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Abstract: Thickness-shear transducers for guided wave testing have been used in industry for over

two decades and much research has been conducted to improve the resolution and sensitivity. Due to

a geometric feature of the current state-of-the art transducer, there is an out-of-plane component

in the propagation direction of the fundamental shear horizontal mode which complicates the

signal interpretation. In such case, complex signal processing techniques need to be used for mode

discrimination to assess the structural health with higher precision. Therefore, it is important to

revise the transducer design to eliminate the out-of-plane components in the propagation direction

of fundamental shear horizontal mode. This will enhance the mode purity of fundamental shear

horizontal mode for its application in guided wave inspection. A numerical investigation has

been conducted on a 3 mm thick 2 m circular steel plate to understand the behaviour and the

characteristics of the state-of-the-art thickness-shear transducer. Based on the results, it is noted

that the redesigning the electrode arrangement will suppress the out-of-plane components on the

propagation direction of the fundamental shear horizontal mode. With the aid of this information

current state-of-the-art transducers were redesigned and tested in laboratory conditions using the

3D Laser Doppler Vibrometer. This information will aid future transducer designers improve the

resolution of thickness-shear transducers for guided wave applications and reduce the weight and cost

of transducer array by eliminating the need of additional transducers to suppress spurious modes.

Keywords: ultrasonic guided waves testing; mode purity; non-destructive testing; numerical

simulations; sensor development; thickness-shear transducers

1. Introduction

For many decades, academic and industrial institutions have developed techniques in the field

of Ultrasonic Guided Wave Testing (UGWT) as part of non-destructive inspection methods to assess

the structural integrity of higher value engineering assets i.e., pipelines, rails and oil storage tanks

to locate and determine the size of any potential mechanical defects. Any casualties in such assets

caused by structural failures are generally catastrophic [1] or require greater levels of remanufacturing,

costing resource and disruption. As a solution, UGWT has gained high attention due to its long range

inspection capabilities [2], ability to perform in-situ testing (as a rapid screening tool) and reliability

when compared to other defect detection methods. Recent attempts have been reported on the
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advancements of resolution, sensitivity and mode purity [3,4], the latter defined as obtaining a single

wave type of defined motion without contamination by other waves superimposed, for example,

obtaining just pure in-plane motion or out-of-plane motion. Through improvements to the transducer

and enhancements to the level of mode purity, the resolution of the system and therefore capability

of flaw detection is increased. Much of the improvements have been in the field of digital signal

processing and real time analysis, with arrays of transducers providing input, hence improvements in

transducer geometry for accuracy and mode purity have the potential for exploitation.

The three potential modes of vibration utilized in testing plate-like structures (for long range UGWT

where the operating frequency range tends to be from approximately 20 to 100 kHz) are A0, S0 and

SH0 [5,6]. Whilst an infinite number of higher order modes are present, the commercial inspection

interest is towards increased purity of the shear horizontal mode, SH0, due to its non-dispersive nature

and its isolated excitation [7–12].

Transducers with materials comprising Lead Zirconate Titanate (PZT) and Electromagnetic

Acoustic Transducers (EMAT) are the commonly chosen means of exciting structures for UGWT

applications [13,14]. The state-of the-art dry coupled surface shear piezoelectric elements were

developed as a result of work performed by Alleyne and Cawley [15,16] on this subject. This particular

design was then further developed by Elborn [17], where an alumina layer was inserted to protect the

piezoelectric transducer to avoid the direct contact with the pipe and the connection to the piezoelectric

transducer was obtained through a wrapped around electrode [18]. However, the design methodology

was carried out assuming an ideal transducer behaviour, with exclusively empirical assessments of the

design quality and performance.

The numerical analysis of mode excitation in rods and plate-like structures has shown

inconsistencies between the numerical and the experimental results [19–22]. The state-of the-art

dry coupled surface shear piezoelectric designed by [17] has been validated, both numerically and

experimentally, in rod-like structures, showing an unexpected flexural mode, interpreted as reflection

from the waveguide, thus making the signal interpretation more challenging in relation to the

objective of inspection [20,21]. Nonetheless, the explanation of the authors was based on mere signal

interpretation, lacking a detailed and systematic analysis on anomalies in transducer behaviour.

