
This is a repository copy of Order-Preserving Encryption Using Approximate Common
Divisors.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/151516/

Version: Accepted Version

Article:

Dyer, J orcid.org/0000-0001-5811-5263, Dyer, M and Djemame, K (2019)
Order-Preserving Encryption Using Approximate Common Divisors. Journal of Information
Security and Applications, 49. ARTN: 102391. ISSN 2214-2126

https://doi.org/10.1016/j.jisa.2019.102391

© 2019 Elsevier Ltd. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Order-Preserving Encryption Using Approximate

Common Divisors⋆

James Dyera, Martin Dyerb, Karim Djemameb

aDepartment of Computer Science, University of Huddersfield, Huddersfield, HD1 3DH, UK.
bSchool of Computing, University of Leeds, Leeds, LS2 9JT, UK.

Abstract

Order-preservation is a highly desirable property for encrypted databases as
it allows range queries over ciphertexts. Order-preserving encryption (OPE)
is used in the encrypted database systems CryptDB and Cipherbase. The
former has been adopted by several commercial organisations and the latter was
developed as an extension of Microsoft’s SQLServer. We present two novel, but
simple, randomised OPE schemes based on the general approximate common
divisor problem (GACDP) and decisional polynomial approximate common divisor
problem (DPolyACDP) respectively. These appear to be the first OPE schemes
to be based on a computational hardness primitive, rather than a security game.
Our GACDP based scheme is very efficient, requiring only O(1) arithmetic
operations for encryption and decryption. Our DPolyACDP based scheme is
similarly efficient. We show that these schemes have near optimal information
leakage. We demonstrate how our OPE schemes can be integrated into a secure
distributed computing system which computes over encrypted data. We report
on an extensive evaluation of our GACDP-based algorithms in such a scenario, a
MapReduce computation over encrypted data. The results clearly demonstrate
extremely favourable execution times in comparison with existing OPE schemes.

Keywords: order-preserving encryption, secure distributed computing,
symmetric cipher, approximate common divisors

1. Introduction

Outsourcing computation has become increasingly important to business,
government, and academia. This computation is typically performed in distrib-
uted computing platforms such as clouds, grids, or high-performance computing

⋆A preliminary version [30] of this paper was presented at DPM 2017. This work is
supported in part by the European Commission under H2020-ICT-20152 contract 687584 –
Transparent heterogeneous hardware Architecture deployment for eNergy Gain in Operation
(TANGO) project [26] – and by a Microsoft Azure for Research sponsorship.

Email addresses: j.e.dyer2@hud.ac.uk (James Dyer), m.e.dyer@leeds.ac.uk (Martin
Dyer), k.djemame@leeds.ac.uk (Karim Djemame)

(HPC) clusters. However, in some circumstances, data on which those computa-
tions are performed may be sensitive. Therefore, outsourced computation proves
problematic.

To address these problems, we require a means of secure computation in these
platforms. While cryptography can ensure privacy of data at rest or in transit,
commonly used ciphers, such as Advanced Encryption Standard (AES) [52], do
not allow computations to be meaningfully performed on ciphertexts. Therefore,
if our data was encrypted using such a cipher, it would have to be decrypted
before it could be computed upon. Obviously, once decrypted, the data is then
exposed. One proposal to this problem is hardware to allow secure computation,
such as Intel’s Software Guard Extensions (SGX) [33]. Using this hardware, data
can be decrypted and computed upon in a secure area of memory or a secure
processor. However, as it is hardware dependent, this may not be suitable for
some computing environments, particularly heterogeneous computing platforms.
Another proposal is that of secure multiparty computation (MPC) protocols.
These protocols allow multiple parties to engage in computation of a function
without gaining knowledge of any other party’s inputs. Great progress has been
made on practical implementations of MPC [42]. However, work on scalable MPC
has been slower, with many MPC schemes suffering from poor communication
and computation costs [60]. Practical scalable MPC protocols have relied on
specific hardware [7, 49]. Also proposed, is homomorphic encryption, where data
is encrypted and computation is performed on the encrypted data [59]. The data
is retrieved and decrypted. Because the encryption is homomorphic over the
operations performed by the outsourced computation, the decrypted result is the
same as that computed on the unencrypted data. This scheme has advantages
in that it is not hardware dependent, making it suitable for heteregeneous
distributed systems, and that the party responsible for computation only has
access to ciphertexts.

Fully homomorphic encryption has been proposed as a means of achieving this.
However, as currently proposed, it is not practical. FHE schemes compute over
arithmetic circuits [6] which are a space inefficient representation of computation.
In addition, the computation at each gate of a cicruit is performed on encryptions
of bits and the ciphertexts are typically large. Implementations of FHE have
been considerably slower than computation on plaintexts [3, 27, 65]. Therefore,
we believe that somewhat homomorphic encryption, which is homomorphic only
for certain inputs or operations, is only of current practical interest.

For sorting and comparison of data we require an encryption scheme that
supports homomorphic comparisons of ciphertexts. Order-preserving encryption
(OPE) is a recent field that supports just such a proposition. An OPE is defined
as an encryption scheme where, for plaintexts m1 and m2 and corresponding
ciphertexts c1 and c2,

1

m1 < m2 =⇒ c1 < c2

1This relationship is typically represented as m1 ≤ m2 =⇒ c1 ≤ c2. However, this seems
to introduce an insecurity, by permitting an equality test for plaintexts using two comparisons.

2

Order-preserving is a highly desirable property for encrypted databases as
it allows range queries over ciphertexts. OPE is used in CryptDB [55] and
Cipherbase [5]. CryptDB has been adopted by several commercial organisations
[57] and Cipherbase was developed as an extension of Microsoft’s SQLServer.
Additionally, OPE was investigated by Kerschbaum et al. [37, 38] for integration
in SAP.

Our contribution is two novel OPE schemes whose proof of security is based
on a computational hardness assumption rather than a security game. Our first
scheme is based on the general approximate common divisor problem (GACDP)
[34]. We have generalised this scheme to n-vectors. Our second scheme is
based on the related decisional polynomial approximate common divisor problem
(DPolyACDP) [20]. We believe that these are the first OPE systems whose
underlying security is based on a computationally hard problem. Furthermore,
our schemes are very efficient. The GACDP-based system only requires O(1)
arithmetic operations for encryption and decryption. Our vector and polynomial
based schemes are similarly efficient. This computational efficiency makes our
schemes ideally suited for the application context outlined in section 2.

