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Quantum lost property: A possible operational meaning for the Hilbert-Schmidt product
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(Received 6 September 2012; published 18 October 2012)

Minimum-error state discrimination between two mixed states ρ and σ can be aided by the receipt of “classical

side information” specifying which states from some convex decompositions of ρ and σ apply in each run. We

quantify this phenomena by the average trace distance and give lower and upper bounds on this quantity as

functions of ρ and σ . The lower bound is simply the trace distance between ρ and σ , trivially seen to be tight.

The upper bound is
√

1 − tr(ρσ ), and we conjecture that this is also tight. We reformulate this conjecture in

terms of the existence of a pair of “unbiased decompositions,” which may be of independent interest, and prove

it for a few special cases. Finally, we point towards a link with a notion of nonclassicality known as preparation

contextuality.

DOI: 10.1103/PhysRevA.86.044301 PACS number(s): 03.67.−a, 03.65.Ta

Suppose a system has been prepared in one of two

nonorthogonal quantum states. The task of measuring the

system in order to estimate which state was used is known as

state discrimination [1,2], an important concept in quantum

information theory. The impossibly of succeeding at this

task with certainty enables quantum cryptography [3]. Here

we investigate a version of state discrimination where, in

each run, additional classical information about each of the

possible preparations is provided to the agent attempting the

discrimination.

Classical analogy. Charlie spots the dim outline of a pencil

case under his desk. He knows Alice and Bob have both

recently lost theirs and judges the case equally likely to belong

to either of them. All the pencil cases at his school are either

pink or blue. Charlie believes that girls buy pink pencil cases

with probability 1/2 while boys buy them with probability

1/4. He therefore resolves to return the pencil case to Alice if

it is pink and to Bob if it is blue. He calculates the probability

of returning the case to its true owner as (1 + δC)/2, where

δC({pi},{qi}) = 1

2

∑

i

|pi − qi | (1)

is here equal to 1/4. Unsatisfied, he devises a better plan: he

will ask Alice and Bob what color their pencil cases actually

are and will return the missing pencil case to whoever states

the correct color. The only way this strategy can fail is if Alice

and Bob happen to have bought the same color, in which case

Charlie is forced to toss a coin. Hence his probability of success

is slightly better, (1 + Pdiff)/2, where

Pdiff({pi},{qi}) = 1 −
∑

i

piqi (2)

is 1/2 in this case.

Definitions. Fix a finite-dimensional Hilbert space H. The

optimum probability of discriminating two states ρ,σ ∈ L(H)

(with equal priors) is (1 + δ)/2, where the quantum trace

distance δ is given by [4]

δ(ρ,σ ) = 1
2

tr |ρ − σ |. (3)

*m@physics.org

Decomposing ρ = ∑

i piρi and σ = ∑

j qjσj (pi,qj > 0,

ρi,σj states), we can define the average trace distance as

�({pi},{ρi},{qj },{σj }) =
∑

i,j

piqjδ(ρi,σj ). (4)

If, when attempting to distinguish two states ρ and σ , we are

told in each run which (independently sampled) ρi and σj

applies, the best strategy is clearly to optimally distinguish

ρi from σj . The overall probability of success will then be

(1 + �)/2. � was briefly mentioned in Ref. [5], but a different

quantity DK where the product distribution piqj is replaced

by an adversely correlated distribution was deemed preferable

in that setting.

Lower bound. By the joint convexity [4] of δ, we have

�({pi},{ρi},{qj },{σj }) � δ(ρ,σ ). (5)

This bound is saturated by the trivial decomposition p1 = q1 =
1, ρ1 = ρ, and σ1 = σ .

Upper bound. By Eq. (5) a decomposition that maximizes

� can always be taken to consist of pure states ρi = |ψi〉〈ψi |
and σj = |φj 〉〈φj |, and so we consider only this case from now

on. Hence [4] δ(ρi,ρj ) =
√

1 − |〈ψi | φj 〉|2 =
√

1 − tr(ρiσj ).

Noting that
√

1 − x is concave [6] on its domain x � 1, the

trace is linear, and
∑

i,j piqjρiσj = ρσ , we have

� =
∑

i,j

piqj

√

1 − tr(ρiσj ) �
√

1 − tr(ρσ ). (6)

Saturating the upper bound. Since
√

1 − x is in fact strictly

concave, equality in Eq. (6) can only be achieved if the

arguments x in each term of sum (except those with zero

probability, which we can remove from the decompositions)

are equal. Hence the upper bound is tight for a particular

ρ and σ if and only if there exist decompositions ρ =
∑

i pi |ψi〉〈ψi | and σ = ∑

j qj |φj 〉〈φj | which are “unbiased”

in that |〈ψi | φj 〉|2 = tr ρσ . [Note that by the linearity of

the trace, any decompositions satisfy the weaker condition
∑

i,j piqj |〈ψi | φj 〉|2 = tr(ρσ ).]