The findings in [22] further strengthen the evidence for the aforementioned anomalies,

showing discrepancies between the numerically simulated SH0 mode purity and experimental

results in plate-like structures. Further observations by [22] include the radiation of an A0 mode along

the preferential direction of SH0. While the scope of work was not to investigate singular transducer

behaviour, the author failed to provide an explanation of the physical cause of those inconsistencies.

The anomalies might be attributed to the peculiar design of the transducer, as it features

a wrap-around electrode configuration. Recent work on transducers with this characteristic has shown

variations in the frequency response function when compared to a non-wrapped around case [23,24].

To the best of the authors’ knowledge, the influence of this design choice on transducer behaviour

has not been quantified in literature yet. Moreover, a correlation between transducer’s design based

on [17] and mode purity of SH0 is still missing. This paper provides an investigation of the effect the

wrap around electrode causes to the functional performance of the transducer.

In this paper we present: the characteristics of the current state-of-the-art thickness-shear

transducer and its experimental characterization, with a detailed presentation of inconsistencies

between theoretical and experimental behaviour; the numerical investigation of the inconsistencies

in the ultrasonic output, along with their physical interpretation; finally, novel design guidelines,

based on numerical analysis, aimed at improving SH0 mode purity, along with their experimental

validation on a working prototype.
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2. Analysis of a Current, State-of-the-Art, Generic, UGTW, Transducer, Design

2.1. Design of the Transducers

The transducer is composed of three main components, a piezoelectric element (PZT), a protective

layer (wear plate) and a backing solid block, as shown in Figure 1. Such a configuration in the

remainder of the paper is defined as configuration A (where the electrode is wrapped back on the PZT

element). The piezoelectric element is a soft ceramic PIC 255 vibrating 1–5 thickness-shear mode [25].

As a thickness-shear element, the imposition of an electric field normal to the polarization axis induces

a shear stress to the specimen and the material is polarized along its length [26].

Backing 

mass 

Protective 

wear-plate 

Figure 1. Current state-of-the art transducer typical of those found with wrapped around electrodes.

Labels are inserted to indicate the two features visible externally, the backing mass and the

protective wear-plate.

The length of the piezoelectric element is 13 mm for this study. The applied voltage to the element

is applied through electrodes placed on either surface configurations, which also necessitates a study

cable connection and access hole in the solid mass. The imported drawing of the transducer is shown

in Figure 2. The electrical contact to the piezoelectric element is provided through plated electrodes

which are presently wrapped around from the bottom surface to the top. Due to this wrapped around

system, the actual excited length of the piezoelectric element is only 10 mm (shown in blue in Figure 2)

but a discontinuity in voltage potential is created around the wraparound termination.

ܣܶ ൌ ݔܸ

V ሾૄܛሿ

Figure 2. Imported CAD of the transducer viewed from top. Due to symmetry along the longitudinal

axis only half the transducer is shown. Backing mass is in mechanical and electrical contact with the

piezoelectric element. The actuation area on the top electrode of the piezoelectric element is highlighted

in blue (it doesn’t extend to the full length of the transducer due to the wrapped around electrode,

configuration A). The access cable is cleared from internal electrical connection.

To prevent any mechanical failure due to the brittleness of the piezoelectric ceramic (and due to

the dry coupling to the workpiece during inspection), the piezo-ceramic is bonded to an alumina layer
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which acts as a wear plate maintaining a direct contact with the surface of the waveguide, with in-plane

dimensions exactly corresponding to those of the piezoelectric element.

The third element is a (near) cuboid of stainless steel of length 13 mm and height 13 mm,

which increases the flexural stiffness of the system and provides an appropriate distribution of pressure

to the piezoelectric element when it is preloaded on its upper surface. The use of such a backing mass

makes also the device portable, easy to use and capable to resist to test in harsh environments: an

asymmetry is present in the backing mass, due to the presence of a hole providing wiring connection

to the piezoelectric element.

2.2. Experimental Setup

In this section, the mode purity of a shear horizontal mode is assessed for Configuration A:

the displacement is measured on a test sample using a 3D scanning Laser Doppler Vibrometer

(3D-LDV) [25], following established practice in the literature, see [20,22,27]. The Polytec 3D-LDV

(PSV-400-3D-M) shown in Figure 3a measured the surface displacement at the monitoring point M as

illustrated in Figure 3b [25]. The point M was at distance 0.4 m from the exciting transducer, defined as

an emission point E. The point M was selected as it presents the theoretical highest directivity of

SH0 [22].

