
Journal of Scheduling
https://doi.org/10.1007/s10951-019-00626-6

Scheduling divisible loads with time and cost constraints

M. Drozdowski1 · N. V. Shakhlevich2

© The Author(s) 2019

Abstract
In distributed computing, divisible load theory provides an important system model for allocation of data-intensive com-
putations to processing units working in parallel. The main task is to define how a computation job should be split into
parts, to which processors those parts should be allocated and in which sequence. The model is characterized by multiple
parameters describing processor availability in time, transfer times of job parts to processors, their computation times and
processor usage costs. The main criteria are usually the schedule length and cost minimization. In this paper, we provide the
generalized formulation of the problem, combining key features of divisible load models studied in the literature, and prove
its NP-hardness even for unrestricted processor availability windows. We formulate a linear program for the version of the
problem with a fixed number of processors. For the case with an arbitrary number of processors, we close the gaps in the
study of special cases, developing efficient algorithms for single criterion and bicriteria versions of the problem, when transfer
times are negligible.

Keywords Divisible load scheduling · Computational complexity · Linear programming

1 Introduction

Divisible load theory (DLT) is an important model of parallel
computations. It is assumed that a big volumeof data, conven-
tionally referred to as load, can be divided continuously into
parts which can be processed independently on distributed
computers. DLT was proposed by Cheng and Robertazzi
(1988) to represent computation in a chain of intelligent sen-
sors. A very similar approach was proposed independently
by Agrawal et al. (1988) to model performance of a network
of workstations. DLT was successfully applied to scheduling
data-intensive applications and to analyzing various aspects
of their efficiency depending on communication sequences,
load scattering algorithms, memory limitations and time-
varying environments (Bharadwaj et al. 1996; Drozdowski
2009; Robertazzi 2003). Overall, DLT is widely recognized
as an adequate and accurate model of real systems dealing
with load distribution.

B M. Drozdowski
Maciej.Drozdowski@cs.put.poznan.pl

1 Institute of Computing Science, Poznań University of
Technology, Piotrowo 2, 60-965 Poznan, Poland

2 School of Computing, University of Leeds, Leeds LS2 9JT,
UK

In its general form, the problem of divisible load schedul-
ing (DLS) can be formulated as follows. A computational
load of volume V (measured in bytes) is initially held by
a master processor P0. The load must be distributed among
worker processors from setP = {P1, . . . , Pm}. In our model
master processor P0 only distributes load and does not do any
computation. In some publications this assumption is waived
so that P0 performs computation after it completes all com-
munications. The results discussed in the following sections
can be easily adjusted for that case.

For the summary of the notation and explanation of the
parameters used in this paper, see Table 1. Each processor Pi
has its own availability interval [ri , di]. The time required for
sending x bytes of load to Pi is si + ci x , for i = 1, . . . ,m.
The communications are performed sequentially, i.e., only
one processor at a time can receive its chunk of the load from
the master. The transmission to Pi of the allocated chunk can
start at any time, even before the processor’s availability time
ri . The processing of the chunk can start only after the allo-
cated chunk is received in full and no earlier than processor’s
availability time ri . For the chunk of size x received by pro-
cessor Pi , the computation time and the processor usage cost
(computation cost) are pi + ai x and fi + �i x , respectively.

It is required that Pi finishes computation by the end of
its availability interval di , di > ri + pi . Due to the limited

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-019-00626-6&domain=pdf
http://orcid.org/0000-0001-9314-529X

Journal of Scheduling

Table 1 Problem parameters
and notations V Total load size

T Deadline (upper limit of the schedule length)

K Budget (upper limit on cost)

xi Decision variable for the size of the load chunk assigned to processor Pi
Bi The maximum load processor Pi can compute, due to memory limitations

Ci Finishing time for computing load xi on processor Pi
Cmax Schedule length defined as max {Ci |i = 1, . . . ,m}
K Overall cost

[ri , di] The time window when processor Pi is available

pi + ai xi The time for computing load xi on processor Pi , where pi is the setup time to start
computation and ai is the processing rate (or reciprocal of speed) of processor Pi

si + ci xi The time for transferring load xi to processor Pi , where si is communication start up
time and ci is the communication rate (or reciprocal of bandwidth) of the link to Pi

fi + �i xi The cost of computing load xi by processor Pi , including the fixed cost fi
P Set of the worker processors

P ′ Set of processors participating in computation, P ′ ⊆ P
m Total number of processors, i.e., m = |P|
m′ Number of processors in P ′, i.e., m′ = |P ′|

memory size, there is an upper limit Bi on themaximum load
that can be handled by processor Pi . A processor may be left
unused if no load is sent to it. Such a processor does not incur
any time or cost overheads.

Let Ci denote the time when processor Pi completes its
chunk, and let Cmax denote the length of the whole schedule.
The cost of processing the load is denoted K. Solving the
DLS problem requires three decisions:

Decision 1 choosing the subset of processors P ′ ⊆ P for
performing computation; for any processor Pi ∈ P ′ the allo-
cated chunk size is nonzero (xi > 0) and such a processor is
called active;
Decision 2 choosing the sequence in which the master pro-
cessor P0 sends parts of the load to the processors in P ′;
Decision 3 splitting the total load of size V into chunks xi ,
one for each processor Pi ∈ P ′, such that the schedule length
Cmax and the total cost K are minimum,

Cmax = max
i∈P ′ {Ci },

K =
∑

i∈P ′
(fi + �i xi).

With respect to decision 3, the most general version is bicri-
terion: finding the Pareto-front (Cmax,K) of non-dominated
solutions in criteria Cmax and K. We denote that problem
by DLbicrit. Its two counterparts deal with minimizing one
objective subject to the bounded value of the second objec-
tive:

– in problem DLtime(K) the objective is to minimize Cmax

subject to K ≤ K , where K is an upper limit of the
available budget,

– in problem DLcost(T) the objective is to minimize the
cost K subject to Cmax ≤ T , where T is an upper limit
of the acceptable schedule length.

There are three types of overheads for any processor Pi ∈
P ′: transfer time (also called communication time) si + ci x ,
computation time pi +ai x and computation cost fi +�i x .We
refer to parameters si , pi and fi as fixed overheads as they
define fixed amounts of time and cost incurred if a nonzero
chunk of load is allocated to a processor. These amounts are
independent of the chunk size.

In this paper, we perform the complexity study of the for-
mulated DLS problem focusing on the most general case
with arbitrary processors’ availability windows [ri , di] and
arbitrary restrictions on processors’ maximum loads Bi . The
results are summarized in Table 2. In the column “Objec-
tives” we specify how the two objectives, Cmax and K, are
handled: single criterion problems deal with either Cmax or
K, while notation (Cmax,K) is used for the bicriteria problem
in the space of objectives Cmax, K. If one of the objectives
is bounded, then the corresponding inequality is stated in the
column “Conditions”.

