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The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are

hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter.

We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe

to evolve across a quantum “bounce” into an expanding universe like ours. We compute the Feynman

propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the

case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of

the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact

solutions. We show how complex classical solutions allow one to circumvent the singularity while

maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a

critical boundary, beyond which there is qualitatively different behavior, with potential for instability.

Additional scalars improve the theory’s stability. Finally, we study the semiclassical propagation of

inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at

least at this level, there is no particle production across the bounce. These results form the basis for a

promising new approach to quantum cosmology and the resolution of the big bang singularity.

DOI: 10.1103/PhysRevD.95.103510

I. INTRODUCTION

On the largest scales we can observe, our Universe has a

remarkably simple structure. It is homogeneous, isotropic,

and spatially flat to very high accuracy. Furthermore, the

primordial curvature fluctuations which seeded the for-

mation of structure apparently took an extremely minimal

form: a statistically homogeneous, Gaussian-distributed

pattern of very small-amplitude curvature perturbations,

with an almost perfectly scale-invariant power spectrum.

While inflationary models are capable of fitting the data, it

is nonetheless tempting to look for a simpler and more

fundamental explanation. The early Universe was domi-

nated by radiation, a form of matter without an intrinsic

scale. In fact, it is believed that any well-defined quantum

field theory must possess a UV fixed point, signifying

conformal invariance at high energies. These lines of

argument encourage us to investigate a minimal early

universe cosmology, namely a quantum universe filled

with conformally invariant matter [1]. We start by studying

the quantum propagation of homogeneous background

universes, uncovering a number of surprising features.

Then, we include inhomogeneous perturbations, treated

semiclassically and perturbatively at both linear and non-

linear order. We do not, in this paper, propose a realistic

scenario. Nor do we proceed far enough to study the effects

of renormalization and the running of couplings, although

these are no doubt important. Our focus is on the technical

calculation of the causal (Feynman) propagator in some

specific (and quasirealistic) cosmologies. We also postpone a

discussion of the important question of the interpretation of

the propagator and its use to compute probabilities to future

work. Nevertheless, we believe our findings are instructive

and form a useful starting point for such investigations.

The simplest example of conformal matter is a perfect

fluid of radiation. In the context of cosmology, this is

extremely well motivated since the early Universe was, we

believe, radiation dominated. Furthermore, if we add a

single scalar field then at least at a classical level, minimal

coupling is equivalent to conformal coupling under field

redefinitions. So this case too may be considered as an

example of conformal matter. It is then instructive to

extend the discussion to include an arbitrary number of

conformally and minimally coupled free scalar fields.

Since the matter Lagrangian of interest is, by assumption,

conformally (Weyl) invariant at a classical level, it makes

sense to “lift” general relativity (GR) to a larger theory

possessing the same symmetry. This is done by introducing

an extra scalar field which is locally a pure gauge degree of

freedom. The full theory is now classically Weyl invariant

and it may be viewed with advantage in various Weyl

gauges. Its solutions contain all solutions of GR but the

theory allows for extended and more general solutions that
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do not possess a global gauge fixing to GR. In particular, it

turns out that while classical cosmological (homogeneous

and isotropic) background solutions are typically singular

and geodesically incomplete in Einstein gauge (the Weyl

gauge in which the gravitational action takes Einstein-

Hilbert form, with a fixed Newton’s gravitational constant

G), they are regular and geodesically complete in a more

general class of Weyl gauges, where G is no longer constant

and can even change sign. In these gauges, generic cosmo-

logical background solutions pass smoothly through the

“big bang singularity” and into new regions of field space,

including “antigravity” regions where G is negative [2].

Strictly speaking, the lifted classical theory is still incomplete

because these highly symmetrical backgrounds are unstable

to perturbations in the collapsing phase, leading to diverging

anisotropies which cannot be removed via a Weyl gauge

choice. It was argued nevertheless that the classical theory

possesses a natural continuation across singularities of this

kind [3].

In this paper, following [1], we take a different tack.

We ask whether quantum effects might rescue the theory

from its breakdown at big bang-type singularities. First, we

show that for the simplest types of conformal matter, the

Feynman propagator for cosmological backgrounds may be

computed exactly, allowing us to explore many issues with

precision in this symmetry-reduced (minisuperspace) con-

text. Second, we extend the discussion to include anisot-

ropies, resolving the ordering problems in the quantum

(Wheeler-DeWitt) Hamiltonian by imposing covariance

under field redefinitions. We go further than the treatment

of [1] by defining the quantum theory along the real axis in

superspace, and discovering some remarkable features. For

a flat, isotropic universe, quantum effects indeed become

large near the singularity. Therefore, strictly speaking, one

should not attempt to employ the real classical theory there.

Instead, one can solve the quantum Wheeler-DeWitt-type

equation for the propagator in complexified superspace,

along a contour which avoids the singularity in taking one

from the incoming collapsing universe to the outgoing

expanding one. Provided the contour stays sufficiently far

from the singularity, the semiclassical approximation

remains valid all along it, so one can employ complex

solutions of the classical theory to follow the quantum

evolution across (or more accurately, around) the singu-

larity. In doing so, we find that while quantum effects are

large near the singularity, they take a very special form such

that they are “invisible” in the evolution between incoming

and outgoing states. In the final section of this paper, we

treat inhomogeneous perturbations, at linear and nonlinear

order, showing how they may be followed smoothly and

unambiguously across (or, more accurately, around) the big

bang singularity, in a similar manner.

The theory we consider consists of Einstein gravity plus

radiation and a number of free scalar fields. All of these

forms of matter satisfy the strong energy condition, and any

cosmological solution necessarily possesses a big bang

singularity. However, there is no singularity in the Feynman

propagator for closed, open and flat Friedmann-Robertson-

Walker (FRW) and for flat, anisotropic Bianchi I cosmol-

ogies; the propagator is well behaved across a bounce

representing a transition from a large, collapsing classical

universe to a large, expanding one. We also study inho-

mogeneous perturbations of the isotropic, radiation-

dominated universe, studying the propagation of scalar

and tensor perturbations across the bounce, at linear and

nonlinear order. We find that, in the semiclassical approxi-

mation at least and with strictly conformal matter, the

incoming vacuum state evolves into the outgoing vacuum

state, with no particle production. The bounce may be

viewed as an example of quantum-mechanical tunneling,

and we use complex classical solutions as saddle points to

the path integral, in a manner which generalizes the use of

instanton solutions to describe tunneling in more familiar

contexts. Some of these results were anticipated in Ref. [1];

here we present more details on their derivation, extend

them to further cases not discussed in Ref. [1], and provide

more mathematical and conceptual background. An alter-

nate interpretation of the antigravity regions, not employing

complex solutions, has been presented in Ref. [4].

The simplest example of a “perfect bounce” is provided

by a spatially flat, homogeneous and isotropic FRW

universe, filled with a perfect radiation fluid. Adopting

conformal time (denoted by η), i.e., choosing the line

element to be

ds2 ¼ a2ðηÞð−dη2 þ dx⃗2Þ; ð1Þ

one finds the scale factor aðηÞ ∝ η. One way to see this is

from the trace of the Einstein equations. For the line

element (1), R ¼ 6ðd2a=dη2Þ=a3 and for conformal matter,

the stress tensor is traceless. So the Einstein equations

imply aðηÞ ∝ η. If spatial curvature is included, it is

subdominant at small a so that a still vanishes linearly

with η. Hence aðηÞ ∝ η is a direct consequence of con-

formal invariance and cosmological symmetry. While the

line element (1) clearly contains a big bang/big crunch

singularity at η ¼ 0, it is regular everywhere else, not only

along the real η-axis but also in the entire complex η plane.

Any complex η trajectory that connects large negative and

large positive a while avoiding a ¼ 0 gives a regular,

complexified metric that asymptotes to a large, Lorentzian

universe in the past and the future, while circumventing the

big bang singularity.

Such complex solutions have been discussed in quantum

cosmology for a long time as saddle points of the path

integral, for instance in the no-boundary proposal of Hartle

and Hawking [5,6]. The crucial difference in our proposal is

that the complex solutions connect two large, Lorentzian

regions, identified with a collapsing incoming universe and

an expanding outgoing one. The Weyl-invariant lift of GR
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provides a convenient simplification of the geometry on

superspace, cleanly exhibiting its Lorentzian nature and the

role of the scale factor a as a single timelike coordinate for

both “gravity” regions. This leads us to a novel formalism

for quantum cosmology in which, rather than restricting to

positive a and imposing boundary conditions at a ¼ 0, a is

extended to the entire real line. The Feynman propagator

turns out to have simple behavior at large negative and

positive a, describing a contracting and reexpanding uni-

verse, respectively, and connecting them through a quan-

tum bounce. The purpose of this paper is to flesh out the

details of this formalism, and show how it leads to a novel

form of singularity avoidance in the context of an extremely

simple (but not altogether unrealistic) cosmology.

Some of the features of our discussion are not new. The

possibility of solving minisuperspace quantum cosmology

models exactly by recasting their dynamics as those of a

relativistic free particle or harmonic oscillator was pointed

out before (see, e.g., Refs. [7]). However, the crucial new

feature in our work is the existence of regular solutions

(especially complex ones) that connect two large

Lorentzian universes through a quantum bounce. This

feature relies on having a positive energy density in

radiation, a possibility which, as far as we know, was

overlooked in previous work. In fact, our results suggest

that the fact that the early Universe was dominated by

radiation may be sufficient in itself for a semiclassical

quantum resolution of the big bang/big crunch singularity,

without the need for less well-motivated ingredients such as

exotic forms of matter [8], modified theories of gravity [9],

or a proposed theory of quantum gravity [10]. To avoid any

potential confusion, let us reemphasize that the theories we

consider consist of general relativity with a radiation fluid

and a number of free scalars, and nothing more: our use of

the Weyl lift of GR does not introduce any additional

degrees of freedom.

The plan of our paper is as follows. In Sec. II, we

introduce the Weyl lift of GR plus radiation and scalars,

and show how the degree of freedom corresponding to the

metric determinant can be isolated straightforwardly, lead-

ing us to aWeyl-invariant notion of a, the “scale factor.”We

then study homogeneous, isotropic FRW universes in

Sec. III, showing that in these cases, the Einstein-matter

action corresponds to that of a massive relativistic particle

moving in Minkowski spacetime, either freely or subject

to a quadratic, Lorentz-invariant potential. We discuss the

classical and quantum dynamics of FRW universes, using

the classical Hamiltonian analysis to define the Wheeler-

DeWitt quantum Hamiltonian. We discuss the Klein-

Gordon-type inner product proposed by DeWitt [11], but

take the point of view that the fundamental quantity of

interest is really the causal (Feynman) propagator, which is

naturally defined as a path integral over four-geometries

[12]. Accordingly, in Sec. IV we calculate the propagator

for various cases of interest. While the Feynman propagator

for FRW universes is actually regular at the singularity

a ¼ 0, its asymptotic behavior for large arguments displays

interesting pathologies both for closed and, in particular,

open universes, so that only flat FRW universes seem to

consistently admit a quantum bounce. In Sec. V, we extend

the treatment to anisotropic universes of Bianchi I type,

including for generality a number of free minimally

coupled scalar fields. We resolve the ordering problem

in the quantum Hamiltonian, and we are again able to

explicitly derive the Feynman propagator. A very special,

singular potential arises centered on a ¼ 0 which, in the

minisuperspace context, is harmless and actually invisible

in the scattering amplitude between incoming and outgoing

states. The coefficient of this singular potential turns out to

take a special value for the isotropic universe with zero or

one conformally coupled scalars, placing it on the edge of a

potential quantum instability, as we discuss. The addition

of further conformally coupled scalars moves the theory

away from this edge, however. This is an intriguing result

that deserves further attention, as it could be used to select

between isotropic and strongly anisotropic universes. In

Sec. VI, we add inhomogeneities, treated linearly and

nonlinearly in the semiclassical approximation where

one employs complex classical solutions to the classical

Einstein equations. We show how this is sufficient to

determine mixing between positive- and negative-

frequency modes, and hence to compute the particle

production across the “quantum bounce.” We find no

particle production, but instead verify that the perturbation

expansion breaks down at late times due to the formation of

shocks in the fluid, a phenomenon which is now physically

well understood [13]. Section VII concludes.

II. WEYL-INVARIANT COSMOLOGY

We start by studying the cosmology of a universe filled

with perfectly conformal radiation and a number M of

conformally coupled scalar fields, with gravitational

dynamics governed by a lift of GR to a classically

Weyl-invariant theory that contains an additional dilaton

field ϕ. We stress again that the field ϕ is locally pure

gauge, and possesses no nontrivial dynamics of its own.

This formalism for GR was developed in Ref. [2] and

works in any number of dimensions D > 2 (we set D ¼ 4

shortly). The total action we consider is

S ¼
Z

dDx

�

ffiffiffiffiffiffi

−g
p �

1

2
ðð∂ϕÞ2 − ð∂χ⃗Þ2Þ − ρ

� jJj
ffiffiffiffiffiffi

−g
p

�

þ ðD − 2Þ
8ðD − 1Þ ðϕ

2 − χ⃗2ÞR
�

− Jμð∂μ ~φþ βA∂μα
AÞ
�

: ð2Þ

The independent dynamical variables are the spacetime

metric gμν (assumed to be Lorentzian throughout), the

“dilaton” ϕ, M physical scalar fields χ⃗ ¼ ð χ1;…; χMÞ, and
a densitized particle number flux Jμ characterizing the
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radiation fluid. The latter can be identified by Jμ ¼
ffiffiffiffiffiffi

−g
p

nUμ, where n is the particle number density and

Uμ is the four-velocity vector field satisfying U2 ¼ −1; the

energy density ρ is only a function of n, concretely ρðnÞ ∝
n

D
D−1 for radiation which is the case we are interested

in. There is a Lagrange multiplier ~φ which enforces

particle number conservation ∂μJ
μ ¼ 0, and D − 1 further

Lagrange multipliers βA, with A ¼ 1;…; D − 1, enforcing

constraints Jμ∂μα
A ¼ 0 that restrict the fluid flow to be

directed along flow lines labeled by the fields αA which

play the role of Lagrangian coordinates for the fluid.

In general, the fluid energy density ρ would also depend

on the entropy per particle. For simplicity, we henceforth

assume an isentropic fluid for which this entropy per

particle is a constant. The fluid part of our action is then

the one given for isentropic fluids in Eq. (6.10) of Ref. [14],

where further details on the construction of actions of

relativistic fluids and their corresponding Hamiltonian

dynamics can be found.

The action (2) is invariant under a Weyl transformation

that takes

gμν → Ω
2gμν; ðϕ; χ⃗Þ → Ω

ð2−DÞ=2ðϕ; χ⃗Þ; ð3Þ

where ΩðxÞ is an arbitrary function on spacetime. Such a

transformation also takes ρ → Ω
−Dρ. Because of this local

conformal symmetry, the field ϕ does not correspond to a

physical degree of freedom; indeed, if ϕ2 − χ⃗2 > 0 every-

where, one can gauge fix the conformal symmetry to

recover the usual Einstein-Hilbert formulation of GR. It

is then clear that there is no physical ghost in the theory

even though ϕ appears in Eq. (2) with the wrong-sign

kinetic term.

Let us make this explicit. For ϕ2 − χ⃗2 > 0, one can go to

“Einstein gauge” by performing a conformal transforma-

tion (3) that takes

ϕ2 − χ⃗2 → constant ≕
D − 1

2ðD − 2ÞπG ð4Þ

where G is Newton’s constant. Note that Eq. (4) does not

entirely fix the gauge freedom as one can still perform a

global rescaling that takes the constant to a different one;

the exact value of Newton’s constant is arbitrary and

corresponds to a choice of units. Einstein gauge corre-

sponds to constraining the (M þ 1)-vector formed by ðϕ; χ⃗Þ
to a hyperboloid HM in (M þ 1)-dimensional field space at

each point in spacetime. One can introduce an explicit

parametrization of this hyperboloid by M coordinates νi,

ϕ ¼ ϕðν1;…; νMÞ; χi ¼ χiðν1;…; νMÞ; ð5Þ

so that in this gauge the action (2) reads

S ¼
Z

dDx

�

ffiffiffiffiffiffi

−g
p �

−
1

2
GijðνÞ∂νi · ∂νj − ρ

� jJj
ffiffiffiffiffiffi

−g
p

�

þ 1

16πG
R

�

− Jμð∂μ ~φþ βA∂μα
AÞ
�

; ð6Þ

where GijðνÞ is a positive definite metric of constant

negative curvature on the gauge-fixed field space para-

metrized by the νi. Again, Eq. (6) shows that there are no

physical ghosts in the theory, at least as long as ϕ2 − χ⃗2 > 0.