  
(a) (b) 

ΐ

ΐ

Figure 3. Laboratory experiments to characterize the transducers, 3D Laser Doppler Vibrometer used

to monitor the surface vibration at the point of interest (a) PSV-400 3D Doppler Vibrometer used to

monitor the surface vibration at the point of interest (b) experimental setup illustrating the point of

excitation (labelled as E) and monitoring point (labelled as M) and the corresponding distance in meters.

The mild steel plate chosen for validation was a square plate of dimension 2.0 × 2.0 × 0.003 m.

The transducer was placed in the centre of the plate with a loading device to control the preload

force, applied as a static out-of-plane load [19]. The device was excited with a 5 cycles Hann windowed

burst with a centre frequency of 90 kHz, achieving an appropriate mode separation in a limited space

for this analysis.

The software Disperse was used to calculate the time of arrival (ToA) for the potential propagation

modes include S0, A0 and SH0 [28]. The ToA was calculated according to the following equation [20]

ToA =

x

Vgr
(1)

where x is the distance and Vgr is the group velocity of the mode of interest. The ToA of the three modes

is indicated in Table 1.

Table 1. Vgr and ToA of the three potential modes.

Mode Vgr [m/ms] ToA [µs]

S0 5.4 74
A0 2.6 153

SH0 3.2 125
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Such an input signal was validated as adequate in the literature [20]. Due to the minimal variance

of the frequency response function in the range 30–90 kHz [13], selecting only one excitation frequency

is acceptable to evaluate the behaviour of the transducer and the general response. The transducer was

excited using the commercially available Teletest Focus+ [2].

2.3. Experimental Results

The excitation directivity of interest in the scope of this study is the axis perpendicular to the

direction of vibration, which corresponds to the direction of propagation of the SH0 mode, as expected

from the results in the literature [20]. In Figure 4 the in-plane and out-of-plane displacement are plotted

as function of the time of arrival at the point M: since the interest is in the in-plane vibration, the in-plane

amplitude is referred throughout the article as ‘S’, signal and the out-of-plane amplitude is referred as

‘N’, noise. The amplitude is normalized to the in-peak amplitude of the shear horizontal mode.

ΐ

ΐ

SH0 A0 

Figure 4. Laboratory experiments of the in-plane (blue), ‘S’, and out-of-plane, ‘N’, (red) velocities along

the line orthogonal to the axis of vibration, for Configuration A. Normalized data are shown: modes

are identified and labelled accordingly.

The experimental result for the receiving point perpendicular to the axis of vibration is illustrated

with a SH0 mode arrival time of 121 µs, which is of high amplitude and quality with a low signal to

noise ratio, thus can be used for inspection. However, another unexpected mode with predominantly

out-of-plane components appears at 153 µs: due to the nature of motion and of the time of arrival, it can

be identified as the A0 mode. This spurious wave mode must be reduced or removed to obtain high

mode purity. Whilst the existing transducer provides complete functionality, for future improvement

and ease the signal interpretation mode purity of SH0 needs to be further studied.

To the best of the authors’ knowledge, this phenomenon has never been reported in the literature.

It can be inferred that the transducer is not moving only along the axis of vibration, as expected by

the thickness-shear movement of the piezoelectric element, but the full assembly of the transducer is

generating an unexpected mode which could result in a detriment in the mode purity of SH0. In the

following section, a numerical model of the full assembly will be compared with the experimental results

and the insight of the simulation will be deployed to test this hypothesis. It will be shown, as a novel

finding, that the amplitude of the spurious A0 mode is due in part to the wrap around electrode.

3. Numerical Analysis of the Transient Behaviour for Configuration A

3.1. Background of the Model

The wrap around electrode is present as it solves manufacturing constraints, which would need

to be resolved before testing new designs. Therefore, validated numerical models will be used to

demonstrate the potential of further design changes.

The finite element method (FEM) was used to evaluate the guided wave propagation of

a thickness-shear piezoelectric transducer and its complete assembly as a 3D geometric transducer.