In the presence of all three types of overheads, the DLS
problem is NP-hard even if all fixed overheads are negligible,

si = pi = fi = 0 for all Pi ∈ P, (1)

and processors’ restrictions are relaxed,

ri = 0, di = Bi = ∞ for all Pi ∈ P. (2)

If in addition to (1)–(2) per-unit transfer costs are equal,

123

Journal of Scheduling

Table 2 Summary of the results

Transfer time Comput. time Cost Conditions Objectives Results

ci xi ai xi �i xi Cmax ≤ T , K ≤ K NP-complete, Sect. 3 even
if ri = 0, di = Bi = ∞

cxi (common c) ai xi �i xi ri = 0, di = Bi =
∞

(Cmax,K) O(m3) Shakhlevich (2013)

O(m), Sect. 3.2 if
c1 ≤ c2 ≤ · · · ≤ cm and
�1
c1

≤ �2
c2

≤ · · · ≤ �m
cm

si + ci xi pi + ai xi fi + �i xi arb. ri , di , Bi (Cmax,K) FPT w.r.t. m, Sect. 2

ci xi ai xi 0 ri = 0,
di = Bi = ∞

Cmax O(m logm) Bharadwaj
et al. (1994) Bharadwaj
et al. (1996) Blazewicz
and Drozdowski (1997)
(Processor seq.
c1 ≤c2 ≤· · ·≤cm)

s + cxi (common s, c) ai xi 0 ri = 0,
di = Bi = ∞

Cmax O(m logm) Blazewicz and
Drozdowski (1997)
(Processor seq.
a1≤a2≤· · ·≤am)

si pi + ai xi 0 ri = 0,
di = Bi = ∞

Cmax NP-hard, even if processor
sequence is fixed
Drozdowski and Lawenda
(2005)

si ai xi 0 ri = 0,
di = Bi = ∞

Cmax NP-hard Yang et al. (2007)
O(m log(Vmas) ×
min{�s + Va�, S})∗)

0 pi + ai xi �i xi arb. ri , di , Bi
Cmax ≤ T
K ≤ K

K
Cmax
(Cmax,K)

O(m), Sect. 4.1
O(m logm), Sect. 4.1
O(m logm), Sect. 4.1

0 ai xi fi Cmax ≤ T , K ≤ K NP-complete even if
ri = 0, di = Bi =
∞,Drozdowski and
Lawenda (2005), Sect. 4.2

0 pi + ai xi fi + �i xi arb. ri , di , Bi ; fixed
set of active
processors
Cmax ≤ T
K ≤ K

K
Cmax
(Cmax,K)

O(m), Sect. 4.2
O(m logm), Sect. 4.2
O(m logm), Sect. 4.2

a = max
i=1,...,n

{ai }, s = max
i=1,...,n

{si }, S = �m
i=1si

ci = c for all Pi ∈ P,

the problem is solvable in O(m3) time even in the bicriteria
setting (Shakhlevich 2013). As we show in this paper, the
general case with arbitrary si , ci , pi , ai , fi , �i , ri , di , Bi can
be solved via linear programming under the condition that
the number of worker processors m is fixed.

While the computation time overhead is at the center
of the DLS problem and cannot be ignored, the two other
types of overheads may become negligible in some scenar-
ios. The version of the problem with zero cost overheads is

well studied, see Bharadwaj et al. (1994), Bharadwaj et al.
(1996), Blazewicz and Drozdowski (1997), Drozdowski and
Lawenda (2005), Yang et al. (2007) and the summary of the
results in the second part of Table 2. In this paper, we analyze
the alternative version with zero transfer overheads; see the
lower part of Table 2. It appears that if fixed cost overheads
are negligible (fi = 0 for all Pi ∈ P), then the bicriteria
version of the problem is solvable in O(m logm) time. Its
single criterion counterpart of cost minimization subject to
a bounded schedule length can be solved in O(m) time. The
version with nonzero fixed cost overheads fi is NP-hard, but

123

Journal of Scheduling

can be solved in O(m) time provided that the set of active
processors is fixed.

Further organization of this paper is as follows. In Sect. 2
we study the general version of the problem, with arbitrary
values of all parameters si , ci , pi , ai , fi , �i , ri , di and Bi for
all processors Pi ⊆ P . In Sect. 3 we present our results for
the case with zero fixed overheads, si = pi = fi = 0 for
all processors Pi ⊆ P . Section 4 is dedicated to the system
with negligible transfer times, si = ci = 0 for all Pi ⊆ P .
Conclusions are presented in Sect. 5.

2 Nonzero time/cost parameters—fixed set
of active processors

In this section, we consider the DLS problem with arbitrary
time/cost parameters si , ci , pi , ai , fi , �i and arbitrary proces-
sor availability parameters ri , di , Bi . The number of worker
processors m is fixed. We present linear programs for prob-
lemsDLtime(K) andDLcost(T), justifying that both problems
are fixed parameter tractable (FPT)with respect to the param-
eter m. We then explain how problem DLbicrit can be solved
in FPT time. Note that for an arbitrary m the problem is NP-
hard, as we show in Sect. 3.

2.1 Limited cost K—schedule lengthminimization

Consider first problem DLtime(K), assuming that the set of
processors P ′ ⊆ P , which receive nonzero chunks of the
load, is fixed, and their sequence is also fixed. At the end of
the section, we discuss the case with a non-fixed processor
sequence.

Let processors in P ′ be renumbered in the order of their
activation so that P1 receives the first chunk, P2 receives
the second one, etc., until Pm′ receives the last chunk of the
load, where m′ = |P ′|. Let x1, x2, …, xm′ represent the load
distribution among processorsP ′. Then, the completion time
Ci of any processors Pi , 1 ≤ i ≤ m′, can be calculated as

Ci = max

{
ri ,

i∑

k=1

(sk + ckxk)

}
+ (pi + ai xi) . (3)

Note that the first term in (3) represents the earliest possible
starting time of the computation: the release time of Pi or
the total duration of the chain of communication times for
the upstream processors P1, P2, . . . , Pi , whichever is larger.
The second term represents the computation time.

Using (3), we follow Drozdowski and Lawenda (2005) to
formulate problemDLtime(K) as a linear programLP time(K)

of the form:

LPtime(K): min T (4)

s.t.

i∑

k=1

(sk + ckxk) + (pi + ai xi) ≤ T , i = 1, . . . ,m′, (5)

ri + (pi + ai xi) ≤ T , i = 1, . . . ,m′, (6)
i∑

k=1

(sk + ckxk) + (pi + ai xi) ≤ di , i = 1, . . . ,m′, (7)

ri + (pi + ai xi) ≤ di , i = 1, . . . ,m′, (8)

0 ≤ xi ≤ Bi , i = 1, . . . ,m′, (9)
m′∑

i=1

(fi + �i xi) ≤ K , (10)

m′∑

i=1

xi = V . (11)

Here schedule length T is the variable to be minimized.
It is defined via inequalities (5)–(6), which model T =
max1≤i≤m′ {Ci } with Ci given by (3). Inequalities (7)– (8)
guarantee that computation on machine Pi is completed by
the end of the machine availability interval. Inequalities (9)
guarantee that the load of each processor Pi does not exceed
its memory size Bi . By (10) the total computation cost does
not exceed K . The total size of the load allocated to m′ pro-
cessors is equal to V by (11).

There are m′ + 1 variables and 5m′ + 2 constraints in
LPtime(K), not counting the nonnegativity constraints. The
number of variables and constraints can be further reduced
by one, using equation (11). The number of constraints can
be further reduced by m′ by combining conditions (8)– (9)
for every 1 ≤ i ≤ m′ into

0 ≤ xi ≤ min
{
Bi ,

1
ai

(di − ri − pi)
}

.

Thus, problem DLtime(K) can be solved in
O(LP(m′, 4m′ + 1)) time, where O (LP(u, w)) is the time
complexity of solving an LP problem with u variables and w

inequality constraints, see, e.g., Goldfarb and Todd (1989).
With m′ ≤ m, there are at most 2m possible selec-

tions for set P ′ and at most m! processor sequences for
each selection. Hence, problem DLtime(K) can be solved
in O(η × LP(m, 4m + 1)) time, where

η = 2mm! (12)

which implies the FPT time complexity with respect to
parameter m.

