16)

and l0 is a dimensionless number corresponding to a choice of coordinate units. The overall

scaling of Π̂I with N implements the observation [25] that holonomies should be given by

intensive observables and the factor N−1/3 inside the argument corresponds to a choice of

coordinate system in which the condensate as a whole is extended over a fixed coordinate

volume, which essentially corresponds to a fixed fiducial volume in LQC. We can introduce

a fiducial volume V0 as in LQC and in the following write l0 = V
1/3
0 .

One issue with using (3.15) as cosmological variables is that one might expect TI and

VI to be zero by SU(2) symmetry3 and hence prefer SU(2) invariant quantities such as

the area operator ÂI . But there is another issue with the consistency of the low-curvature

limit: as f̂I and Π̂I/N are canonically conjugate at least approximately as |~π| ≪ 1, they

should correspond to classical observables with Poisson brackets
{

sin
(

(V0/N)1/3 ω
)

, a2
}

∝ κ

~
+O(ω) . (3.17)

But in the limit of small ω the left-hand side is (V0/N)1/3{ω, a2}, and hence {ω, a2} must

scale with the number of quanta as (N/V0)
1/3, so that the resulting classical Poisson

3Thanks to Lorenzo Sindoni for pointing this out.
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brackets depend on N and hence indirectly on quantities like the scale factor.4 This

seems to be in conflict with the Poisson brackets of classical general relativity for which

{ω, a2} ∝ GNV
−1
0 [4]. In order to obtain Poisson brackets consistent with the classical

limit at low curvature, the total area must be defined with a nontrivial scaling N1/3, and

we define

〈ÂI〉 = κ

〈∫

(dg)4 ϕ̂†(gJ)
√

−∆gI ϕ̂ (gJ)

〉

=: a2N1/3V
2/3
0 (3.18)

with the same V0 as above (the total coordinate volume associated to the condensate), so

that a2V
2/3
0 is a physical area. Here I is fixed so that we focus on only one of the four

areas, as should be sufficient for isotropic universes. For a heuristic picture giving some

additional justification to the factor N1/3 in (3.18), one can think of a large ‘fiducial cell’

composed of many elementary cells; one would associate the cosmological area a2V
2/3
0 to

the area of one of the sides of this cell. However, the total area 〈ÂI〉 does not give just the

area of one of these sides but, since one is summing over all tetrahedra, overcounts by a

factor N1/3. The scaling is also consistent with constructions such as [43] rooted in LQC.

While (3.18) is simply a definition of a, different from the previous one in (3.15), also

assuming that the expectation value 〈ÂI〉 defines an extensive observable (i.e. 〈ÂI〉 ∝ N)

seems to imply that a3 ∝ N . We will confirm this argument explicitly in section 5, and

derive this relation from an approximation of the GFT dynamics.

We can now introduce additional geometric observables for GFT condensates and,

in the hydrodynamic approximation, identify these with cosmological (metric) variables.

This identification will make the effective classical statistical distribution of inhomogeneities

explicit. For simplicity, we provide this identification for the case of an isotropic condensate

(given e.g. by (2.6) with a choice of σ(gI) that incorporates isotropy). These observables

we consider are again expectation values of one-body operators on the GFT Fock space.

The hydrodynamic approximation to the quantum dynamics replaces the full quantum

properties of the state by a finite number of expectation values; it can be viewed as a

replacement of the quantum state by a classical statistical distribution of classical particles

with properties such as momentum and position in condensed matter physics and areas,

angles, etc. in the case of GFT. For instance, in this semiclassical description the condensate

has a given number of quantaN ≫ 1, given by the expectation value of the number operator

N̂ , whereas the quantum state is really a superposition of states with different numbers of

particles. We will further clarify this interpretation in section 4; for a general discussion

of this statistical nature of the hydrodynamic approximation, see also [42]. Here we use

the statistical distribution on minisuperspace, given by the mean field, to define further

observables that allow us to extract information about cosmological inhomogeneities.

In this effective classical picture obtained from taking expectation values, the mean

field defines a statistical distribution of microscopic geometries for N classical patches.