Such a method has shown excellent agreement against experimental results, and a physical insight

into the characteristic of the transducer is readily available [20,21]. The modelling was carried out



Sensors 2019, 19, 1848 6 of 17

using Comsol Multiphysics [28], which is currently used for ultrasonic transducers and guided waves

studies [29–32]. The experimental analysis was replicated numerically, to predict the time of arrival,

to study the purity of the latter and compare the output with a simple point source model.

The transducer was placed on the centre of the steel plate. Since the transducer and the plate

are symmetrical along the longitudinal axis of vibration, a symmetry condition was imposed on the

transducer and on the plate to reduce the computational effort. The symmetry condition is highlighted

in Figure 5. To reproduce the experimental conditions, radius and thickness of the plate were set as

0.4 m and 3 mm respectively.

Figure 5. Picture showing the symmetry condition imposed on the transducer and on the plate,

highlighted in blue.

As far as the interaction between the alumina wear-plate and the waveguide, it was assumed

that surface of contact is completely flat. Thus, the two surfaces should not move relative to each

other, an assumption which is generally valid as the whole purpose of the static vertical loading is to

eliminate stick slipping on the wear to workpiece contact.

Material properties are used assuming linear elastic behaviour of the system: as far as the

piezoelectric element is considered, only the mechanical properties are considered. This assumption

has been proved valid in previous numerical finite element modelling of the transducer [19–21].

Material properties are reported in Table 2.

Table 2. Material properties used for FEA modelling.

Properties Unit Waveguide Transducer Block Wear-Plate Adhesive

Density [kg/m3] 7800 7800 8030 3960 752

Young’s modulus [Pa] 207 × 109 110 × 109 193 × 109 370 × 109 1.47 × 109

Poisson’s ratio 0.3 0.36 0.25 0.22 0.4082

The transducer was excited with an in-plane surface load (along the length of the device) and the

signal was a 5 cycles Hann-windowed burst at 90 kHz (the same as in the experimental investigation).

The numerical analysis was carried out using the solid mechanics module for computational efficiency.

The mesh size of the waveguide in the model was computed according to the following equation,

h =

c

N × f 0
(2)

where c is the velocity of the slowest mode, N is the number of cycles and f 0 is the frequency of

interest: eight elements were used represent the wavelength of the slowest mode, the mesh size h was

calculated as 3.6 mm. Quadratic elements were used to mesh the plate: such resolution of the mesh

size was previously validated to be adequate in the literature [20]. Due due to the irregularity linearity

of the transducer geometry, tetrahedral elements with a reduced order of magnitude were used to

mesh the assembly (0.36 mm): thus, the transducer’s behaviour could be modelled more accurately.

The mesh for the assembly and the waveguide are shown in Figure 6: moreover, a histogram with the

number of elements as a function of mesh quality indicating that the meshing procedure is appropriate

is presented in Figure 7.
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Figure 6. Picture showing the tetrahedral mesh on the transducer (highlighted in blue) and the

quadratic mesh on the plate.

ΐ

ΐ

Figure 7. Plot of the number of elements as a function of mesh quality. Note that the ordinate axis is in

logarithmic scale.

3.2. Numerical Results

In Figure 8a, the in-plane displacement at 50 µs is presented. The symmetric Lamb mode, S0,

is propagating along the axis of vibration while the shear horizontal mode is propagating on the

orthogonal axis, as theoretically expected. Moreover, the shear horizontal wave is showing a higher

intensity than the S0, is well defined and of high relative amplitude. The surface plot at 100 µs is also

presented in Figure 8b. The S0 mode has reached the edge, while the SH0 is still propagating, with the

separation between modes making clear the presence of the A0 mode along the longitudinal axis of

vibration. The in-plane and out-of-plane component of displacement were also extracted at the defined

receiver M on the border of the plate.



Sensors 2019, 19, 1848 8 of 17

ΐ ΐ

ΐ

ΐ

Figure 8. Surface in-plane displacement plot at 50 µs (a) on right; at 100 µs (b) on left for Configuration

A. Modes are identified and labeled accordingly.

The two components of displacement are plotted for configuration A, with the wrap around

electrode, the receiving point in Figure 9 where only the SH0 mode is expected. It is confirmed

that the time of arrival of 125 µs is consistent with the theoretical and experimental calculation [20].