2.2 Limited schedule length T—cost minimization

Consider now problem DLcost(T) of finding the cheapest
schedule for the common deadline T , assuming that the set
of active processors P ′ ⊆ P is fixed and their sequence

123

Journal of Scheduling

is (1, 2, . . . ,m′). Similarly to problem DLtime(K), problem
DLcost(T) can be solved by a linear program with objec-
tive

∑m′
k=1(fi + �i xi), which is equivalent to minimizing

∑m′
k=1 �i xi :

LPcost(T): min
m′∑

i=1

�i xi (13)

s.t.
i∑

k=1

(sk + ckxk) + (pi + ai xi) ≤ T , i = 1, . . . ,m′, (14)

ri + (pi + ai xi) ≤ T , i = 1, . . . ,m′, (15)
i∑

k=1

(sk + ckxk) + (pi + ai xi) ≤ di , i = 1, . . . ,m′, (16)

ri + (pi + ai xi) ≤ di , i = 1, . . . ,m′, (17)

0 ≤ xi ≤ Bi , i = 1, . . . ,m′, (18)
m′∑

i=1

xi = V . (19)

Simplifying the model, we combine (14) with (16) and also
combine (15), (17), (18) to get

LPcost(T): min
m′∑

i=1

�i xi (20)

s.t.
i∑

k=1

(sk + ckxk) + (pi + ai xi) ≤ min{T , di },

i = 1, . . . ,m′, (21)

0 ≤ xi ≤ min{Bi , 1
ai

(min{T , di } − ri − pi)},
i = 1, . . . ,m′, (22)
m′∑

i=1

xi = V . (23)

The number of variables and constraints can be further
reduced by one, using Eq. (23). In the resulting LP, there
are m′ − 1 variables and 2m′ constraints so that problem
DLcost(T) can be solved in O(η × LP(m − 1, 2m)) time,
where η is given by (12).

2.3 Time–cost trade-off

Consider now the bicriteria problem DLbicrit. The approach
described below constructs at most η trade-offs, one for each
fixed processor activation sequence, and then takes the lower
envelope out of them.

For a fixed sequence Si with m′ processors, m′ ≤ m, the
trade-off consists of linear pieces that connect breakpoints

(
T 0, K 0

)
,
(
T 1, K 1

)
, . . . , (T q , Kq),

T 0 ≤ T 1 ≤ · · · ≤ T q ,

K 0 ≥ K 1 ≥ · · · ≥ Kq .

The schedule corresponding to the extremepoint
(
T 0, K 0

)

has the smallest length T 0, that can be found by solving
LPtime(∞)with K = ∞ or equivalently with inequality (10)
eliminated from the model. For the calculated T 0, the associ-
ated minimum cost K 0 can be found by solving LPcost(T 0).

Another extreme point (T q , Kq) corresponds to the
schedule with the smallest cost Kq . It can be found by solv-
ing LPcos t(∞) with T = ∞; then for the found value of Kq

the associated minimum schedule length T q can be found by
solving LPtime(Kq).

The remaining points (T i , Ki), 1 ≤ i ≤ q − 1, of the
trade-off for the fixed processor activation sequence Si can
be found as the solution to the parametric linear program-
ming problem LPcost(T) of type (13)–(19) with variable
T ∈ [

T 0, T q
]
in constraints (14)–(15) treated as a parame-

ter. Again, the model can be simplified so that the resulting
formulation hasm′−1 x-variables (after eliminatingonevari-
able using (19)) and 4m′ constraints (after combining (17)
with (18) and eliminating the equality constraint (19)). Using
standard methods of parametric optimization, the break-
points of the trade-off can be found in O(qLP(m − 1, 4m))

time, see, e.g., Adler and Monteiro (1992). The number of
breakpoints q is bounded by the number of basic feasible

solutions, which does not exceed
(

4m
m − 1

)
for a linear pro-

gram with m − 1 variables and 4m constraints. Using an
upper bound

Q = 4mmm, (24)

for the latter expression we conclude that the time com-
plexity for constructing the trade-off for the fixed processor
activation sequence Si of m′ processors, m′ ≤ m, is
O(Q × LP(m − 1, 4m)). With an upper bound η on the
number of processor sequences given by (12), the over-
all time complexity for constructing η trade-off curves is
O(ηQ × LP(m− 1,4m))=O (8mmmm!×LP(m−1, 4m)).

We have to construct a merged set of Pareto-
optimum points in the (T , K)-space for all processor
sequences Si . The resulting set of pointsF and the segments
connecting them constitute a non-increasing function of cost
K in time T . This function may contain convex and con-
cave parts, and it can be discontinuous, see Fig. 1. A point
of discontinuity (t, K (t)) corresponds to, e.g., the left end
of a trade-off curve for some processor sequence Si , while
another processor sequence S j incurs a higher cost at t , or
the right end of S j trade-off curve is earlier than t .

A possible approach to finding the overall trade-off may
consist of the following two steps.

123

Journal of Scheduling

discontinuity

discontinuity
discontinuity

time

co
st

Fig. 1 Merging trade-off curves into the Pareto-front

(1) Find the intersection points of all pieces of trade-off
curves defined for various processor sequences;

(2) Find the minimal layer of breakpoints and the intersec-
tion points, using, for example an approach outlined in
Cormen et al. (2001) (p. 1045) for the symmetric problem
of finding the maximal layer. Note that given z points in
the plane, the minimal or maximal layer can be found in
O(z log z) time.

To handle the discontinuity, introduce vertical lines from
left end-points of individual trade-offs, horizontal lines from
the right end-points, and include those pieces in Step (1).
Then the overall number of linear pieces considered in
Step (1) is not larger than η (Q + 2), their O(η2Q2) inter-
section points can be found in O(η2Q2) time, see, e.g.,
Cormen et al. (2001), and finally the minimal layer is con-
structed in O(η2Q2 log(ηQ)) time. Taking into account
expressions (12) and (24) for η and Q and the time com-
plexity O (8mmmm! × LP(m − 1, 4m)) for constructing all
individual trade-offs, we conclude that the time complexity
of solving problemDLbicrit is polynomially bounded for fixed
m.

Statement 1 Problems DLtime(K), DLcost(T), DLbicrit are
fixed parameter tractable with respect to the number of
machines m.

3 Nonzero time/cost parameters—zero fixed
overheads: pi = si = fi = 0

In this section,we assume that all fixed overheads are equal to
zero, i.e., pi = si = fi = 0, for i = 1, . . . ,m, while the lin-
ear components of transfer time (ci), computation time (ai)
and cost (�i) are not simultaneously equal to zero. In terms of
the three types of decisions introduced in Sect. 1, decisions of

type 3 imply decisions of type 1: any processor Pi which gets
a chunk xi = 0 does not contribute to any time or cost com-
ponent because there are no fixed overheads. This implies
that a processor receiving a 0-size chunk can be removed
from the list P ′ of active processors. Thus, it is enough to
make decisions 2 and 3. Our main result of this section is the
NP-hardness proof of DLcost(T) and DLtime(K).

3.1 Limited schedule length T and limited cost K

ToproveNP-hardness of problemDLcost(T), let us introduce
its decision version DL(T , K) which verifies whether there
exists a feasible solutionwith the schedule length and the cost
not exceeding the given thresholds T and K , respectively.We
reduce the even-odd partition to problem DL(T , K).

Even-odd partition is defined as follows: given a set
E = {e1, . . . , e2n} of positive integers, is there a subset E1 ⊂
E such that

∑
ei∈E1

ei = ∑
ei∈E\E1

ei = G and E1 contains
exactly one element from pair e2i−1, e2i , for i = 1, . . . , n?
For an instance of even-odd partition, we construct an
instance of DL(T , K) as follows. Let T > 0 be an arbitrary
schedule length and m = 2n be the number of processors of
the set P . The processor parameters are defined as ri = 0,
di = Bi = ∞ for i = 1, . . . , 2n, and

a2i−1 = c2i−1 = T

22i−1
(
Gn−i+2 + e2i−1

) ,

�2i−1 = e2i−1

Gn−i+2 + e2i−1
,

a2i = c2i = T

22i−1
(
Gn−i+2 + e2i

) ,

�2i = e2i
Gn−i+2 + e2i

,

(25)

for i = 1, . . . , n. The load size V and the cost limit K are
given by

V = 3

2

n+1∑

i=1

Gi , K = 3

2
G.

It is easy to see that the reduction is polynomial.

Lemma 1 If there exists a solution to an instance of even-
odd partition, then there exists a schedule S for the
instance DL(T , K) which satisfies the following properties.

(i) The whole load of size V is fully processed.
(ii) Every processor is fully loaded completing its load

chunk at time T .
(iii) The cost of the schedule is K .
(iv) Schedule S defines a solution to the instance of

DL(T , K).