For large N , we can represent this continuous distribution approximately by a collection

of N patches, each labelled by an index i and associated with an area Ai

I , such that

the statistical distribution of the different values Ai

I corresponds to the distribution given

4We are excluding the possibility that N is a universal constant independent of cosmological observables,

which would seem hard to justify physically.
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by the mean field. One can think of the Ai

I as each representing a sufficiently small

region in minisuperspace such that the average number of patches in this region is one. In

this approximation, the statistical distribution for a classical random variable AI is well

represented by a single ‘universe’ made up of N patches with definite Ai

I . Within this

approximation, (3.18) becomes

〈ÂI〉 = a2N1/3V
2/3
0 =

∑

i

Ai

I =:
∑

i

(

V0
N

)2/3

a2
(

1− 2ψi

)

, (3.19)

where in the last equality we have defined a quantity ψi in terms of Ai

I . To avoid over-

counting, the ‘perturbations’ are constrained to satisfy
∑

i
ψi = 0, so that the scale factor a

is obtained from the average over the Ai

I . The factor (V0/N)2/3 in (3.19) is the coordinate

area associated with each patch.

(3.19) is simply a definition of a geometric quantity ψi. For small ψi and isotropy, so

that metric fluctuations can be captured by a single (volume) variable, one would expect

to recover the usual formalism of linear cosmological perturbations [45] from this setting,

where one would really think of ψ as a gauge-invariant (Bardeen) potential. At this kine-

matical level, the ψi are not necessarily small in any sense. The precise connection between

this GFT formalism and the setting of linear perturbations in cosmology, and the physical

interpretation of a scale factor a obtained from such an average, will presumably only be

clear for condensates for which ψ ≪ 1 and one can treat ψ as a linear perturbation.

Again, in this approximation in which the statistical distribution over geometric data

is approximated by N classical quantities Ai

I , the expectation value of the operator α̂I

defined in (3.11) is

〈α̂I〉 =
∑

i

(Ai

I)
2 =

∑

i

(

V0
N

)4/3

a4
(

1− 2ψi

)2
=

〈ÂI〉2
N

+4a4
(

V0
N

)4/3
∑

i

(

ψi

)2
(3.20)

as
∑

i
ψi = 0. We can now extract information about the inhomogeneities from the expec-

tation values 〈ÂI〉 and 〈α̂I〉: for a large number of quanta well approximating a continuum,

∫

d3x ψ(~x)2 ≈ V0
N

∑

i

(

ψi

)2
=
V0
4

(

〈α̂I〉N
〈ÂI〉2

− 1

)

(3.21)

which is expressible only in terms of expectation values of the condensate and V0 which

defines a choice of coordinate units.

Similarly, defining an operator β̂nI (with n ≥ 3) by

β̂nI :=

∫

(dg)4 ϕ̂†(gI)





(

∑

i

b
i
Ib

i
I

)n/2

ϕ̂



 (gI) , (3.22)

we can identify its expectation value with

〈β̂nI 〉 =
∑

i

(

V0
N

)2n/3

a2n
(

1− 2ψi

)n
=

〈ÂI〉n
Nn−1

+

(

V0
N

)2n/3

a2n
n
∑

m=2

(

n

m

)

∑

i

(

−2ψi

)m

(3.23)
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and hence (in the continuum approximation) with a weighted sum of all moments of the

perturbation ψ, of the form
∫

d3x ψ(~x)m, for 2 ≤ m ≤ n. These moments all give indepen-

dent statistical information on the function ψ. In cosmology,
∫

d3x ψ(~x)2 corresponds to

the total power spectrum, whereas the higher moments correspond to the total bispectrum,

trispectrum etc., of the scalar perturbations given by ψ. These quantities are directly re-

lated to cosmological observations (again, in the regime where inhomogeneities are small)

which are also statistical in nature. The hydrodynamic approximation in GFT provides us

with a classical statistical description of what is really a coherent, homogeneous quantum

state of geometry. This idea bears striking resemblance to the mechanism in inflation [44]

of a transition from a quantum state of the inflaton to a classical statistical description

for inhomogeneities, which is then observed in the cosmic microwave background. Viewing

quantum cosmology as the hydrodynamics of quantum gravity suggests a similar mecha-

nism for quantum geometry [42].