In section 2 of this paper, we describe our usage scenario. In section 3 we
discuss related work. In section 4, we present our OPE scheme and a vector-based
variant. In section 5, we describe an alternate variant based on DPolyACDP.
In section 6, we provide the generic version of Boldyreva et al.’s algorithm and
the Beta distribution approximation used in our experiments. In section 7, we
discuss various leakage abuse attacks on OPE, particularly with reference to
our own schemes. In section 8, we discuss the results of experiments on our
GACD-based OPE scheme. Finally, in section 9 we conclude the paper.

2. Background

2.1. Notation

The following notation is used throughout this paper:
x←$S represents a value x chosen uniformly at random from the discrete

set S.
KGen : S → K denotes the key generation function operating on the security

parameter space S and whose range is the secret key space K.
Enc : M× K → C denotes the symmetric encryption function operating

on the plaintext spaceM and the secret key space K and whose range is the
ciphertext space C.

Dec : C × K → M denotes the symmetric decryption function operating
on the ciphertext space C and the secret key space K and whose range is the
plaintext spaceM.

m,m1,m2, . . . denote plaintext values. Similarly, c, c1, c2, . . . denote cipher-
text values.

[x, y] denotes the integers between x and y inclusive.
(x, y) denotes the integers between x and y exclusive.
[x, y) denotes [x, y] \ {y}.

3

Figure 1: Scenario

Encrypt /

Decrypt Compute
Plaintext Ciphertext

Upload/Download

R[x, y) denotes the real numbers in the interval [x, y).
Z[x] denotes the set of polynomials with integer coefficients.
~v denotes a vector.
r denotes a random variable.

2.2. Scenario

Our OPE system is intended to be employed as part of a system for single-
party secure computation in the outsourced distributed computing environment.
In this system, a secure client encrypts data and then outsources computation on
the encrypted data to the distributed computing environment. Then computation
is performed homomorphically on the ciphertexts (see Figure 1). The results of
the computation are retrieved by the secure client and decrypted. We intend
that our OPE scheme will support sorting and comparison of encrypted data.

2.3. Formal Model of Scenario

We have n integer inputs, m1,m2, . . . ,mn, where mi ∈ M = [0,M] and
n≪M .

We wish to be able to compare and sort the inputs. A secure client A selects
an instance Enc(K, ·) of the OPE algorithm Enc using the secret parameter set K.
A encrypts the n inputs by computing ci = Enc(K,mi), for i ∈ [1, n]. A uploads
c1, c2, . . . , cn to the distributed computing environment. These encryptions do
not all need to be uploaded at the same time but n is a bound on the total
number of inputs. The computing environment conducts comparisons on the
ci, i ∈ [1, n]. Since Enc is an OPE, the mi will also be correctly sorted. A can
retrieve some or all of the ci from the computing platform and decrypt each
ciphertext ci by computing mi = Dec(K, ci).

A snooper is only able to inspect c1, c2, . . . , cn in the distributed computing
platform. The snooper may compute additional functions on the c1, c2, . . . , cn
as part of a cryptanalytic attack, but cannot make new encryptions.

2.4. Observations from Scenario

From our scenario we observe that we do not require public-key encryption
as we do not intend another party to encrypt data. Symmetric encryption will
suffice. Furthermore, there is no key escrow or distribution problem, as only
ciphertexts are distributed to the computing environment.

4

Suppose that an attacker interactively submits plaintexts to the data owner
to be encrypted so that they are able to view the ciphertexts stored in the cloud.
This would make the data owner an encryption oracle [8, 9]. However, in our
scenario, the source data set is static, and an attacker is not able to interactively
submit plaintexts to the data owner. Furthermore, even if an attacker submits
a plaintext to the data owner for inclusion in the source data set, no data is
uploaded to the cloud that is not used in the computation. Additionally, no data
is uploaded unencrypted. This prevents an attacker linking submitted plaintexts
to their encryptions in the cloud. Additionally, since the number of plaintexts
is much smaller than the size of the plaintext space, an attacker cannot use
the ordering on the ciphertexts to determine which ciphertext corresponds to
his submitted ciphertext because they do not have knowledge of the ordering
of the plaintexts. Therefore, chosen plaintext attacks (CPA) are infeasible in
this scenario. Similarly, as the data owner is the only party that can view the
decrypted data, chosen ciphertext attacks (CCA) are also infeasible and there is
no analogue of a decryption oracle. Furthermore, fields that are of low entropy
are not encrypted using OPE to prevent frequency attacks (see section 7. Any
cryptological attacks will have to be performed on ciphertexts only.

We also note that, for the reasons given above, a known plaintext attack (KPA)
is infeasible as an attacker is unable to link known plaintexts to corresponding
ciphertext.

3. Related Work

Prior to Boldyreva et al. [13], OPE had been investigated by Agrawal
et al. [2] and others (see [2] for earlier references). However, it wasn’t until
Boldyreva et al. that it was claimed that an OPE scheme was provably secure.
Boldyreva et al.’s algorithm constructs a random order-preserving function
by mapping M consecutive integers in a domain to integers in a much larger
range [1, N], by recursively dividing the range into M monotonically increasing
subranges. Each integer is assigned a pseudorandom value in its subrange. The
algorithm recursively bisects the range, at each recursion sampling from the
domain until it hits the input plaintext value. The algorithm is designed this
way because Boldyreva et al. wish to sample uniformly from the range. This
would require sampling from the negative hypergeometric distribution, for which
no efficient exact algorithm is known. Therefore they sample the domain from
the hypergeometric instead. As a result, each encryption requires at least logN
recursions. Furthermore, so that a value can be decrypted, the pseudorandom
values generated must be reconstructible. Therefore, for each instance of the
algorithm, a plaintext will always encrypt to the same ciphertext. This implies
that the encryption of low entropy data might be very easy to break by a
“guessing” attack (see section 8). For our OPE scheme, multiple encryptions of
a plaintext will produce differing ciphertexts. In [13], the authors claim that
N = 2M , a claim repeated in [18], although [14] suggests N ≥ 7M . We use
N ≥M2 in our implementations of Boldyreva et al.’s algorithm, since this has
the advantage that the scheme can be approximated closely by a much simplified

5

computation, as we discuss in section 6.2. The cost is only a doubling of the
ciphertext size. However both [13, 14] take no account of n, the number of
values to be encrypted. As in our scheme, the scheme should have n ≪ M
to avoid the sorting attack of [51]. If c = f(m) is Boldyreva et al.’s OPE, it
is straightforward to show that we can estimate f−1(c) by m̂ = Mc/N , with
standard deviation approximately

√

2m̂(1− m̂/M). For this reason, Boldyreva
et al.’s scheme always leaks about half the plaintext bits.