123

Journal of Scheduling

Proof Let ei1 denote the element of the pair {e2i−1, e2i }
which belongs to E1, and ei2 be the other element of the
pair, i = 1, . . . , n. Construct schedule S by selecting pro-
cessor activating sequence (P11, P12, . . . , Pu1, Pu2, . . . ,

Pn1, Pn2), where processors Pi1, Pi2 correspond to ei1, ei2,
respectively, and define the load chunks as

xi1=Gn−i+2+ei1, xi2= 1

2

(
Gn−i+2+ei2

)
i =1, . . . , n.

(26)

We prove that properties (i)–(iv) hold for schedule S.
(i) The sum of all chunks allocated to processors P is as
follows:

Load =
n∑

i=1

(xi1 + xi2)

=
n∑

i=1

(
Gn−i+2 + ei1 + 1

2
Gn−i+2 + 1

2
ei2

)

= 3

2

n∑

i=1

Gn−i+2 + 1

2

n∑

i=1

(ei1 + ei2) + 1

2

n∑

i=1

ei1

= 3

2

n∑

i=1

Gn−i+2 + G + 1

2
G = V . (27)

(ii) For any processor Pi1, 1 ≤ i ≤ n, its communication
time μi1 and computation time νi1 are given by

μi1 = νi1 = T

22i−1
(
Gn−i+2 + ei1

) ×
(
Gn−i+2 + ei1

)

= T

22i−1 .

Similarly, for any processor Pi2 the associated values are

μi2 = νi2 = T

22i−1
(
Gn−i+2 + ei2

) × 1

2

(
Gn−i+2 + ei2

)

= T

22i
.

Thus, the schedule is of the form shown in Fig. 2, with every
processor Pi j completing at time T , i = 1, . . . , n, j = 1, 2.
(iii) The cost of S is as follows:

Cost =
n∑

i=1

(�i1xi1 + �i2xi2)

=
n∑

i=1

(
ei1

Gn−i+2 + ei1
× (Gn−i+2 + ei1)

+ ei2
Gn−i+2 + ei2

× 1

2
(Gn−i+2 + ei2)

)

=
n∑

i=1

(
ei1 + 1

2
ei2

)
= 3

2
G = K . (28)

Byproperties (i)–(iii) the schedule is feasible and it defines
a solution to DL(T , K) so that property (iv) holds. �

In the remaining partwe prove that if there exists a solution
to the instance of problem DL(T , K), then there exists a
solution to the related instance of Even-odd partition.
The lemmabelow startswith auxiliary properties of a feasible
schedule and concludes with the main result.

Lemma 2 A feasible schedule S for the instance ofDL(T , K)

satisfies the following properties.

(1) Schedule S can be transformed into a schedule with pro-
cessor activating sequence ({P11, P12} , . . . , {Pu1, Pu2} ,{
Pu+1,1, Pu+1,2

}
, . . . , {Pn1, Pn2}).

(2) Consider a feasible schedule obtained by transforma-
tion (1). Renumber processors in the order they appear
in the activating sequence and renumber the associated
values eu1 and eu2 accordingly. For the resulting sched-
ule, with processor activating sequence (P11, P12, . . . ,

Pu1, Pu2, . . . , Pn1, Pn2), the following inequality holds:

n∑

i=1

22i Gn−i+2yi ≥ 3
n+1∑

i=2

Gi ,

where

yi = 1

T
(ci1xi1 + ci2xi2)

= 1

22i−1

(
xi1

Gn−i+2 + ei1
+ xi2

Gn−i+2 + ei2

)
, (29)

for i = 1, . . . , n.

(3) If in a feasible schedule satisfying property 2) at least
one processor Puk, 1 ≤ u ≤ n, k = 1, 2, is not fully
loaded (i.e., Cuk < T holds), then

n∑

i=1

22i Gn−i+2yi < 3
n+1∑

i=2

Gi .

(4) Each of the 2n processors is fully loaded and has com-
pletion time T .

(5) Equality
∑n

i=1 ei1 = G holds so that the set {ei1}ni=1
defines a solution to Even-odd partition.

Proof (1) Let schedule S be of the form S =(
Ph1 , Ph2 ,. . ., Ph2n

)
and Phz be an out-of-order processor

123

Journal of Scheduling

Fig. 2 A feasible schedule with
processor sequence
(P11, P12, P21, P22, P31, P32)

communication

T/2
P11

P12

P21

P22

P31

P32

T/2

T/22

T/23 T/23

T/24

T_
26

T_
25
T_
25

T/24

T/22
communication

comm.

comm.

computation

computation

comp.

comp.

such that it belongs to a pair {Pu1, Pu2} with the smallest
index u, and its predecessor in S is Phz−1 ∈ {Pv1, Pv2} with
v > u. Notice that

chz−1 > 2chz (30)

since

chz−1

chz

= T

22v−1
(
Gn−v+2 + ehz−1

)/
T

22u−1
(
Gn−u+2 + ehz

)

= Gn−u+2 + ehz
22(v−u)

(
Gn−v+2 + ehz−1

)

>
Gn−u+2

22(v−u)+1Gn−v+2
= Gv−u

22(v−u)+1
> 2,

where the first inequality holds since ehz > 0 and
ehz−1 < Gn−v+2, and the second one is satisfied for a suffi-
ciently large G, for example G > 24.

Let t be the starting time of communication of processor
Phz−1 in S. Modify the fragment of schedule S, starting from
t , by moving the full load xhz−1 from Phz−1 to Phz . In the
new schedule, processor Phz finishes communication at time
t+chz (xhz−1+xhz), which is less than t+chz−1xhz−1+chz xhz ,
the communicationfinish timeof Phz in S (since chz−1 > chz).
The same is true for the computation completion time: the
new completion time of Phz is t + 2chz (xhz−1 + xhz), which
is less than t + chz−1xhz−1 + 2chz xhz , completion time of Phz
in the original schedule (since chz−1 > 2chz by (30)). The
cost of the modified schedule is less than that of the original
one since each of the values �v1 and �v2 is greater than �u1
and �u1.

As a result of the described transformation, processor Phz
takes the full load of processor Phz−1 , making Phz−1 idle.

Modify the processor sequence by swapping Phz−1 and Phz . If
Phz is still out of order, then perform a similar transformation:
move the load from Phz−2 to Phz , making Phz−2 idle and
swap the two processors. Continue shifting processor Phz
upstream until it reaches the right position in the schedule,
immediately after its partner from the pair {Pu1, Pu2} or after
a pair of processors

{
Pu−1,1, Pu−1,2

}
. Repeating the same

transformation, we construct a schedule with no larger length
and with a smaller cost.

(2) For a feasible schedule, the two inequalities Load ≥ V
and Cost ≤ K hold so that

Load − Cost ≥ V − K = 3

2

n+1∑

i=2

Gi . (31)

Using the expression

Load − Cost

=
n∑

i=1
(xi1 + xi2) −

n∑
i=1

(�i1xi1 + �i2xi2)

=
n∑

i=1
(xi1 + xi2)

−
n∑

i=1

(
ei1xi1

Gn−i+2 + ei1
+ ei2xi2

Gn−i+2 + ei2

)

=
n∑

i=1
Gn−i+2

(
xi1

Gn−i+2+ei1
+ xi2

Gn−i+2+ei2

)

and by applying variables yi , i = 1, . . . , n, defined by (29),
the necessary condition (31) can be rewritten as

n∑

i=1

22i−1Gn−i+2yi ≥ 3

2

n+1∑

i=2

Gi

123

Journal of Scheduling

so that property (2) holds. Let us observe that violating (31)
means that insufficient load is processed or cost limit is
exceeded.
(3) Consider a feasible schedule with processor activating
sequence (P11, P12, . . . , Pi1, Pi2, . . . , Pn1, Pn2), where at
least one condition from

Cik ≤ T , i = 1, . . . , n, k = 1, 2, (32)

holds as a strict inequality. Taking a linear combination of
these inequalities weighted by constants λi and 2λi , we
obtain:

n∑

i=1

λi (Ci1 + 2Ci2) <

n∑

i=1

3λi T , (33)

where

λi = 22(i−1)
(
Gn−i+2 − 3

n−i+1∑
u=2

Gu
)

, i = 1, . . . , n. (34)

Notice that λi > 0 for G > 4 since λi/22(i−1) = Gn−i+2 −
3Gn−i+2−G2

G−1 = Gn−i+3−4Gn−i+2+3G2

G−1 > 0. In what fol-
lows, we show that the left-hand side of (33) is equal to(∑n

i=1 2
2i Gn−i+2yi

)
T and the right-hand side is equal to(

3
∑n+1

i=2 Gi
)
T so that property (3) holds.

