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Negativity and steering: A stronger Peres conjecture

Matthew F. Pusey*

Department of Physics, Imperial College London, Prince Consort Road, London, England SW7 2AZ, United Kingdom

(Received 22 July 2013; published 13 September 2013)

The violation of a Bell inequality certifies the presence of entanglement even if neither party trusts their

measurement devices. Recently Moroder et al. [T. Moroder, J.-D. Bancal, Y.-C. Liang, M. Hofmann, and

O. Gühne, Phys. Rev. Lett. 111, 030501 (2013)] showed how to make this statement quantitative, using

semidefinite programming to calculate how much entanglement is certified by a given violation. Here I

adapt their techniques to the case in which Bob’s measurement devices are in fact trusted, the setting for

Einstein-Podolsky-Rosen steering inequalities. Interestingly, all of the steering inequalities studied turn out

to require negativity for their violations. This supports a significant strengthening of Peres’s conjecture that

negativity is required to violate a bipartite Bell inequality.

DOI: 10.1103/PhysRevA.88.032313 PACS number(s): 03.67.Mn, 03.65.Ud, 03.65.Ta

I. INTRODUCTION

Entanglement [1] seems to lie at the heart of both the mys-

teries and the applications of quantum theory. Its quantification

by various entanglement measures is therefore important.

Suppose that Alice and Bob receive many copies of some

quantum state. If they both have access to suitable trusted

measurement devices, they can perform “local tomography,”

reconstructing the density matrix ρAB . This, in turn, can be

used to calculate entanglement measures, such as the negativity

[2], defined as the total magnitude of the negative eigenvalues

of ρ
TA

AB .

However, Alice and Bob may not trust their measuring

devices and therefore cannot rely on the correctness of any

reconstructed ρAB . Nevertheless, they can still estimate the

probabilities p(a,b|x,y) of getting outcomes (a,b) when

they choose the measurements (x,y). If these probabilities

violate a Bell inequality (and Alice and Bob believe their

measurement devices are unable to communicate), they can be

certain that the state is entangled. Moroder et al. [3] have

recently shown how the magnitude of that Bell violation

can furthermore be used to calculate a lower bound on the

negativity.

Not all entangled states can violate a Bell inequality [4].

Therefore it may be useful to study the intermediate case

in which Alice does not have trusted measuring devices and

yet Bob does. This is known as the Einstein-Podolsky-Rosen

(EPR) steering scenario [5]. In this case Bob can do state

tomography on his system, and the parties can then estimate

σa|x , the collapsed or steered state for Bob that is found

when Alice gets outcome a from measurement x. If the σa|x
violate a “steering inequality,” then their bipartite state is

entangled, and I will show, for the simplest class of steering

inequalities, how to calculate lower bounds on the negativity

for a given violation. The results suggest a strengthening of

the long-standing Peres conjecture [6].

*m@physics.org

II. EPR STEERING: RECAP AND NOTATION

Suppose Alice can choose between mA measurement

settings, each of which can result in one of nA outcomes

(all of the following can trivially be adapted to the case in

which different measurement settings have different numbers

of outcomes). Suppose Bob has a dB-dimensional quantum

system. Define an “assemblage” to be a set of dB × dB

Hermitian matrices σa|x where a ranges from 1 to nA and

x ranges from 1 to mA. We require the σa|x to be positive and
∑

a σa|x to be independent of x and trace 1. We do not require

the σa|x to be normalized; instead Tr (σa|x) gives the probability

that if Alice performs measurement x she obtains outcome a,

while σa|x/ Tr (σa|x) is the resulting state on Bob’s system.

Does the dependence of Bob’s state on Alice’s measurement

results represent “spooky action at a distance”? Not if there is a

set of normalized states σλ with probability distributions p(λ)

and p(a|λ,x) such that σa|x =
∑

λ p(λ)p(a|λ,x)σλ. In that

case, we can comfort ourselves that Bob’s system was in some

fixed state σλ all along, and Alice’s measurement outcome sim-

ply gave us classical information about λ, causing us to update

our probability distribution for it from p(λ) to p(λ|a,x) =
p(a|λ,x)p(λ)/p(a|x) and therefore assign the state

σa|x/p(a|x) to Bob. This is called a local hidden state (LHS)

model, and the lack of such a model for some assemblages is

called “steering” [5], taken to be the formal definition of an

EPR paradox. See Table I for a comparison of LHS models with

the more common notions of separability and Bell locality.