4 Homogeneity and classicality conditions for GFT condensates

In section 3 we have argued that an effective classical picture constructed from the hy-

drodynamic approximation to a generic GFT condensate is to be interpreted as a classical

inhomogeneous universe: the mean field σ(gI) contains statistical information both about

the homogeneous mode (corresponding, in the isotropic case, to the scale factor a) and

about inhomogeneities. In this section, in order to connect with previous work, we recall

the discussion of [23, section 3] which aimed at constructing states that are candidates for

semiclassical, exactly homogeneous universes, and see where it needs to be extended.

The classical phase space variables of a single GFT quantum, interpreted as a geometric

tetrahedron, specify a discrete metric and a discrete connection. The momenta conjugate

to the group elements gI are four Lie algebra elements (bivectors) BI , subject to a closure

constraint
∑

I BI = 0, so that only three are independent. Identifying

BAB
i = ǫi

jkeAj e
B
k (i = 1, 2, 3) (4.1)

defines a discrete triad eAj and a discrete 3-metric by gij = eAi ejA (where indices are

contracted with the appropriate G-invariant tensor). Equivalently, one can define

gij :=
1

8 tr(B1B2B3)
ǫi
klǫj

mnB̃kmB̃ln , B̃ij := BAB
i BjAB . (4.2)

The gij parametrise the space of gauge-invariant discrete metric data for one tetrahedron.

In the construction of [23], one considers an embedding of N ≫ 1 tetrahedra into

a manifold in which the coefficients gij (i and j label the three edges of a tetrahedron

emanating from the same vertex) specify a continuum metric expressed in a fixed frame

and evaluated at this vertex, i.e.

gij =: g(ei, ej)(x) (4.3)

where {ei} is the given frame and x the position of the given vertex in the embedding. Put

differently, in the embedding the edge i is aligned with the vector field ei. The construction
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assumes that the continuum metric to be reconstructed is almost constant on the scale of

the tetrahedra, and requires a choice of vector fields ei. The latter are fixed by using an

embedding into a manifold with topology M ≃ G/X and a transitive group action by the

(arbitrary but fixed) Lie group G. This group action provides a natural choice of {ei}:
take {ei} to be a basis of left-invariant vector fields, which is unique up to a choice of scale

in the Lie algebra of G and a global O(3) rotation.

It is then clear that a large number of tetrahedra all with the same gij approximate a

spatially homogeneous metric, i.e. a metric compatible with the group action by G.

As a conclusion from this geometric interpretation at the classical level, the following

criteria for GFT states to describe spatially homogeneous classical geometries, at the scale

of the GFT quanta, are given in [23]: first, the quantum analogue of the classical property

of homogeneity, i.e. having the same gij for all tetrahedra, is taken to be ‘quantum

homogeneity’, the condensation of many quanta into the same microscopic quantum state,

specified by the mean field σ(gI) in a coherent state such as (2.6);5 second, a semiclassicality

condition is required for the ‘wavefunction’ σ(gI), later taken to be the validity of the

WKB approximation when applied to σ(gI). Two further conditions — near-flatness of

the geometry on the scale of the tetrahedra, and a large number of quanta N ≫ 1 — are

required for consistency for the reconstruction procedure and geometric interpretation.

In order to elaborate on the interpretation of these criteria, it may be helpful to recall

the physical meaning of the mean-field approximation and the mean field σ(gI) in the

context of the physics of Bose-Einstein condensates. This is standard textbook material

(and we follow the discussion of [31, ch. 2] closely), which may however be less familiar to

practitioners of quantum gravity.

