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Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental

problem, with implications for the foundations of quantum theory and for quantum information processing.

It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible

local measurements. Here we present a simple method for building LHV models, applicable to any

entangled state and considering continuous sets of measurements. This leads to a sequence of tests which,

in the limit, fully captures the set of quantum states admitting a LHVmodel. Similar methods are developed

for local hidden state models. We illustrate the practical relevance of these methods with several examples.

DOI: 10.1103/PhysRevLett.117.190402

Distant observers performing well-chosen local mea-

surements on a shared entangled state can establish non-

local correlations, as witnessed by the violation of a Bell

inequality [1,2]. Quantum nonlocality is among the most

counter-intuitive features of quantum physics, and is a key

resource in quantum information processing [3–5].

Initially believed to be two different facets of the same

phenomenon, entanglement and nonlocality are now rec-

ognized as fundamentally different. Notably, there exist

entangled states which cannot give rise to nonlocality

considering arbitrary (nonsequential) measurements. The

correlations of such states—thus referred to as “local”

entangled states—can be perfectly reproduced using a local

hidden variable (LHV) model, i.e., using only shared

classical resources. This was first demonstrated by

Werner [6], who presented a class of entangled states

which admit a LHV model for arbitrary projective mea-

surements. This was later extended to more general

positive-operator-valued measure (POVM) [7], and other

classes of states [8–11]. In particular, several works

[12–15] constructed local hidden state models (LHS), a

special class of LHV model in which the hidden variable

can be understood as a quantum state, naturally associated

to the effect of quantum steering [12]. More generally,

characterizing local entangled states would deepen our

understanding of the relation between entanglement and

nonlocality, as well as allow one to distinguish between

useful and useless entangled states for nonlocality-based

protocols.

Despite these implications, the problem of constructing

local models for entangled states remains challenging, as

the model should reproduce the quantum statistics for all

possible measurements, i.e., a continuous set. So far, LHV

(or LHS) models could be constructed for entangled states

featuring a high degree of symmetry [11]. Recently, a

sufficient condition for a two-qubit state to admit a LHS

was discussed [16]. However, for general states, essentially

nothing is known, due to the lack of appropriate techniques

for discussing the problem.

Here we present a simple and efficient method for

constructing LHVand LHS models, applicable to arbitrary

local entangled states and considering continuous sets of

measurements. The main idea is to map the problem of

finding a local model for an entangled state (a seemingly

infinite problem) to a finite (and, hence, tractable) problem,

namely, to find out whether the correlations resulting from

a finite set of measurements on a different entangled state

admit a local decomposition. We can define a sequence of

tests for determining whether a given entangled state admits

a LHV (or LHS) model, which is shown to converge in the

limit, and thus give a full characterization of the set of local

entangled states (see Fig. 1). The method can be efficiently

implemented, and we construct LHV and LHS models

for different classes of entangled states. In particular, we

FIG. 1. A method for constructing LHV models for entangled

states is discussed. This leads to a sequence of tests, which

provide in each level a better approximation of the set of local

states (red), a strict superset of the set of separable states (grey

region). This is complementary to standard methods, based, e.g.,

on Bell inequalities, which provide an approximation of the set of

local states from outside.
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present LHS models for a rank-3 entangled state and for a

bound entangled state. We conclude by discussing further

possible applications.

Preliminaries.—Consider Alice and Bob sharing an

entangled quantum state ρ. Alice performs a set of

measurements fMajxg (Majx ≥ 0 and
P

aMajx ¼ 1), and

Bob performs measurements fMbjyg. The resulting statis-

tics is given by

pðabjxyÞ ¼ TrðMajx ⊗ MbjyρÞ: ð1Þ

The state ρ is said to be local (for fMajxg and fMbjyg) if
distribution (1) admits a Bell local decomposition

pðabjxyÞ ¼
Z

πðλÞpAðajx; λÞpBðbjy; λÞdλ: ð2Þ

That is, the quantum statistics can be reproduced using a

LHVmodel consisting of a shared local (hidden) variable λ,

distributed with density πðλÞ, and local response functions

pAðajx; λÞ and pBðbjy; λÞ. If a decomposition of the form

(2) cannot be found, the distribution pðabjxyÞ violates (at
least) one Bell inequality [2]. In this case, ρ is nonlocal for