There are two different sectors in the space of field

configurations where Einstein gauge is available, corre-

sponding to “future-directed” and “past-directed” (in field

space) configurations, i.e., to ϕ > 0 or ϕ < 0. There are

also regions where ϕ2 − χ⃗2 becomes negative, identified

with “antigravity” in Ref. [2] as they would appear to

correspond to a negative G. We identify such regions with

imaginary values of the scale factor and show how the

passage of the Universe through antigravity regions is a

semiclassical representation of what is really a quantum

bounce, similar to how quantum tunneling can be described

by complex classical trajectories. The antigravity regions

do contain a ghost, as now ðϕ; χ⃗Þ would be constrained to

de Sitter space dSM−1;1 which has a timelike direction.

These regions and their ghost excitations do not appear

in the physical “in” and “out” states of the theory, which

are defined in asymptotic timelike regions where

ϕ2 − χ⃗2 → ∞; nevertheless, the existence of these regions

can cause pathologies in the quantum theory if initial

gravity states can propagate into the antigravity regions, as

we see in Sec. IV B.

Setting D ¼ 4, to make this more precise it is now

useful to define a scale factor, or rather its square a2, with
the following properties: it should be Weyl invariant, so

that it takes the same value in any conformal gauge. It

should respect the OðM; 1Þ isometry of the metric on the

space of scalar fields (defined by the kinetic terms) and so

depend only on the combination ϕ2 − χ⃗2, the radiation

density ρ and the metric determinant g. It should have

physical dimensions of an area (in the usual conventions

ℏ ¼ c ¼ 1), and scale like the square of the scale factor for

an FRW universe in Einstein gauge in conformal time.

These properties fix the “squared scale factor,” up to an

overall constant, to be

a2 ≡
1

2ρ
ð−gÞ−1

4ðϕ2 − χ⃗2Þ: ð7Þ

We use Eq. (7) as a natural definition in general gauges (the

motivation for the factor 1
2
becomes clear shortly). Note that

a2 is in general not positive; if we assume positive ρ and a

Lorentzian metric, as we always do in the following, then in

the antigravity regions a2 < 0 and so a is imaginary. This

definition of a differs from the one in Ref. [2] as it depends

on the energy density of the radiation. In Ref. [2], there was
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no such dependence. Instead, factors of Newton’s constant

were used to ensure the correct physical dimensions.

For a2 > 0, we fix the sign of a by choosing a time

orientation in field space: a is defined to have the same sign

as ϕ. The Minkowskian field space parametrized by ðϕ; χ⃗Þ
is then partitioned into two regions with real a and one

region with imaginary a; see Fig. 1. Note that the entire

light cone corresponds to a ¼ 0. This picture, as we have

anticipated, gives physical meaning to positive, negative

and imaginary a, generalizing the case of pure radiation,

M ¼ 0, where there are no spacelike directions and a takes

values along the real axis, as in the example discussed in the

introduction.

Apart from Einstein gauge, another gauge that we often

employ, again following the framework introduced in

Ref. [2], is “Weyl gauge” where the metric determinant

g is fixed to a constant (typically −1). This gauge is

available whenever the metric is nonsingular; in particular,

it covers the entire field space pictured in Fig. 1, encom-

passing both gravity and antigravity regions. It is often a

convenient gauge to work in. In Weyl gauge, the expression

for the scale factor reduces to a2 ¼ 1
2ρ
ðϕ2 − χ⃗2Þ, where

for homogeneous models by energy-momentum conserva-

tion ρ is constant. a is then proportional to the (signed)

timelike OðM; 1Þ-invariant distance from the origin in field

space, making it a natural choice of time coordinate on

superspace.

For highly symmetric solutions such as FRW universes,

conformal symmetry can be used to eliminate curvature

singularities in the metric by moving them into 0’s of the

quantity ðϕ2 − χ⃗2Þ. Since this quantity has no geometric

interpretation, it is a priori reasonable for it to vanish or

change sign. However, following the dynamical evolution

through such points is in general problematic because the

effective Newton constant diverges so gravity becomes

strongly coupled. This is reflected, for example, in the

behavior of tensor (gravitational wave) perturbations,

which diverge as the effective Newton constant does.

This leads to a diverging Weyl curvature which cannot

be removed because it is conformally invariant.

Nevertheless, in the presence of scalar fields (such as

the electroweak Higgs boson) there is generically no

Mixmaster chaos and one expects the classical evolution

to become ultralocal and Kasner-like. There are a number

of asymptotically conserved classical quantities, including

the Kasner exponents, suggesting a natural matching rule

across the singularity [3] but the issue has not been

conclusively settled [15].

In this paper, we take a different approach. We show that

by extending the classical discussion to a quantum picture

one can avoid the critical surface a ¼ 0 where the theory

becomes problematic, independently of any Weyl gauge

choice. We give a description of nonsingular quantum

bounces in terms of analytic continuation in a, where the

Universe evolves from large negative a to large positive a
along a contour in the complex a-plane which avoids

a ¼ 0. We argue that as long as the quantum mechanics of

the a degree of freedom make sense, the classical singu-

larity at a ¼ 0 can be avoided without obstruction.

III. FRW BOUNCES

As a first step, we perform the familiar symmetry

reduction of our theory to homogeneous and isotropic

FRW universes, with the metric assumed to be of the form

ds2 ¼ A2ðtÞð−N2ðtÞdt2 þ hijdx
idxjÞ ð8Þ

where hij is a fixed metric on hypersurfaces of constant t,

which has constant three-curvature Rð3Þ ¼ 6κ. Note our use

of a conformal lapse function N; the usual definition of the

lapse would be N0ðtÞ ¼ AðtÞ · NðtÞ. We can now set the

function AðtÞ to one by a conformal transformation, so that

the metric becomes nondynamical and all dynamics are

in the scalar fields ϕ and χ⃗. Also, with FRW symmetry

Jμ ¼
ffiffiffi

h
p

nδ
μ
0, and the action (2) reduces to

S ¼ V0

Z

dt

�_χ⃗
2
− _ϕ2

2N
þ N

�

κ

2
ðϕ2 − χ⃗2Þ − ρðnÞ

�

− ~φ _n

�

;

ð9Þ

where : denotes derivative with respect to t and V0 ¼
R

d3x
ffiffiffi

h
p

is the comoving spatial volume (which, as

usual for minisuperspace models, must be assumed to be

finite). We have simplified the last term including the

Lagrange multipliers which would be −nð _~φþ βA _α
AÞ since

the equations of motion involving βA and αA are clearly

redundant in FRW symmetry. As before, ρðnÞ ∝ n4=3, and
we can replace n by ρ as the independent variable.

It is evident that Eq. (9) is the action for a

relativistic massive free particle (for κ ¼ 0) or a relativistic

massive particle in a harmonic potential or a harmonic

FIG. 1. Associating positive, negative and imaginary scale

factor a to different regions in field space. The light cone

corresponds to the singularity a ¼ 0.
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“upside-down” potential (for κ ≠ 0) moving in (M þ 1)-

dimensional Minkowski spacetime. To make this more

explicit, we can introduce new variables

xα ≔
1
ffiffiffiffiffi

2ρ
p ðϕ; χ⃗Þ; α ¼ 0;…;M; m ≔ 2V0ρ; ð10Þ

so that Eq. (9) now takes the form

S ¼
Z

dt

�

m

2

�

1

N
_xα _xα − Nðκxαxα þ 1Þ

�

− φ _m

�

ð11Þ

where we have redefined the Lagrange multiplier for

simplicity, φ ≔ ~φV0ðdn=dmÞ, and the Minkowski metric

on the space of scalar fields ηαβ ¼ diagð−1; 1; 1;…Þ is used
to raise and lower indices. A crucial role is played by the

massm which corresponds to (twice) the total energy in the

radiation; the limit m → 0 would correspond to a massless

relativistic particle moving in a potential, which is the case

well known in minisuperspace quantum cosmology with

scalar fields [7]. Having a positive mass, and hence timelike

trajectories as classical solutions, is one of the essential

features of our model that leads to a bounce. With the

definition (10), the Weyl-invariant scale factor is simply

a2 ¼ −x2, which explains the factor 1
2
in Eq. (7). The

variable a is simply a time coordinate on superspace. One

can introduce it explicitly by setting

xα ¼ avα; v2 ¼ −1 ð12Þ

so that vα is restricted to a hyperboloid HM (see Fig. 2).

This parametrization, which isolates the physical scalar

fields as the variables vα, is useful below.
Starting from Eq. (11), the classical equations of

motion are

1

N

d

dt

�

m_xα

N

�

þmκxα ¼ 0; ð13Þ

1

N2
_xα _xα þ κxαxα ¼ −1; ð14Þ

_m ¼ 0; _φ ¼ −
1

2N
_xα _xα þ

N

2
ðκxαxα þ 1Þ: ð15Þ

The general solution to these equations is m ¼ constant,

xαðtÞ ¼ xα1
ffiffiffi

κ
p exp

�

i
ffiffiffi

κ
p Z

t

0

dt0Nðt0Þ
�

þ xα2
ffiffiffi

κ
p exp

�

−i
ffiffiffi

κ
p Z

t

0

dt0Nðt0Þ
�

ð16Þ

with x1 · x2 ¼ − 1
4
; the lapse function NðtÞ is arbitrary and

φðtÞ is determined from integrating Eq. (15). For κ ¼ 0, the

general solution is simply a general timelike straight line in

Minkowski spacetime,

xαðtÞ ¼ xα1

Z

t

0

dt0Nðt0Þ þ xα2 ð17Þ

with x21 ¼ −1. For κ ¼ 0, all solutions describe a bounce,

similar to the example in the introduction: the Universe

comes in from negative real infinite a, goes through a ¼ 0

followed in general by an “excursion” into imaginary a, and
crosses a ¼ 0 again before going off to real positive

infinity. When we go quantum, since the action is quadratic,

the saddle point approximation is exact and the quantum

dynamics is given purely in terms of these classical

solutions. When viewed as saddle points, these trajectories

can be deformed in the complex a-plane so that the

singularity a ¼ 0 is avoided. The situation is more subtle

for κ < 0, where there are spacelike as well as timelike

solutions, and for κ > 0 where there is a turnaround in the

classical solutions and the Universe must recollapse due to

the spatial curvature. In Sec. IV, we see how the more

complicated structure of solutions for κ ≠ 0 is reflected in a

pathological behavior of the Feynman propagator for large

arguments.

A. Canonical formalism

In order to pass to the Hamiltonian formalism,

following Dirac’s algorithm [16], one computes the canoni-

cal momenta for the action (11) and finds

pα¼
∂L

∂ _xα
¼m

N
_xα; pm≈−φ; pN≈0; pφ≈0: ð18Þ

While the first equation can be inverted to express the

velocities _xα in terms of the momenta pα, the last three

equations are primary constraints—we use Dirac’s notion

of “weak equality” ≈ for equations that hold on the

constraint surface. The second and fourth constraint would

be second class, meaning one has to introduce a Dirac

bracket and “solve” them. However, in this case, one can

use the shortcut of simply identifying −φ with the
FIG. 2. The points of constant (real) a form a hyperboloid

parametrized by vα.
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momentum conjugate to m and removing the separate

variable pφ. This is equivalent to saying that the term −φ _m

in Eq. (11) is part of the symplectic form pi _q
i so that one

can read off pm ¼ −φ.

The Hamiltonian is then

H ¼ N

�

p2

2m
þm

2
ðκx2 þ 1Þ

�

þ ξpN : ð19Þ

Preservation of pN ≈ 0 under time evolution gives the

secondary, Hamiltonian constraint,

C ≔
p2

2m
þm

2
ðκx2 þ 1Þ ≈ 0: ð20Þ

N can then be treated as a Lagrange multiplier; it only

enters linearly in the Hamiltonian, and its time evolution

under H is _N ¼ fN;Hg ¼ ξ where ξ is undetermined.

Removing ðN; pNÞ from the phase space (and setting

ξ ¼ 0 in the Hamiltonian), we are left with the canonical

pairs ðxα; pαÞ and ðm;pmÞ, subject to the constraint C,
which trivially satisfies fC;Hg ¼ 0. C generates time

reparametrizations,

δNx
α ¼ fxα; NCg ¼ Npα

m
; ð21Þ

δNpα ¼ −Nmκxα; ð22Þ

δNpm ¼ −N

�

−
p2

2m2
þ 1

2
ðκx2 þ 1Þ

�

; ð23Þ

which correspond to the Lagrangian notion of time repar-

ametrization, by the equations of motion (13)–(15).

B. Quantization

Having set up the canonical formalism, we can

proceed with quantization in the standard way. The

Hamiltonian constraint is imposed as an operator equa-

tion restricting the set of physical states. In the ðx;mÞ
representation for the wave function, this is the Wheeler-

DeWitt equation

1

2m
ð−□x þm2ðκx2 þ 1ÞÞΨðx;mÞ ¼ 0: ð24Þ

Different m sectors simply decouple, as a consequence of

conservation of the total energy in the radiation, with no

transitions between different m values allowed. An

alternative representation of wave functions is obtained

by separating the scale factor from the physical scalar

field degrees of freedom, as in Eq. (12), and introducing

a set of coordinates νi, i ¼ 1;…;M, on the hyperboloid

HM. The Wheeler-DeWitt equation then becomes

�

∂2

∂a2
þM

a

∂

∂a
−

1

a2
ΔHM þm2ð1 − κa2Þ

�

Ψða; νi; mÞ ¼ 0

ð25Þ

where ΔHM is the Laplace-Beltrami operator on M-

dimensional hyperbolic space, i.e., on the space para-

metrized by the coordinates νi. For example, using

Beltrami coordinates νi ¼ xi=x0 one would have

ΔHM ¼ ð1 − ν⃗2Þ½ðδij − νiνjÞ∂i∂j − 2νi∂i�: ð26Þ

This coordinate choice on superspace makes the role of

the timelike coordinate a explicit. The Wheeler-DeWitt

equation can then be simplified by Fourier transforming

from the νi coordinates to their conserved momenta ζ,

�

∂2

∂a2
þM

a

∂

∂a
−

c

a2
þm2ð1−κa2Þ

�

Ψða;ζi;mÞ¼0 ð27Þ

with

c≡ −
1

4
ðM − 1Þ2 − ζ⃗

2 ð28Þ

corresponding to the eigenvalues of the Laplacian on HM

(for M ≥ 1). As we see in Sec. V below, the same form

of the Wheeler-DeWitt equation applies when including

anisotropies in a Bianchi I model or additional minimally

coupled scalar fields, with the only change that the

constant c receives additional contributions from con-

served anisotropy and scalar field momenta as well as

from fixing ordering ambiguities.

A natural inner product on solutions of a second-order

equation like Eq. (25) is the Klein-Gordon-like norm

hΨjΦi≡ iaM
Z

dMνdm
ffiffiffiffiffiffiffiffi

gHM

p
�

Ψ
�ða; νi; mÞ ∂

∂a
Φða; νi; mÞ

−
∂

∂a
Ψ

�ða; νi; mÞΦða; νi; mÞ
�

; ð29Þ

with gHM being a constant negative curvature metric onHM,

which is conserved under time evolution, i.e., independent

of a, for solutions of Eq. (25). This inner product was

introduced by DeWitt [11] and has the well-known problem

(if it is used to define probabilities) that it is only positive

on positive-frequency solutions to Eq. (25), when they

exist. For some simple cosmological models, this subspace

is well defined, and may be interpreted as the space of

expanding quantum universes: if a is taken to be positive,

a wave function describing an expanding universe must

be an eigenstate of pa ¼ −i∂a with negative eigenvalue

(note that pa ¼ −m _a=N and so _a > 0 means pa < 0), i.e.,

a positive-frequency solution. This notion of positive

frequency breaks down for cosmological models with
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recollapsing solutions, such as the FRW universe with

κ > 0, where it is only well defined until one reaches the

turning point, and it is known that a decomposition into

positive and negative frequencies of the type we are using

here is not available in general [17]. The question of how

to define meaningful probabilities in quantum cosmology

has, of course, been a matter of long debate (see, e.g.,

Refs. [5,18,19]).