Starting with the left-hand side, we deduce:

LHS =
n∑

i=1

λi

([
i−1∑

u=1

(cu1xu1 + cu2xu2) + 2ci1xi1

]

+2

[
i−1∑

u=1

(cu1xu1 + cu2xu2) + ci1xi1 + 2ci2xi2

])

=
n∑

i=1

λi

(
3
i−1∑

u=1

(cu1xu1 + cu2xu2)

+4(ci1xi1 + ci2xi2)
)

=
n∑

i=1

λi

(
3
i−1∑

u=1

yu + 4yi

)
T

=
(
n−1∑

i=1

(
4λi + 3

n∑

u=i+1

λi

)
yi + 4λn yn

)
T

=
(
n−1∑

i=1

bi yi + bn yn

)
T ,

where

bi = 4λi + 3
n∑

u=i+1

λi , i = 1, 2, . . . , n − 1, (35)

bn = 4λn . (36)

It remains to prove that

bi = 22i Gn−i+2, 1 ≤ i ≤ n. (37)

Indeed, by (34), 4λn = 22nG2 and (37) holds for i = n. If
(37) holds for some i , 2 ≤ i ≤ n, then it also holds for i − 1
since by (35)

bi−1 = 4λi−1 + 3
n∑

u=i

λi = bi + 4λi−1 − λi

= 22i Gn−i+2

+4 × 22(i−2)

(
Gn−i+3 − 3

n−i+2∑

u=2

Gu

)

−22(i−1)

(
Gn−i+2 − 3

n−i+1∑

u=2

Gu

)

= 22i Gn−i+2 + 22(i−1)Gn−i+3

−3 × 22(i−1)
n−i+2∑

u=2

Gu − 22(i−1)Gn−i+2

+3 × 22(i−1)
n−i+1∑

u=2

Gu

= 22(i−1)Gn−i+3

+22(i−1)
(
4Gn−i+2 − 3Gn−i+2 − Gn−i+2

)

= 22(i−1)Gn−i+3.

Consider now the expression in the right-hand side of (33),
divided by 3T :

RHS

3T
=

n∑

i=1

λi =
n∑

i=1

22(i−1)

(
Gn−i+2 − 3

n−i+1∑

u=2

Gu

)

=
n∑

i=1

22(i−1)Gn−i+2 − 3
n−1∑

i=1

22(i−1)
n−i+1∑

u=2

Gu

=
n+1∑

u=2

22(n−u+1)Gu − 3
n∑

u=2

Gu
n∑

i=u

22(n−i)

=
n∑

u=2

(
22(n−u+1) − 3

n∑

i=u

22(n−i)

)
Gu + Gn+1

=
n∑

u=2

(
22(n−u+1) − 3 × 4 × 22(n−u) − 1

4 − 1

)
Gu

+Gn+1 =
n+1∑

u=2

Gu .

Thus, inequality (33) is proved.

123

Journal of Scheduling

Property (4) immediately follows from properties (2) and
(3). It remains to prove property (5).

By property (4), C11 = T so that

C11 = 2c11x11 = 2 × T

2
(
Gn+1 + e11

) x11 = T

and x11 = Gn+1 + e11. By the same property, C12 = T so
that

C12 = c11x11 + 2c12x12 = T
2 + 2 × T

2(Gn+1+e12)
x12 = T

and x12 = 1
2

(
Gn+1 + e12

)
. Proceeding in a similar way it

is easy to verify that in a feasible schedule variables xi1, xi2
are defined by (26).

In order to prove the equality
∑n

i=1 ei1 = G, consider
conditions Load ≥ V and Cost ≤ K which hold for any
feasible schedule. Repeating calculations (27) and (28), we
obtain:

Load = 3

2

n∑

i=1

Gn−i+2 + 1

2

n∑

i=1

(ei1 + ei2) + 1

2

n∑

i=1

ei1

= 3

2

n+1∑

i=2

Gi + G + 1

2

n∑

i=1

ei1 ≥ V = 3

2

n+1∑

i=1

Gi ,

Cost =
n∑

i=1

(
ei1 + 1

2
ei2

)

= 1

2

n∑

i=1

(ei1 + ei2) + 1

2

n∑

i=1

ei1

= G + 1

2

n∑

i=1

ei1 ≤ K = 3

2
G.

The latter two inequalities imply

1

2

n∑

i=1

ei1 ≥ 1

2
G,

1

2

n∑

i=1

ei1 ≤ 1

2
G,

which together imply property (5). �

We conclude with the main result which follows from Lem-
mas 1 and 2.

Theorem 1 Problem DL(T , K) is NP -complete, problems
DLcost(T) andDL time(K) areNP-hard, even if computation
time, communication time and cost have no fixed overheads,
and ri = 0, di = Bi = ∞, for i = 1, . . . ,m.

3.2 Time–cost trade-off

For zero overheads, the arguments fromSection 2 can be sim-
plified. MIP formulations (13)–(19) and (20)–(23) do hold,
but the number of different sequences can be reduced from
η = 2mm!, given by (12), to η = m!. Notice that due to zero
overheads there is no need to make a selection of the set of
active processors P ′ since an idle processor can be kept in
any place of the sequence. The smaller value of η results in a
slightly lower time complexity for enumerating all trade-offs,
namely O (4mmmm! × LP(m − 1, 4m)).

The problem of finding extreme points in the (T , K)-
space, with the shortest schedule or with the smallest cost,
was addressed in the prior research for the special case when
all processors are available simultaneously and have no dead-
line and capacity restrictions, ri = 0, di = Bi = ∞ for all
1 ≤ i ≤ m. As shown in Bharadwaj et al. (1994, 1996),
Blazewicz and Drozdowski (1997), the shortest schedule is
provided if processors are sequenced in the non-decreasing
order of ci and complete all tasks simultaneously. For the
same special case, the cheapest solution is constructed if the
whole load is processed by the cheapest processor, i.e., Pi :
�i = minmj=1{� j }. Hence, in the bicriteria problem DLbicrit

end-points (T 0, K 0), (T q , Kq)of the time–cost trade-off can
be found in, respectively, O(m logm) and O(m) time.

For the general case of arbitrary ri , di , Bi , finding the solu-
tion (T q , Kq) with the lowest cost, i.e., the rightmost point
(T q , Kq) in the time–cost trade-off, is computationally hard
by Theorem 1, because even though schedule length may be
arbitrary to find the lowest cost schedule, processor avail-
ability constraints ri , di , Bi may impose limits equivalent
to schedule length. We conjecture that finding the solution(
T 0, K 0

)
with the shortest schedule is also computationally

hard.

Conjecture 1 For arbitrary ri , di , Bi , for all processors Pi ∈
P , problemDLtime(∞) isNP-hard, even if computation time,
communication time and cost have no fixed overheads.

In the remaining part of this section, we consider the
case of agreeable processors. In that case, processors can
be renumbered so that the two conditions hold:

c1 ≤ c2 ≤ · · · ≤ cm,
�1
c1

≤ �2
c2

≤ · · · ≤ �m
cm

.
(38)

Theorem 2 If processorsP are agreeable and have no avail-
ability and capacity restrictions, i.e., ri = 0, di = Bi = ∞,
1 ≤ i ≤ m , then an optimum solution can be found in
polynomial time.