Yum et al. [69] extend Boldyreva et al.’s work to non-uniformly distributed
plaintexts. This can improve the situation in the event that the client knows the
distribution of plaintexts. This “flattening” idea already appears in [2]. In 7.2
we discuss a similar idea.

In [14], Boldyreva et al. suggest an extension to their original scheme, modular
order-preserving encryption (MOPE), by simply transforming the plaintext before
encryption by adding a term modulo M . The idea is to cope with some of the
problems discussed above, but any additional security arises only from this term
being unknown. Note also that this construction again always produces the same
ciphertext value for each plaintext.

Teranishi et al.[63] devise a new OPE scheme that satisfies their own security
model. However, their algorithms are less efficient, being linear in the size of the
message space. Furthermore, like Boldyreva et al., a plaintext always encrypts
to the same ciphertext value.

Krendelev et al. [41] devise a an OPE scheme based on a coding of an integer
as the real number

∑

i bi2
−i where bi is the ith bit of the integer. The algorithm

to encode the integer is O(n) where n is the number of bits in the integer. Using
this encoding, they construct a matrix-based OPE scheme where a plaintext is
encrypted as a tuple (r, k, t). Each element of the tuple is the sum of elements
from a matrix derived from the private key matrices σ and A. Their algorithms
are especially expensive, as they require computation of powers of the matrix A.
Furthermore, each plaintext value always encrypts to the same ciphertext value.

Khadem et al. [35] propose a scheme to encrypt equal plaintext values to
differing values. Their scheme is similar to Boldyreva et al. where a plaintext is
mapped to a pseudorandom value in a subrange. However, this scheme relies
on the domain being a set of consecutive integers for decryption. Our scheme
allows for non-consecutive integers. This means that our scheme can support
updates without worrying about overlapping “buckets” as Khadem et al.

Liu et al. [47] addresses frequency of plaintext values by mapping the plaintext
value to a value in an extended message space and splitting the message and
ciphertext spaces nonlinearly. As in our scheme, decryption is a simple division.
However, the ciphertext interval must first be located for a given ciphertext
which is Ω(log n) when n is the total number of intervals.

Liu and Wang [46] describe a system similar to ours where random “noise”
is added to a linear transformation of the plaintext. However, in their examples,
the parameters and noise used are real numbers. Unlike our work, the security
of such a scheme is unclear.

Khoury et al. [39] describe an OPE scheme where the ciphertext is an integer
multiple of the logarithm of the plaintext. The security of such a scheme is

6

unclear as no security analysis is provided.
In [56], Popa et al. discuss a stateful interactive protocol for constructing a

binary index of ciphertexts. Although this protocol guarantees ideal security,
O(n log n) bit leakage, in that it only reveals the ordering, it is not an OPE. The
ciphertexts do not preserve the ordering of the plaintexts, rather the protocol
requires a secure client to decrypt the ciphertexts, compare the plaintexts, and
return the ordering. It is essentially equivalent to sorting the plaintexts on
the secure client and then encrypting them. Popa et al.’s protocol has a high
communication cost: Ω(n log n). This may be suitable for a database server
where the comparisons may be made in a secure processing unit with fast bus
communication. However, it is unsuitable for a large scale distributed system
where the cost of communication will become prohibitive. Kerschbaum and
Schroepfer [38] improved the communication cost of Popa et al.’s protocol to
Ω(n) under the assumption that the input is uniformly distributed. However,
this is still onerous for distributed systems. Kerschbaum [37] further extends
this protocol to hide the frequency of plaintexts. Boelter et al.[12] extend Popa
et al.’s idea by using “garbled circuits” to obfuscate comparisons. However, the
circuits can only be used once, so their system is one-time use.

In [58], Quan et al. describe a stateful deterministic mutable OPE scheme
that supports top-k queries while minimising bit leakage from ciphertexts not
in the top-k. Kim et al. [40] also describe a stateful deterministic OPE using a
similar methodology to Boldyreva et al. [13]. Here, a ciphertext is composed of
two parts: an order-preserving encoding and an encryption using a symmetric
key cipher.

Yang et al [68] detail a semi-order preserving scheme. In this scheme, multiple
plaintexts may be mapped to the same ciphertext, so a state is maintained to
allow decryption.

Also of note is order-revealing encryption (ORE), a generalisation of OPE
introduced by Boneh et al. [15], that only reveals the order of ciphertexts. An
ORE is a scheme (C,E,D) where C is a comparator function that takes two
ciphertext inputs and outputs ‘<’ or ‘≥’, and E and D are encryption and
decryption functions. This attempts to replace the secure client’s responsibility
for plaintext comparisons in Popa’s scheme with an exposed function acting on
the ciphertexts.

Boneh et al.’s construction uses multilinear maps. However, as stated in
Chenette et al. [18], “The main drawback of the Boneh et al. ORE construction
is that it relies on complicated tools and strong assumptions on these tools, and
as such, is currently impractical to implement”. In addition, recent work [22]
on recovering the secret parameters of CLT2013 has indicated that encryption
schemes based on multilinear maps may not be secure.

Chenette et al. offer a more practical construction, with weaker claims to
provable security. However, since it encrypts the plaintexts bit-wise, it requires
a number of applications of a pseudorandom function f linear in the bit size of
the plaintext to encrypt an integer. The security and efficiency of this scheme
depends on which pseudorandom function f is chosen.

Lewi et al. [44] devise an ORE scheme where there are two modes of

7

encryption: left and right. The left encryption consists of a permutation of the
domain and a key generated by hashing the permuted plaintext value. The right
ciphertext consists of encryptions of the comparison with every other value in the
domain. It is a tuple of size d+ 1 where d is the size of the domain. Lewi et al.
then extend this scheme to domains of size dn. This results in right ciphertext
tuples of size dn+ 1. Our experimental results compare favourably with theirs,
largely because the ciphertext sizes of Lewi et al.’s scheme are much larger.