We do not aim to resolve this debate here. The only use

we make of the DeWitt norm (29) is to help us construct

the Feynman propagator from mode function solutions of

the Wheeler-DeWitt equation. The expansion rate −pa

does play the role of an energy, which leads us to adopt

Feynman’s picture for quantum field theory in which

positive energy (i.e., expanding) states are propagated

forward in proper time. The natural two-point function

we consider below in Sec. IV is hence the Feynman

propagator. In what follows we alternate between the path

integral and the Feynman propagator as basic formulations

of quantum cosmology, explicitly showing their equiva-

lence in simple cases.

So far, this is a completely standard definition of a

minisuperspace model in Wheeler-DeWitt quantum cos-

mology. However, there is one crucial difference between

our approach and previous treatments, in that we do not

restrict the wave function to positive a, nor do we impose

any boundary condition at a ¼ 0 [such as the popular

choice Ψða ¼ 0Þ ¼ 0]. At fixed m, the domain of the wave

function is simply R
M;1. Any boundary condition at a ¼ 0

would seem artificial from the viewpoint of classical

solutions such as classical FRW “bounces” which connect

negative and positive a, as we have described, and is also

generally inconsistent with the wave function describing an

expanding Universe, i.e., a positive-frequency solution. In

our proposal, the natural choice of wave functions corre-

sponds to positive-frequency solutions that asymptote to

plane waves at large jaj, where the Universe becomes

semiclassical, while we allow for irregular behavior in the

wave function at a ¼ 0. The examples we consider all

admit a semiclassical Wentzel-Kramers-Brillouin (WKB)

expansion in which one can deform the contour from the

real a-axis into complex a, avoiding a ¼ 0 entirely.

IV. FEYNMAN PROPAGATOR

FOR FRW UNIVERSES

The Feynman propagator is one of the most basic

ingredients in relativistic quantum theory. In quantum

gravity, it plays the role of a causal Green’s function for

the Wheeler-DeWitt equation, arising from a path integral

in which one integrates only over positive values of the

lapse function [12]. If one considers amplitudes in which a
changes sign, as we do, then the Feynman propagator takes

one from a contracting universe in the initial state to an

expanding one in the final state, via a singularity of the big

bang type. Such an amplitude provides a natural way to

describe the “emergence” of spacetime from quantum-

mechanical first principles [20].

In this section, we show how to calculate the Feynman

propagator for FRW universes directly from the path

integral; in particular, the path integral may be used to

define the propagator without the need for an additional

“iϵ” prescription and, furthermore, the propagator directly

defines the positive- and negative-frequency vacuum

modes. As we have stressed, with FRW symmetry the

action is quadratic and the saddle-point approximation is

therefore exact for the path integration over the phase-space

variables. However, we also have a constraint (the

Friedmann equation) which must be imposed via an addi-

tional integration over the lapse function or Lagrange

multiplier N [21]. This integral is no longer Gaussian

and has to be considered with more care. Things are

considerably simpler for the flat FRW case κ ¼ 0, where

we have seen that the dynamics are just those of a massive

relativistic free particle in Minkowski spacetime. We

therefore begin by reviewing how the Feynman propagator

for a relativistic particle is calculated both from a path

integral and as a Green’s function for the differential

equation satisfied by physical wave functions. We then

extend these methods to treat general FRWuniverses for the

types of matter we consider.

A. Relativistic particle

Consider the action for a relativistic massive particle in

(M þ 1)-dimensional Minkowski spacetime,

S ¼ m

2

Z

dt

�

_xα _xβηαβ

N
− N

�

; ð30Þ

where m > 0, xαðtÞ is the parametrized particle world line

and NðtÞ is the “einbein.” Classically, N may be eliminated

using its equation of motion, obtaining the manifestly

reparametrization-invariant action S ¼ −m
R

dt
ffiffiffiffiffiffiffiffi

−_x2
p

.

Quantum mechanically, it is more convenient to fix the

reparametrization invariance [see also the discussion of

gauge fixing below Eq. (40)]: one can work in a gauge

in which t varies over a fixed range, conveniently taken to

be − 1
2
< t < 1

2
, and N is a t-independent constant, equal to

the total, reparametrization-invariant time
R

dtN which we

call τ. The Feynman propagator is then given by the path

integral

Gðxjx0Þ ¼
Z

dτDx exp

�

i
m

2

Z

1
2

−1
2

dt

�

_x2

τ
− τ

��

¼ i

Z

∞

0

dτ

�

m

2πiτ

�Mþ1
2

e−i
m
2
ðσ
τ
þτÞ; ð31Þ

where σ ≡ −ðx − x0Þ2 and τ should be integrated over

positive values. Evaluating the Gaussian path integrals is
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straightforward, with the only unusual factor being the

prefactor of i in the second line, which arises from the

functional integral over x0, which has the “wrong sign”

kinetic term so that the overall phase factor contributed is

eþiπ=4 rather than the usual e−iπ=4.
The second line of Eq. (31) is, of course, just the familiar

Schwinger representation of the Feynman propagator, in

which the exponent is the classical action evaluated on a

solution of the equations of motion ẍ ¼ 0, satisfying the

correct boundary conditions, i.e., xðtÞ¼xðtþ 1
2
Þþx0ð1

2
− tÞ,

and the prefactor is given by the usual (regularized)

functional determinant. Note that this solution is only

the saddle point for the functional integral over paths

xðtÞ, at fixed τ. The constraint _x2 ¼ −τ2 arises sub-

sequently, as the condition for a saddle point in the

exponent of the τ integral. In fact, once the saddle point

is chosen, the integration contour is then fixed (up to an

equivalence class of contours yielding the same result) as

the complete extension of the corresponding steepest

descent contour. Integrating over negative proper time in

Eq. (31) would reverse the notion of time ordering, whereas

integrating over both positive and negative τ would lead to

a symmetrized two-point function in which one sums over

both time orderings, i.e., the Hadamard propagator.

For M > 0, the τ integral in Eq. (31) has a potential

divergence at τ ¼ 0. In fact, the integral converges at all

real values of σ except σ ¼ 0. That divergence is real: the

Feynman propagator is singular for null-separated points.

For other real values of σ, given that the integral converges

for all σ in the lower-half σ plane, one may define the

Feynman propagator as the boundary value of the function

defined by the integral, which is analytic in the lower-half σ

plane. Traditionally, the mass m is also taken to have a

small negative imaginary part, in order to make the τ

integral absolutely convergent at large positive values

(Feynman’s “iϵ” prescription). Equivalently, one may

distort the τ-contour to run to infinite values below the

real axis. The integral (31) may be directly expressed in

terms of a Hankel function, whose properties confirm these

general arguments (see the appendix).

It is instructive, however, to evaluate the τ integral in

Eq. (31) in the saddle-point approximation. First, consider

timelike separations, σ ¼ T2 > 0. The exponent in the τ

integral (31) is stationary at τ ¼ þT and τ ¼ −T, but only
the former saddle point is relevant to the contour we want,

which is deformable into the positive τ-axis. The saddle

point at τ ¼ þT gives rise to a positive-frequency result,

G ∼ e−imT at large T. The integration contour for τ may

then be taken to be the corresponding steepest descent

contour, shown as the solid line in Fig. 3. Now consider

analytically continuing T through the lower right quadrant

to the negative imaginary axis, T → −iR. It follows that G

converges as G ∼ e−mR at large R. Correspondingly, this

continuation implies that σ ¼ T2 runs below the origin in

the complex σ plane to negative values. The corresponding

saddle point for the τ integral moves as shown in

Fig. 3, passing below the origin in the complex τ plane

and down the imaginary τ-axis. At spacelike separations,

σ ¼ −R2 < 0, the saddle point is at τ ¼ −iR, and the

propagator falls exponentially with spacelike separation.

Notice that although the classical constraint _x2 ¼ −τ2

remains satisfied at the saddle point, the saddle-point

value for τ is imaginary, and hence classically disallowed.

Hence, the propagation of a massive relativistic particle in

spacelike directions may be viewed as a semiclassical

quantum tunneling process, mediated by a complex

classical solution.

In order to match the path-integral definition of the

Feynman propagator to its definition as a Green’s function,

it is convenient to use a time slicing with maximal spatial

symmetry. Here, the trivial time slicing defined by x0 is

spatially homogeneous, so one can Fourier transform in the

spatial coordinates and reduce the problem to a single

timelike dimension. Defining

Gðxjx0Þ ¼
Z

dMk⃗

ð2πÞM eik⃗·ðx⃗−x⃗
0ÞGkðx0; x00Þ; ð32Þ

one finds that Gkðx0; x00Þ is given by

Gkðx0; x00Þ ¼ i

Z

∞

0

dτ

ffiffiffiffiffiffiffiffiffi

m

2πiτ

r

e
−im

2

	

ðx0−x00Þ2
τ

þ
ω2
k

m2
τ




ð33Þ

where ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

.

By considering the saddle-point approximation to

Eq. (33), we see that the Fourier-transformed Feynman

propagator asymptotically satisfies

T

-iR

τ

FIG. 3. Integration contours in the complex τ plane, for

the relativistic massive propagator, defined in Eq. (31). As σ ≡

−ðx − x0Þ2 is varied, from timelike values σ ¼ T2 with T real, to

spacelike values σ ¼ −R2, with R real, by passing beneath the

origin in the complex σ plane, the saddle point in τ, shown by the

black point, moves correspondingly. In each case, the integral is

defined by the associated steepest descent contour running from 0

to ∞, also shown.
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Gkðx0; x00Þ ∼ e−iωkx
0

; x0 → þ∞; x00 fixed; ð34Þ

Gkðx0; x00Þ ∼ eþiωkx
00
; x00 → −∞; x0 fixed: ð35Þ

Such asymptotic expressions can be used to fix boundary

conditions for the corresponding wave (Wheeler-DeWitt)

equation, as we do shortly.

Formally, Gðxjx0Þ is the matrix element

hxj
R

∞
0
dτe−iHτjx0i ¼ −ihxjH−1jx0i, where we again

assume the integral converges at infinite τ. Hence,

suitably defined, Gðxjx0Þ should obey

HxGðxjx0Þ ¼ −iδMþ1ðx − x0Þ; ð36Þ

where Hx is the Hamiltonian in the x-representation,

Hx ¼ 1
2m

ð−□x þm2Þ. We can check Eq. (36) is indeed

satisfied by applying Hx to the last line of Eq. (31) and

using the fact that the integrand is a product of free-

particle quantum -mechanical propagators,

1

2m
ð−□x þm2ÞGðxjx0Þ

¼ i

Z

∞

0

dτi
d

dτ

��

m

2πiτ

�Mþ1
2

e
im
2
ððx−x

0Þ2
τ

−τÞ
�

¼ lim
τ→0

�

m

2πiτ

�Mþ1
2

e
im
2
ððx−x

0Þ2
τ

Þ; ð37Þ

where the limit should be taken along the appropriate

contour in the complex τ plane. The last line of Eq. (37)

is a representation of the (M þ 1)-dimensional delta

function: separating it into a product of similar terms

for each coordinate xα, we determine the coefficient of

the corresponding delta function by Fourier transforming

with respect to xα, and then taking the limit τ → 0. For

the timelike coordinate we obtain −iδðx0 − x00Þ, whereas
for the spacelike coordinates we obtain δMðx⃗ − x⃗0Þ.
Together, these results verify Eq. (36).

The point is now that the Feynman propagator can also

be computed by directly solving Eq. (36) in terms of mode

functions, again because the Fourier transform allows

reduction of the problem to one dimension. Writing both

the delta function and the propagator in Eq. (36) as Fourier

transforms, one sees that Gðxjx0Þ clearly satisfies Eq. (36)

as long as

ð∂2
0 þ ω2

kÞGkðx0; x00Þ ¼ −2imδðx0 − x00Þ: ð38Þ

This equation is solved by

Gkðx0; x00Þ ¼ −
2im

Wðψk
1;ψ

k
2Þ
ðψk

1ðx00Þψk
2ðx0Þθðx0 − x00Þ

þ ψk
1ðx0Þψk

2ðx00Þθðx00 − x0ÞÞ; ð39Þ

where ψk
1 and ψk

2 are two independent solutions to the

homogeneous equation ð∂2
0 þ ω2

kÞψ ¼ 0, andWðψ1;ψ2Þ ¼
ψ1ψ

0
2 − ψ2ψ

0
1 is the natural conserved (i.e., x0-

independent) inner product, or Wronskian. The dependence

of the Feynman propagator at large positive and negative

times now determines the appropriate choices for ψk
1ðx0Þ

and ψk
2ðx0Þ: comparing Eqs. (34) and (35) with Eq. (39) we

infer that, up to irrelevant constants, ψk
1 ¼ eþiωkx

0

and

ψk
2 ¼ e−iωkx

0

. Inserted into Eqs. (32) and (39), these give

the usual expression for the Feynman propagator in “time-

ordered” form. This shows how, in the example of the

relativistic particle, the correct boundary conditions that

define the Feynman propagator as one particular solution of

Eq. (36) can be obtained from the asymptotic behavior of

its path-integral definition. We now proceed similarly to

define the Feynman propagator for general FRW universes.

B. FRW universes

For our cosmological model, the Feynman propagator

can be defined through a phase-space path integral, taking

into account the integration over the lapse N [21],

Gðx;mjx0; m0Þ ¼
Z

DxαDPαDmDpmDN

× exp

�

i

Z

1=2

−1=2

dt

�

_xαPα þ _mpm

− N

�

PαP
α

2m
þm

2
ðκxαxα þ 1Þ

���

: ð40Þ

As in the previous example, due to the reparametrization

invariance of the theory the parameter time (specified by t)
between the initial and final configurations is arbitrary, and

we choose it to run from− 1
2
to 1

2
. In order for the path integral

to be well defined, the gauge invariance under time repar-

ametrizations generated by the Hamiltonian constraint must

be broken by fixing a specific gauge. One simple gauge

fixing, _N ¼ 0, can be obtained by introducing a new field Π

and adding the term Π _N to the action; we refer to Ref. [22]

for details. Integrating over the field Π then reduces the

integration over N to an ordinary integral over the total

conformal time between the initial and final configurations;

we make this explicit by again writing N as τ.

The remaining path integrals may be computed exactly.

Path integration over m and pm simply gives a delta

function in m, as expected since m has trivial dynamics

constraining it to be constant. One can then integrate over

Pα which yields

Gðx;mjx0;m0Þ

¼ δðm−m0Þ
Z

dτDx exp

�

i
m

2

Z

dt

�

_x2

τ
− τð1þ κx2Þ

��

ð41Þ
corresponding to M þ 1 decoupled harmonic oscillators.
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For κ ¼ 0, apart from the overall delta function, this is

exactly the expression Eq. (31). Accordingly, the path

integral over x is just that of a free relativistic particle and

the τ integral can be evaluated exactly; the result is

G0ðx;mjx0; m0Þ ¼ 1

2
δðm −m0Þð−imÞMð2πsÞ1−M2 H

ð2Þ
M−1
2

ðsÞ;

ð42Þ

with s≡m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðx − x0Þ2 − iϵ
p

, where H
ð2Þ
α ðxÞ is a Hankel

function of the second kind (see the appendix). The −iϵ

in its argument indicates that the expression is the boundary

value of a function which is analytic in the lower half −

ðx − x0Þ2 plane. As we have emphasized, we have derived

this definition from the path integral, and the requirement

that the integral over proper time τ converges.

In order to understand the more involved case of spatial

curvature κ ≠ 0, it is again helpful to recall how Eq. (42)

can be obtained from theWronksian method; for simplicity,

let us set M ¼ 0 and label x0 ≡ a which is our scale factor.