Proof Assume that processors are numbered in accordance
with (38) and they are activated in the order of their num-
bering. The processor sequence corresponding to c1 ≤ c2 ≤

123

Journal of Scheduling

· · · ≤ cm guarantees the shortest schedule (Bharadwaj et al.
1994, 1996; Blazewicz and Drozdowski 1997). It is also
known (Yang et al. 2007) that in the shortest schedule there
are no idle times between communications and all processors
finish computation simultaneously.

We show, by interchange argument, that under the agree-
able condition (38) the total cost is also minimum. Consider
pair Pi , Pi+1 in the sequence. Let us assume that commu-
nication to Pi starts τ units of time before the end of the
schedule. The load processed by Pi is xi = τ/(ai + ci).
Since there are no idle times in the schedule and Pi+1

receives its load and processes it while Pi is computing, the
load processed by Pi+1 is xi+1 = ai xi/(ai+1 + ci+1) =
(τai)/((ai + ci)(ai+1 + ci+1)). The cost of processing on
Pi , Pi+1 is

K1 = �i xi + �i+1xi+1 = τ(�i ai+1 + �i ci+1 + �i+1ai)

(ai + ci)(ai+1 + ci+1)

If the order of communications were Pi+1, Pi , the cost would
be

K2 = τ(�i+1ai + �i+1ci + �i ai+1)

(ai + ci)(ai+1 + ci+1)
.

The difference between the two costs is

K1 − K2 = τ(�i ci+1 − �i+1ci)

(ai + ci)(ai+1 + ci+1)
,

The processor sequence (Pi , Pi+1) results in a cheaper solu-
tion, if �i/�i+1 ≤ ci/ci+1. Thus, for agreeable processors the
shortest schedule is also the cheapest and the Pareto-front is
reduced to a point in the time×cost space. It is possible to
check whether processors are agreeable in O(m logm) time
and calculate load sizes xi in O(m) time (Blazewicz and
Drozdowski 1997). �

4 Zero transfer overheads: si = ci = 0

The main model studied in this section is characterized by
zero transfer times and zero fixed cost overheads for all pro-
cessors Pi : si = ci = 0, fi = 0, 1 ≤ i ≤ m (Sect. 4.1).
In terms of the three types of decisions introduced in Sect. 1,
only decisions of type 1 and 3 should be considered: any
processor Pi which gets a zero-size chunk xi = 0 should be
removed from the list P ′ of active processors, and all pro-
cessors in P ′ can be sequenced arbitrarily. We also discuss
how the proposed methods can be adjusted for the case with
arbitrary cost overheads fi (Sect. 4.2) and their applicability
to the related models with nonzero transfer times (Sect. 4.3).

4.1 Zero fixed cost overheads: fi = 0

In this section, we study the version of themain problemwith
the cost function F = ∑n

i=1 �i xi , i.e., fi = 0 for 1 ≤ i ≤ m.
In the cost minimization problem DLcost(T), given the

schedule length limit T , the upper bounds ui on the chunks xi
allocated to each processor i can be found from (6) combined
with (9) and (11):

ui (T) = min

{
B̃i ,

1

ai
[T − ri − pi]

+
}

(39)

where [f]+ = max { f , 0} and

B̃i = min

{
Bi ,

1

ai
(di − ri − pi) , V

}
.

We assume that
∑m

i=1 ui (T) ≥ V so that a feasible solution
exists. For the given T , the cost minimization problem can
be modeled as the following linear program:

LPcost(T): min
m∑

i=1

�i xi s.t. (40)

m∑

i=1

xi = V , (41)

0 ≤ xi ≤ ui (T), i = 1, . . . ,m. (42)

Note that (40)–(42) is the continuous knapsack problem,
solvable in O(m) time by the algorithm due to Balas and
Zemel (1980), which implies the following result.

Statement 2 If there are no transfer overheads and the cost
function is F = ∑n

i=1 �i xi , then problem
DLcost(T) is solvable in O(m) time.

For the counterpart DLtime(K) of problem DLcost(T), we
can only propose anO(m logm)-time algorithm.Aswe show
next, the bicriteria problemDLbicrit is solvable in O(m logm)

time as well. Thus, in what follows we focus on DLbicrit; a
solution toDLtime(K) can be found froma solution toDLbicrit

without increasing the O(m logm) time complexity.
In order to find the Pareto-front for DLbicrit, consider

LPcost(T) as the underlying model and treat it in a paramet-
ric way, with parameter T that varies in

[
min1≤i≤m {di } ,

max1≤i≤m {di }
]
. Notice that for small values of T from that

interval the problem LPcost(T) may be infeasible.
Since LPcost(T) is the continuous knapsack problem for

each fixed T , an optimal load distribution is defined by the
formulae:

x1(T) = u1 (T) , (43)

xi (T) = min

⎧
⎨

⎩ui (T),

[
V −

i−1∑

k=1

uk(T)

]+⎫
⎬

⎭ ,

i = 2, . . . ,m, (44)

123

Journal of Scheduling

assuming that processors are numbered so that

�1 ≤ �2 ≤ · · · ≤ �m . (45)

Informally, the cheapest processor P1 gets the highest possi-
ble load, and every subsequent processor Pi gets the highest
possible load, after all cheaper processors are loaded to their
maximum capacity without violating the given T .

We start with the rightmost point of the trade-off, that
corresponds to a solution with the largest length and mini-
mum cost. It can be found in O(m) time by solving problem
LPcost(T) with T = max1≤i≤m {di }. The resulting point
(T , K) has K = ∑m

i=1 �i xi (T).
Consider a cost-optimum schedule of some length T . Let

Ps be a processor with the smallest index whose load can be
increased without increasing the length T . Such a processor
satisfies a strict inequality

xs < us (T) . (46)

We call Ps a split processor as it corresponds to the so-called
split item s in the solution to the underlying continuous knap-
sack problem,

xi (T) = ui (T) , 1 ≤ i ≤ s − 1,

xs (T) = V −
s−1∑
i=1

ui (T),

x j (T) = 0, s + 1 ≤ j ≤ m.

In accordance with definition (39) of ui (T), we divide pro-
cessors {P1, . . . , Ps−1} into three subsets:

critical processors Pc, with xi (T) = (T − ri − pi) /ai
so that Ci = T ,
non-critical processors Pn , with xi (T) = B̃i so that
Ci < T ,
excluded processors Pe, with xi (T) = 0.

Note that each excluded processor Pi ∈ Pe defined for
some schedule length T remains excluded for any smaller
schedule length, since

ri + pi ≥ T .

The approach described below moves from a current
breakpoint, denoted by

(
T ′, K ′), to the next one

(
T ′′, K ′′),

repeating similar steps: it simultaneously decreases the load
values of processors Pi ∈ Pc and compensates that change
by increasing the load of the split processor Ps , keeping the
total processed volume equal to V at all stages. For an effi-
cient implementation, we define two auxiliary values:

h (Pc) =
∑

Pi∈Pc

1

ai

the combined speed of processors Pc, and

k (Pc) =
∑

Pi∈Pc

�i

ai

the combined cost of occupying processors Pc for 1 time
unit.

Consider a transition from a solution with load values x ′
i ,

corresponding to
(
T ′, K ′), to a solution with load values x ′′

i ,
corresponding to

(
T ′′, K ′′). For any Pi ∈ Pc, the T -value

changes from T ′ = ri + pi +ai x ′
i to T

′ −� = ri + pi +ai x ′′
i

so that

x ′′
i = x ′

i − 1

ai
�, Pi ∈ Pc.

For the split processor Ps , the increase in its load should be
equal to the cumulative decrease in the load of processors
Pc:

x ′′
s = x ′

s + h (Pc) �. (47)

The next breakpoint
(
T ′′, K ′′) is triggered by one of the

events (a)–(d), whichever is reached first. It corresponds to
the smallest value of �, defined in the event descriptions
below.