Since numerics indicate that Eq. (6) is tight, we conjecture

that a pair of unbiased decompositions exists for any pair of

states ρ and σ . We also make the stronger conjecture that

044301-11050-2947/2012/86(4)/044301(3) ©2012 American Physical Society
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FIG. 1. (Color online) A pair of unbiased decompositions.

such a pair exists with both decompositions being minimal,

i.e., i ∈ {1, . . . , rank(ρ)} and j ∈ {1, . . . , rank(σ )}. We now

prove some special cases of this conjecture.

Qubits. Suppose dimH = 2. Choose a basis so that the

Bloch vectors for ρ and σ are �ρ = (0,0,r) and �σ = (sx,0,sz),

respectively. Then �ρ is clearly on the line between the two pure

states at �ρ1,2 = (0, ±
√

1 − r2,r), giving rise to a valid decom-

position, and similarly for �σ1,2 = (±
√

1 − s2
z ,0,sz). Finally

�ρi · �σj = rsz = �ρ · �σ and so tr(ρiσj ) = tr(ρσ ) as required.

These decompositions are illustrated in Fig. 1.

Maximally mixed σ . Suppose dimH = d and σ = I/d.

Choose a basis {|ψi〉} in which ρ is diagonal. Clearly there

exists a decomposition using these states. Let {|φj 〉} form a

basis that is mutually unbiased with respect to the {|ψi〉} basis,

for example, by using the quantum Fourier transform unitary

[4]. We have that σ = ∑

j qj |φj 〉〈φj | with qj = 1/d and the

decompositions are, by construction, unbiased.

A useful lemma. Let f be a convex-linear map from the

set of states on H to the real numbers. Then any state ρ has

a decomposition into rank(ρ) pure states ρi which all satisfy

f (ρi) = f (ρ).

The proof is as follows. For an arbitrary minimal decom-

position {ρi}, consider the figure of merit,

F =
∑

i

|f (ρi) − f (ρ)|. (7)

If F > 0 we can construct a new decomposition with smaller F

as follows. Take k so that f (ρk) is maximal and l so that f (ρl)

is minimal. Notice that we can “continuously swap” ρk and

ρl . More formally, there exist continuous functions ρk(θ ) and

ρl(θ ) with ρk(0) = ρl(π ) = ρk and ρk(π ) = ρl(0) = ρl such

that ρ can be decomposed into ρk(θ ) and ρl(θ ) and the ρi with

i �= k,l for any θ ∈ [0,π ]. To see this, consider the continu-

ous family of unitaries U (θ ) with U (θ ) |k〉 = cos(θ/2) |k〉 −
sin(θ/2) |l〉 and U (θ ) |l〉 = sin(θ/2) |k〉 + cos(θ/2) |l〉, and all

other |i〉 unaffected, and apply Schrödinger’s mixture theorem

[7,8]. Now by the intermediate value theorem there exists

a θ∗ ∈ (0,π ) with f (ρk(θ∗)) = f (ρl(θ
∗)). Since by convex-

linearity the average value of f of this new decomposition must

still equal f (ρ), this procedure must have reduced F . Finally,

since the unitary group is compact, the set of decompositions

of ρ into pure states is compact and hence F = 0 must be

achieved for some decomposition.

Corollary: Unbiased decomposition of ρ. If ρi and σj are

unbiased decompositions, then by linearity

tr(ρiσ ) =
∑

j

qj tr(ρiσj ) =
∑

j

qj tr(ρσ ) = tr(ρσ ). (8)

Conversely, setting f (·) = tr(·σ ) in the above lemma implies

that there always exists a minimal decomposition of ρ

satisfying tr(ρiσ ) = tr(ρσ ). Notice that the proof of the lemma

suggests a numerical method for finding such decompositions

using a series of one-dimensional search problems, which

may sometimes be faster than solving the direct (d2 − 1)-

dimensional search problem.

Pure σ . Suppose that rank(σ ) = 1. By the above corollary

we can decompose ρ into pure states ρi such that tr(ρiσ ) =
tr(ρσ ). Since σ is already pure we can take σ1 = σ and we

have a pair of unbiased decompositions.

Rank two σ . Suppose rank(σ ) = 2. If rank(ρ) = 1 then

we are in the previous case, so assume rank(ρ) � 2. By

the above corollary we can decompose σ into two states

σj = |φj 〉〈φj | satisfying tr(ρσj ) = tr(ρσ ). Apply the corollary

again to obtain a decomposition ρ ′
i = |ψ ′

i 〉〈ψ ′
i | of ρ satisfying

|〈ψ ′
i | φ1〉|2 = tr(ρ ′

iσ1) = tr(ρσ1) = tr(ρσ ).