Then the Feynman propagator is a solution to

�

1

2m

d2

da2
þm

2

�

G0ða;mja0; m0Þ ¼ −iδðm −m0Þδða − a0Þ

ð43Þ

and can be written in the form

G0ða;mja0; m0Þ ¼ −2imδðm −m0Þ
�

ψ1ða0Þψ2ðaÞ
Wðψ1;ψ2Þ

θða − a0Þ

þ ψ1ðaÞψ2ða0Þ
Wðψ1;ψ2Þ

θða0 − aÞ
�

ð44Þ

where Wðψ1;ψ2Þ ¼ ψ1ðaÞψ 0
2ðaÞ − ψ 0

1ðaÞψ2ðaÞ is again

the (a-independent) Wronskian and ψ1ðaÞ and ψ2ðaÞ are

two appropriate independent solutions to the homogeneous

equation ð 1
2m

d2

da2
þ m

2
ÞψðaÞ ¼ 0, found by matching Eq. (44)

with the asymptotic behavior of Eq. (31) at infinity, with

σ ¼ ða − a0Þ2 (and there are no spacelike directions to be

considered). As explained below Eq. (33), (31) asymptotes

to e−ima for large positive a at fixed a0, and to eima0 for large

negative a0 at fixed a; this fixes the modes in (44) as

ψ1ðaÞ ¼ eima and ψ2ðaÞ ¼ e−ima (up to a normalization

that is irrelevant for G0). Thus, one finds

G0ða;mja0; m0Þ ¼ δðm −m0Þe−imja−a0j; ð45Þ

in agreement with Eq. (42) for M ¼ 0.

With this in mind, we can now go beyond the simplest

flat case, and consider κ ≠ 0, where the dynamics of the

Universe corresponds to those of a relativistic oscillator or

upside-down oscillator. The path integral over x in Eq. (41)

is easily calculated: the classical path which fixes the

exponent generalizes to

xðtÞ ¼ x sin ð ffiffiffi

κ
p

τðtþ 1
2
ÞÞ þ x0 sin ð ffiffiffi

κ
p

τð1
2
− tÞÞ

sinð ffiffiffi

κ
p

τÞ ; ð46Þ

which is unique for all x, x0 and τ [where we exclude special
cases for which sinð ffiffiffi

κ
p

τÞ ¼ 0], and the prefactor is given

by the usual regularized functional determinant for the

harmonic oscillator, so that

Gðx;mjx0; m0Þ

¼ iδðm −m0Þ
Z

∞

0

dτ

�

m
ffiffiffi

κ
p

2iπ sinð ffiffiffi

κ
p

τÞ

�Mþ1
2

× exp

�

i
m

2

�

ffiffiffi

κ
p ðx2 þ x02Þ cosð ffiffiffi

κ
p

τÞ − 2x · x0

sinð ffiffiffi

κ
p

τÞ − τ

��

:

ð47Þ

The overall factor of i arises just as it did for the free

relativistic particle, discussed in the previous subsection.

As there, we are left with an ordinary integral over τ, and

need to establish the appropriate integration contour.

The resulting integral in Eq. (47) is difficult to do directly

but we can use its behavior at large positive a and large

negative a0 to fix the mode functions ψ1 and ψ2 appearing

in the Wronskian representation. As a consistency check,

we compare the resulting Green’s function to a numerical

evaluation of the τ integral in Eq. (47) along a suitable

contour, finding perfect agreement in all cases. In this

numerical evaluation, we choose x ¼ ðT; 0⃗Þ and x0 ¼
ð−T; 0⃗Þ, so that any classical real solution has to pass

through the singularity a ¼ 0 at least once, which is the

situation of main relevance for our study. For ease of

comparison, we plot the flat case κ ¼ 0, with M ¼ 0, i.e.,

G ¼ e−2imT , with m ¼ 7, in Fig. 4 [here and in the

following we are of course plotting the function multiply-

ing the singular part δðm −m0Þ].
Consider the saddle points in the τ integral for the

curved-space propagator, and the associated steepest

descent contour. The condition for the exponent to be

stationary with respect to τ is precisely the Hamiltonian

constraint (Friedmann equation) τ−2 _x2 þ ð1þ κx2Þ ¼ 0,

with xðtÞ given by Eq. (46). Real saddle points of the full

functional integral, when they exist, are real solutions of the

classical equations of motion, including the constraints.

Given such saddle points, one defines the associated τ

integration cycle as the complete extension of the steepest

descent contour. If this cycle can be deformed to the real τ-

axis while maintaining the convergence of the integral, then

the saddle point contribution is relevant to the final result.

We start with the case of negative κ, where, just as in the

flat case, there is always a unique classical solution: for

timelike separated x and x0, the saddle point in τ is located
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on the real axis, and the steepest descent contour is the solid

curve in Fig. 5. The singular behavior of the integrand at

τ ¼ 0 [cf. Eq. (37)] then ensures, just as in the argument

leading to Eq. (37), that Eq. (47) is a Green’s function for

the Wheeler-DeWitt equation,

�

−
□

2m
þm

2
ðκx2 þ 1Þ

�

G ¼ −iδðm −m0ÞδMþ1ðx − x0Þ:

ð48Þ

Once more we set M ¼ 0 for simplicity, and obtain the

Green’s function from the Wronskian method, with the

modes determined from their behavior at large argument.

The Wheeler-DeWitt equation, at fixed m, is

�

d2

da2
þm2ð1 − κa2Þ

�

ψðaÞ ¼ 0; ð49Þ

and is solved by parabolic cylinder functions [23], denoted

by DνðzÞ. In order to find the modes that generalize the

plane waves e�ima used in the κ ¼ 0 case, we can again

study the asymptotic limits of Eq. (47) using the saddle-

point approximation, finding that we must have (with

κ < 0)

ψ3ðaÞ ∼ jaj−1
2e−i

m
2

ffiffiffiffi

−κ
p

a2 ; a → −∞;

ψ4ðaÞ ∼ jaj−1
2e−i

m
2

ffiffiffiffi

−κ
p

a2 ; a → þ∞; ð50Þ

for the mode functions ψ3 and ψ4 appearing in the analog

of Eq. (44). This asymptotic behavior is also consistent

with the requirement that, as Eq. (47) is invariant under

x → −x and x0 → −x0, ψ3 and ψ4 must satisfy

ψ3ð−aÞ ¼ ψ4ðaÞ: ð51Þ

Two independent solutions to Eq. (49) are given by

ψðaÞ ¼ Di m
2
ffiffiffi

−κ
p −1

2
ðð1 − iÞ

ffiffiffiffi

m
p

ð−κÞ1=4aÞ ð52Þ

and its complex conjugate, which asymptotically become

pure negative and positive frequency modes as a → ∞ but

are a mixture as a → −∞. We therefore set

ψ4ðaÞ ¼ D−i m
2
ffiffiffi

−κ
p −1

2
ðð1þ iÞ

ffiffiffiffi

m
p

ð−κÞ1=4aÞ ð53Þ

and ψ3ðaÞ ¼ ψ4ð−aÞ. By computing their Wronskian we

obtain the Green’s function

Gða;mja0; m0Þ ¼
ffiffiffiffiffiffi

im
p
ffiffiffi

π
p ð−κÞ1=4 Γ

�

1

2
þ im

2
ffiffiffiffiffiffi

−κ
p

�

δðm −m0Þ

× ðψ3ða0Þψ4ðaÞθða − a0Þ þ ða↔ a0ÞÞ:
ð54Þ

As we have said, this result can also be obtained from

numerical evaluation of Eq. (47). Again we choose x ¼
ðT; 0⃗Þ and x0 ¼ ð−T; 0⃗Þ and also fix κ ¼ −1, M ¼ 0 and

m ¼ 7. The resulting function of T is plotted in Fig. 6.

Notice that the resulting propagator resembles the flat-

space (κ ¼ 0) expression for small T, and the effects of

spatial curvature become relevant only at scales jxj ∼ 1
ffiffiffiffi

jκj
p .

For positive κ, the behavior is rather different from κ ≤ 0

in that for positive κ the real, classical solutions are periodic

in τ; for given x and x0, when one classical solution exists

there will be an infinite number, and in general they should

all contribute to the propagator. Again for consistency with

the κ → 0 limit, we can choose the τ integration contour

such that it only picks out the simplest saddle point, where

the classical solution interpolating between x and x0 has no
turning points. The corresponding saddle point and steepest

descent contour, indicated by the dashed curve in Fig. 5,

goes over to the unique κ ¼ 0 saddle point and steepest

descent contour in Fig. 3 in the flat limit κ → 0.

Another issue is that for large timelike x and x0 there is
no real classical solution at all; for large timelike argu-

ments, the saddle point for τ becomes imaginary and, as

explained above, we choose the one on the negative

imaginary axis. By the same saddle-point approximation

FIG. 5. Integration contours in the complex τ plane for κ ≤ 0

(solid line) and for κ > 0 (dashed line), for the case where

x ¼ ðT; 0⃗Þ and x0 ¼ ð−T; 0⃗Þ.

0.2 0.4 0.6 0.8 1.0 1.2

1.0

0.5

0.5

1.0

FIG. 4. Feynman propagator for flat universes as a function of

T, for m ¼ 7, showing real part (blue), imaginary part (dashed)

and absolute value (black) which is constant here.
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as above, one then determines the asymptotic behavior of

the relevant mode functions ψ5 and ψ6,

ψ5ðaÞ ∼ jaj−
m

2
ffiffi

κ
p −1

2eþ
m
2

ffiffi

κ
p

a2 ; a → −∞; ð55Þ

ψ6ðaÞ ∼ jaj−
m

2
ffiffi

κ
p −1

2eþ
m
2

ffiffi

κ
p

a2 ; a → þ∞; ð56Þ

again consistent with ψ5ðaÞ ¼ ψ6ð−aÞ. These results, as

well as the form of the propagator, can in fact be obtained

by replacing
ffiffiffiffiffiffi

−κ
p

→ iκ in the expressions for the open

case. [The factor jaj−m=ð2 ffiffi

κ
p Þ was dropped in the expres-

sions above since it was a subleading oscillatory factor

jaj−im=ð2 ffiffiffiffi

−κ
p Þ.]

It is straightforward to obtain a complete analytic

expression for the κ > 0 propagator from parabolic cylinder

functions by solving the homogeneous equation (49). Two

independent solutions with κ > 0 are

ψ5ðaÞ ¼ D− m
2
ffiffi

κ
p −1

2
ð−i

ffiffiffiffiffiffiffi

2m
p

κ1=4aÞ;

ψ6ðaÞ ¼ D− m
2
ffiffi

κ
p −1

2
ði

ffiffiffiffiffiffiffi

2m
p

κ1=4aÞ: ð57Þ

These are again complex conjugates of each other, and here

also already satisfy ψ5ðaÞ ¼ ψ6ð−aÞ, unlike for the open

case κ < 0. On the other hand, they are not asymptotic

positive or negative frequency modes, but blow up expo-

nentially both at positive and at negative infinity. At small

a, up to corrections that vanish as κ → 0 they reduce to

plane waves e�ima. From Eq. (57), the Wronskian method

gives the Green’s function

Gða;mja0; m0Þ ¼
ffiffiffiffi

m
p
ffiffiffi

π
p

κ1=4
Γ

�

1

2
þ m

2
ffiffiffi

κ
p

�

δðm −m0Þ

× ðψ5ða0Þψ6ðaÞθða − a0Þ þ ða↔ a0ÞÞ:
ð58Þ

As before, we have verified that this expression agrees with

the result of a numerical integration of the τ integral along

the chosen contour. With x ¼ ðT; 0⃗Þ, x0 ¼ ð−T; 0⃗Þ, as well
as κ ¼ 1, M ¼ 0 and m ¼ 7, the resulting function of T is

plotted in Fig. 7. Again, it reduces to the κ ¼ 0 expression

e−2imT for small T.
The integration contour in Fig. 5 is chosen in such a way

that its main contribution, for small enough T, comes from

the lowest positive real saddle point in τ, corresponding to

the real classical solution that takes the smallest amount of

proper time. As the arguments of the Feynman propagator

approach x ¼ ð1= ffiffiffi

κ
p

; 0⃗Þ and x0 ¼ ð−1= ffiffiffi

κ
p

; 0⃗Þ, this saddle
point moves towards τ ¼ π

ffiffi

κ
p where it eventually merges

with another saddle point approaching τ ¼ π
ffiffi

κ
p from above,

corresponding to two classical solutions that become

indistinguishable in this limit. Our choice of integration

contour then becomes ambiguous and is no longer defined

by consistency with the κ → 0 limit. As we extend the

arguments to jTj > 1, where there is no longer a real

solution, these two saddle points separate again and start

moving up and down in the imaginary direction. This is

akin to the situation for spacelike separations for the

relativistic particle, and means that our saddle point needs

to be replaced by a saddle point on the line π
ffiffi

κ
p − iR parallel

to the negative imaginary τ-axis. For the purposes of this

paper, we are mainly interested in studying the propagator

with arguments for which there is a classical solution, so

that a semiclassical picture of the propagator as given by

these solutions is meaningful.

The exponential blowup of the Feynman propagator for

large T follows from the asymptotic behavior of the integral

(47) for large timelike x and x0. The corresponding mode

functions increase exponentially for jTj > 1 when there are

no classical solutions, as can be verified explicitly from the

asymptotics of the parabolic cylinder functions (57). The

Feynman propagator is hence pathological for large time-

like separations, and does not define a suitable two-point

function on the entire superspace, because positive curva-

ture forces classical solutions to recollapse. An asymptotic

description in terms of well-defined states that can be used

0.2 0.4 0.6 0.8 1.0 1.2

1

0

1

2

3

4

FIG. 7. Feynman propagator for closed universes as a function

of T, for m ¼ 7 and κ ¼ 1, showing real part (blue), imaginary

part (dashed) and absolute value (black). As discussed in the text,

for T ≥ 1 the semiclassical interpretation fails.
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1.0

0.5

0.5

1.0

FIG. 6. Feynman propagator for open universes as a function of

T, for m ¼ 7 and κ ¼ −1, showing real part (blue), imaginary

part (dashed) and absolute value (black).
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to formulate a quantum theory of expanding universes does

not exist for positive spatial curvature, and this case does

not consistently describe the type of quantum bounce we

are interested in. Of course, this situation could be altered

by the inclusion of a positive cosmological constant, as we

mention later.

For κ < 0, classical solutions with pure radiation are well

behaved, expanding to infinite volume in the future and

past and leading to a well-behaved Feynman propagator,

Eq. (50). However, as we mentioned in Sec. III, when

conformally coupled scalars are introduced (M ≥ 1), the

general solution

xαðtÞ ¼ xα1
ffiffiffiffiffiffi

−κ
p exp

�

ffiffiffiffiffiffi

−κ
p Z

t

0

dt0Nðt0Þ
�

þ xα2
ffiffiffiffiffiffi

−κ
p exp

�

−
ffiffiffiffiffiffi

−κ
p Z

t

0

dt0Nðt0Þ
�

; ð59Þ

with x1 · x2 ¼ 1
4
, has both spacelike antigravity and timelike

gravity solutions: choosing spacelike x1 and x2 that satisfy
the constraint, one finds a universe that comes in from one

antigravity direction, turns around before entering gravity

and then disappears into a different (or the same) anti-

gravity direction. Such spacelike solutions are far enough

in the antigravity region that the curvature term dominates

over the positive mass in the potential, m2ð1þ κx2Þ < 0,

leading to their acceleration towards spacelike infinity.

Even though there are no real classical solutions that

connect incoming gravity solutions to these far antigravity

regions, and starting in a gravity region one is guaranteed to

asymptote into the other gravity region, quantum mechan-

ically one expects the spacelike solutions to determine the

behavior of the Feynman propagator for spacelike separa-

tions. This is indeed confirmed by finding the saddle-point

approximation to Eq. (47) for large spacelike separations,

e.g., for x2 → ∞ at fixed x0,

Gðx;mjx0; m0Þ ∼ jxj−1=2eim2
ffiffiffiffi

−κ
p

x2 : ð60Þ

The propagator becomes oscillatory at spacelike separa-

tions, so that a given initial state, e.g., a wave packet

centered around an initial state in the gravity region a < 0,

is propagated to large spacelike distances into the anti-

gravity region. In this sense, the quantum theory is even

more pathological for open than for closed universes, where

one finds, again for x2 → ∞ at fixed x0,

Gðx;mjx0; m0Þ ∼ jxj−
m

2
ffiffi

κ
p −1

2e−
m
2

ffiffi

κ
p

x2 ; ð61Þ

i.e., exponential falloff for large spacelike separations. This

is because for κ > 0, both timelike and spacelike classical

solutions are bounded due to the potential, and never reach

(timelike or spacelike) infinity. Neither κ < 0 nor κ > 0 can

lead to a viable perfect bounce picture in terms of a

transition between incoming and outgoing gravity states

with a → �∞, while the κ ¼ 0 case leads directly to a

perfect bounce. We conclude that, at least for the theories

considered here, only flat FRW universes lead to a con-

sistent quantum theory, able to account for an expanding

universe. The inclusion of a positive cosmological constant

could rescue positively curved universes from this con-

clusion, provided the curvature is too small to cause a

recollapse. Nevertheless, the quantum pathology we have

identified for negatively curved FRW universes is in-

triguing, because it raises the possibility that the observed

(nearly flat) Universe lives on the corresponding critical

boundary. This would be the case, for example, if we could

identify the correct quantummeasure on the space of closed

universes, with sufficiently large cosmological constant to

prevent recollapse, and if this measure favored the flat case.