As expected, the shear horizontal mode presents only an in-plane vibration: however, a spurious mode

is appearing after the desired mode. This second mode is mainly out of plane and arriving at 153 µs,

identified as A0.

ΐ ΐ

ΐ

ΐ

SH0
A0 

Figure 9. Configuration A numerical results of the in-plane (blue), ‘S’, and out-of-plane, ‘N’,

(red) velocities along the line orthogonal to the line of vibration. Normalized data are shown:

modes are identified and labelled accordingly.

The model then agrees with the experimental findings and show that the introduction of the

real design of the transducer is fundamental to assess the mode purity of SH0 and in general the

behaviour of the transducer. The transducer in this configuration is generating an omnidirectional A0

not desired and it is attributed to the electrode lay-out and the size of the transducer. As mentioned in

the introduction, currently arrays of thickness-shear transducers are designed assuming the transducers

vibrate uniformly, henceforth the generated wave-front can be considered as generated by the linear

superposition of point sources. In Figure 10 the output along the perpendicular direction as excited by

a point-source is plotted.
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ΐ ΐ ΐ

Figure 10. Point source numerical results of the in-plane (blue), ‘S’, and out-of-plane, ‘N’, (red) velocities

along the line orthogonal to the line of vibration. Normalized data are shown.

The point-source case represents the ideal case and the benchmark for inspection purposes,

since only the SH0 mode is generated. However, such a model fails to predict the current ultrasonic

output of configuration A. Thus, in the next section, the numerical model is further analysed to evaluate

how the extension of the surface load and the diminution of the non-excited area can modify the

out-of-plane motion.

3.3. Physical Interpretation of the Pattern of the Transducer

The numerical results have confirmed the experimental findings concerning an unexpected A0

mode compromising the mode purity of SH0. It is then of paramount importance to investigate the

features contributing to the excitation of this spurious mode. The first feature evaluated is the interface

transducer-waveguide, since it is the vibration along this boundary ensuring the excitation of guided

waves inside the structure. The fundamental assumption is uniform vibration along the longitudinal

axis of the transducer: thus, surface plots have been extracted at the interface both for in-plane and

out-of-plane displacement to verify the assumption, as shown in Figures 11 and 12. Three different

time steps have been selected to ensure the transient evolution is fully appreciated.

(a) (b) (c) 

 

ΐ ΐ ΐ

   

Figure 11. Surface plot for in-plane velocity on the alumina wear-plate, Configuration A. Note that

data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).
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(a) (b) (c) 

ΐ ΐ ΐ

ΐ ΐ ΐ

  
 

Figure 12. Surface plot for out-of-plane velocity on the alumina wear-plate, Configuration A. Note that

data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).

The results for the in-plane velocity in Figure 12 indicate clearly how the vibration is not

evenly distributed across the length of the transducer and the area on the left border where

the wrap around is located presents remarkable difference with the remainder of the transducer.

Furthermore, distribution of the in-plane velocity is concentrated more prominently where the access

cable is located. The corresponding results for the out-of-plane velocity are shown in Figure 12.

The distribution of positive and negative out-of-plane velocity along the length prove that the

transducer is bouncing up and down at the edges, thus the main in-plane vibration is disturbed by the

rotation of the transducer. Note also that the modulus of the in-plane and out-of-plane velocities are

in the same order of magnitude, increasing in time for the out-of-plane: therefore, when the driving

signal diminishes in time the inertia of the sensor increases its effect on the transducer.

To highlight the effect of the real design of the transducer, similar time frames were also extracted

as surface plots on the lateral surface of the backing mass. The results for the backing mass plotted in

Figure 13 indicate that at the beginning the motion imposed by the piezoelectric element is effectively

a thickness-shear motion, with a higher modulus on the bottom surface of the backing mass. As the

excitation time progresses the distribution of velocity becomes more chaotic and difficult to interpret:

both in-plane and out-of-plane velocities are influenced by the presence of the hole, and the backing

mass experiences a rotation as shown by the out-of-plane in Figure 14.

ΐ ΐ ΐ

(a) (b) (c) 

ΐ ΐ ΐ

   

Figure 13. Surface plot for the in-plane velocity on the side of the backing mass, Configuration A.