The security of these ORE schemes is proven under a scenario similar to IND-
OCPA [13] (see section 4.2.2). However, under realistic assumptions on what an
adversary might do, these ORE schemes seem to have little security advantage
over OPE schemes. For example, in O(n log n) comparisons an adversary can
obtain a total ordering of the ciphertexts, and, hence the total ordering of the
plaintexts. A disadvantage of ORE schemes are that they permit an equality
test on ciphertexts [15, p.2] by using two comparisons. This could be used to
aid a guessing attack on low-entropy plaintexts, e.g. [51]. A randomised OPE
scheme, like ours, does not permit this. On the other hand, the information
leakage of the ORE schemes so far proposed appears to be near-optimal.

To summarise, the OPE schemes presented in this paper differ from and
improve on related work in four ways. First, they are, as far as we are aware, the
only OPE schemes (as opposed to ORE) to be based on computationally hard
problems (GACDP and DPolyACDP). Second, our schemes are randomised,
rather than deterministic, so that ciphertexts of the same plaintext are different
and randomly ordered. Third, our GACD based scheme is extremely efficient:
only requiring O(1) arithmetic operations to encrypt and decrypt. Likewise, our
vector and polynomial based schemes are also efficient, although requiring more
computation than the GACD based scheme. Finally, our schemes have near
optimal bit leakage, as is the case for the ORE schemes discussed above. Popa
et al.’s protocol [14], and similar work [37], have optimal bit leakage but require
at least O(n) communications.

[11, 28, 32, 51] describe some leakage-abuse attacks on OPE and ORE systems.
We discuss such attacks in section 7.

4. An OPE scheme using Integer Approximate Common Divisors

Our OPE scheme is the symmetric encryption system (KGen, Enc, Dec). The
message space,M, is [0,M], and the ciphertext space, C, is [0, N], where N > M .
We have plaintexts mi ∈M, i ∈ [1, n] such that 0 < m1 ≤ m2 ≤ · · · ≤ mn ≤M .

The scheme is conceptually simple and nondeterministic. To encrypt, we
multiply a plaintext, m, by a large integer k, common to all ciphertexts i.e.
the secret key, and then add a suitably large random integer r, unique to each
ciphertext, to this product, where r < k (see sections 4.0.1 and 4.1 for the bounds
on r). The set of ciphertexts then forms an instance of the GACD problem
(see section 4.1). To decrypt, we simply divide the ciphertext by k, ignoring
any remainder. To see that the ciphertexts preserve the ordering of plaintexts,
suppose we have two plaintexts m1 and m2, where m1 < m2. m1 is encrypted
as c1 = km1 + r1, m2 is encrypted as c2 = km2 + r2. To preserve the ordering

8

we require c2 − c1 > 0, i.e. k(m2 −m1) > (r1 − r2). This follows, since the left
hand side of the inequality is at least k, whereas the right hand side is at most
k−1 (actually, it will be at most ⌊k−k3/4⌋, which is still less than k). We should
note that if m1 = m2, i.e. we are encrypting a plaintext twice, then the order of
the encryptions is random, since Pr(r2 > r1) ≈ 1

2 − 1/k ≈ 1
2 , since k ≫ 1.

4.0.1. Key Generation.

Both the security parameter space S and the secret key space K are the
set of positive integers. Given a security parameter λ ∈ S, with λ > 8/3 lgM ,
Algorithm 1 randomly chooses an integer k ∈ [2λ, 2λ+1) as the secret key, sk. So
k is a (λ+ 1)-bit integer such that k > M 8/3 (see section 4.1). Note that k does
not necessarily need to be prime.

Algorithm 1: Key Generation Algorithm KGen

Input :λ ∈ S, λ > 8/3 lgM
Output : k ∈ K

1 k←$ [2λ, 2λ+1);
2 return k;

4.0.2. Encryption.

A plaintext mi ∈M is encrypted by Algorithm 2.

Algorithm 2: Encryption Algorithm Enc

Input :mi ∈M
Input : k ∈ K
Output : ci ∈ C

1 ri←$ (k3/4, k − k3/4);
2 ci ← mik + ri;
3 return ci;

4.0.3. Decryption.

A ciphertext ci ∈ C is decrypted by Algorithm 3

Algorithm 3: Decryption Algorithm Dec

Input : ci ∈ C
Input : k ∈ K
Output :mi ∈M

1 mi ← ⌊ci/k⌋;
2 return mi;

9

4.1. Security of the Scheme

Security of our scheme is given by the general approximate common divisor
problem (GACDP), which is believed to be hard. It can be formulated [17, 23]
as:

Definition 1 (General approximate common divisor problem). Suppose
we have n integer inputs ci of the form ci = kmi + ri, i ∈ [1, n], where k is
an unknown constant integer and mi and ri are unknown integers. We have a
bound B such that |ri| < B for all i. Under what conditions on mi and ri, and
the bound B, can an algorithm be found that can uniquely determine k in a
time which is polynomial in the total bit length of the numbers involved?

GACDP and partial approximate common divisor problem (PACDP), its
close relative, are used as the basis of several cryptosystems, e.g. [24, 29, 64].
GACDP has been shown to be as hard as the “learning with errors” (LWE)
problem [19], which is the basis of several post-quantum cryptosystems (examples
include LIMA [61] and Lizard [21]). Solving the GACDP is clearly equivalent
to breaking our system. To make the GACDP instances hard, we need k ≫M
(see below). Furthermore, we need the mi to have sufficient entropy to negate
a simple “guessing” attack [48]. However, note that the model in [48] assumes
that we are able to verify when a guess is correct, which does not seem to be
the case here.

Howgrave-Graham [34] studied two attacks against GACDP, to find divisors
d of a0 + x0 and b0 + y0, given inputs a0, b0 of similar size, with a0 < b0. The
quantities x0, y0 are the “offsets”. The better attack in [34], GACD L, succeeds

when |x0|, |y0| < X = bβ0

0 , and the divisor d ≥ bα0

0 and

β0 = 1− 1
2α0 −

√

1− α0 − 1
2α

2
0 − ǫ.

where ǫ > 0 is a (small) constant, such that 1/ǫ governs the number of possible
divisors which may be output. We will take ǫ = 0. This is the worst case for
Howgrave-Graham’s algorithm, since there is no bound on the number of divisors
which might be output.

Note that β0 < α0, since otherwise
√

1− α0 − 1
2α

2
0 ≤ 1− 3

2α0. This can only

be satisfied if α0 ≤ 2/3. But then squaring both sizes of the inequality implies
α0 ≥ 8/11 > 2/3, contradicting α0 ≤ 2/3.

Suppose we take α0 = 8/11. Then, to foil this attack, we require β0 ≥ 6/11.
For our system we have, b0 − a0 = maxmi −minmi =M .2 To ensure that the

common divisor k will not be found we require bα0

0 ≥ k, so we will take k = b
8/11
0 .