In second quantisation in non-relativistic quantum mechanics, a field operator Ψ̂(~r)

is introduced as a superposition of annihilation operators associated to a complete set of

first-quantised wavefunctions,

Ψ̂(~r) =
∑

ν

φν(~r) âν = φ0(~r) â0 +
∑

ν 6=0

φν(~r) âν , (4.4)

where ν is a set of labels characterising the states and “0” denotes the ground state. In

the simplest case of a non-interacting Bose gas in a box, the wavefunction φ0 is simply a

constant and the higher φν are plane waves. In the Bogoliubov approximation, one then

replaces the operator â0 by the c-number
√
N0, where N0 is the number of atoms condensed

into the ground state, and treats the rest as a small fluctuation,

φ0(~r) â0 → Ψ0(~r) :=
√

N0 φ0(~r) , δΨ̂(~r) :=
∑

ν 6=0

φν(~r) âν . (4.5)

The mean field approximation is then the limit in which the fluctuations δΨ̂ are ignored.

In the words of [31], in this approximation “[...] the field operator coincides exactly with

the classical field Ψ0 and the system behaves like a classical object. This is the analogue

5This quantum notion of homogeneity, which is crucial to the condensate assumption but must be dis-

tinguished from (statistical) homogeneity of the reconstructed classical geometry, is generalised to ‘wave-

function homogeneity’ in the construction of generalised condensate states in [29].
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of the classical limit of quantum electrodynamics where the classical electromagnetic field

entirely replaces the microscopic description of photons.”

The N0 atoms condensed into the ground state given by φ0(~r) are not necessarily found

at the same point ~r0, or even close to some ~r0. For the non-interacting gas, they are just

evenly distributed over the box. In this case, in momentum space φ0(~p) ∝ δ(~p) so that

there is condensation into a single value (zero) for the momentum. This is true for the free

gas; for a general interacting system, the ground-state wavefunction will have some finite

spread both in momentum and position space, subject to the uncertainty relation

∆x∆p &
~

2
. (4.6)

The mean field Ψ0 is not semiclassical in the WKB sense, having constant phase in the

simplest case and slowly varying phase more generally.

Coming back to condensates in GFT, we have implemented the mean-field approxima-

tion by an appropriate choice of state in the GFT Fock space. The simplest choice (2.6)

is simply an eigenstate of the field operator ϕ̂(gI) with eigenvalue σ(gI) so that under

expectation values (with normal ordering) ϕ̂(gI) → σ(gI) as in (4.5). This is then already

the semiclassical description (hydrodynamic approximation) of the full GFT dynamics; the

operator ϕ̂(gI) is replaced by the classical field σ(gI).

On the other hand, requiring that the classical metric geometry one can reconstruct

from the hydrodynamic approximation is exactly homogeneous, at the scale of the GFT

quanta, is analogous to requiring the density of the fluid describing a Bose-Einstein con-

densate in the hydrodynamic approximation to be peaked around a single point (in position

space or momentum space). Here we would require that the analogue of the ground-state

wavefunction, the mean field σ when the GFT dynamics is imposed, is sharply peaked

around one particular metric geometry; more concretely, the non-commutative Fourier

transform σ̃(BI) of σ(gI) has to be sharply peaked around values of BI that correspond,

by (4.2), to the same 3-metric gij . This is consistent with our analysis in section 3: the

magnitude of inhomogeneities depends on the shape of the function σ in minisuperspace.

We can then say that the assumption of condensation is a quantum notion of homo-

geneity, and the hydrodynamic description arising from the mean-field approximation is a

semiclassical approximation.6 No further assumption of semiclassicality should be imposed

on the mean field, as was already discussed previously in [24, 25].

Whether there is an approximate classical, homogeneous description of the condensate,

in terms of the statistical distribution of patches reconstructed from the hydrodynamic

approximation, depends however on the properties of the mean field.

In order to make more precise statements about the magnitude of inhomogeneities, it

is necessary to solve the (approximate) GFT dynamics to get a physical σ(gI). There is

6Generally, outside of the mean-field approximation for coherent states, one can think of other ways of

implementing different notions of either homogeneity or semiclassicality, or both. One example is given by

the generalised condensates of [29], which are ‘quantum homogeneous’ in the sense of being determined by

a single wavefunction for all quanta, but also involve coarse graining of microscopic degrees of freedom.