The classic example is Bohm’s qubit reformulation [7]

of the original EPR [8] setup. This has nA = mA = dB = 2,

with σ1|1 = |0〉 〈0| /2,σ2|1 = |1〉 〈1| /2,σ1|2 = |+〉 〈+| /2 and

σ2|2 = |−〉 〈−| /2. This can trivially be seen to lack an LHS

model, because pure states cannot be decomposed into any

other states.

But can this assemblage be realized in quantum mechanics?

Yes: Bohm gave an explicit two-qubit entangled state ρAB

and measurements Ea|x for Alice that achieve it, i.e., σa|x =
TrA[(Ea|x ⊗ IB)ρAB]. However, it is not necessary to check

this, because Schrödinger [9] and later Hughston, Jozsa, and

Wootters [10], among others, have shown that any assemblage

satisfying the basic criteria given above has a quantum

realization. However, that result makes use of a pure entangled

032313-11050-2947/2013/88(3)/032313(5) ©2013 American Physical Society
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TABLE I. Summary of three scenarios in which bipartite entanglement can be quantified. By choosing POVMs Ea|x for Alice one can turn a

state ρAB into an assemblage σa|x = TrA[(Ea|x ⊗ IB )ρAB ]. By choosing POVMs Eb|y for Bob one can turn an assemblage σa|x into probabilities

p(a,b|x,y) = Tr (Eb|yσa|x). These mappings preserve all the listed properties; in particular, a separable state always provides an LHS model,

which in turn always provides an LHV model. On the other hand, by encoding Bob’s classical data using computational basis states, an LHV

model can always be turned into an LHS model with particular measurements for Bob, which can similarly be turned into a separable state

with particular measurements for Alice. Combining both directions we see that an assemblage can arise from a separable state if and only if it

has an LHS model.

Scenario Tomography Steering Bell nonlocality

Trusted parties Both Bob Neither

Key parameters Dimensions dA,dB Settings mA, outcomes nA, dim. dB Settings mA,mB , outcomes nA,nB

Data ρAB ∈ L(HdAdB ), state σa|x ∈ L(HdB ), “assemblage” p(a,b|x,y) ∈ R, probabilities

Positive ρAB � 0 σa|x � 0 ∀a,x p(a,b|x,y) � 0 ∀a,b,x,y

Normalized Tr (ρAB ) = 1
∑

a Tr (σa|x) = 1 ∀x
∑

a,b p(a,b|x,y) = 1 ∀x,y

No signalling A → B Implicit
∑

a σa|x independent of x
∑

a p(a,b|x,y) independent of x

No signalling B → A Implicit Implicit
∑

b p(a,b|x,y) independent of y

Allowed in QM Whenever above Whenever above It is complicated

is satisfied is satisfied [9,10] (see, e.g., [11])

Creatable using local ρAB =
∑

λ p(λ)ρλ ⊗ σλ σa|x =
∑

λ p(λ)p(a|x,λ)σλ p(a,b|x,y) =
∑

λ p(λ)p(a|x,λ)p(b|y,λ)

operations and shared Satisfies all entanglement Satisfies all steering inequalities, Satisfies all Bell inequalities,

randomness witnesses, is “separable” has “local hidden state has “local hidden variables

(hard to check in general) (LHS) model” (LHV) model”

(checkable with SDP) (checkable with linear program)

state between Alice and Bob. The aim of this paper is explore

to what extent we can get by with less entanglement than

that.

III. STEERING INEQUALITIES:

A SEMIDEFINITE WARMUP

Let X be a Hermitian matrix. A semidefinite program [12]

is the minimization of some linear functional of X subject to

X � 0 and bounds on linear functionals of X. We can easily

generalize this to multiple Xi by constructing a block-diagonal

X containing each one. Semidefinite programs can be solved

in polynomial time using freely available code, e.g., [13,14].

For a given nA,mA,dB , define a “steering functional” F by

a set of dB × dB Hermitian matrices Fa|x where a ranges from

1 to nA and x ranges from 1 to mA. F maps an assemblage

to a real number by
∑

a,x Tr (Fa|xσa|x). [Recall that any linear

map from the Hermitian matrices to the real numbers can be

written Tr (F ·) for some F .]

Since any valid assemblage has a quantum realization, it

is trivial to write down a semidefinite program to find the

quantum maximum Q of F :

maximize
∑

a,x

Tr (Fa|xσa|x)

subject to σa|x � 0,
∑

a

σa|1 =
∑

a

σa|x ∀x ∈ {2, . . . ,mA},

∑

a

Tr (σa|1) = 1.