We explore this possibility in future work. For the remain-

der of this paper, however, we ignore spatial curvature.

V. ADDING ANISOTROPIES AND

FREE SCALAR FIELDS

We now extend the treatment to anisotropic cosmologies,

choosing the simplest form of anisotropies, the Bianchi I

model: we still require the metric to be spatially homo-

geneous, with an Abelian group of isometries acting on

constant time hypersurfaces, but no longer impose isotropy.

The most convenient parametrization of such a metric

employs Misner variables [24],

ds2 ¼ A2ðtÞð−N2ðtÞdt2 þ e2λ1ðtÞþ2
ffiffi

3
p

λ2ðtÞdx21

þ e2λ1ðtÞ−2
ffiffi

3
p

λ2ðtÞdx22 þ e−4λ1ðtÞdx23Þ: ð62Þ

The Ricci tensor, and hence the Einstein tensor, for this

metric are diagonal, which by the Einstein equations

forbids any anisotropy in the fluid, manifest in a velocity

ui. We hence continue to assume that the fluid moves with

the cosmological flow, Jμ ∝ δ
μ
0.

We can then again exploit the conformal freedom to set

AðtÞ to 1. The Ricci scalar of (62) is then

R ¼ 6
_λ21 þ _λ22

N2
; ð63Þ

giving the correct canonical normalization of the anisotropy

variables λi in the symmetry-reduced action,

S ¼ V0

Z

dt

�_χ⃗
2
− _ϕ2

2N
þ

_λ21 þ _λ22

2N
ðϕ2 − χ⃗2Þ − Nρ − ~φ _n

�

:

ð64Þ

In terms of the variables xα and m defined in Eq. (10), this

action reads
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S ¼
Z

dt

�

m

2

�

1

N
ð_x2 − x2ð_λ21 þ _λ22ÞÞ − N

�

− φ _m

�

: ð65Þ

As for the flat FRW universe which the Bianchi I universe

generalizes, this is the action of a free massive relativistic

particle. However, here the particle is not moving through a

flat Minkowski spacetime but through a curved superspace,

with metric

ds2 ¼ ηαβdx
αdxβ − x2ðdλ21 þ dλ22Þ ð66Þ

or, if we again use the parametrization xα ¼ avαðνiÞ with
v2 ¼ −1 to separate the scale factor a, introducing coor-

dinates νi on the hyperboloid HM,

ds2 ¼ −da2 þ a2gHM þ a2ðdλ21 þ dλ22Þ ð67Þ

where gHM is a constant negative curvature metric on HM,

as in Sec. III. The geometry of superspace at fixed a

corresponds to the maximally symmetric space HM ×R
2;

in the absence of anisotropies, the last term would vanish

and one would simply use Milne coordinates for flat

Minkowski spacetime.

It is well known that the dynamics of anisotropies in the

Bianchi I model are equivalent to those of minimally

coupled free scalar fields in this background. To see this,

we momentarily switch to Einstein gauge, in which the

metric is given by Eq. (62) with a general AðtÞ. The action
of a free scalar field in this background is

−
1

2

Z

d4x
ffiffiffiffiffiffi

−g
p ð∂τÞ2 ¼ V0

Z

dtA2
_τ2

2N
ð68Þ

(identical to the action of a free scalar in a flat FRW

universe; a homogeneous scalar field does not feel the

anisotropies). To see that this reduces to the kinetic terms

for the anisotropies λi in Eq. (64), we note that since the

scale factor (7) is Weyl invariant, one can express it both in

Weyl and Einstein gauge,

a2 ¼ 1

2ρ
ðϕ2 − χ⃗2ÞjWeyl ¼

3A2

8ρ0πG

�

�

�

�

Einstein

ð69Þ

with ρ ¼ ρ0A
−4 in Einstein gauge (in Weyl gauge, ρ ¼ ρ0 is

constant). To change gauges, one hence has to replace

A2jEinstein →
4πG

3
ðϕ2 − χ⃗2ÞjWeyl; ð70Þ

the factor 4πG
3

can be absorbed in the normalization of the

scalar fields,

λ ≔

ffiffiffiffiffiffiffiffiffi

4πG

3

r

τ ð71Þ

(the anisotropy variables are dimensionless while a scalar

field has dimensions of mass), showing the equivalence.

Hence, we obtain a simple generalization of the theory

we have discussed by also adding an arbitrary number of

minimally coupled free scalar fields, which can represent

either physical scalar fields or anisotropy degrees of free-

dom of the Bianchi I model. One has to lift the free scalar

fields to a Weyl-invariant theory by

−
1

2

Z

d4x
ffiffiffiffiffiffi

−g
p ð∂τÞ2 → −

1

2

Z

d4x
ffiffiffiffiffiffi

−g
p ðϕ2 − χ⃗2Þð∂λÞ2

ð72Þ

where λ is again dimensionless and conformally invariant.

In Einstein gauge, the right-hand side of Eq. (72) clearly

reduces to the right-hand side of Eq. (68). Going back to

Weyl gauge, the total action is then

S ¼
Z

dt

�

m

2

�

1

N

�

_x2 − x2
X

K

i¼1

_λ2i

�

− N

�

− φ _m

�

; ð73Þ

which is a simple generalization of Eq. (65). The K
variables λi, i ¼ 1;…; K, can now correspond to anisotropy

variables or minimally coupled scalar fields with the

unusual normalization (71). Equation (73) is now the

action of a particle moving in an ðM þ K þ 1Þ-dimensional

superspace with curved metric

ds2 ¼ ηαβdx
αdxβ − x2

X

K

i¼1

dλ2i

¼ −da2 þ a2gHM þ a2
X

K

i¼1

dλ2i : ð74Þ

By an elementary generalization of the procedure described

in Sec. III A, Eq. (73) gives a Hamiltonian constraint

C ≔
1

2m
gμνðx; λÞpμpν þ

m

2
≈ 0 ð75Þ

where gμν is the inverse metric on superspace, and pμ

includes conjugate momenta for both the variables xα and

the new degrees of freedom λi; more concretely,

C ¼ 1

2m

�

−p2
a þ

1

a2
g
ij

HMðνÞζiζj þ
1

a2
δijkikj

�

þm

2
ð76Þ

in terms of the momentum pa conjugate to a, momenta ζi
conjugate to the conformally coupled scalar field variables

νi living on HM, and momenta ki conjugate to the free

scalar fields and anisotropy variables.

When quantizing this Hamiltonian constraint in order to

obtain the Wheeler-DeWitt equation, there is now an

ambiguity, the well-known quantization ambiguity for a
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particle moving on a curved manifold [25]: if the Ricci

scalar for the superspace metric (74) is R, the general

expression for the quantum Hamiltonian is

H ¼ 1

2m
ð−□þ ξRÞ þm

2
ð77Þ

where □ is the Laplace-Beltrami operator for the curved

metric (corresponding to the operator ordering that ensures

that the Hamiltonian is independent of the choice of

coordinates on superspace) and ξ is, in general, a free

parameter. Halliwell [22] has given the following strong

argument for fixing ξ: the (classical) Hamiltonian of

minisuperspace models is really H ¼ NC (see Sec. III)

where the lapse functionN is arbitrary, and in particular can

be redefined arbitrarily, N → Ω
−2 ~N, where Ωðx; λÞ is any

function on minisuperspace. Under such a redefinition, the

constraint (75) becomes

~C ≔
1

2m
~gμνðx; λÞpμpν þ

~mðx; λÞ
2

≈ 0 ð78Þ

with ~gμν ¼ Ω
−2gμν and ~mðx; λÞ ¼ Ω

−2m, leading by the

same argument as above to a quantum Hamiltonian

~H ¼ 1

2m
ð− ~□þ ξ ~RÞ þ ~mðx; λÞ

2
; ð79Þ

where now ~□ and ~R are the Laplace-Beltrami operator and

Ricci scalar for the conformally rescaled metric ~g on

superspace. Halliwell now asks that, since redefining the

lapse is always possible classically, the solutions Ψ and ~Ψ

to HΨ ¼ 0 and ~H ~Ψ ¼ 0 be related by a conformal trans-

formation, ~Ψ ¼ Ω
γ
Ψ for some γ, and finds that this is only

possible if one fixes ξ to be the conformal coupling,

ξ ¼ M þ K − 1

4ðM þ KÞ ð80Þ

(recall that the dimension of our superspace manifold is

M þ K þ 1; Ref. [22] gives an overall minus sign for ξ,

presumably due to a different sign convention for the Ricci

curvature). Demanding covariance under field redefinitions

of the lapse function hence fixes ξ uniquely. Special cases

are M þ K ¼ 0 where there is no conformal coupling

that can restore covariance under lapse redefinitions, and

M þ K ¼ 1 where the Laplace-Beltrami operator is con-

formally covariant and ξ ¼ 0.

The Wheeler-DeWitt equation for Ψ ¼ Ψða; ν; λ; mÞ,
corresponding to the classical constraint (76), then becomes

�

∂2

∂a2
þMþK

a

∂

∂a
−

1

a2
ΔHM×RK þξRþm2

�

Ψ¼ 0 ð81Þ

with

R ¼ Kð2M þ K − 1Þ
a2

: ð82Þ

As in Sec. III, one can simplify the Wheeler-DeWitt

equation by Fourier transforming on HM ×R
K from ν

and λ to the momenta ζ and k. One then has

�

∂2

∂a2
þMþK

a

∂

∂a
−

c

a2
þm2

�

Ψða;ζ;k;mÞ¼0 ð83Þ

with

c ¼ −
1

4
ðM − 1Þ2 þ 1

4
δM;0 − ζ⃗

2
− k⃗

2
− ξKð2M þ K − 1Þ;

ð84Þ

where we have explicitly included the case M ¼ 0 through

the Kronecker delta. This is precisely the same functional

form as the Wheeler-DeWitt equation for FRW universes,

Eq. (27), and so the extension of our formalism from FRW

symmetry to the Bianchi I model and the inclusion of

minimally coupled scalars are completely straightforward.

The constant c now gets contributions from the eigenvalues

of the Laplacian onHM ×R
K, as well as from the curvature

on superspace.

We can now obtain the general solution to Eq. (83) in the

usual way, by setting

Ψða; ζ; k; mÞ ¼ a−ðMþKÞ=2χða; ζ; k; mÞ ð85Þ

to eliminate the first derivative. χ then satisfies the differ-

ential equation

�

∂2

∂a2
−

c0

a2
þm2

�

χða; ζ; k; mÞ ¼ 0 ð86Þ

where c0 ≡ cþ 1
4
ðM þ KÞðM þ K − 2Þ, which has two

independent solutions in terms of Bessel functions of the

first and second kind,

χ1 ¼
ffiffiffi

a
p

J1
2

ffiffiffiffiffiffiffiffiffi

1þ4c0
p ðmaÞ; χ2 ¼

ffiffiffi

a
p

Y1
2

ffiffiffiffiffiffiffiffiffi

1þ4c0
p ðmaÞ: ð87Þ

A more convenient basis is given by the Hankel functions

Hð1;2Þ of the first and second kind (which are just linear

combinations of the Bessel functions), so that two linearly

independent solutions of Eq. (83), for fixed ζ, k and m, are

finally given by

ψþ;−ðaÞ ¼ a−ðMþK−1Þ=2Hð2;1Þ
1
2

ffiffiffiffiffiffiffiffiffi

1þ4c0
p ðmaÞ: ð88Þ

As indicated by the subscript þ;−, these functions re-

present positive- and negative-frequency modes for the

Wheeler-DeWitt equation. Indeed, when extended to
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negative a through the analytic continuation (see, e.g.,

Ref. [26]) H
ð2Þ
ν ð−zÞ ¼ −eiπνH

ð1Þ
ν ðzÞ and H

ð1Þ
ν ð−zÞ ¼

−e−iπνH
ð2Þ
ν ðzÞ, ψþ;− have the interesting property of cor-

responding to pure positive and pure negative frequency,

respectively, both at positive and negative infinite a,

ψþðaÞ ∼ a−ðMþKÞ=2e−ima; a → �∞;

ψ−ðaÞ ∼ a−ðMþKÞ=2eþima; a → �∞: ð89Þ

That is, for theWheeler-DeWitt equation (83) one finds that

an incoming positive-frequency mode simply continues to

an outgoing positive-frequency mode, with the potential at

a ¼ 0 not even leading to a phase shift. This complete

invisibility of the 1=a2 potential is a direct consequence of

the symmetry of Eq. (83) under a → λa and m → λ−1m,

which forbids any phase shift. These special properties of a

1=x2 potential, and its invisibility in a scattering process,

are well known in quantummechanics. In the context of our

perfect bounce scenario, they imply that the Universe can

go through the singularity a ¼ 0 without any noticeable

impact on its evolution, when viewed asymptotically. This

is already true classically, where the classical solutions

bounce without any net time delay or advance: the classical

Hamiltonian is equal to the constraint (76) times a lapse

function,

H¼N

�

1

2m

�

−p2
aþ

1

a2
g
ij

HMðνÞζiζjþ
1

a2
k⃗
2

�

þm

2

�

: ð90Þ

The terms multiplying 1=a2 are again conserved and can

be replaced by a constant, −c0 with c0 < 0; classically the

effect of anisotropies and momenta in the scalar fields

always leads to an attractive potential for a, centered on

the singularity at a ¼ 0. The classical solutions to the

equations of motion including the constraint are then

a2 ¼ c0

m2
þ N2ðt − t0Þ2 ¼

c0

m2
þ ðτ − τ0Þ2 ð91Þ

in terms of proper time τ ¼ Nt. These solutions are singular
at a ¼ 0 and perform an excursion into the antigravity

region of imaginary a, just as the generic flat FRW

solutions described in Sec. III which would be of the exact

same form. The attractive potential at a ¼ 0 speeds up the

trajectory as it heads toward the singularity, but this time

advance is canceled by the additional time it takes to cross

antigravity. Indeed, both at large positive and negative awe
have simply aðτÞ ≈ ðτ − τ0Þ.
In the quantum theory, ordering ambiguities in the

Hamiltonian constraint can alter the coefficient of the

1=a2 potential, making it repulsive in some cases. Indeed,

the relevant coefficient of the potential is the one appearing

in Eq. (86),

c0 ¼ −
1

4
ðM − 1Þ2 þ 1

4
δM;0 − ζ⃗

2
− k⃗

2

þM2ðM − 2Þ þ KðM2 −M − 1Þ
4ðM þ KÞ ð92Þ

if we use the value (80) for ξ, that is, we fix the ordering

ambiguities by demanding coordinate covariance on super-

space and covariance under redefinitions of the lapse

function, giving a purely quantum contribution in the second

line of Eq. (92). If we ignore the trivial caseM ¼ K ¼ 0, we

can rewrite Eq. (92) as

c0 ¼

8

>

>

>

>

>

<

>

>

>

>

>

:

−ζ⃗
2
− 1

4
M ≥ 1; K ¼ 0;

−k⃗
2
− 1

4
K ≥ 1;M ¼ 0;

−ζ2 − k⃗
2
− 1

4
K ≥ 1;M ¼ 1;

−ζ⃗
2
− k⃗

2
− 1

4
þ ðM−1ÞK

4ðMþKÞ K ≥ 1;M > 1:

ð93Þ

This is an intriguing result. The contributions coming

from anisotropy or scalar field momenta are both negative.

The numerical term is fixed by covariance. The first line

corresponds to the situation of Sec. III, where no anisotropies

or minimally coupled scalars are present [from Eq. (27),

removing the first derivative term changes c in Eq. (28) to c0

given here]. The similarity of the first three lines is not a

coincidence; for M ≤ 1, the superspace metric (74) is

conformally flat. As we have imposed conformal coupling

to the Ricci scalar on superspace in Eqs. (79) and (80), the

dynamics must be equivalent to the flat superspace case of

Sec. III.