the sets fMajxg and fMbjyg.
Another concept of interest is that of a LHS model,

associated with quantum steering [12]. Specifically, we say

that ρ is “unsteerable” (from Alice to Bob) if

pðabjxyÞ ¼
Z

πðλÞpAðajx; λÞTrðMbjyσλÞdλ: ð3Þ

That is, the quantum statistics can be reproduced by a LHS

model, where σλ denotes the local (hidden) quantum state

and pAðajx; λÞ is Alice’s response function. If such a

decomposition cannot be found, ρ is said to be “steerable”

for the set fMajxg; note that one would usually consider

here a set of measurements Mbjy that is tomographically

complete, and thus focus the analysis on the set of condi-

tional states of Bob’s system

σajx ¼ TrAðMajx ⊗ 1ρÞ; ð4Þ

referred to as an assemblage. Note also that any LHS model

can be considered as an LHVmodel. The converse does not

necessarily hold, as there exist entangled states which are

steerable but nevertheless Bell local [12,15].

The problem of testing the locality or unsteerability of a

given entangled state ρ for finite sets of measurements

can be solved using existing methods, such as symmetric

extensions for quantum states [17], linear and semidefinite

programs (SDPs) [2,18,19], and relaxing positivity [20].

Implementable for small number of measurements, these

methods become computationally demanding when the

number of measurements increases. Nevertheless, they are

guaranteed to provide a solution in principle.

The situation is very different when considering con-

tinuous sets of measurements, e.g., the set of all projective

measurements. Here the methods for finite sets cannot be

applied, not even in principle. One must then construct a

LHV (or LHS) model explicitly, by exhibiting the distri-

butions πðλÞ and response functions pAðajx; λÞ and

pBðbjy; λÞ. This was achieved for certain classes of

entangled states by exploiting their high level of symmetry.

However, when considering general states, with less (or no)

symmetry, following such an approach is extremely

challenging.

In the present Letter, we follow a different path and

present a general method for constructing LHV and LHS

models for arbitrary states. The method can be efficiently

implemented and will be illustrated with examples. Before

presenting the main result we start with a simple example,

providing the intuition behind our method.

Illustrative example.—Consider the class of Werner

states

ρWðαÞ ¼ αjψ−ihψ−j þ ð1 − αÞ1=4; ð5Þ
where jψ−i ¼ ðj01i − j10iÞ=

ffiffiffi

2
p

is the singlet state and 1=4
is the two-qubit maximally mixed state. In the range

1=3 < α ≤ 1=2, ρWðαÞ is entangled but unsteerable (and,

hence, local) for all projective measurements [6]. Werner

provided an explicit LHS model by exploiting the high

symmetry of the state—ρWðαÞ is invariant under global

rotations of the form U ⊗ U. Here we illustrate the main

idea behind our method by rederiving Werner’s result,

without invoking any symmetry argument.

Consider the set M of 6 projective qubit measurements

with Bloch vectors �v̂x (x ¼ 1;…; 6), corresponding to an

icosahedron. By performing measurements in M on the

Werner state, Alice prepares for Bob the assemblage

σ�jx ¼ TrA

�

1� v̂x · ~σ

2
⊗ 1ρWðαÞ

�

; ð6Þ

where ~σ denotes the vector of Pauli matrices. Using SDP

techniques [19], we find that this assemblage admits a LHS

model for α ≲ 0.54.

This analysis can be extended to all projective measure-

ments as follows. Consider qubit POVMs given by

Mη

�jv̂ ¼ ½1�ηðv̂ · ~σÞ�=2 with 0 < η ≤ 1. The corresponding

Bloch vectors (with direction v̂ and norm η) thus form

a “shrunken” Bloch sphere of radius η. Choosing

η� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð5þ 2
ffiffiffi

5
p

Þ=15
q

≈ 0.79, we obtain a sphere that

fits inside the icosahedron. Thus, any noisy measurement

Mη�

�jv̂ can be expressed as a convex combination of

measurements in M [21]. Because the assemblage (6)

(resulting from measurements in M) admits a LHS model

for α≲ 0.54, we get that the assemblage resulting from

any possible Mη

�jv̂ with η ≤ η� also admits a LHS model.