(1)

Now consider the cases when the assemblage has an LHS

model. Notice that by shifting randomness into p(λ) we can

always make Alice’s part of the model deterministic, i.e., let λ :

{1, . . . ,mA} → {1, . . . ,nA} and p(a|x,λ) = δa,λ(x). We can

furthermore combine p(λ) and σλ into subnormalized states

σ̃λ = p(λ)σλ. Hence an assemblage has an LHS model if and

only if there exist nA
mA positive σ̃λ with

∑

λ Tr (σ̃λ) = 1 such

that

σa|x =
∑

λ

δa,λ(x)σ̃λ =
∑

λ

λ(x) = a

σ̃λ. (2)

With the above reformulation in hand, we can now write down

a semidefinite program to find the maximum value L of F over

all LHS models:

maximize
∑

λ

Tr

[(

∑

x

Fλ(x)|x

)

σ̃λ

]

subject to σ̃λ � 0,
∑

λ

Tr (σ̃λ) = 1.

(3)

F � L is called a (linear) steering inequality. If L < Q then

the inequality is nontrivial, i.e., can be violated by quantum

theory (QM). More general (nonlinear) steering inequalities

have also been found, but I will not consider them here as they

do not appear to be amenable to the techniques below. This

restriction is not too onerous since every assemblage without

an LHS model violates some linear steering inequality [15].

IV. BOUNDING NEGATIVITY

If one observes an assemblage σa|x that lacks an LHS

model then one can conclude that it must have arisen from

Alice measuring her half of some entangled state ρAB . We

would now like to make that statement quantitative, i.e., find a

lower bound on the amount of entanglement in ρAB . A lower

bound is the best we can hope for, since Alice might “waste”

entanglement by choosing suboptimal measurements. If we
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quantify entanglement by the negativity N then we are trying

to

minimize N (ρAB)

subject to TrA[(Ea|x ⊗ IB)ρAB] = σa|x,

ρAB,Ea|x � 0,
∑

a

Ea|x = IA ∀x.

(4)

(We do not need to require that ρAB has unit trace since this

follows from the normalization of σa|x .) This would appear

to be a difficult problem, first because we need to consider all

possible dimensions dA for Alice’s system and second because

(Ea|x ⊗ IB)ρAB contains the products of two unknowns, Ea|x
and ρAB .

Adapting the techniques of Moroder et al. [3] (which are

based on the “Navascués-Pironio-Acı́n hierarchy” [11]), we

can relax Eq. (4) in a way that removes both difficulties. First

notice that without loss of generality we can take the Ea|x to be

projective measurements, possibly by increasing dA. Adopt the

shorthand A0 = IA, A1 = E1|1, A2 = E2|1, up to A(nA−1)mA
=

EnA−1|mA
; i.e., {Ai} consists of the identity plus all except the

last Ea|x for each setting x. Define a completely positive map

on Alice’s system χ (ρAB) =
∑

n(Kn ⊗ IB)ρAB(K
†
n ⊗ IB) by

Kn =
∑

i |i〉 〈n| Ai . (The key difference from [3] is that here

an analogous map is not applied by Bob.) Then

χ (ρAB) =
∑

ij

|i〉 〈j | TrA[(A
†
jAi ⊗ IB)ρAB]. (5)

In fact there is an infinite hierarchy of relaxations, with

the above being used at level l = 1. In general, χ maps

Alice’s system to l qudits, with d = (na − 1)mA + 1, using

Kn =
∑

i1,... ,il
|i1, . . . ,il〉 〈n| Ai1

Ai2
. . . Ail .

The basic idea is to optimize over possible χ (ρAB ) instead of

ρAB itself. Hence we need to translate each condition in Eq. (4).

The first condition can be enforced using |i,0, . . . ,0〉 〈0, . . . ,0|
blocks of χ (ρAB), which should be equal to TrA[(Ai ⊗
IB)ρAB]. Since χ is completely positive we can relax ρAB � 0

to χ (ρAB) � 0. The positivity of the measurement outcome

is enforced by taking them to be projectors, and the final

requirement of summing to identity has become implicit by

not including the last outcome of each measurement in the Ai .

The form of the map χ also puts several (linear) restrictions

on χ (ρAB), the satisfaction of which I will call “χ validity.”

First, since A0 = IA any blocks whose indices are the same

when ignoring zeros must have identical contents. There are

further constraints from the fact that the Ai are Hermitian,

squares to themselves, and orthogonal to other Aj with the

same setting. For example, if nA = 3, mA = 2, and l = 1 then

we have the block-matrix form:

χ (ρAB) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σr σ1|1 σ2|1 σ1|2 σ2|2

σ1|1 σ1|1 0 X1 X2

σ2|1 0 σ2|1 X3 X4

σ1|2 X
†
1 X

†
3 σ1|2 0

σ2|2 X
†
2 X

†
4 0 σ2|2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6)

where σr is Bob’s reduced state
∑

a σa|x and Xi are arbitrary

matrices, for example, X1 = TrA[(E1|2E1|1)ρAB], which is not

an observable quantity. The reader may find it helpful to

compare Eq. (6) with Eq. (7) of [3].