The value c0 ¼ − 1
4
is well known as a critical value in

the quantum mechanics of an inverse square potential. If

c0 ≥ − 1
4
, the negative classical potential is outweighed by

the kinetic energy due to the Heisenberg uncertainty

principle, rendering the energy spectrum strictly positive.

There are various infrared regularized versions of the theory

in which the spectrum is made discrete by including a

positive harmonic potential [27], with a taken either on the

infinite line, the half-line a > 0, or by imposing periodicity

in a, in which case the model becomes the Calogero-

Sutherland model (see, e.g., Ref. [28]). These are well-

defined, exactly solvable models which exhibit, among

other interesting phenomena, anomalous dimensions in the

operator product expansion [27].

If, however, c0 < − 1
4
, any finite energy wave function

has an infinite number of oscillations on the way to a ¼ 0.

In quantum mechanics, standard arguments then imply an

infinite number of lower energy states, and hence a

spectrum which is unbounded below. It has been claimed

that the theory is nevertheless renormalizable, although the

renormalization group displays a limit cycle [29]. (There is

a large literature on inverse square potentials in quantum
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mechanics, and even some experimental tests. See, e.g.,

Ref. [30] for a recent discussion and further references.)

At the minisuperspace level discussed here, negative

energy states are irrelevant because we are only interested

in solutions of the Wheeler-DeWitt equation with positive

energy, defined by m2. However, when we include inter-

actions with other modes, such as the inhomogeneous

modes of gravitons or scalars, then for c0 < − 1
4
it is possible

that the negative energy states for the scale factor a would

become excited, potentially signifying strong backreaction

as the Universe passes through the quantum bounce. The

problem may be avoided in two ways. ForM ¼ 0 orM ¼ 1

one can restrict consideration to background cosmologies

for which the zero-mode momenta of the anisotropy and

scalar fields are strictly 0, in which case the quantum

mechanics for a lies on the critical boundary where it (just)

makes sense. Or, one can include additional conformally

coupled scalars, taking M > 1 so that, from the last line

of Eq. (93), the quantum mechanics of a is well defined for

a range of classical anisotropy and scalar field momenta.

ForK ¼ 2 (i.e., only anisotropies but no minimally coupled

scalars) andM > 4, the numerical contribution can be large

enough to make the potential repulsive at small momenta.

If we consider classical solutions with this (order ℏ

squared) potential, an isotropic universe with no scalar

momenta would bounce off the repulsive potential and

avoid the singularity altogether. Quantum mechanically,

however, if we extend the range of a to negative values,

then a tunnels through the barrier in a process which may

be described with complex classical solutions, as we

explained in Ref. [1].

The conclusion is that when anisotropy and scalar field

degrees of freedom are included, then for small numbers

of conformal scalars, the isotropic cosmology with no

scalar momenta is a special case, poised on the edge of a

qualitatively different (and perhaps ill-defined) phase. On

the positive side, this finding may turn out to be a selection

principle, telling us that anisotropic or kinetic-dominated

singularities should be excluded from the theory whereas

isotropic universes with zero scalar momenta are allowed.

If so, this would imply that black hole singularities, which

locally resemble strongly anisotropic cosmological singu-

larities, do not correspond to a bounce (contradicting the

interpretation given by Ref. [4], for example); there would

be no “born again” universe on the other side of the black

hole singularity. On the negative side, one may wonder

whether the inclusion of inhomogeneities could lead to

problems even for the isotropic, nonkinetic cosmological

bounce. We emphasize that, for M ¼ 0 or M ¼ 1, any

amount of classical momentum in the zero modes of the

anisotropy or scalar degrees of freedom takes the quantum

mechanics of a into the subcritical regime. Perhaps it is

essential to work at M > 1 for the theory to make sense.

Clearly, we have only scratched the surface with this

discussion, and there is a great deal to explore further.

For the remainder of the paper, we assume that the

quantum mechanics for a makes sense. As explained in

Ref. [1], this allows us to calculate the propagation of the

Universe, and all inhomogeneous modes in it, by solving

the theory on complex trajectories which bypass a ¼ 0 in

the complex a plane. Remarkably, as was also explained in

Ref. [1], due to its scale-invariant property, the inverse

square potential, if present, is actually invisible in our final

results for “in-out” amplitudes.

A. Feynman propagator

Having defined positive- and negative-frequency modes

by their asymptotics, given in Eq. (89) (and without using

any boundary condition at a ¼ 0), it is easy to obtain the

Feynman propagator for the anisotropic case as a Green’s

function for the Wheeler-DeWitt equation, by using the

Wronskian method as before.

With the quantum Hamiltonian given by Eq. (77), the

Feynman propagator satisfies

ð−□þ ξRþm2ÞGðx; λ; mjx0; λ0; m0Þ
¼ −2imð−gÞ−1

2δMþ1ðx − x0ÞδKðλ − λ0Þδðm −m0Þ ð94Þ

where we must introduce a factor ð−gÞ−1
2 for the nontrivial

metric determinant on superspace. Again switching to the

scale factor coordinate a, Eq. (94) is equivalent to

�

∂2

∂a2
þM þ K

a

∂

∂a
−

1

a2
ΔHM×RK þ ξRþm2

�

G

¼ −2im
δða − a0Þ
aMþK

δMþKðν − ν0; λ − λ0Þ
ffiffiffiffiffiffiffiffi

gHM

p δðm −m0Þ

with G≡Gða; ν; λ; mja0; ν0; λ0; m0Þ, and the metric deter-

minant on superspace is now made explicit. Again, we can

now go to Fourier space onHM ×R
K introducing momenta

ζi and ki; the Feynman propagator in Fourier space satisfies

�

∂2

∂a2
þM þ K

a

∂

∂a
−

c

a2
þm2

�

Gða; ζ; k; mja0; ζ; k; m0Þ

¼ −2ima−ðMþKÞδða − a0Þδðm −m0Þ ð95Þ

with c as in Eq. (84). Since we have already identified

the positive- and negative-frequency solutions (88) of the

corresponding homogeneous equation, it is immediate to

write down the solution to Eq. (95) with the correct

boundary conditions,

Gða;mja0; m0Þ ¼ −2ima−ðMþKÞδðm −m0Þ
×Wðψ−;ψþÞ−1ðψ−ða0ÞψþðaÞθða − a0Þ
þ ψ−ðaÞψþða0Þθða0 − aÞÞ; ð96Þ

where the Wronskian is
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Wðψ−;ψþÞ ¼
4a−ðMþKÞ

iπ
ð97Þ

and no longer constant in a, as is consistent with the

appearance of a first derivative in Eq. (83). The Wronskian

takes care of the factors of a appearing in the elimination of

the first derivative, Eq. (85), and cancels the determinant

factor a−ðMþKÞ. The final result is

Gða;mja0; m0Þ

¼ πm

2
δðm −m0Þðaa0Þ−ðMþK−1Þ=2

× ðHð1Þ
ν ðma0ÞHð2Þ

ν ðmaÞθða − a0Þ þ ða↔ a0ÞÞ ð98Þ

with ν≡ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4c0
p

, which is consistent with the results of

Ref. [1] (with K ≡D − 2 as only the D − 2 anisotropy

degrees of freedom of a D-dimensional universe were

considered there). One can check that in the absence

of anisotropies or minimally coupled scalar fields,

K ¼ 0, this result reduces to the expression obtained in

Sec. III, i.e., the propagator for a free massive particle

in (M þ 1)-dimensional Minkowski spacetime. By our

remarks below Eq. (93) the same should be true for

M ¼ 0 or M ¼ 1 and general K, where the superspace

metric is conformally flat.

VI. PERTURBATIONS

In this section, we extend our analysis to inhomogeneous

cosmology, treated perturbatively at both linear and non-

linear order. We aim to solve the following problem: given

an incoming state at large negative a consisting of a flat,

FRW, radiation-dominated classical background universe

with perturbations in their local adiabatic vacuum state,

what is the outgoing quantum state at large positive a, as
defined by our analytic continuation prescription? This

question can be answered, in the semiclassical limit, by

using complex solutions of the classical Einstein-matter

field equations. If one sends in any combination of

linearized positive- (negative-) frequency modes then, even

after including the effects of nonlinearities in the field

equations, it turns out that one finds only positive-

(negative-) frequency linearized modes coming out. As

we now explain, this is sufficient to show, semiclassically,

that the outgoing quantum state is also the local adiabatic

vacuum. Hence, at a semiclassical level, there is no particle

production across the bounce.

Let us see this in detail. Consider a classical time-

dependent background solution of the Einstein-matter

equations. If the matter is a perfect fluid, the only

propagating degrees of freedom are scalar density pertur-

bations and tensor gravitational wave modes. At the

linearized level, we can decouple the modes by exploiting

the homogeneity and isotropy of the background: for a

flat background, every mode is a sum of plane waves

vðη; x⃗Þ ¼
P

k
vkðηÞeik·x, with v−kðηÞ ¼ vkðηÞ�, with the

coefficients decomposed into irreducible representations

of the little group of rotations about k. Now consider the

action for the perturbations. At leading order, it is quadratic

and it is diagonalized by the above mode decomposition.

After a suitable time-dependent rescaling of the perturba-

tions, the kinetic terms can always be brought to canonical

form in which the action reads [see, e.g., Ref. [31], page

269, Eq. (10.59)]

Sð2Þ ¼
X

k;a

Z

dηðj _va
k
j2 − w2;a

k ðηÞjva
k
j2Þ; ð99Þ

where the index a labels the independent modes (here,

scalar and tensor), and

w2;a
k ðηÞ ¼ ðkcas Þ2 þm2;a

eff ðηÞ ð100Þ

where cas is the speed of sound, 1=
ffiffiffi

3
p

for the scalar

acoustic modes and unity for the tensor modes. In general,

the time-dependent “effective mass” introduces a nontrivial

η-dependence. However, in our chosen background, the

effective mass vanishes for both the scalar and tensor

modes so wa
k ¼ kcas in both cases.

We now make the assumption that the perturbations are

well described by linear theory for wide intervals of

conformal time η well before and well after the bounce.

As we see later, we cannot actually take the limit of infinite

positive and negative conformal time because of the effect

of nonlinearities in the fluid. Nevertheless, in the semi-

classical approximation, and for modes whose wavelength

is longer than the thermal wavelength of the fluid, the

periods of incoming and outgoing conformal time during

which linear theory remains valid are very large. We define

our incoming and outgoing states during these intervals.

When linear theory is valid, and when the frequencies

wa
kðηÞ change adiabatically, ðdwa

k=dηÞ=ðwa
kÞ2 ≪ 1, the

quantum states of the system are well described by those

of a set of decoupled harmonic oscillators. Let us denote

the corresponding real coordinates, i.e., the real and

imaginary parts of the va
k
, by the coordinates qm, where

the single index m runs over all of the real, independent

modes. Each of the coordinates qm contributes an action

Sm ¼ 1
2

R

dηð _q2m − ωmðηÞ2q2mÞ, and the adiabatic vacuum

state is just the product of the corresponding harmonic

oscillator ground states,

Ψ0ðη; qÞ ¼
Y

m

ðωm=ℏπÞ1=4e−ωmq
2
m=ð2ℏÞ: ð101Þ

This state is uniquely defined by amΨ0 ¼ 0 for all m, for

the annihilation operator
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am ≡
1

ffiffiffiffiffiffiffiffiffiffiffiffi

2ωmℏ
p

�

ℏ
d

dqm
þ ωmqm

�

: ð102Þ

Let us assume that the incoming state of the pertur-

bations is Ψinðη0; qÞ ¼ Ψ0ðη0; qÞ at some large negative

η0, for which linear theory is valid. The quantum

fluctuations in the fluid density may be shown to be

small compared to the background density provided the

wavelength of the modes is longer than the thermal

wavelength, a condition which is in any case required in

order for the fluid description to hold. The outgoing

quantum state, at some large positive time η, is then

given by propagating the incoming vacuum Ψ0 to large

positive times η, for which linear theory is once again

valid, using the path integral,

Ψoutðη; qÞ ≈N

Z

Dqe
i
ℏ
Sðq;η;q0;η0Þ

Y

m

dq0mΨ0ðη0; q0Þ; ð103Þ

where Sðq; η; q0; η0Þ is the full, nonlinear Einstein-matter

action taken with boundary conditions qðηÞ ¼ q,
qðη0Þ ¼ q0; Dq indicates the complete path-integral

measure and N is a normalization constant. We com-

pute Eq. (103) in the semiclassical approximation, by

finding the appropriate complex classical solution qcmð~ηÞ,
η0 < ~η < η, which is a stationary point of the combined

exponent. Substituting Eq. (101) for Ψin and varying the

exponent with respect to q0m yields, using the Hamilton-

Jacobi relation, the initial condition for the classical

solution qc,

ðipc
m þ ωmq

c
mÞðη0Þ ¼ 0; ð104Þ

where pc
m ¼ _qcm is the canonical momentum. The initial

condition (104) specifies that qcm is pure negative

frequency at η0, a large negative time. The final

boundary condition is just qcmðηÞ ¼ qm, where η is a

large positive time. We solve the classical Einstein-

matter equations with these two boundary conditions

in linear perturbation theory. At linear order, the

solution satisfying the boundary conditions is qcmð~ηÞ ¼
qme

ikcsð~η−ηÞ. Below, we give the complete solution for

generic perturbation modes at linear and nonlinear order.

We find that the solution is well described by linear

perturbation theory at large negative and large positive

times, with small nonlinear corrections, and that an

incoming positive (negative) frequency mode evolves to

an outgoing positive (negative) frequency mode which

directly implies that the outgoing quantum state is the

local adiabatic vacuum. To verify this, we need only

apply the annihilation operators am ∝ ipm þ ωmqm ¼
ℏ

d
dqm

þ ωmqm to Ψoutðη; qmÞ as given in Eq. (103).

Using the Hamilton-Jacobi equation, the result is pro-

portional to ðipc
m þ ωmq

c
mÞðηÞ, which vanishes if the

solution is pure negative frequency. Hence the incoming

adiabatic vacuum evolves to the outgoing adiabatic

vacuum, and there is no particle production across

the bounce.

A. Basic setup and conventions

We study perturbations about a flat (κ ¼ 0) radiation-

dominated FRW universe in a perturbation expansion.

We go to nonlinear order but, for simplicity, restrict

consideration to planar symmetry so that the metric

depends only on conformal time η and one spatial

coordinate x, with two orthogonal spatial directions

ðy; zÞ. To keep the calculations manageable, we do

not introduce conformally or minimally coupled scalar

fields, so M ¼ K ¼ 0. We work in Einstein gauge, i.e.,

in the usual formulation of general relativity coupled to

a radiation fluid.

The general form of the metric compatible with our

assumed symmetry is

ds2 ¼ a2ðηÞ

0

B

B

B

@

−1þ ϵgηηðη; xÞ ϵgηxðη; xÞ
ϵgηxðη; xÞ 1þ ϵgxxðη; xÞ

1þ ϵgyyðη; xÞ ϵgyzðη; xÞ
ϵgyzðη; xÞ 1þ ϵgzzðη; xÞ

1

C

C

C

A

: ð105Þ

We can still apply coordinate transformations that leave this form of the metric invariant. A coordinate transformation

η ¼ ~ηþ ϵgðx; ~ηÞ changes the metric coefficients as

δgηη ¼ −2

�

_a

a
gþ _g

�

; δgηx ¼ −2g0; δgxx ¼ δgyy ¼ δgzz ¼ 2
_a

a
g ð106Þ

where here and in the remainder of this section : is derivative with respect to η and 0 denotes derivative with respect

to x. We use this freedom to eliminate gηx and introduce a different notation for the metric perturbation functions

(note that in this section ψ denotes a scalar metric perturbation, not a solution to the Wheeler-DeWitt equation as in

earlier sections),
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ds2 ¼ a2ðηÞ
�

ð−1þ 2ϵϕðη; xÞÞdη2

þ ð1þ 2ϵðψðη; xÞ þ γðη; xÞÞÞdx2 þ ϵh×ðη; xÞdydz

þ
�

1þ ϵ

�

2ψðη; xÞ þ hTðη; xÞ
2

��

dy2

þ
�

1þ ϵ

�

2ψðη; xÞ − hTðη; xÞ
2

��

dz2
�

: ð107Þ

The form (107) is still left invariant by a transformation

of the form

η ¼ ~ηþ ϵ

�

Gð~ηÞ þ
Z

~x

dX _fðX; ~ηÞ
�

;

x ¼ ~xþ ϵfð~x; ~ηÞ; ð108Þ

which we use to simplify the matter variables. The

energy-momentum tensor for radiation is

Tμν ¼
4

3
ρuμuν þ

1

3
ρgμν; uμuμ ¼ −1: ð109Þ

The density ρðη; xÞ and four-velocity uμðη; xÞ can also

be written in terms of background and perturbation as

ρðη; xÞ ¼ ρ0ðηÞð1þ ϵδrðη; xÞÞ;

uμðη; xÞ ¼ 1

aðηÞ ðv
0ðη; xÞ; ϵvðη; xÞ; 0; 0Þ: ð110Þ

The constraint uμuμ ¼ −1 can be solved for v0ðη; xÞ.
Under a coordinate transformation (108), we have

δv ¼ − _f, so that we can set v ¼ 0 everywhere, i.e.,

adopt a coordinate system in which the radiation is at

rest everywhere (comoving gauge). The remaining

gauge freedom is then under transformations

η ¼ ~ηþ ϵGð~ηÞ; x ¼ ~xþ ϵfð~xÞ;
y ¼ ~yþ ϵðι1 ~yþ ι2 ~zþ ι3Þ; z ¼ ~zþ ϵðι4 ~zþ ι5 ~yþ ι6Þ

ð111Þ

where the ιi are arbitrary constants and G and f are

free functions. Under such a transformation, δϕ ¼
− _a

a
G − _G, δψ ¼ _a

a
G, δγ ¼ f0, δhT ¼ 2ða − bÞ and

δh× ¼ 2ðcþ dÞ, and so functions of this form in the

perturbations are to be considered pure gauge. We

solve the Einstein equations in Fourier space, where

the gauge freedom for the functions ϕ, ψ , hT and h×

is somewhat hidden as it only becomes apparent for

k ¼ 0.