(a) The set Pc is adjusted to exclude a processor whose load
reduces to 0. This happens if the decreased value T ′′ =
T ′ − � reaches ri + pi for some Pi ∈ Pc. In this case

� = T ′ − max {ri + pi |Pi ∈ Pc} . (48)

(b) The set Pc is adjusted to include a non-critical processor
which becomes critical. This happens if T ′′ = T ′ − �

reaches an absolute deadline d̃i for some non-critical pro-
cessor Pi ∈ Pn ,

d̃i = min{di , ri + pi + ai Bi }. (49)

In this case

� = T ′ − max
{
d̃i |Pi ∈ Pn

}
. (50)

(c) The split processor Ps can no longer get any additional
load since its increased load x ′′

s = x ′
s + h (Pc)� reaches

an absolute upper bound B̃s , which implies

� = B̃s − x ′
s

h (Pc)
.

123

Journal of Scheduling

(d) The split processor Ps can no longer get any additional
load since processing its increased load x ′′

s reaches T ′′ so
that processor Ps becomes a critical processor. This hap-
pens if the completion time rs + ps +as

(
x ′
s + h (Pc)�

)

of Ps becomes equal to T ′′ = T ′ − �, which implies

� = T ′ − (
rs + ps + asx ′

s

)

ash (Pc) + 1
.

Thus, it suffices to calculate �-values for each of the
events (a)–(d), select the smallest one and compute the char-
acteristics of the next breakpoint:

T ′′ = T ′ − �, K ′′ = K ′ − k (Pc)� + �sh (Pc) �,

Note that the term −k (Pc) � = −∑
Pi∈Pc

�i
ai

� =
= −∑

Pi∈Pc
�i

(
x ′
i − x ′′

i

)
defines the cost change due to

the decrease in the loads of processors Pc, while the term
�sh (Pc)� = �s

(
x ′′
s − x ′

s

)
defines the cost change due to

the increase in the load of the split processor Ps . To com-
plete the transition from

(
T ′, S′) to

(
T ′′, S′′), perform the

following updates.

– In the case of event (a) triggered by processor Pi ∈ Pc,
calculate x ′′

s by (47) and set

Pc := Pc\ {Pi } , Pe := Pe ∪ {Pi } ,

h (Pc) := h (Pc) − 1

ai
, k (Pc) := k (Pc) − �i

ai
.

– In the case of event (b) triggered by processor Pi ∈ Pn ,
calculate x ′′

s by (47) and set

Pc := Pc ∪ {Pi } , Pn := Pn\ {Pi } ,

h (Pc) := h (Pc) + 1

ai
, k (Pc) := k (Pc) + �i

ai
.

– In the case of event (c), set

Pn := Pn ∪ {Ps} ,

and define a new split processor by considering proces-
sors Pi , i = s + 1, s + 2, … one by one: if ri + pi < T ,
then Pi becomes a new split processor (note that its load is
0); otherwise, Pi joins the set of excluded processors Pe,
and the next processor is examined. If no processor from
{Ps+1, . . . , Pm} becomes a split processor, the algorithm
stops.

– In the case of event (d), set

Pc := Pc ∪ {Ps} , h (Pc) := h (Pc) + 1

as
,

k (Pc) := k (Pc) + �s

as
,

and find the next split processor Ps as in the case of event
(c).

– If both events (c) and (d) happen simultaneously, proceed
as in the case of event (d).

– We can now treat the found breakpoint
(
T ′′, K ′′) as the

current one and proceed similarly to finding the next
breakpoint. The algorithm stops if s = m and event (c)
or (d) happens.

In order to implement all calculations efficiently, wemain-
tain setsPc andPn as priority queues so that each calculation
(48) or (50) can be done in O(1) time. Since an element is
added toPc or removed fromPc atmost once, all add/remove
operations require O(m logm) time. The same holds for
add/remove operations on Pn . Similarly, Pe is updated no
more than m times.

Initialization involves renumbering processors in accor-
dance with (45), finding the first solution(
x ′
1, x

′
2, . . . , x

′
m

)
for T ′ = max

{
d̃i |1 ≤ i ≤ m

}
, computing

K ′ and auxiliary values h (Pc) and k (Pc). All required steps
can be done in O(m logm) time.

A transition from one breakpoint to the next one requires
updating the two priority queues, which takes O(logm) time,
and updating the five parameters, x ′′

s , T
′′, K ′′, h (Pc) and

k (Pc), which can be done in O(1) time. Note that x-values
for i �= s are not maintained. Since there are at mostm events
of each type, the total number of breakpoints is no larger than
4m, and the overall time complexity is O(m logm). Thus, the
following statement holds.

Statement 3 Problem DLbicrit has a trade-off with at most
4m breakpoints which can be computed in
O(m logm) time.

Let us finish this section with an example to illustrate cal-
culation of the time–cost trade-off. Assume that load size
is V = 30 and the number of processors is m = 8. Their
parameters are given in Table 3. The breakpoints (T , K) are
presented in the first two rows of Table 4. The boxed elements
represent the load of the split processor Ps . The loads of the
remaining processors are not maintained by the described
algorithm, in order to achieve the O(m logm) time com-
plexity. For completeness, we present the optimal x-values
for all processors.

4.2 Arbitrary cost overheads fi, �i

In the general case, with nonzero overheads fi in the cost
function K = ∑m

i=1 (fi + �i xi), both problems DLtime and
DLcost are NP-hard, see Drozdowski and Lawenda (2005).

123

Journal of Scheduling

Table 3 Example data for time–cost trade-off calculation

i ai Bi ri di pi �i ri + pi d̃i B̃i

1 1 10 80 100 1 1 81 91 10

2 4 40 30 110 2 2 32 110 19.5

3 8 10 20 40 5 3 25 40 1.875

4 4 20 20 70 4 5 24 70 11.5

5 5 10 10 80 2 8 12 62 10

6 6 10 40 100 2 10 42 100 ≈9.667

7 3 30 5 50 1 20 6 50 ≈14.667

8 2 50 10 60 3 40 13 60 23.5

As we show in this section, the problem can be solved effi-
ciently if we limit our search to a class of solutions with a
fixed set of active processors P ′ ⊆ P . The associated prob-
lem is of the form: given a set of active processors P ′, it is
required to allocate a positive load to each active processor
minimizing the objective function T or K . Note that some
processors may get an infinitely low load ε > 0; such a pro-
cessor then has a completion time ri + pi +aiε, which should
be taken into account when calculating the length T of the
schedule.

There are two common properties that hold for any prob-
lem, DLtime, DLcost or DLbicrit, under the assumption thatP ′
is fixed:

Property 1: component
∑

i∈P ′ fi is constant and can be
excluded from K ;
Property 2: the schedule length T satisfies T > ρ, where

ρ = max
1≤i≤m′ {ri + pi } .

Based on these two properties, the results from Sect. 4.1
can be adjusted to handle the case with a fixed set P ′.

For problem DLcost(T) with a given set P ′ and T > ρ,
consider the continuous knapsack formulation (40) defined
over P ′. If in an optimal knapsack solution xi = 0 for some
Pi ∈ P ′, then such a solution is adjusted by replacing 0-

values by ε. The overall time complexity remains the same,
O(m).

For problem DLbicrit, apply the approach from Sect. 4.1
for the processor set P ′ and output the part of the trade-off
that satisfies T > ρ. Treat all found solutions as if each idle
processor gets an ε-load. This assumption does not affect
the values of T and K , assuming that ε is infinitely small.
There is one case that needs a special attention. It occurs
if all breakpoints (T , K) satisfy T ≤ ρ. In that case con-
sider the rightmost point (T ∗, K ∗) of the trade-off and output
the unique solution obtained from (T ∗, K ∗) by allocating ε-
loads to all idle processors. The described adjustments do not
affect the O(m logm) time complexity derived for problem
DLbicrit in Sect. 4.1.

Treating problem DLtime(K) as a special case of problem
DLbicrit, we conclude that it is solvable in
O(m logm) time.