Their hydrodynamic description is not simply a classical limit for the GFT quantum field.
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a fundamental limit on the minimum spread of σ in the group and Lie algebra variables.

Using the coordinate system on SU(2) as in (3.6),

g =
√
1− ~π 1− i~σ · ~π , |~π| ≤ 1 ,

and defining the non-commutative Fourier transform by

f̃(B) :=

∫

dg e
i

2
tr(gB)/κf(g) =

∫

|~π|≤1

d~π√
1− ~π2

ei~π·
~B/κf(~π) (4.7)

where B =: i~σ · ~B for B ∈ su(2), we have the relation

∆π∆B &
κ

2
(4.8)

where we use the requirement on GFT condensates to describe geometries that are nearly

flat on the scale of the tetrahedra, i.e. to be peaked on values |~π| ≪ 1 (where ~π are

coordinates on a suitable gauge-invariant combination of group elements such as gig
−1
4 ,

see [24]), where (4.7) becomes the standard Fourier transformation. In general, for any

f , ∆π . 1 which gives a lower bound on ∆B; the image of the non-commutative Fourier

transform consists of functions on su(2) ≃ R
3 with finite resolution of order κ.

The uncertainty relation (4.8) has an interesting consequence. The magnitude of the

inhomogeneities ψ is controlled by the relative spread (∆B)/〈B〉. In order to achieve

ψ ∼ 10−4.5 as required observationally, together with near-flatness ∆π ≪ 1, we then need

to have 〈B〉 ≫ 104.5κ: the average (physical) length scale associated to the statistical

distribution over geometries needs to be at least a few orders of magnitude larger than the

scale set by the ‘Planck’ length
√
κ.7 Explaining the small magnitude of ψ is one of the basic

puzzles of cosmology; here it leads to a condition on physical GFT condensates in order

to be observationally viable. The resulting picture is very different from the usual one in

LQC where one thinks of elementary geometric quanta of Planck size, corresponding to the

lowest non-zero spin j = 1/2 in LQG [46]. In the setting of GFT condensates, (4.8) implies

that if the average size of the patches is of order κ, their relative fluctuations resulting in

inhomogeneities are at least of order one, so that the universe is very inhomogeneous.

5 Example: LQC improved dynamics and more

We have seen in section 3 how global observables, obtained from expectation values of one-

body operators on the GFT Fock space, can be used to statistically distinguish between the

homogeneous mode and inhomogeneities. Dynamical equations for such global observables

can then be interpreted in cosmological terms. Here we give one example of this in a simple

setting that has been studied before [23–25], but is now reinterpreted.

7To make this argument quantitative, one needs more insight on the value of κ in the microscopic theory.

In the standard view of LQG [9–11] (see (3.4) and below), κ is given in terms of the low-energy Newton’s

constant; if κ is affected by renormalisation this would lead to a different fundamental ‘Planck’ length.
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The quantum dynamics of a given GFT can be expressed in terms of Schwinger-Dyson

equations,
〈

δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉

= 0 (5.1)

where O[ϕ, ϕ̄] is a functional of the GFT field ϕ and its complex conjugate ϕ̄ and S is the

action for the GFT model. Choosing O = ϕ̄(gI) and passing to the canonical operator

formalism, this becomes
〈

ϕ̂†(gI)
δS[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉

= 0 (5.2)

with normal ordering under which the delta distribution δϕ̄/δϕ̄ disappears. Integrating

over G4 we obtain
〈

K̂
〉

+

〈∫

(dg)4 ϕ̂†(gI)
δV[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉

= 0 (5.3)

where K̂ is the quadratic part of the GFT action and V contains all higher order terms.