We are left with five free functions for the metric

(ϕ;ψ ; γ; hT ; h×) and the density perturbation δr. As we

see, there are also six nontrivial Einstein equations relating

these. To proceed, we assume that all of the perturbation

functions can further be expanded as a power series in ϵ,

ϕðη; xÞ ¼
X

n≥1

ϵn−1ϕnðη; xÞ; etc: ð112Þ

The idea is now to solve the Einstein equations Gμν ¼
8πGTμν order by order in ϵ; the Einstein equations also

imply energy-momentum conservation ∇μT
μ
ν ¼ 0 for the

fluid. First, for the background (at order ϵ0) we have the

equations

_ρ0 þ 4
_a

a
ρ0 ¼ 0;

�

_a

a2

�

2

¼ 8πG

3
ρ: ð113Þ

The first one tells us that ρ0 ∝ a−4 for some constant

M; the Friedmann equation then gives the solution

aðηÞ ∝ η, the simplest example of a perfect bounce that

we have already discussed in the introduction to this

paper. It follows that _a
a
¼ 1

η
, and that analytic continu-

ation in the scale factor a (as we have discussed in

previous sections) is equivalent to analytic continuation

in the conformal time coordinate η, which we use in

this section.

At order ϵn in the perturbation expansion, the six

nontrivial Einstein equations are

3

η2
δr;n −

6

η2
ϕn þ 2ψ 00

n −
2

η
_γn −

6

η
_ψn ¼ J1;n; ð114Þ

1

η
ϕ0
n þ _ψ 0

n ¼ J2;n; ð115Þ

1

η2
δr;n −

2

η2
ϕn þ

2

η
_ϕn þ

4

η
_ψn þ 2ψ̈n ¼ J3;n; ð116Þ

ḧTn þ 2

η
_hTn − ðhTnÞ00 ¼ J4;n; ð117Þ

ḧ×n þ 2

η
_h×n − ðh×n Þ00 ¼ J5;n; ð118Þ

−
1

η2
δr;n þ

2

η2
ϕn þ ψ 00

n − ϕ00
n −

2

η
_γn −

2

η
_ϕn

−
4

η
_ψn − ̈γn − 2ψ̈n ¼ J6;n ð119Þ

for some “source terms” Ji;n that are nonlinear combina-

tions of the lower order perturbations.

We first note that Eqs. (117) and (118) that govern the

tensor modes hTn and h×n are already decoupled from the

others. For the scalars, Eqs. (114) and (115) can be solved

for δr and ϕ directly. From Eq. (115) we get
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ϕnðη; xÞ ¼ −η _ψnðη; xÞ þ FnðηÞ þ η

Z

x

dx0J2;nðη; x0Þ

ð120Þ

where FnðηÞ is a free function; then Eq. (114) implies that

δr;nðη; xÞ ¼ −
2

3
η2ψ 00

n þ
2

3
η_γn þ 2Fn þ

η2

3
J1;n

þ 2η

Z

x

dx0J2;n: ð121Þ

Substituting these relations into Eqs. (116) and (119) and

taking linear combinations one obtains

_γn ¼ ηψ 00
n − 6 _ψn − 3 _Fn −

η

2
J1;n − 3

Z

x

dx0J2;n

− 3η

Z

x

dx0 _J2;n þ
3η

2
J3;n ð122Þ

and

ψ̈n þ
2

η
_ψn −

1

3
ψ 00
n ¼ −

_Fn

η
−
F̈n

2
−
J1;n

4
− η

_J1;n

12

þ η

6
J02;n þ

11

12
J3;n þ

η

4
_J3;n þ

J6;n

6

−

Z

x

dx0
�

J2;n

η
þ 2_J2;n þ

η

2
J̈2;n

�

:

ð123Þ

Equation (123) can now be solved for ψn using Green’s

functions; Eq. (122) then gives γ by a single integration

over η, and from Eq. (120) and Eq. (121) one can obtain

explicit expressions for δr;n and ϕn at each order. At each

order in ϵ, this provides an explicit algorithm for solving

the system of Einstein equations (114)–(119).

B. Tensor perturbations

Equations (117) and (118) are easily solved. First,

consider the homogeneous equation solved by the first-

order perturbation,

ḧT1 þ 2

η
_hT1 − ðhT1 Þ00 ¼ 0: ð124Þ

We can easily find the general solution in Fourier space, for

k ≠ 0,

hT1 ðη; xÞ ¼
Z

dk

2π
eikxhT1 ðη; kÞ;

hT1 ðη; kÞ ¼ b1ðkÞ
e−ikη

kη
þ b2ðkÞ

eikη

kη
: ð125Þ

For k ¼ 0, the two independent solutions are hT ¼ constant

and hT ∼ 1=η. We can write the general solution as

hT1 ¼ d1 þ
d2

k0η
þ
Z

dk

2π
eikx

�

b1ðkÞ
e−ikη

kη
þ b2ðkÞ

eikη

kη

�

ð126Þ

where k0 is an arbitrary momentum scale to make d2
dimensionless. h×1 satisfies the same differential equation;

its general solution is

h×1 ¼ e1 þ
e2

k0η
þ
Z

dk

2π
eikx

�

c1ðkÞ
e−ikη

kη
þ c2ðkÞ

eikη

kη

�

:

ð127Þ

For a real solution we need b1ðkÞ ¼ −b�1ð−kÞ, b2ðkÞ ¼
−b�2ð−kÞ and similar for c1ðkÞ and c2ðkÞ.
We recognize d1 and e1 as gauge modes corresponding

to coordinate transformations (111), whereas d2 and e2 are
physical k ¼ 0 modes. The free functions b1ðkÞ; b2ðkÞ;
c1ðkÞ and c2ðkÞ are the physical gravitational degrees of

freedom.

Now consider the general inhomogeneous equation,

ḧTn þ 2

η
_hTn − ðhTnÞ00 ¼ J4;n: ð128Þ

Again, we go to Fourier space and first consider k ≠ 0. We

use the Wronskian method to determine a suitable Green’s

function; in contrast to the Green’s function that appeared

as a Feynman propagator in earlier sections, here the

boundary conditions are that the higher order perturbations

are set to 0 at some conformal time η0 in the far past, so

that only a linear (purely positive- or purely negative-

frequency) mode is present. Given two independent sol-

utions hT1 and ~hT1 to the homogeneous equation (124), the

Green’s function for these boundary conditions is

Gðη; η0Þ ¼ hT1 ðη0Þ ~hT1 ðηÞ − hT1 ðηÞ ~hT1 ðη0Þ
Wðη0Þ ð129Þ

for η > η0 > η0 where η0 is the initial time at which only

a linear perturbation is assumed to be present, and 0

otherwise. The Wronskian is Wðη0Þ≡ hT1 ð ~hT1 Þ0 − ðhT1 Þ0 ~hT1
as before. Using this Green’s function, we find that one

particular solution to Eq. (128) is

hTnðη; kÞ ¼
1

kη

Z

η

dη0η0 sinðkðη − η0ÞÞJ4;nðη0; kÞ; ð130Þ

while for k ¼ 0 we find

hTnðη; 0Þ ¼
1

η

Z

η

dη0η0ðη − η0ÞJ4;nðη0; 0Þ; ð131Þ
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which is just the limit k → 0 of Eq. (130). Expressions for

h×n are analogous. In the integrals in Eqs. (130) and (131) as

well as in the following, the initial time η0 that should

appear as the lower limit of integration is suppressed for

simplicity; we neglect the η0-dependent contributions as we

are only interested in a particular solution.

Clearly, at each order ϵn one can also add a solution of

the homogeneous equation to this solution for hTn. This can

however be absorbed into the linear perturbation hT1 . We

hence set these arbitrary solutions to the homogeneous

equations to 0 for n ≥ 2.

C. Scalar perturbations

For the scalar perturbation functions ϕ;ψ ; γ and δr, we

proceed analogously. For clarity, we first derive the general

solutions for the first-order perturbations, for which there

are no sources and the general solution is obtained

straightforwardly. The equation for ψ1 is Eq. (123) with

the sources set to 0, i.e.,

ψ̈1 þ
2

η
_ψ1 −

1

3
ψ 00
1 ¼ −

_F1

η
−
F̈1

2
ð132Þ

where F1 is a free function of η. Going into Fourier

space, the general solution for k ≠ 0, where F1 does not

contribute, is

ψ1ðη; xÞ ¼
Z

dk

2π
eikxψ1ðη; kÞ;

ψ1ðη; kÞ ¼ a1ðkÞ
e
− i
ffiffi

3
p kη

kη
þ a2ðkÞ

e
i
ffiffi

3
p kη

kη
: ð133Þ

The Fourier mode k ¼ 0 is a gauge mode [see the

discussion below Eq. (111)], with general solution

ψ1ðη; 0Þ ¼ −
c1

k0η
þ c2 −

F1ðηÞ
2

; ð134Þ

since F1 is arbitrary, we can set c1 ¼ c2 ¼ 0 with no loss of

generality. Putting this together, we have

ψ1ðη; xÞ ¼
Z

dk

2π
eikx

�

a1ðkÞ
e
− i
ffiffi

3
p kη

kη
þ a2ðkÞ

e
i
ffiffi

3
p kη

kη

�

−
F1ðηÞ
2

; ð135Þ

where for a real solution we need a1ðkÞ ¼ −a�1ð−kÞ and

a2ðkÞ ¼ −a�2ð−kÞ.
As said, from this expression we can determine the other

scalar functions γ, ϕ and δr. We find

γ1ðη; xÞ ¼ a3ðxÞ þ
Z

dk

2π
eikx

�

a1ðkÞe−
ikη
ffiffi

3
p
�

−
6

kη
− i

ffiffiffi

3
p �

þ a2ðkÞe
ikη
ffiffi

3
p
�

−
6

kη
þ i

ffiffiffi

3
p ��

; ð136Þ

ϕ1ðη; xÞ ¼ F1ðηÞ þ
η

2
_F1ðηÞ þ

Z

dk

2π
eikx

�

a1ðkÞe−
ikη
ffiffi

3
p

×

�

1

kη
þ i

ffiffiffi

3
p

�

þ a2ðkÞe
ikη
ffiffi

3
p
�

1

kη
−

i
ffiffiffi

3
p

��

;

ð137Þ

δr;1ðη; xÞ ¼ 2F1ðηÞ þ
Z

dk

2π
eikx

�

a1ðkÞe−
ikη
ffiffi

3
p
�

4

kη
þ 4i

ffiffiffi

3
p

�

þ a2ðkÞe
ikη
ffiffi

3
p
�

4

kη
−

4i
ffiffiffi

3
p

��

; ð138Þ

where we recognize a3ðxÞ and F1ðηÞ as encoding the

remaining gauge freedom in comoving gauge (111). a1ðkÞ
and a2ðkÞ correspond to the scalar degrees of freedom of

the radiation fluid.

In order to obtain the solutions for higher order

perturbations, we derive the Green’s function for the ψ

equation (123), which has the general form

ψ̈n þ
2

η
_ψn −

1

3
ψ 00
n ¼ Jn: ð139Þ

Again, the boundary condition for the Green’s function is

to set the higher order perturbations to 0 at some initial

conformal time η0. We find, for k ≠ 0,

ψnðη; kÞ ¼
ffiffiffi

3
p

kη

Z

η

dη0η0 sin

�

kðη − η0Þ
ffiffiffi

3
p

�

Jnðη0; kÞ; ð140Þ

and for k ¼ 0 the same as for the tensors,

ψnðη; 0Þ ¼
1

η

Z

η

dη0η0ðη − η0ÞJnðη0; 0Þ: ð141Þ

Again, once the solution for ψn is found, the other

perturbation functions γn, ϕn and δr;n can be obtained

easily.

From these expressions, we can now work out the

nonlinear solution for all metric perturbation functions

and the density perturbation order by order in ϵ; all we need

to do is to expand Einstein equations up to any given order

to find the sources Ji;n and then compute the integrals

(130), (131), (140) and (141) to find the perturbations at the

next order.

D. Nonlinear positive-frequency modes

We are now specifically interested in the nonlinear

extension of linear positive-frequency modes at a given
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wave number k0. (The following calculations and discus-

sion can be extended to the case of an incoming negative-

frequency mode by simply taking the complex conjugate

of all expressions below, and replacing the lower- by the

upper-half complex plane etc.) We choose the linear

positive-frequency modes to be

ψ1ðη; xÞ ¼ A cosðk0xÞ
e−ik0η=

ffiffi

3
p

k0η
;

hT1 ðη; xÞ ¼ B cosðk0xÞ
e−ik0η

k0η
: ð142Þ

As seen before, the expression for ψ1 then determines γ1,

ϕ1 and δr;1. These scalar quantities are all gauge dependent

but one may compute the gauge-invariant Newtonian

potentials first introduced by Bardeen [32] and given by

(in Fourier space for k ≠ 0)

Φ ¼ −ϕþ ̈γ

k2
þ _γ

k2η
;

Ψ ¼ −ψ −
_γ

k2η
: ð143Þ

We find that for the linear perturbations Φ and Ψ are equal

and fall off as 1=k20η
2 at large jηj,

Φ1ðη; k0Þ ¼ Ψ1ðη; k0Þ ¼ −
2πAe

− i
ffiffi

3
p k0ηð3þ

ffiffiffi

3
p

ik0ηÞ
k30η

3
:

ð144Þ

The explicit form of the sources at order ϵ2 is, in terms of

the linear perturbations,

J1;2 ¼
12

η2
ϕ2 þ 3

16
ððhTÞ0Þ2 þ 3

16
ððh×Þ0Þ2 þ 2γ0ψ 0 þ 3ðψ 0Þ2 þ 1

4
hTðhTÞ00 þ 1

4
h×ðh×Þ00 þ 4γψ 00 þ 8ψψ 00 −

4

η
γ _γ

þ 4

η
ϕ_γ −

4

η
ψ _γ −

1

2η
hT _hT −

1

16
ð _hTÞ2 − 1

2η
h× _h× −

1

16
ð _h×Þ2 − 4

η
γ _ψ þ 12

η
ϕ _ψ −

12

η
ψ _ψ þ 2_γ _ψ þ3 _ψ2; ð145Þ

J2;2 ¼
2

η
γϕ0 −

2

η
ϕϕ0 þ 2

η
ψϕ0 þ ψ 0 _γ þ 1

16
ðhTÞ0 _hT þ 1

16
ðh×Þ0 _h× − ϕ0 _ψ þ 2ψ 0 _ψ þ 1

8
hTð _hTÞ0 þ 1

8
h×ð _h×Þ0 þ 2γ _ψ 0 þ 4ψ _ψ 0;