Since b0 ∼ Mk, this then implies b0 = M 11/3. Thus the ciphertexts will then
have about 11/3 times as many bits as the plaintexts. Now GACD L could only

succeed for offsets less than bβ0

0 = b
6/11
0 = k3/4. Thus, we choose our random

offsets in the range (k3/4, k − k3/4).

2Note this is our M , not Howgrave-Graham’s.

10

Cohn and Heninger [23] give an extension of Howgrave-Graham’s algorithm
to find the approximate divisor of m integers, where m > 2. Unfortunately, their
algorithm is exponential in m in the worst case, though they say that it behaves
better in practice. On the other hand, Chen and Nguyen [16, Appendix A] claim
that Cohn and Heninger’s algorithm is worse than brute force in some cases. In
our case, the calculations in [23] do not seem to imply better bounds than those
derived above.

We note also that the attack of Chen and Nguyen [17] is not relevant to our
system, since it requires smaller offsets, of size O(

√
k), than those we use.

For a survey and evaluation of the above and other attacks on GACDP, see
Galbraith et al. [31].

4.2. Security Models

It is obvious that any OPE cannot satisfy indistinguishability under CPA
(IND-CPA) as a result of the ordering on ciphertexts. Furthermore, it can be
argued that any notion of indistinguishability under CPA is not relevant to OPE
in practice (see section 4.2.2). Various attempts have been made by Boldyreva
and others [13, 14, 63, 67] to provide such indistinguishability notions. However,
the security models impose practically unrealistic restrictions on an adversary.
We discuss Boldyreva et al.’s notion of indistinguishability under ordered CPA
(IND-OCPA) in section 4.2.2. However, while our usage scenario does not permit
CPA and KPA, we do analyse our scheme according to Boldyreva et al.’s window
one-wayness security model (see section 4.2.3), which we regard as reasonable.
It should also be pointed out that satisfying an indistinguishability criterion
does not guarantee that a cryptosystem is unbreakable, and neither does failure
to satisfy it guarantee that the system is breakable.

4.2.1. One-Wayness.

A one-way function is a function which is easy to compute but it is hard
to compute the inverse function on a random input. The one-wayness of the
function c(m) = km+ r used by the scheme clearly follows from the assumed
hardness of the GACD problem, since we avoid the known polynomial-time
solvable cases.

4.2.2. IND-OCPA

The model in [13, p.6] and [44, p.20] is as follows:

Definition 2 (Indistinguishability under ordered CPA (IND-OCPA)).
Given two equal-length sequences of plaintexts (m1

0 . . .m
q
0) and (m1

1 . . .m
q
1),

where the mj
b (b ∈ [0, 1], j ∈ [1, q]) are distinct,3 an adversary is allowed to

present two plaintexts to a left-or-right oracle [8], LR(m0,m1,b), which returns
the encryption of mb. The adversary is only allowed to make queries to the

3 [13, p.6] and [44, p.20] do not clearly state this assumption but it appears that all plaintext
values used must be distinct. This assumption clearly does not weaken the model.

11

oracle which satisfy mi
0 < mj

0 iff mi
1 < mj

1 for 1 ≤ i, j ≤ q. The adversary wins
if it can distinguish the left and right orderings with probability significantly
better than 1/2.

However, Boldyreva et al. [13, p.5] note, concerning chosen plaintext attacks:
“in the symmetric-key setting a real-life adversary cannot simply encrypt messages
itself, so such an attack is unlikely to be feasible”. Further, they prove that no
OPE scheme with a polynomial size message space can satisfy IND-OCPA. Lewi
et al. [44] strengthen this result under certain assumptions.

The IND-OCPA model seems inherently rather impractical as a result of
the requirement that an attacker makes queries to the oracle according to the
condition mi

0 < mj
0 iff mi

1 < mj
1 for 1 ≤ i, j ≤ q. A realistic analogue of an

encryption oracle could not place such a restriction on an attacker. Additionally,
an adversary with an encryption oracle could decrypt any ciphertext by bisection
using lgM comparisons, where M is the size of the message space. Furthermore,
Xiao and Yen [66] construct an OPE for the domain [1,2] and prove that it is
IND-OCPA secure. However, this system is trivially breakable using a “sorting”
attack [51].

For these reasons, we do not consider security models assuming CPA to be
relevant to OPE.

4.2.3. Window One-Wayness.

We may further analyse our scheme under the same model as in [14], which
was called window one-wayness. The scenario is as follows.

Definition 3 (Window one-wayness). An adversary is given the encryptions
c1 ≤ c2 ≤ · · · ≤ cn of a sample of n plaintexts m1 ≤ m2 ≤ . . . ≤ mn, chosen
uniformly and independently at random from the plaintext space [0,M). The
adversary is also given the encryption c of a challenge plaintext m, and must
return an estimate m̂ of m and a bound r, such that m ∈ (m̂− r, m̂+ r) with
probability greater than 1/2, say. How small can r be so that the adversary can
meet the challenge?

This model seems eminently reasonable, except for the assumption that the
plaintexts are distributed uniformly. However, as we show in section 7.2, this
assumption can be weakened in some cases for our scheme.

Since the mi are chosen uniformly at random, a random ciphertext satisfies,
for c ∈ [0, kM),

Pr(c = c) = Pr(km+ r = km+ r) = Pr(m = m) Pr(r = r) =
1

M

1

k
=

1

Mk
,

where m←$ [0,M), r←$ [0, k). Thus c is uniform on [0, kM). Note that this is
only approximately true, since we choose r uniformly from [k3/4, k−k3/4]. However,
the total variation distance between these distributions is 2Mk3/4/Mk = 2/k1/4.
The difference between probabilities calculated using the two distributions is
negligible, so we will assume the uniform distribution.

By assumption, the adversary cannot determine k by any polynomial time
computation. So the adversary can only estimate k from the sample. Now, in a

12

uniformly chosen sample c1 ≤ c2 ≤ · · · ≤ cn from [0, kM), the sample maximum
cn is a sufficient statistic for the range kM , so all information about k is captured
by cn. So we may estimate k by k̂ = cn/M . This is the maximum likelihood
estimate, and is consistent but not unbiased. The minimum variance unbiased
estimate is (n+ 1)k̂/n, but using this does not improve the analysis, since the
bias k/(n+1) is of the same order as the estimation error, as we now prove. For
any 0 ≤ ε ≤ 1,

Pr
(

k̂ ∈ k(1± ε)
)

≤ Pr
(

cn ≥ kM(1− ε)
)

= 1− (1− ε)n
{

≤ nε < 1/2 if ε < 1/(2n);
≥ 1− e−nε ≥ 1/2 if ε ≥ ln 2/n.