Consequently, the statistics of arbitrary (but sufficiently

noisy, i.e., η ≤ η�) measurements performed on the

Werner state with α≲ 0.54 can be simulated. Finally,

notice that the statistics of noisy measurements on a given

Werner state are equivalent to the statistics of projective

measurements on a slightly more noisy Werner state
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TrA½Mη

�jv̂ ⊗ 1ρWðαÞ� ¼ TrA½M1

�jv̂ ⊗ 1ρWðηαÞ�: ð7Þ

Hence, states ρWðαÞ with α ≲ 0.54η� ≃ 0.43 admit a LHS

model for all projective measurements. Note that by

starting from a polyhedron with more (but nevertheless

finitely many) vertices distributed (sufficiently evenly) over

the sphere, the above procedure gives a LHS model for

Werner states for α → 1=2, thus converging to Werner’s

model [21]. This is the optimal LHS model, because ρWðαÞ
becomes steerable for α > 1=2 [12].

Constructing LHS models.—Based on the idea sketched

above, we now present a general method for constructing

LHS models for continuous sets of measurements, appli-

cable to any local entangled state. Formally, we will make

use of the following result.

Lemma 1: Consider a quantum state χ (of dimension

d × d), with reduced states χA;B ¼ TrB;AðχÞ, and a finite

set of measurements fMajxg, such that the assemblage

σajx ¼ TrAðMajx ⊗ 1χÞ is unsteerable. Then the state

ρ ¼ ηχ þ ð1 − ηÞξA ⊗ χB; ð8Þ
where ξA is an arbitrary density matrix (of dimension d),
admits a LHS model for a continuous set of measurements

M. The parameter η corresponds to the “shrinking factor”

of M with respect to the finite set fMajxg (and given state

ξA). Specifically, consider the continuous set of (shrunk)

measurements

Mη
a ¼ ηMa þ ð1 − ηÞTr½ξAMa�1 ð9Þ

for any Ma ∈ M. Then η is the largest number such that

all Mη
a can be written as a convex combination of the

elements of fMajxg, i.e., Mη
a ¼

P

xpxMajx with
P

px ¼ 1

and px ≥ 0.

Proof.—The proof is based on the following relation:

TrA½Mη
a ⊗ 1χ� ¼ TrA½Ma ⊗ 1ρ�: ð10Þ

Because σajx is unsteerable, it follows that there exists a

LHS model for χ and all (shrunk) measurementsMη
a. From

the above equality, it follows that ρ admits a LHS model for

the continuous set of measurements M. □

This allows us to get an explicit protocol for determining

whether a given state ρ admits a LHS model.

Protocol 1: The problem is to determine if a target

state ρ admits a LHS model for a continuous set of

measurementsM. Following Lemma 1, we start by picking

a finite set fMajxg (with shrinking factor η) and a density

matrix ξA. Next we solve the following SDP problem:

find q� ¼maxq

such that

TrAðMajx ⊗ IχÞ ¼
X

λ

σλDλðajxÞ ∀ a;x;σλ ≥ 0 ∀ λ

ηχþ ð1− ηÞξA ⊗ χB ¼ qρþ ð1− qÞ 1
d2

; ð11Þ

where the optimization variables are (i) the positive matrices

σλ and (ii) ad × dHermitianmatrix χ [22]. This SDPmust be

performed considering all possible deterministic strategies

for AliceDλðajxÞ, of which there areN ¼ ðkAÞmA (wheremA

denotes the number of measurements of Alice and kA the

number of outcomes); hence λ ¼ 1;…; N. If the optimiza-

tion returns a maximum of q� ¼ 1, then ρ admits a

LHS model for all measurements inM. If q� < 1, we have

shown that ρ0 ¼ qρþ ð1 − qÞðI=d2Þ, with q ≤ q�, admits a

LHS for M.

The performance of the above protocol depends crucially

on the choice of the set fMajxg. It must be chosen in a rather

uniformmanner, over the continuous setM, in order to get a

shrinking factor that is as large as possible. Also, the ability

of the protocol to detect a larger range of unsteerable states

will improve when increasing the number of measurements

contained in fMajxg. Computing the shrinking factor is in

general nontrivial, but we give a general procedure in [23].