Note that data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).
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(a) (b) (c) 

ΐ ΐ ΐ

 
  

Figure 14. Surface plot for the out-of-plane velocity on the side of the backing mass, Configuration A.

Note that data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).

Thus, the finite element analysis for configuration A shows that three main elements are influencing

the ultrasonic output of the transducer, i.e., the electrical lay-out, the position of the access cable and

the size of the sensor. Since the first parameter seems to be more influencing the in-plane vibration and

the spurious A0 mode, in the remainder of the section only the actuation length of the transducer will

be modified and defined as configuration A’.

3.4. Numerical Results on a 3D Geometric Transducer without a Wraparound Electrode (Configuration A’)

In Section 2, the actuation area of the generic piezoelectric transducer was described as 10 mm,

corresponding to the positive side of the electrode, which is receiving the exciting signal. The negative

electrode is wrapped around with a spacing of 3 mm on the upper surface to provide insulation against

a short circuit. Using the validated numerical finite element model, a prediction of the ultrasonic output

is computed when the actuation length is modified from 10 to 13 mm in two parallel continuous strips,

but the access hole is kept to study the influence of the wrap around electrode (Configuration A’).

In-plane and out-of-plane displacement at the point perpendicular to the axis of vibration for

the bespoke transducer design is illustrated in Figure 15. SH0 mode is excited in high purity at the

direction perpendicular to the axis of vibration while the unexpected A0 mode has an amplitude which

is more than halved, a considerable benefit in terms of mode purity. Thus, the actuation length and

the position of electrode are shown to make a considerable difference in terms of the out-of-plane

motion and improve the transducer performance. However, results in Figure 15 show that there is still

a small trail of signal attributable to A0 even when a more ideal source of excitation is considered:

thus, Configuration A’ on its own would not be sufficient to assure a pure SH0 mode.

ΐ ΐ ΐ

Figure 15. Configuration A’ results of the in-plane (blue), ‘S’, and out-of-plane, ‘N’, (red) velocities

along the line orthogonal to the line of vibration. Normalized data are shown.

The results at the interface transducer waveguide for in-plane velocities are plotted in Figure 16:

clearly the distribution of in-plane velocity becomes more even across the length, while the out-of-plane

component is more confined to the corner in comparison to Configuration A, as shown in Figure 17.
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The surface plots for the backing mass in Figures 18 and 19 shows again that the hole influences the

vibration pattern of the transducer, especially in the later time of excitation.

(a) (b) (c) 

ΐ ΐ ΐ

ΐ ΐ ΐ

ΐ ΐ ΐ

 
  

Figure 16. Surface plot for in-of-plane velocity on the alumina wear-plate, Configuration A’. Note that

data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).

ΐ ΐ ΐ

  

(a) (b) (c) 

ΐ ΐ ΐ

ΐ ΐ ΐ

 
  

Figure 17. Surface plot for out-of-plane velocity on the alumina wear-plate, Configuration A’. Note that

data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).

ΐ ΐ ΐ

ΐ ΐ ΐ

(a) (b) (c) 

ΐ ΐ ΐ

   

Figure 18. Surface plot for the in-plane velocity on the side of the backing mass, Configuration A’.

Note that data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).
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(a) (b) (c) 

ΐ ΐ ΐ
Figure 19. Surface plot for the out-of-plane velocity on the side of the backing mass, Configuration A’.

Note that data are plotted at timeframes of 100 µs (a), 300 µs (b) and 500 µs (c).

As explained in the previous section the access cable creates an asymmetry in the centre of mass,

henceforth a moment on the backing block, which would then lead to distortion in the vibration pattern.

Therefore, the construction of the prototype had to be carried out eliminating the access hole of the

cable and ensuring electrical contacts on the sides of the transducer.

4. Development and Testing of a New Configuration

Numerical Results on a 3D Geometric Transducer Without a Wraparound Electrode and with Geometry
Modified (Configuration B)

Numerical and experimental findings have indicated that Configuration A presents an undesired

pattern of vibration compromising the mode purity of SH0. Thus, it is of interest to develop a new

transducer with similar geometrical dimensions but able to meliorate the objective of the device.

Thus, a new configuration named B has been designed, developed and tested both numerically and

experimentally: such a configuration has undergone some practical modification, since the electrical

layout of the transducer has been removed and substituted by a continuous electrode configuration.