Now, if c = mk + r, we can estimate m by m̂ = c/k̂ ≈ mk/k̂. Then
Pr

(

m ∈ m̂(1± ε)
)

≈ Pr
(

m ∈ mk/k̂(1± ε)
)

= Pr
(

k̂ ∈ k(1± ε)
)

< 1/2,

if ε < 1/(2n). Thus, if r ≤ m/2n, Pr(m ∈ m̂±r) < 1/2. Similarly, if r ≥ m lg 2/n,
Pr(m ∈ m̂± r) ≥ 1/2. Thus the adversary cannot succeed if r ≤ m/2n, but can
if r ≥ m lg 2/n.

It follows that only lgm− lg(m/n) +O(1) = lg n+O(1) bits of m are leaked
by the system. However, lg n bits are leaked by inserting c into the sequence
c1 ≤ c2 ≤ · · · ≤ cn, so the leakage is close to minimal. By contrast the scheme
of [13] leaks 1/2 lgm+O(1) bits, independently of n. Therefore, by this criterion,
the scheme given here is superior to that of [13] for all n≪

√
M . Note that we

have not assumed that m is chosen uniformly from [0,M), but the leakage of
the random sequence c1 ≤ c2 ≤ · · · ≤ cn is clearly n lg n−O(n) of the M lgM
plaintext bits. This reveals little more than the n lg n bits already revealed by
the known order m1 ≤ m2 ≤ · · · ≤ mn.

4.3. A Vector-based Generalisation of the Scheme

We now detail an obvious generalisation of the above OPE scheme to n-
vectors, for any ordering on vectors that respects the ordering on elements. We
select a large integer k as the secret key using the key generation algorithm 1 as
in the previous scheme. We encrypt a plaintext encoded as an n-vector ~m (see
Algorithm 4) by multiplying all elements of ~m by the secret integer k and then
adding a random integer in (k3/4, k − k3/4) to each element. Note that in this
scheme, the elements of the vector ciphertexts form an instance of the GACD
problem.

Algorithm 4: Encryption Algorithm Enc

Input : ~m ∈ Z
n

Input : k ∈ Z

Output :~c ∈ Z
n

1 ~r←$ (k3/4, k − k3/4)n

2 ~c← k~m+ ~r
3 return ~c

13

We decrypt by dividing each element of the ciphertext by k, ignoring the
remainder, as shown in Algorithm 5 where ⌊·⌋ means round down each element
of the vector.

Algorithm 5: Decryption Algorithm Dec

Input :~c ∈ Z
n

Input : k ∈ Z

Output : ~m ∈ Z
n

1 ~m←
⌊

1
k~c
⌋

2 return ~m

Security

As this system merely extends the earlier scheme to n-vectors, the analysis
of 4.2 also applies to this vector-based scheme.

5. An OPE scheme using Polynomial Approximate Common Divisors

We now extend our approximate common divisor (ACD) approach to an OPE
over polynomials which preserves the lexicographical ordering on polynomials.
We can see this as a strengthening of the vector-based scheme in section 4.3,
if the ordering on vectors is lexicographical. This alternate scheme is based
on the related decisional polynomial approximate common divisor (DPolyACD)
problem introduced in [20]. We redefine the problem here for clarity.

Definition 4 (Decisional polynomial ACD problem). Given a degree d
polynomial p(x), we have n approximate polynomial multiples of the form
p(x)q(x) + r(x) where r(x) is a degree d− 1 polynomial and q(x) is a random
polynomial from Z[x]. Can we determine p(x) in a time polynomial in d, n, and
the size of the coefficients of the polynomials involved?

We use this problem as the basis of our encryption scheme in the obvious
way: we encrypt a plaintext encoded as a polynomial m(x) as

k(x)m(x) + r(x)

where k(x) is a degree d polynomial in Z[x] and r(x) is a degree d−1 polynomial
in Z[x]. We decrypt by dividing the ciphertext polynomial c(x) by k(x) obtaining
the quotient.

This construction preserves lexicographical ordering on polynomials. Let
m1(x),m2(x) be polynomials of degree at most n such that

m1(x) =

n
∑

j=0

m1jx
j , m2(x) =

n
∑

j=0

m2jx
j .

14

We have from our lexicographic ordering that m1(x) > m2(x) ⇐⇒ for some
l ≤ n,

m1j = m2j (j > l)

m1l > m2l.

Let

∆(x) = m1(x)−m2(x) =
n
∑

j=0

δjx
j .

Then, because m1l > m2l, we have that the leading coefficient of ∆(x), δl > 0.

Lemma 1. Let k(x) =
d
∑

i=0

kjx
j have leading coefficient kd > 0. Then

k(x)m1(x) > k(x)m2(x) ⇐⇒ m1(x) > m2(x).

Proof. m1(x) > m2(x) ⇐⇒ ∆(x) = m1(x) −m2(x) has leading coefficient
δl > 0. Thus k(x)∆(x) has leading coefficient kdδl > 0. Therefore, k(x)m1(x)−
k(x)m2(x) has leading coefficient kdδl > 0, i.e. k(x)m1(x) > k(x)m2(x).

It is easy to see that adding r(x) to the product of k(x) and m(x) does
not affect the ordering. Suppose we have degree d − 1 polynomials r1(x) and
r2(x). We can see that r1(x)− r2(x) also has degree at most d− 1. Therefore
k(x)m1(x) + r1(x) − (k(x)m2(x) + r2(x)) = k(x)∆(x) + (r1(x) − r2(x)) still
has leading coefficient kdδl because x

d+l is a higher order term than xd−1 for
l ≥ 0. Note that if l = 0, i.e. m1(x) and m2(x) are identical, then the ciphertext
ordering is random, as with the linear scheme presented in section 4.

This scheme could be used for very large arbitrary precision integer plaintexts.
We can represent a large integer as the polynomial

∑n
i=0 dib

i, where b is the
radix and the di are the digits. Also, it should be noted that the polynomial
multiplication required by our scheme can be done using fast Fourier transform
if the degrees of the plaintext and key polynomials are large.

However, there are problems with the basic scheme presented above which
are addressed in section 5.1. We present a high level overview here.