The final step is to translate the objective function

N (ρAB). Similarly to [3], write N (ρAB) = min{Tr (ρ−)|ρAB =
ρ+ − ρ−,ρ

TB

± � 0} and relax this to min{t(χ (ρ−))|χ (ρAB) =
χ (ρ+) − χ (ρ−),χ (ρ±)TB � 0}. t(χ (ρ)) indicates the trace of

the |0, . . . ,0〉 〈0, . . . ,0| block of χ (ρAB), such that t(χ (ρ)) =
Tr [TrA(ρ)] = Tr (ρ). Also, χ (ρ)TB = χ (ρTB ) since χ is local

to Alice’s system.

So the final form is

minimize t(χ−)

subject to χ+ − χ− matches assemblage,

χ+ − χ− � 0,

χ
TB

± � 0,

χ± are χ valid,

(7)

whose solution, as argued above, lower bounds the solution

of Eq. (4). If one is not interested in specific assemblage but

rather a given value v of a steering functional F , then one

should

minimize t(χ−)

subject to f (χ+ − χ−) = v,

t(χ+ − χ−) = 1,

χ+ − χ− � 0,

χ
TB

± � 0,

χ± are χ valid,

(8)

where f (·) is defined as the evaluation of F using the

appropriate blocks of χ , i.e., f (χ (ρ)) = F (ρ). Finally, if

one wants to upper bound the value of F on states with no

negativity [called positive partial transpose (PPT) states], then

one should

maximize f (χ )

subject to t(χ ) = 1,

χ � 0,

χTB � 0,

χ is χ valid.

(9)

V. RESULTS: STRONGER PERES CONJECTURE?

I implemented Eqs. (1), (3), and (7)–(9) in MATLAB using

the YALMIP [16] modeling system. The scripts are available

in [17]. One of the simplest steering inequalities is Eq. (63)

in [15], which applies in the case nA = mA = dB = 2 and in

the present notation is proportional to F1|1 = X, F2|1 = −X,

F1|2 = Y , and F2|2 = −Y , where X and Y are the Pauli

matrices. LHS models satisfy F �
√

2 while the quantum

maximum is F = 2. The results of Eq. (8) are shown in Fig. 1.

Focusing on
√

2 � F � 2 we see that at l = 3 we have

convergence to the bound N �
F−

√
2

4−2
√

2
. This bound is tight

because F =
√

2 can be achieved with a separable state (N =
0), while F = 2 can be achieved with a maximally entangled

two-qubit state (N = 1
2
). The points between can therefore
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FIG. 1. (Color online) The results of Eq. (8) applied to a simple

steering inequality. The lowest (red) curve is l = 1, the next (blue) is

l = 2, and the highest (black) is l = 3.

be achieved by convex mixtures of the two, by the reasoning

spelled out in the Appendix of [3].

A slightly more involved steering inequality, with mA = 3,

is Eq. (66) of [15], which is obtained by adding F1|3 = Z

and F2|3 = −Z to the previous case. Now F �
√

3 for LHS

models while the quantum maximum is F = 3. The results

of Eq. (8) for this inequality are shown in Fig. 2. Notice

that the Werner state ρ0.6 = 0.6 |ψ−〉 〈ψ−| + 0.1I [where

|ψ−〉 = (|0〉 |1〉 − |1〉 |0〉)/
√

2] gives F = 1.8 >
√

3. Hence

the presence of negativity in that state can be certified,

even though ρ0.6 has an LHV model [18], and therefore no

entanglement could be certified if neither party were trusted.

A common feature of both examples is that any F outside

the range of LHS models signifies the presence of negativity.

This is somewhat surprising, since there are PPT (i.e., zero neg-

ativity) states that are nonetheless entangled [19]. It is prima

facie possible for such states to violate a steering inequality.

In the Bell scenario, Peres has conjectured [6] that the

probabilities from measuring PPT states always have an

LHV model, a conjecture supported by the results of [3].

Although a multipartite version of this conjecture has been

disproved [20], the bipartite case remains open. Based on the

above observation, one might tentatively conjecture that PPT

states cannot violate steering inequalities; i.e., the assemblages

obtained by measuring them always have LHS models. Since

an LHS model implies an LHV model, but not vice versa,

this statement is strictly stronger than the original Peres

conjecture. Hence, if the original Peres conjecture is false,

this strengthened conjecture may be a good starting point to

seek counterexamples.