ð146Þ

J3;2 ¼
4

η2
ϕ2 −

1

16
ððhTÞ0Þ2 − 1

16
ððh×Þ0Þ2 − 2ϕ0ψ 0 þ ðψ 0Þ2 þ 1

2η
hT _hT þ 3

16
ð _hTÞ2 þ 1

2η
h× _h× þ 3

16
ð _h×Þ2 − 8

η
ϕ _ϕ −

8

η
ϕ _ψ

þ 8

η
ψ _ψ − 2 _ϕ _ψ þ _ψ2 þ 1

4
hT ḧT þ 1

4
h×ḧ× − 4ϕψ̈ þ 4ψψ̈ ; ð147Þ

J4;2 ¼ −γ0ðhTÞ0 − ðhTÞ0ϕ0 − 3ðhTÞ0ψ 0 − 2γðhTÞ00 − 4ψðhTÞ00 − 2hTψ 00 −
4

η
ϕ _hT þ 4

η
ψ _hT − _γ _hT − _hT _ϕþ 4

η
hT _ψ þ _hT _ψ

− 2ϕḧT þ 2ψ ḧT þ 2hT ψ̈ ; ð148Þ

J5;2 ¼ −γ0ðh×Þ0 − ðh×Þ0ϕ0 − 3ðh×Þ0ψ 0 − 2γðh×Þ00 − 4ψðh×Þ00 − 2h×ψ 00 −
4

η
ϕ _h× þ 4

η
ψ _h× − _γ _h× − _h× _ϕþ 4

η
h× _ψ þ _h× _ψ

− 2ϕḧ× þ 2ψ ḧ× þ 2h×ψ̈ ; ð149Þ

J6;2 ¼ −
4

η2
ϕ2 þ 1

16
ððhTÞ0Þ2 þ 1

16
ððh×Þ0Þ2 − γ0ϕ0 þ ðϕ0Þ2 þ γ0ψ 0 þ 2ðψ 0Þ2 þ 1

8
hTðhTÞ00 þ 1

8
h×ðh×Þ00 − 2γϕ00 þ 2ϕϕ00

− 2ψϕ00 þ 2γψ 00 þ 4ψψ 00 −
4

η
γ _γ þ 4

η
ϕ_γ −

4

η
ψ _γ − _γ2 −

1

4η
hT _hT −

1

16
ð _hTÞ2 − 1

4η
h× _h× −

1

16
ð _h×Þ2 þ 8

η
ϕ _ϕþ _γ _ϕ

−
4

η
γ _ψ þ 8

η
ϕ _ψ −

8

η
ψ _ψ − _γ _ψ þ2 _ϕ _ψ − _ψ2 − 2γγ̈ þ 2ϕ ̈γ − 2ψ ̈γ −

1

8
hT ḧT −

1

8
h×ḧ× − 2γψ̈ þ 4ϕψ̈ − 4ψψ̈ ; ð150Þ

where we omit the subscripts 1 on the first-order perturbations on the right-hand side of these equations. For simplicity, we

also set the second tensor mode h× to 0 from now on (its dynamics are analogous to those of hT).
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We now compute the second-order perturbations from

Eqs. (130), (131), (140) and (141), using the sources

computed from the chosen linear perturbations. For hT2 ,

we find

hT2 ¼ AB

�

3e
−ið1þ 1

ffiffi

3
p Þk0η

2k20η
2

ð1þ cosð2k0xÞ
�

−
ið1þ

ffiffiffi

3
p

Þe−ið1þ
1
ffiffi

3
p Þk0η

2k0η
cosð2k0xÞ

þ ið3þ
ffiffiffi

3
p

Þe−ið1þ
1
ffiffi

3
p Þk0η

6k0η
þ 2

3
Γ

�

0; i

�

1þ 1
ffiffiffi

3
p

�

k0η

�

þ
13ie−2ik0ηΓð0; ið−1þ 1

ffiffi

3
p Þk0ηÞ

6k0η
cosð2k0xÞ

−
13ie2ik0ηΓð0; ið3þ 1

ffiffi

3
p Þk0ηÞ

6k0η
cosð2k0xÞ

�

: ð151Þ

Here Γð0; zÞ are incomplete gamma functions. Their

asymptotic expansion for large arguments is

Γð0; zÞ ∼ e−z
�

1

z
−

1

z2
þO

�

1

z3

��

: ð152Þ

Using this expansion, we see that as k0η → �∞, hT2 has the

asymptotic behavior

hT2 ∼ABe
−ið1þ 1

ffiffi

3
p Þk0η

�

i
6þ 5

ffiffiffi

3
p

− ð27þ 16
ffiffiffi

3
p

Þ cosð2k0xÞ
ð21þ 11

ffiffiffi

3
p

Þk0η

þ 23þ 4
ffiffiffi

3
p

− ð37þ 20
ffiffiffi

3
p

Þ cosð2k0xÞ
2ð5þ 2

ffiffiffi

3
p

Þk20η2
þO

�

1

k30η
3

��

:

The asymptotic expansion shows in particular that all the

terms in Eq. (151) oscillate as e
−ið1þ 1

ffiffi

3
p Þk0η for large k0jηj,

and decay exponentially for large negative imaginary η.

We can obtain expressions for the scalar perturbations

in exactly the same way. The expressions are similar to

those for hT2 but involve more terms (15 in total), as

there can be contributions of order A2 and B2, corre-

sponding to two tensor modes or two scalar modes

combining to give a scalar. Just as the second-order

tensors, they contain incomplete gamma functions, but

there is also a term involving a logarithm,

−A2e
− 2
ffiffi

3
p ik0η i

ffiffiffi

3
p

logðk0ηÞ cosð2k0xÞ
2k0η

: ð153Þ

These terms are potentially problematic when the

perturbation functions are extended to the complex η

plane as the logarithms and incomplete gamma func-

tions have branch cuts. However, all we require for

positive-frequency modes is analyticity in the lower-half

η plane, where these modes extend to Euclidean,

asymptotically decaying modes. This can be achieved

by defining all the branch cuts to be along the positive

imaginary axis. The analytic continuation of these

modes that avoids the singularity at η ¼ 0 is then

defined by choosing any contour that remains in the

lower-half complex η plane.

Asymptotically, we find that at large k0jηj,

ψ2 ∼ −e−2ik0η
7iB2

128k0η
þ e

− 2
ffiffi

3
p ik0ηA2

�

1

12
þ 1

6
cosð2k0xÞ

− i
2þ cosð2k0xÞð1þ 12 logðk0ηÞÞ

8
ffiffiffi

3
p

k0η

�

þO

�

1

k20η
2

�

;

and one can check that all terms, including all subleading

ones, oscillate at positive frequencies asymptotically (either

at ω ¼ 2k0 or at ω ¼ 2
ffiffi

3
p k0). The nonlinear modes again

decay exponentially as k0η → −i∞, and indeed define

nonlinear positive-frequency modes. From the general

structure of the equations (114)–(119), one can see that

the same property should hold to all higher nonlinear

orders: the source terms, being nonlinear in lower order

perturbations, always decay exponentially sufficiently

fast in imaginary time that integration with a Green’s

function that has an exponentially growing and an expo-

nentially decaying part, as in Eq. (140), gives again an

exponentially decaying next-order perturbation. The

method we have described then allows a general defi-

nition of positive-frequency modes in the complex η

plane, to all orders in perturbation theory.

The other perturbations are determined by Eqs. (120)–

(122). For completeness, we give their asymptotic expres-

sions for large k0jηj,

γ2 ∼ A2e
− 2
ffiffi

3
p ik0η

�

−
i cosð2k0xÞk0η

ffiffiffi

3
p

− 1 − cosð2k0xÞ
�

5

4
þ 3 logðk0ηÞ

��

þO

�

1

k0η

�

;

ð154Þ

δr;2 ∼
1

3
A2e

− 2
ffiffi

3
p ik0η

�

4i cosð2k0xÞk0η
ffiffiffi

3
p

− 7 − cosð2k0xÞð7 − 12 logðk0ηÞÞ
�

þO

�

1

k0η

�

;

ϕ2 ∼ e−2ik0η
7B2

64
þ A2e

− 2
ffiffi

3
p ik0η

�

ik0ηð1þ 2 cosð2k0xÞÞ
6

ffiffiffi

3
p

þ 1

3
− cosð2k0xÞ

�

1

12
− logðk0ηÞ

��

þO

�

1

k0η

�

:

ð155Þ
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To verify the validity of our solution method, we have

checked explicitly that the second-order perturbations solve

Einstein’s equations up to order ϵ2.

We see that none of the scalar perturbation functions

decay at real infinity k0jηj → ∞, and some even blow up,

indicating a breakdown of perturbation theory at large

times. Again, to get gauge-invariant statements about this

behavior, we can compute the Newtonian potentials, and

find that they fall off as 1=k0η,

Φ2ðη; 2k0Þ ∼ −e
− 2
ffiffi

3
p ik0η iπ

ffiffiffi

3
p

a2

4k0η
þO

�

1

k20η
2

�

ð156Þ

with similar behavior for Ψ. This compares with Φ1 ∼

Oð1=k20η2Þ in Eq. (144), which still indicates that the

perturbation expansion breaks down when ϵk0jηj ∼ 1.

This physical behavior is due to the nonlinear evolution

in the fluid, as shown by analytical and numerical studies

in Ref. [13]. When we go down the imaginary axis, i.e. for

η ¼ −iτ with τ → ∞, all perturbation functions fall off

exponentially, with exponential terms of the form e−ωτ

dominating any polynomially growing terms. As we have

argued, this behavior persists for higher orders in the ϵ

expansion, and defines these modes by regularity for large

negative imaginary η; the blowup of scalar perturbations

along the real axis due to nonlinearities in the fluid does not

prevent us from defining nonlinear asymptotic positive-

frequency modes.

E. Summary

We have given an algorithm for solving the Einstein-

matter equations order by order in perturbation theory,

and exhibited explicit results at second order that show in

detail how the positive-frequency incoming modes match

only to positive-frequency outgoing modes, and similarly

for negative-frequency modes (where our results trivially

extend by taking complex conjugates). We have argued that

this behavior should extend to all orders in perturbation

theory, as the nonlinear extension of linear positive-

frequency modes leads to perturbation functions that

decay exponentially for large negative imaginary times,

and branch cuts can be restricted to the positive half-plane

for positive-frequency solutions, so that the nonlinear

metric perturbation satisfies a nonlinear notion of positive

frequency. We identified some subtleties, namely that the

perturbation expansion fails at late times k0jηj ∼ 1
ϵ
, where ϵ

is the perturbation amplitude, meaning that one has to

restrict attention to an annulus in the complex plane,

ϵ < k0jηj < 1
ϵ
, in which the ϵ expansion can be trusted

and nonlinearities are not yet dominant [1].

VII. CONCLUSIONS

This paper represents a detailed study of a very simple

cosmological model, based on the principle of conformal

symmetry for matter and gravity and the observed fact that

the early Universe was dominated by radiation. Classical

cosmological solutions of this model describe a bounce,

with a big bang/big crunch singularity, but the singularity

can be avoided by going into the complex plane. While this

“singularity avoidance” seems ad hoc in classical gravity,

we have shown its meaning in the quantum theory where,

similar to quantum tunneling, the complexified solutions

represent legitimate saddle points to the path integral. The

picture that emerges for quantum cosmology is based on

modes that are asymptotically purely positive frequency at

early and late times when the Universe is large and

classical, corresponding to a positive expansion rate of

the Universe, as we observe. We have shown that the

addition of a positive radiation density makes a crucial

difference, as it leads to classical solutions which connect

asymptotic contracting and expanding Lorentzian regions,

and which are represented by the positive-frequency modes

defined by the Feynman propagator. We do not impose any

boundary conditions for the wave function at a ¼ 0, and

accept that some modes may even diverge there: all that is

required is a consistent evolution from an asymptotic

contracting to an asymptotic expanding universe, through

or around the bounce, as this allows a calculation of

transition amplitudes and hence, ultimately, predictions

for the transition of a given state in the contracting phase to

a state in the expanding phase. This formalism appears

much more natural than an imposition of a boundary

condition at a ¼ 0, where quantum effects are large and

where classical notions of singularity avoidance may cease

to have any relevance. In practical terms, the fact that our

wave functions and propagators admit a semiclassical

WKB description in which high-curvature regions near

a ¼ 0 can be avoided gives hope that a semiclassical

approach to the quantum cosmology of bouncing scenarios

can be used for predictions, even in the absence of a

complete theory of quantum gravity.

Some features we are exploiting are clearly restricted to

homogeneous cosmological models such as the FRW and

Bianchi I universes we have studied explicitly. It is there-

fore vital to check that the formalism can be extended

consistently to generic perturbations around homogeneity,

and ultimately to fully nonlinear solutions of GR. We have

developed a systematic perturbative treatment that shows

how this question can be attacked, at linear and nonlinear

order, and given evidence for a consistent nonlinear

extension of positive-frequency modes to the complex a
plane. Again, one is interested in the transition of incoming

asymptotic positive-frequency modes to outgoing modes

which are, in general, a mixture of positive and negative

frequency and which signal particle production (and

potential divergencies) at the bounce. We have shown that

an incoming positive-frequency mode can be continued

around the singularity, and unambiguously matches to an

outgoing positive-frequency solution. So the incoming
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adiabatic vacuum state is stable across the bounce and no

divergencies arise. Our calculations have been limited to

pure radiation and planar symmetry, and one focus of future

work will be to extend these results to more general cases.

The present results already indicate that a consistent

semiclassical picture exists for nonlinear perturbations

of cosmological models, and that this picture can be used

for calculations of the cosmological phenomenology of

bounce scenarios of the type we consider.

Thus, our results show how classical singularities do

not necessarily prevent a consistent quantum description

of bouncing cosmologies. The inclusion of quantum

effects into the big bounce seems a natural and simple

alternative to the development of more complicated bounce

scenarios [8–10,33].

There are many avenues for further exploration. In

Sec. V, we began to explore the quantum theory on the

real a-axis around a ¼ 0. In some cases, it may be that the

attractive inverse square potential in the Wheeler-DeWitt

operator may lead the quantum theory to fail when further

(inhomogeneous) degrees of freedom are included, but

in others the quantum theory seems to be healthy. The

quantum dynamics of more general Bianchi models also

deserve to be understood; for these, the invisibility of the

singularity that we have observed for Bianchi I will

presumably be replaced by a nontrivial scattering matrix

between in and out asymptotic states. The pathologies

we have identified in the Feynman propagator for curved

FRW universes should be revisited with the inclusion of a

positive cosmological constant. More basic conceptual

questions concerning the interpretation of the propagator

and the determination of probabilities need to be inves-

tigated. Ultimately, we need to find a compelling measure

on the space of quantum universes. There are hints that the

present flat, isotropic universe lies on a critical boundary in

the quantum theory, and these may point to novel reso-

lutions of the classic flatness and isotropy puzzles.
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APPENDIX: MASSIVE RELATIVISTIC

PROPAGATOR

In this appendix, we calculate the massive relativistic

propagator given in Eq. (31) exactly. First, we note that

Gðxjx0Þ ¼ i

Z

∞

0

dτ

�

m

2πiτ

�Mþ1
2

e−i
m
2
ðσ
τ
þτÞ;

is a convergent integral when σ ¼ −ðx − x0Þ2 is positive.

The τ integral may be taken along the positive real axis

0 < τ < ∞. Next, we set τ ¼ ffiffiffi

σ
p

eu, with−∞ < u < ∞, so

that

Gðxjx0Þ ¼ i

Z

∞

−∞

duð
ffiffiffi

σ
p

Þ1−M2
�

m

2πi

�Mþ1
2

e−im
ffiffi

σ
p

coshu−M−1
2
u

¼ 1

2
ð−imÞMð2πm

ffiffiffi

σ
p

Þ1−M2 H
ð2Þ
M−1
2

ðm
ffiffiffi

σ
p

Þ; ðA1Þ

where we have used the standard integral representation of

the Hankel function of the second kind,

H
ð2Þ
ν ðzÞ ¼ iνþ1

π

Z

∞

−∞

due−iz coshu−νu; ðA2Þ

and for positive real argument the function is defined as the

boundary value of a function in the lower-half complex z
plane where the integral converges.

Following the discussion given in Sec. IV, the result is

then continued to negative values of σ by analytic con-

tinuation through the lower-half complex σ plane.
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