The approximation made in [23–25] is now to neglect the second term. This can be an

exact result for certain states and choices of V [23], or correspond to a weak-coupling limit

of the GFT. If we then choose

K̂ =

∫

(dg)4 ϕ̂†(gI)

(

∑

I

∆gI + µ2

)

ϕ̂(gI) (5.4)

which contains a nontrivial propagator as motivated by studies of GFT renormalisation [47,

48], comparing with (3.11) and (3.16) we obtain

∑

I

〈α̂I〉 − κ2µ2〈N̂〉 = 0 . (5.5)

Focussing on isotropic universes for simplicity, as in section 3, we then identify

〈α̂I〉 =
V

4/3
0

N1/3
a4

(

1 +
4

N

∑

i

(ψi)2

)

≈ V
4/3
0

N1/3
a4
(

1 +
4

V0

∫

d3x ψ(~x)2
)

(5.6)

and, assuming all 〈α̂I〉 are equal, the dynamical equation (5.5) reduces to the relation

a4
(

1 +
4

V0

∫

d3x ψ(~x)2
)

≈ κ2µ2

4

(

N

V0

)4/3

(5.7)

between the cosmological variables a, ψ and N , where the approximation comes from

viewing the sum over i as approximating a continuum integral over space.

Assuming that the universe is exactly homogeneous, (5.7) would imply that

a3V0 =
(κµ

2

)3/2
N (5.8)

which means that for a dynamical state the total physical volume a3V0 is proportional to

the number of patches N , so that each patch has fixed volume (κµ/2)3/2.
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If (5.8) holds, the ‘average group element’ 〈Π̂I〉/N (see (3.15)) for GFT condensates is

identified with the cosmological observable

|〈Π̂I〉|
N

= sin

(

(

V0
N

)1/3

ω

)

= sin

(√
κµ√
2 a

ω

)

. (5.9)

The relation (5.8) reproduces, in GFT condensate cosmology, the improved dynamics pre-

scription of LQG [32] in which holonomy corrections take the form (5.9). In order to

obtain (5.9) for GFT condensates, we assumed the form of the kinetic term (5.4), the ex-

istence of a weak-coupling limit, and consistency of the Poisson brackets at low curvature

that led to (3.18). Our argument can be contrasted with results in LQC, e.g. [49] where

the improved dynamics scheme was shown to be the only LQC prescription leading, in the

(semiclassical) effective dynamics, to a universal ‘quantum gravity scale’ bounding geo-

metric quantities that is independent of initial conditions. The improved dynamics scheme

has also been derived from GFT condensate dynamics in [26], using a WKB approxima-

tion and the coupling to matter. The two results, obtained using different methods, show

different ways of how LQC holonomy corrections can emerge from the more fundamental

GFT framework.

For the more general case of inhomogeneous universes, (5.7) becomes

a3V0 ≈
(κµ

2

)3/2
N

(

1 +
4

V0

∫

d3x ψ(~x)2
)−3/4

(5.10)

and hence the total volume a3V0 is decreased when inhomogeneities are present.

At the end of section 4 we have argued that a nearly homogeneous universe is only

possible if the length scale associated to the distribution of ‘patches’ is large compared to

the ‘Planck’ scale. This statement together with (5.10) would imply that we require µ2 ≫ 1

in order to have, within the approximations we are using here, dynamical condensates that

are observationally viable, i.e. satisfy ψ ≪ 1. This is an example of how input from

observation can be translated into constraints on a class of GFT models, as was already

advocated in previous works such as [25]. From the perspective of fundamental quantum

gravity, (5.4) with µ2 ≫ 1 might be viewed as a limiting case in which the Laplace-Beltrami

operator is a ‘small perturbation’ to the trivial kinetic term on which existing GFT/spin

foam models related to Plebanski gravity are based, e.g. the class of GFT actions in [36].

6 Discussion

The ‘condensate wavefunction’ appearing in the mean-field approximation is not a ‘wave-

function of the universe’. In deriving quantum cosmology models from GFT condensate

dynamics, one should use an interpretation that takes the physical interpretation of this

mean field into account. As we have argued, one way of clarifying this interpretation is

to rewrite the hydrodynamic approximation of GFT condensates as a classical statistical

distribution over the space of geometries. This statistical description then already cap-

tures inhomogeneities, and hence this approximate classical picture for GFT condensates

– 17 –
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generally corresponds to an inhomogeneous universe, even though the underlying quantum

state is homogeneous in a precise sense, being given by a coherent state of many quanta.