Our error polynomial r(x) has degree less than the degree of the product
k(x)m(x). This means that the leading term of the ciphertext is kdmnx

n+d.
Given that kdmn will not typically be a hard to factor integer, leaving this term
in the ciphertext polynomial allows an attacker to factor its coefficient to obtain
kd and mn. If there are several ciphertexts then it becomes easier to recover kd
by computing the gcd of the leading terms of each ciphertext. Therefore, we
remove this highest order term from the ciphertext. In doing so, this leaves a
problem of preserving the ordering on polynomials. Therefore, we set kd = 1 and
we re-introduce the leading coefficient of m(x),mn, to the ciphertext by adding
a (fixed) large multiple of mn, kmn, to the coefficient of the next degree n+d− 1
term. We choose k such that k ≫ mi(i ∈ [0, n]), where the mi are the coefficients
of the plaintext, and k ≫ kj(j ∈ [0, d]), where the kj are the coefficients of
the key polynomial. This large multiple ensures that the mn terms dominate
the ordering of the ciphertexts, since kmn ≫ mikj , ∀i, j. Furthermore, now the

15

coefficients of the second highest order term of the ciphertext polynomials form
an instance of the GACD problem ensuring that we do not forfeit security in
preserving the ordering.

5.1. OPE Scheme

We encode an n-vector message ~m ∈ Z
n
M as a polynomial m(x) where its

coefficients are the elements of ~m. We choose a large integer k and a degree d
polynomial k(x) ∈ Z[x] as the secret key as described in Algorithm 6.

Algorithm 6: Key Generation

Input: A security parameter, λ
Input: The degree of the key polynomial, d
Output: A secret key, (k1, k2(x))

1 k1←$ [2λ−1, 2λ)

2 k′(x)←$Z
d−1[x] // Degree d− 1 polynomial

3 k2(x)← xd + k′(x)
4 return (k1, k2(x))

We encrypt a plaintext using Algorithm 7. As described above, we remove
the leading term of the polynomial product of k(x) and m(x) from the ciphertext.
We also amend the coefficient of the next highest order term to preserve the
ordering of plaintexts.

Algorithm 7: Encryption

Input: A plaintext encoded as the polynomial m(x) =
n
∑

i=0

mix
i

Input: A secret key (k1, k2(x))
Output: A degree n+ d− 1 polynomial ciphertext c(x)

1 p(x) = mnx
n+d +

n+d−1
∑

i=0

pix
i ← k2(x)m(x)

2 p′(x)← (pn+d−1 + k1mn)x
n+d−1 +

n+d−2
∑

i=0

pix
i

3 r(x)←$Z
d−1[x] // Degree d− 1 polynomial

4 c(x)← p′(x) + r(x)
5 return c(x)

We decrypt using Algorithm 8. We denote returning only the quotient of
polynomial division as ⌊p(x)/q(x)⌋.

5.2. Security

The one-wayness of the system comes from the assumed hardness of the
DPolyACD problem.

16

Algorithm 8: Decryption

Input: A ciphertext c(x) =
n+d−1
∑

i=0

cix
i

Input: A secret key (k1, k2(x))

Output: A plaintext encoded as the polynomial m(x) =
n
∑

i=0

mix
i

1 mn ← ⌊cn+d−1/k1⌋

2 c′(x)← mnx
n+d + (cn+d−1 − k1mn)x

n+d−1 +
n+d−2
∑

i=0

cix
i

3 m(x)← ⌊c′(x)/k2(x)⌋
4 return m(x)

We also note that a ciphertext has n+2d+1 unknowns: the n+1 coefficients
of m(x), the d coefficients of k(x) (since we set the leading coefficient to 1), and
the d coefficients of r(x). However, we only have n + d linear equations, the
coefficients of the ciphertext. Each new ciphertext adds a further n + d + 1
unknowns: the n+1 coefficients of the plaintext polynomial and the d coefficients
of the random polynomial, r(x). Again this adds n+d linear equations, meaning
that we always have at least d more unknowns than equations. Furthermore,
encrypting the same value twice does not yield any additional information to an
attacker as the the second encryption only supplies d new equations, the lower
order terms that have terms in r(x) added to them, while adding a further d new
unknowns, the coefficients of r(x). Therefore, we still have more unknowns than
equations. This makes the system of equations insoluble without knowledge of
the coefficients of the secret polynomial k2(x). However, with the knowledge
of the secret polynomial k2(x), we have and n+ d linear equations and n+ d
unknowns ensuring it is possible to recover the plaintext from a ciphertext.

Like any OPE system, this system leaks information as a result of ordering.
As with the linear scheme detailed earlier the bit leakage is O(n log n) by a
similar proof.

6. Algorithms of Boldyreva type

We have chosen to compare our GACD-based scheme with that of Boldyreva
et al. [13], since it has been used in practical contexts by the academic community
[14, p.5], as well as in Popa et al.’s original version of CryptDB [55], which has
been used or adopted by several commercial organisations [57]. However, scant
computational experience with the scheme has been reported [55]. Therefore, we
believe it is of academic interest to report our experimental results with respect
to Boldyreva et al.’s scheme. We also discuss some simpler variants which have
better computational performance. These are compared computationally with
our scheme in section 8 below. The relative security of the schemes has been
discussed above. Our vector and polynomial based schemes (sections 4.3 and 5)

17

not not directly compare with [13], so we have not conducted our experiments
using these variants.

In this section we describe generic encryption and decryption algorithms
based on Boldyreva et al.’s algorithm [13], which sample from any distribution
and which bisect on the domain (section 6.1). We also present an approximation
of Boldyreva et al.’s algorithm which samples from the Beta distribution (section
6.2). The approximation and generic algorithms are used in our experimental
evaluation presented in section 8.

6.1. Generic Algorithms

Algorithm 9 below constructs a random order-preserving function f :M→ C,
where M = [0,M],M = 2r, and C = [1, N], N ≥ 22r, so that c = f(m) is the
ciphertext for m ∈ M. Algorithm 9 depends on a pseudorandom number
generator, P , and a deterministic seed function, S. Likewise, Algorithm 10
constructs the inverse function f−1 : C →M so that m = f−1(c).

Algorithm 9: Generic Boldyreva-type Encryption Algorithm

1 Function RecursiveEncrypt(a, b, f(a), f(b),m)

2 x← (a+ b)/2
3 y ← f(b)− f(a)
4 Initiate P with seed S(a, b, f(a), f(b))
5 Determine z ∈ [0, y] pseudorandomly, so that Pr(z /∈ [y/4, 3y/4]) is

negligible // The condition implies that y cannot become

smaller than 3N/4(1/4)r = 3N/4M2 = 3M/4, with high

probability.