Based on Protocol 1, we can define a sequence of tests

for unsteerability of a given target state ρ. In the first test,

we consider a finite set fMajxg1, with shrinking factor η1
and apply Protocol 1. We thus get a value of q�

1
. If q�

1
¼ 1,

we conclude that ρ admits a LHS model. On the other hand,

if q�
1
< 1, the test is inconclusive, and we must go to the

second level. We construct now a new set fMajxg2, which
includes all measurements in fMajxg1 and additional ones.

By adding sufficiently new measurements, we get a new

shrinking factor η2 > η1. Applying Protocol 1 again, we

may get a value of q�
2
> q�

1
[24]. If q�

2
¼ 1 we stop;

otherwise, we proceed to level 3, and so on.

Clearly, in each new test, the set of measurements

considered provides a better approximation to M.

Moreover, the sequence of tests will in fact converge in

the limit. Indeed, consider any state ρ admitting a LHS

model. Then, applying the method to ρ, we will be able to

show that there is a state ρ0, arbitrarily close to ρ, which

admits a LHS model. Specifically, for any ϵ > 0, the state

ρ ¼ ð1 − ϵÞρþ ϵð1=d2Þ will be detected by going to a

sufficiently high level in the sequence of tests (see

Supplemental Material [23]).

These ideas can be implemented on a standard computer

for small sets of measurements fMajxg. For larger sets, the
implementation becomes demanding. Nevertheless, the

method provides a definite answer in principle.

Constructing LHV models.—These ideas can also be

adapted to the problem of constructing LHV models.

Lemma 2: Consider a state χ (of dimension d × d),
with reduced states χA;B ¼ TrB;AðχÞ, and finite sets of

measurements fMajxg, fMbjyg such that pðabjxyÞ ¼
TrðMajx ⊗ MbjyχÞ is local. Then the state

ρ ¼ ημχ þ ηð1 − μÞχA ⊗ ξB þ μð1 − ηÞξA ⊗ χB

þ ð1 − ηÞð1 − μÞξA ⊗ ξB ð12Þ
admits a LHV model for the continuous sets of measure-

ments MA for Alice and MB for Bob. Here ξA, ξB are
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arbitrary density matrices (of dimension d), and η, μ denote

the shrinking factors of MA, MB with respect to fMajxg,
fMbjyg.
The proof is a straightforward extension of that of

Lemma 1. We now have the following protocol.

Protocol 2: The problem is whether a target state ρ

admits a LHV model for measurements in MA and MB.

Following Lemma 2, we take finite sets fMajxg and fMbjyg
(with shrinking factors η and μ) and density matrices ξA
and ξB. Then we solve the following linear problem:

find q� ¼ max q

such that

TrðMajx ⊗ MbjyχÞ ¼
X

λ

pλDλðabjxyÞ ∀ a; b; x; y

pλ ≥ 0 ∀ λ

qρþ ð1 − qÞ I
d
¼ ημχ þ ηð1 − μÞχA ⊗ ξB

þ μð1 − ηÞξA ⊗ χB þ ð1 − ηÞð1 − μÞξA ⊗ ξB; ð13Þ

where the optimization variables are (i) positive coefficients

pλ and (ii) a d × d Hermitian matrix χ [22]. GivenmA (mB)

measurements with kA (kB) outcomes for Alice (Bob),

one has N ¼ ðkAÞmAðkBÞmB local deterministic strategies

DλðabjxyÞ, and λ ¼ 1;…; N.

Again, this leads to a sequence of tests. In the first level,

consider finite sets fMajxg1 and fMbjyg1, with shrinking

factors η1 and μ1, and apply Protocol 2. If q�
1
¼ 1, we

conclude that ρ admits a LHVmodel. If q�
1
< 1, we proceed

to the second level. We construct fMajxg2 and fMbjyg2,
including all measurements used in the first level plus

additional ones. Hence we get better shrinking factors

η2 ≥ η1 and μ2 ≥ μ1. Applying Protocol 2, we may get a

value of q�
2
> q�

1
[24]. If q�

2
¼ 1 we stop, otherwise we go

to level 3, and so on.