Statement 4 If there are arbitrary cost overheads fi , �i in
the cost function F = ∑n

i=1 (fi + �i xi), and a set of active
processors is fixed, then problem DLcos t(T) is solvable in
O(m) time, while problemsDLtime(K) andDLbicrit are solv-
able in O(m logm) time.

4.3 Arbitrary transfer overheads si, ci

The results from Sect. 4.1 can be applied to special scenarios
with nonzero transfer overheads si , ci .

One scenario arises in parallel communicationwith simul-
taneous start mode, see Kim (2003), Robertazzi (2003),
with computation speeds slower than transfer speeds. For
the simultaneous start mode, load transfer to all worker
processors starts at the same time. Worker processors start
computing as soon as the first grain of the load is received.
Due to the slower computation speeds compared to trans-
fer speeds, computation time of any grain is higher than the
transfer time of any subsequent grain. Thus, in parallel com-
municationwith simultaneous start, communication does not
affect the overall schedule length and cost. Consequently,

Table 4 Load allocations xi and total costs in time–cost trade-off calculation

T 34.99 40 42 44.60 59.45 62 64.25 70 81 84.5 91 104.5 110
K 688.83 508.76 446.13 351.55 168.68 159.38 152.06 139.13 122.63 92.88 62 51.88 50.5

x1 0 0 0 0 0 0 0 0 0 3.5 10 10 10
x2 0.748 2 2.5 4.5 6.863 7.5 8.063 9.5 12.25 13.125 14.75 18.125 19.5
x3 1.249 1.875 1.875 1.875 1.875 1.875 1.875 1.875 1.875 1.875 1.875 1.875 0.5
x4 2.748 4 4.5 5.151 8.863 9.5 10.063 11.5 11.5 11.5 3.375 0 0
x5 4.598 5.6 6 6.521 9.490 10 10 7.125 4.375 0 0 0 0
x6 0 0 0 0.434 2.909 1.125 0 0 0 0 0 0 0
x7 9.663 11.333 12 12.868 0 0 0 0 0 0 0 0 0
x8 10.995 5.1917 3.125 0 0 0 0 0 0 0 0 0 0

123

Journal of Scheduling

communication time can be ignored as if ci = si = 0 for any
Pi ∈ P .

Another scenario is typical for a pipeline-like computing
mode. Load scattering and processing are interleaved so that
communications and computations are performed at different
stages. The load is distributed in one interval (say interval
i) and processed in the next interval (i + 1). If there is a
common communication time τcomm for all processors and a
common computation time τcomp, with τcomm ≤ τcomp, then
the communications executed in interval i do not determine
partitioning of the load for minimum computing time and
the cost in interval i + 1. It can be shown that the general
case of the pipeline mode, characterized by si > 0, ai > 0,
is NP-hard [see, e.g., DLS with processor release times in
Drozdowski and Lawenda (2005)].

5 Conclusions

In this paper, we analyze the time/cost optimization for
divisible load scheduling problems with arbitrary processor
memory sizes, ready times, deadlines, communication and
computation start-up costs. Three versions of the problem are
studied: DLtime(K)—schedule length minimization for the
given limited budget K , DLcost(T)—cost minimization for
the given schedule length limit T , andDLbicrit—constructing
the set of time–cost Pareto-optimal solutions. All three ver-
sions can be solved in polynomial time for fixed m.

The case with given upper bounds on the schedule length
and cost appears to beNP-hard even if all fixed overheads are
zero (pi = si = fi = 0 for all Pi ∈ P). This result is rather
unusual: all previous NP-hardness results in the divisible
load theory assumed nonzero fixed overheads. Interestingly,
a divisible load problem is linked to scheduling problems
with preemption, for which NP-hardness results are rather
atypical (see, e.g., Sitters 2001; Drozdowski et al. 2017).

We leave an open question regarding the time complexity
of finding a shortest schedulewith processor availability con-
straints, but with zero fixed communication and computation
overheads, regardless of the computation cost (K = ∞). We
believe that the latter problem is computationally hard, see
Conjecture 1. Contrarily, the version with negligible com-
munication times is solvable in O(m logm) time even in its
bicriteria setting.

Our summary table provided in Introduction presents the
state-of-the-art results in divisible load scheduling and can
be used as a guideline for future research.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Adler, I., &Monteiro, R. D. C. (1992). A geometric view on parametric
linear programming. Algorithmica, 8, 161–176.

Agrawal, R.,& Jagadish, H.V. (1988). Partitioning techniques for large-
grained parallelism. IEEE Transactions on Computers, 37, 1627–
1634.

Balas, E.,&Zemel, E. (1980).An algorithm for large zero-one knapsack
problems. Operations Research, 28, 1130–1154.

Bharadwaj, V., Ghose, D., & Mani, V. (1994). Optimal sequencing and
arrangement in distributed single-level tree networks with com-
munication delays. IEEE Transactions on Parallel and Distributed
Systems, 5, 968–976.

Bharadwaj, V., Ghose, D., Mani, V., & Robertazzi, T. G. (1996).
Scheduling divisible loads in parallel and distributed systems. Los
Alamitos: IEEE Computer Society Press.

Blazewicz, J., & Drozdowski, M. (1997). Distributed processing of
divisible jobs with communication startup costs. Discrete Applied
Mathematics, 76, 21–41.

Cheng, Y.-C., &Robertazzi, T. G. (1988). Distributed computation with
communication delay. IEEE Transactions on Aerospace and Elec-
tronic Systems, 24, 700–712.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001).
Introduction to algorithms (2nd ed.). Cambridge: MIT Press and
McGraw-Hill.

Drozdowski, M. (2009). Scheduling for parallel processing. London:
Springer.

Drozdowski, M., Jaehn, F., & Paszkowski, R. (2017). Scheduling
position-dependentmaintenanceoperations.OperationsResearch,
65, 1657–1677.

Drozdowski, M., & Lawenda, M. (2005). The combinatorics in divis-
ible load scheduling. Foundations of Computing and Decision
Sciences, 30, 297–308.

Goldfarb, D., & Todd, M. J. (1989). Chapter II: Linear programming.
In G. L. Nemhauser, A. H. G. Rinooy Kan, & M. J. Todd (Eds.),
Handbooks in operations research andmanagement science. Opti-
mization (Vol. 1, pp. 73–170). Elsevier Science Publishers B.V.
(North-Holland).

Kim, H. J. (2003). A novel optimal load distribution algorithm for divis-
ible loads. Cluster Computing, 6, 41–46.

Robertazzi, T. G. (2003). Ten reasons to use divisible load theory. IEEE
Computer, 36, 63–68.

Shakhlevich, N. V. (2013). Scheduling divisible loads to optimize the
computation timeandcost (Vol. 8193, pp. 138–148)., Lecture notes
in computer science Cham: Springer.

Sitters, R. A. (2001). Two NP-hardness results for preemptive minsum
scheduling of unrelated parallel machines (Vol. 2081, pp. 396–
405)., Lecture Notes in Computer Science Berlin: Springer.

Yang, Y., Casanova, H., Drozdowski, M., Lawenda, M., & Legrand, A.
(2007)On the complexity of multi-round divisible load scheduling.
INRIA Rône-Alpes, Research Report No. 6096, 2007.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Scheduling divisible loads with time and cost constraints
	Abstract
	1 Introduction
	2 Nonzero time/cost parameters—fixed set of active processors
	2.1 Limited cost K—schedule length minimization
	2.2 Limited schedule length T—cost minimization
	2.3 Time–cost trade-off

	3 Nonzero time/cost parameters—zero fixed overheads: pi=si=fi=0
	3.1 Limited schedule length T and limited cost K
	3.2 Time–cost trade-off

	4 Zero transfer overheads: si=ci=0
	4.1 Zero fixed cost overheads: fi=0
	4.2 Arbitrary cost overheads fi, elli
	4.3 Arbitrary transfer overheads si,ci

	5 Conclusions
	References