Choose a basis |1〉 , . . . , |n〉 (n = rank(ρ) � 2) for the

support of ρ such that |2〉 , . . . , |n〉 are orthogonal to |φ1〉.
Then |ψ ′

i 〉 must be of the form
∑

k ck |k〉, where |c1| =√
tr(ρσ )/|〈1 | φ1〉|. Furthermore any state |ψ〉 of this form also

satisfies |〈ψ |φ1〉| = tr(ρσ ) and such states form a connected

set. Since
∑

i pi tr(ρ ′
iσ2) = tr(ρσ2) = tr(ρσ ) there must be a k

with tr(ρ ′
kσ2) � tr(ρσ ) and an l with tr(ρ ′

lσ2) � tr(ρσ ). By the

above observations and the intermediate value theorem, there

is a state |ψ1〉 in support of ρ with |〈ψ1 | φ2〉|2 = tr(ρσ ).

Let p1 be maximal, i.e., p1 = 1/〈ψ1 | ρ−1 | ψ1〉 [4]; ρ ′ =
(ρ − p1|ψ1〉〈ψ1|)/(1 − p1) then has rank(ρ ′) = n − 1 and

also satisfies tr(ρ ′σj ) = tr(ρσ ). If ρ ′ is pure then take it as

ρ2 and we are done, otherwise iterate the above procedure to

obtain |ψ2〉, and so on.

Numerics (using [9]) indicate that, when rank(σ ) > 2, if

one simply takes any decomposition σj with tr(ρσj ) = tr(ρσ )

then it is not always possible to find a decomposition of ρ

which is unbiased with respect to σj . This would prevent the

above being extended to general σ .

Preparation contextuality. Consider the special case ρ =
σ = I/d. We have shown that one can find two minimal

decompositions of ρ with � =
√

1 − tr(ρ2) = √
1 − 1/d .

If, as suggested by the fact they give rise to the same

mixed state, there is no actual difference between these

two decompositions, it is somewhat surprising that this is

larger than the value we obtain if we instead use two

identical minimal decompositions of ρ, easily seen to be � =
1 − 1/d.

This can be made precise by supposing that the two de-

compositions were represented by a preparation noncontextual

ontological model [10]. Briefly, this associates each state ρ

with a probability distribution μρ(λ) over “ontic states” λ

(representing the physical state of affairs). Preparation non-

contextuality is the assumption that this distribution depends
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only on ρ. Each ontic state λ and measurement procedure

M gives rise to a probability distribution p(k|M,λ) over

outcomes k, and the quantum statistics are recovered as

p(k|M,ρ) =
∫

p(k|M,λ)μρ(λ)dλ. It is not difficult to see that

if some measurement procedure M distinguishes ρ and σ with

probability (1 + δ)/2 then μρ and μσ must be distinguishable

with probability at least (1 + δC)/2, and so for every ρ and σ ,

δC(μρ,μσ ) � δ(ρ,σ ).

If
∑

i piρi and
∑

j qjσj are minimal decompositions

of I/d then we must have pi = qj = 1/d and in the

model

μI/d = 1

d

∑

i

μρi
= 1

d

∑

j

μσj
. (9)

Since, as argued above, δ � δC , we must have

� � �C = 1

d2

∑

i,j

δC

(

μρi
,μσj

)

. (10)

By considering the regions where μ0 < μ1 and μ0 � μ1

separately and using normalization it can be shown that

δC(μ0,μ1) = 1 −
∫

min (μ0(λ),μ1(λ))dλ. Hence

� � 1 − 1

d2

∫

∑

i,j

min
(

μρi
(λ),μσj

(λ)
)

dλ. (11)

Notice that for any j and λ,
∑

i min (μρi
(λ),μσj

(λ)) either

contains at least one μσj
or is equal to

∑

i μρi
which is equal

to
∑

k μσk
by Eq. (9). Either way, it is greater than or equal to

μσj
and so

� � 1 − 1

d2

∫

∑

j

μσj
dλ = 1 − 1

d
, (12)

where the equality is by the normalization of μσj
. This

is indeed exactly the value we get by using two identical

decompositions ρi = σi , and so any protocol that has a higher

probability of success (for example our optimal one) is a proof

of preparation contextuality.

Conclusions. The fact that mixed states have many decom-

positions into pure states is a key feature of quantum mechan-

ics, sometimes considered the definition of nonclassicality

[11]. We have discussed a task that puts this feature center

stage. Our upper bound on the probability of success provides

a fairly direct operational meaning for the Hilbert-Schmidt

inner product tr(ρσ ).

The main open problem is to prove our conjecture that

every pair of states has a pair of unbiased decompositions. A

notable special case of that conjecture would be when the states

commute. In the other direction, a lower bound on � when

restricted to decompositions into pure states would be more

interesting than the trivial lower bound we give for the general

case. Finally, it is likely that the connection with preparation

contextuality can be extended beyond the very special case we

consider.
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