Here, the sequence will also converge in the limit.

Indeed, consider any local state ρ. There is ρ0, arbitrarily
close to ρ, which the method will show to have a LHV

model (see Supplemental Material [23]). Again, imple-

mentations on standard computers is possible for small sets

fMajxg and fMbjyg.
Applications.—We now illustrate the practical relevance

of the above methods, by constructing LHS and LHV

models for classes of entangled states for which previous

methods failed. A nontrivial issue is to obtain the shrinking

factor for the sets of measurements that are used. For

projective qubit measurements, this can be done efficiently

by exploiting the Bloch sphere geometry (see Supplemental

Material [23]). Hence, we consider entangled states where

(at least) one of the systems is a qubit, and focus primarily

on projective measurements.

Consider first the class of two-qubit states

ρðα; θÞ ¼ αjψθihψθj þ ð1 − αÞI4=4; ð14Þ

that is, partially entangled states jψθi¼cosθj00iþsinθj11i
mixed with white noise. The state is entangled for

α > ½1þ 2 sinð2θÞ�−1, via partial transposition [25,26].

Using Protocols 1 and 2, we find parameter ranges α, θ

where the state is unsteerable and local (seeFig. 2); thedetails

are in Supplemental Material [23]. So far, relevant bounds

for the locality of the above state were only given for

θ ¼ π=4, i.e., for Werner states (5). In this case, we obtain

an almost optimal LHS model (α≃ 0.495), and a LHV

model that improves Werner’s one (α≃ 0.554), but that is

below the model of Ref. [9] which achieved α≃ 0.659.

We also show that a rank-3 entangled state (i.e., on

the boundary of the set of two-qubit quantum states) can

admit a LHS model. Specifically, we find that the state

ρ ¼
P

3

k¼1
pkjψkihψkj, where p1 ¼ 0.4, p2 ¼ 0.05, and

jψ1i ¼ cos θj00i þ sin θj11i, jψ2i ¼ sin θj00i − cos θj11i
and jψ3i ¼ j10i, where θ ¼ 10−4π, admits a LHS model.

Next we discuss higher-dimensional states, of the form

ρðα; dÞ ¼ αjψ−ihψ−j þ ð1 − αÞ12=2 ⊗ 1d=d; ð15Þ
i.e., a two-qubit singlet state jψ−i mixed with higher-

dimensional noise. The above state is entangled for

α > ð1þ dÞ−1 (via partial transposition). We obtain lower

bounds on α (for d ≤ 5) for the state to admit a LHS model;

see Table I.

Moreover, we obtain a LHS model for the bound

entangled state of Ref. [27]; see [23]. While these states

were conjectured to be local [28], this result represents the

first explicit example. Note, however, that this conjecture

was recently disproven, as certain bound entangled states

can lead to steering [29] and Bell nonlocality [30].

These methods can also be applied to multipartite

entangled states. In particular, we could reproduce the

result of Ref. [31], constructing a LHV model for a genuine

tripartite entangled state.

Finally, we also applied our method considering general

POVMs on the two-qubit Werner state (5). In this case, we

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 2. The state ρðα; θÞ of Eq. (14) is entangled above the

dash-dotted (red) line. Our method guarantees unsteerability

below the solid blue line, while the state is steerable above

the dashed blue line. Moreover, we can guarantee that the state is

local below the solid black line, while it is nonlocal above the

dashed black line.
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obtain a LHS model for visibility α≃ 0.36 > 1=3, which
shows that the method can be applied in practice for general

POVMs [23].

Discussion.—We discussed a procedure for constructing

LHS or LHV models, applicable to any local entangled

state. The method can be used iteratively, and converges in

the limit. We illustrated its practical relevance.

We believe thesemethodswill find further applications, in

particular for exploring the relation between entanglement

and nonlocality. First, we note that a simplified version of

our method was recently used to demonstrate the effect of

postquantum steering [32]. More generally, the method can

be applied to systems of arbitrary dimension, considering

POVMs, and multipartite systems. Here the main technical

difficulty consists in obtaining shrinking factors for sets of

measurements beyond projective qubit ones.
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