The access cable could then also be removed. The main difference in the system is in the electrical

connectivity, since the positive electrode is obtained by connecting the upper surface of the transducer

with an external cable soldered to the backing block: the negative side of the circuit is closed through

a cable soldered on a layer of copper tape. The copper tape is inserted between the interface piezoelectric

element- wear-plate. Table 3 outlines the main constructive differences, Y and N standing for the

positive or negative presences of the indicated features.

Table 3. Different features of the assembly for Configuration A and B.

Characteristics A B

Cable Y N
Wrap El. Y N

Continuous El. N Y
Copper tape N Y

Note that the insertion of the copper tape and the connection through the backing mass had as

a drawback the possible reduction of the amplitude, since connection would lose the practicality of the

wrap-around system: however, scope of the prototype is to demonstrate the enhancements of SHO

mode purity due to modification of geometry and electrical lay-out, henceforth loss of amplitude is at

this stage acceptable.

A schematic representation of the differences between the two configurations is shown in Figure 20.
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S

(a) (b) 

Positive Electrode 

Negative Electrode 

Positive Electrode 

Negative Electrode 

Figure 20. Transducer (a) Configuration A (wrap around electrodes) and (b) Configuration B (proposed

modified electrode attachment and geometry). Note that configuration A presents an access hole for the

electrical connectivity: positive electrode is presented with a thicker black line and negative electrode

along the alumina layer. The representation is exaggerated to help the understanding.

Experimental and numerical analysis were carried out according to the procedures described in

Sections 2 and 3. The experimental and numerical results for the shear horizontal mode are shown

in Figure 21a,b.

S

 

(a) (b) 

Figure 21. Configuration B results of the in-plane (blue), ‘S’, and out-of-plane, ‘N’, (red) velocities,

experimental (a) and numerical (b) along the line orthogonal to the line of vibration. Amplitude and

normalized data are shown.

It is evident that the SH0 mode has been excited with higher mode purity on the direction of

interest, and no spurious mode was evident: thus, the transducer along the orthogonal direction

follows the idealized pattern of the in-plane point source, and it can be assumed that the surface of the

transducer is vibrating uniformly along the direction of vibration. Any existing out-of-plane vibration

would then be buried under the noise-level, therefore the interpretation of received signals from defects

would be improved if the Configuration B is considered.

It has also been proven that both excitation area of the transducer and geometry of the backing

mass influences the excitation of undesired modes: both those factors should then be taken into

consideration for an industrial development of the prototype. The diminution of the amplitude

indicated by the experimental results need further investigation in the joining technology between the

elements constituting the transducer.
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5. Conclusions

The full assembly of a generic thickness-shear transducer has been modelled with finite element

analysis to characterize its ultrasonic output for plate-like structures. The model was validated against

work present in the literature and against an experimental validation with the 3D scanning laser

Doppler Vibrometer. The results for the Lamb mode have shown no inconsistencies with previous

results and with the experimental validation. However, both the numerical and experimental validation

has shown that on the direction perpendicular to the axis of vibration has an out-of-plane component

which corresponds to the A0 mode. Such mode is unexpected and decrease signal to noise ratio of an

inspection and complicates the signal interpretation and processing. Moreover, it has been shown that

the transducer is not only vibrating in plane, but an out-of-plane vibration is also present, which is

generating an omnidirectional A0 mode. Such a mode does not appear in the point source model,

which then should be discarded as approximation, since it fails to evaluate the mode purity of the

shear horizontal mode.

An experimental and numerical study was conducted to reduce this effect and it has been

proposed to remove the wrap-around electrode exciting the piezoelectric element and to extend

the actuation length from 10 to 13 mm. This proposed change followed some indications in the

literature which suggests inconsistencies in the vibration pattern when a wrapped around electrode

is present [19,20]. The Configuration A has then been modified and at first studying numerically

(Configuration A’), showing a potential improvement exists when the actuation length is increased.

The indication from the numerical simulation have then indicated the possible areas for improvement,

exploited to create a prototype (Configuration B): the promising result the prototype can then be further

used as a benchmark to optimize arrays of transducers, miniaturize the transducers as suggested by

Marques [22] and study the effect of the coupling force on a more regular geometry.
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