One main future task will be to find explicit solutions to the GFT dynamics, in par-

ticular ones that describe nearly homogeneous universes, in order to be able to extract

clear predictions from GFT condensate cosmology. It may also be necessary to go beyond

the mean-field approximation, given that the information about inhomogeneities we can

extract is rather limited, corresponding to integrals
∫

d3x ψ(~x)n for different n.

An important rôle should be played by solutions that are similar to solitons that appear

in the physics of Bose-Einstein condensates [31]. The existence of such solutions depends

crucially on the nonlinearity of the Gross-Pitaevskii equation. Similarly, the interaction

term in GFT is the main ingredient for creating 4d spacetime structure out of 3d building

blocks [10, 12, 13], which also suggests the need for solutions to the full, nonlinear equa-

tions. The analogue of the Gross-Pitaevskii equation for GFT condensates, in the simplest

approximation where the condensate is defined by (2.6), is just the classical GFT equation

of motion. Solutions to these classical equations, for GFT models of interest in quantum

gravity, have been the focus of previous work [50–52] which mainly aimed at exploring the

dynamics of perturbations around a non-trivial background. One might try to choose one

of these solutions as a candidate mean field σ(gI) for cosmology. However, the solutions

used in [50–52] are sharply peaked on ‘flat’ geometries.8 This is natural in the context

of [50, 52] of models for 3d gravity where solutions to the classical theory, defined by a ‘BF

action’
∫

tr(E ∧ F [A]), correspond to flat connections, with conjugate triad 1-form E only

determined up to transformations E 7→ E+dAη which leave the action invariant [54]. In 4d

gravity, however, one requires a distribution with finite spread both in terms of curvature

and metric variables (where the spread in the metric, in order to match observation, must

be very small), which corresponds to a very different type of classical solution.

In section 5 we gave one example of how to extract information about the GFT dy-

namics already from the linearised equations. Using the cosmological interpretation of

expectation values of GFT Fock space operators given in section 3, we have reproduced

the improved dynamics prescription of LQC holonomy corrections from a consistency rela-

tion between the total volume and the average particle number which means that a3 ∝ N .

The constant of proportionality depends on the GFT coupling constant µ2; assuming that

the scale associated to the ‘patches’ in the condensate is ‘large’, a(V0/N)1/3 ≫ √
κ, as seems

required for a nearly homogeneous universe, only models with µ≫ 1 would be viable.

Beyond the simplest condensates we have considered, one might expect ‘large’ patches

to arise as an effective description at a mesoscopic scale, after coarse graining of fundamen-

tal GFT quanta. The generalised condensates of [29] which involve such a coarse graining

(see footnote 6) might hence be better suited for describing a realistic cosmology.

The calculations of section 5 are a special case of the general discussion of [25] where,

using the variables (3.15), a generalised Friedmann equation was obtained that depended

on the ‘atomic number’ N which has no classical analogue. Such equations can only be

8See also the closely related work in [53] using coherent states, where (again in 3d) imposing the dynamics

suggests that states should be sharply peaked on flatness, with large spread in the triad.
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interpreted physically when the ‘equation of state’ N = N(a) is known. Here, under the

assumption of exact homogeneity, we find the relation (5.8) which also depends both on

the cosmological variable a and the particle number N but simply fixes a in terms of N

(or conversely), and hence provides the relation N = N(a) but no further information

about the dynamics which has to come from elsewhere. In a complete derivation of cos-

mological dynamics from GFT, even in the simplest isotropic, homogeneous case, at least

two independent relations are required to provide these two separate ingredients (similar

to standard cosmology where the Friedmann equations are supplemented by an equation

of state). The first step towards this, a main focus of current work [55], is to discard the

approximation in which interactions are neglected and to instead find (approximate) solu-

tions to the full nonlinear GFT equations. This should also shed light on the dynamics of

inhomogeneities, which ultimately have to be matched with observational constraints.
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