The methods provided in this paper can be used to search for

counterexamples to this stronger conjecture. In that direction,

I have used Eq. (9) to upper bound the PPT violations of

various steering inequalities. In all but one of the cases I have

0.5

M
in

im
u
m

N

√
3 3

F

FIG. 2. (Color online) The results of Eq. (8) applied to another

steering inequality. The lowest (red) curve is l = 1, the next (blue) is

l = 2, and the highest (black) is l = 3.

TABLE II. List of steering inequalities for which I have compared

the ranges obtained by LHS models to the ranges obtained by PPT

states. dB is the dimension of Bob’s system, and mA and nA are the

number of settings and outcomes for Alice. The two ranges agree

within numerical precision at level l of the hierarchy of bounds on

the PPT range.

Inequality dB mA nA l

Eq. (63) of [15] 2 2 2 1

Eq. (66) of [15] 2 3 2 1

Eq. (67) of [15], j = 1 3 3 3 1

Eq. (67) of [15], j = 3/2 4 3 4 1

Eq. (67) of [15], j = 2 5 3 5 1

Eq. (67) of [15], j = 5/2 6 3 6 1

Eq. (67) of [15], j = 3 7 3 7 1

Eq. (67) of [15], j = 7/2 8 3 8 1

Eq. (67) of [15], j = 4 9 3 9 1

Eq. (14) of [22] 2 2 2 1

Eq. (1) of [21], n = 4 2 4 2 1

Eq. (1) of [21], n = 6 2 6 2 2

Eq. (1) of [21], n = 10 2 10 2 See text

Eq. (7) of [23], n = 4 2 4 2 2

Eq. (7) of [23], n = 5 2 5 2 2

tried, an upper bound agreeing (within numerical precision) to

the LHS bound is always found, supporting the strengthened

conjecture (see Table II for details). The exception was Eq.

(1) of [21] with n = 10. At the first level the PPT bound is

approximately 0.0537 above the LHS bound. At the second

level the difference is approximately 0.0012. Unfortunately

the third level is not tractable on my hardware, so the results

for this inequality are inconclusive.

All the steering inequalities in Table II are fairly “natural”

or “symmetric,” and this might be a problem when searching

for a counterexample to the strengthened Peres conjecture.

Therefore I have also tried a different strategy of randomly

generating operators Fa|x , using Eq. (3) to bound their values

TABLE III. List of parameter regimes for which I have generated

4000 random steering inequalities and checked for counterexamples

to the stronger Peres conjecture. The final column shows the level

of the hierarchy at which agreement between Eqs. (3) and (9) was

achieved to within numerical precision for the “hardest” inequality in

that regime.

dB mA nA l dB mA nA l dB mA nA l

2 2 2 1 3 2 4 1 4 3 2 1

2 2 3 1 3 2 5 1 4 3 3 1

2 2 4 1 3 2 6 1 4 4 2 1

2 2 5 1 3 3 2 1 5 2 2 1

2 2 6 1 3 3 3 1 5 2 3 1

2 3 2 2 3 3 4 1 5 2 4 1

2 3 3 1 3 4 2 2 5 2 5 1

2 3 4 1 3 4 3 1 5 2 6 1

2 3 5 2 4 2 2 1 5 3 2 1

2 4 2 1 4 2 3 1 5 3 3 1

2 4 3 2 4 2 4 1 5 4 2 1

3 2 2 1 4 2 5 1 5 5 2 1

3 2 3 1 4 2 6 1 6 2 2 1

032313-4
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on LHS models and then comparing that with the bounds from

Eq. (9). The limiting factor on increasing the parameters dA,

nA, nB appears to be Eq. (3). In Table III, I list the cases in

which I was able to generate 4000 random sets of operators

and check for counterexamples. None were found.

VI. CONCLUSIONS

The EPR steering scenario is an interesting middle ground

in which to study entanglement. The entanglement of some

states, invisible in the fully device independent scenario due

to the existence of an LHV model, can be quantified using

the techniques described above. On the other hand, there are

certainly entangled states that have LHS models [5], so some

entanglement can only be quantified when both parties are

trusted. It appears to be possible that all PPT entangled states

are in the latter category. This is a stronger version of the Peres

conjecture and is the main open question posed here.

A more technical question I have not addressed is whether

the methods here can be proven to always converge to a tight

bound, as was shown for [3].

Finally, a more conceptual open question is whether the

EPR steering scenario allows for the quantification of anything

other than negativity. It would be particularly interesting if that

were possible for a quantity that is completely unavailable in

the fully device independent scenario.
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