6 f(x)← f(a) + z
7 if x = m then return f(x)
8 else if x > m then return RecursiveEncrypt(a, x, f(a), f(x),m)

9 else return RecursiveEncrypt(x, b, f(x), f(b),m)

10 Initiate P with a fixed seed S0

11 Choose f(0), f(M) pseudorandomly so that f(M)− f(0) > 3N/4
12 return RecursiveEncrypt(0,M, f(0), f(M),m)

6.2. An Approximation

We have a plaintext space, [1,M], and ciphertext space, [1, N]. Boldyreva et
al. use bijection between strictly increasing functions [1,M]→ [1, N] and subsets
of sizeM from [1, N], so there are

(

N
M

)

such functions. There is a similar bijection
between nondecreasing functions [1,M]→ [1, N] and multisets of size M from
[1, N], and there are NM/M ! such functions. If we sample n points from such a
function f at random, the probability that f(m1) = f(m2) for any m1 6= m2 is at
most

(

n
2

)

×1/N < n2/2N . We will assume that n≪
√
N , so n2/2N is negligible.

Hence we can use sampling either with or without replacement, whichever is
more convenient.

18

Algorithm 10: Generic Boldyreva-type Decryption Algorithm

1 Function RecursiveDecrypt(a, b, f(a), f(b), c)
2 x← (a+ b)/2
3 y ← f(b)− f(a)
4 Initiate P with seed S(a, b, f(a), f(b))
5 Determine z ∈ [0, y] pseudorandomly
6 f(x)← f(a) + z
7 if f(x) = c then return x
8 else if f(x) > c then return RecursiveDecrypt(a, x, f(a), f(x), c)
9 else return RecursiveDecrypt(x, b, f(x), f(b), c)

10 Initiate P with a fixed seed S0

11 Choose f(0), f(M) pseudorandomly so that f(M)− f(0) > 3N/4
12 return RecursiveDecrypt(0,M, f(0), f(M), c)

Suppose we have sampled such a function f at points m1 < m2 < · · · < mk,
and we now wish to sample f at m, where mi < m < mi+1. We know f(mi) = ci,
f(mi+1) = ci+1, and let f(m) = c, so ci ≤ c ≤ ci+1.

4 Let x = m − mi,
a = mi+1 −mi − 1, y = c − ci, b = ci+1 − ci + 1, so 1 ≤ x ≤ a and 0 ≤ y ≤ b.
Write f̃(x) = f(x+mi)−ci. Then, if we sample a values from [0, b] independently
and uniformly at random, c−ci will be the xth smallest. Hence we may calculate,
for 0 ≤ y ≤ b,

Pr
(

f̃(x) = y
)

=
a!

(x− 1)! (a− x)!
(y

b

)x−1 1

b

(

b− y
b

)a−x

(1)

This is the probability that we sample one value y, (x− 1) values in [0, y) and
(a− x) values in (y, b], in any order. If b is large, let z = y/b, and dz = 1/b, then
(1) is approximated by a continuous distribution with, for 0 ≤ z ≤ 1,

Pr
(

z ≤ f̃(x)/b < z + dz
)

=
zx−1(1− z)a−x

B(x, a− x+ 1)
dz (2)

which is the B(x, a − x + 1) distribution. Thus we can determine f(m) by
sampling from the Beta distribution to lgN bits of precision. In fact, we only
need lg b bits. However, using n ≤M ≤

√
N ,

Pr(∃i : mi+1 −mi < N
1/3) ≤ nN 1/3

N
≤ M

N 2/3
≤ 1

N 1/6

is very small, so we will almost always need at least 1/3 lgN bits of precision.
Thus the approximation given by (2) remains good even when a = 1, since it is
then the uniform distribution on [0, b], where b ≥ N 1/3 with high probability.

If M = 2r, we will always have a = 2s and x = 2s−1 in (2), so a − x = x,
and (2) simplifies to

Pr
(

z ≤ f̃(x)/b < z + dz
)

=
zx−1(1− z)x
B(x, x+ 1)

dz,

4We can have equality because we sample with replacement.

19

for 0 ≤ z ≤ 1. This might be closely approximated by a Normal distribution if
Beta sampling is too slow.

7. Leakage Abuse Inference Attacks

On information theoretic grounds, an OPE or ORE system inherently leaks
around Ω(log n) bits per ciphertext where n is the total number of ciphertexts.
Naveed et al. [51] described a “sorting attack” on property preserving databases
which exploits this leakage. In addition to sorting attacks which exploit the
order-preserving property of OPE systems, an attacker is also able to exploit
the frequency of plaintexts in a dataset to their advantage. Using auxiliary data,
for example, the frequency of words in a piece of text, an attacker can use that
distribution to recover plaintexts from a deterministic encryption system. As
many OPE systems are deterministic, this makes frequency attacks especially
effective. An extensive analysis of several OPE and ORE schemes is performed
by Grubbs et al. in [32].

7.1. Sorting Attacks

We must assume n≪M to avoid the “sorting attack” of Naveed et al. [51].
Furthermore, to prevent the attack on low density datasets, we do not encrypt
fields associated with common data, such as postal codes or first names, with
OPE. This prevents the use of auxiliary data aiding cryptanalysis. Thus we
are ruling out data where revealing the order reveals most of the information
content. See section 7.3 for further discussion.

7.2. Frequency Attacks

To prevent a frequency attack, the source data requires sufficient entropy
to provide negligible information to an attacker. Our system has the frequency
hiding property of Kerschbaum [37] “built in” as a result of the random noise
added to each ciphertext. However, this random noise is not sufficient to defeat
frequency attacks for low entropy data. While the “noise” added to the ciphertext
is in [k3/4, k− k3/4] which is a large interval since k ≫M , for small entropy data,
it is feasible to estimate the ranges of which ciphertexts correspond to a single
plaintext value.

Consider the case that we knew a plaintext, ciphertext pair (m, c), even
though our scenario does not permit it. Such a pair would not allow us to break
the system, since c/m = k + r/m ∈ [k, k + k/m], which is a large interval since
k ≫M . We note that small values of m reveal much less information than large
values. A number n of such pairs would give more information, but it still does
not seem straightforward to estimate k closer than Ω

(

k/(M
√
n)
)

. Thus the
system has some resistance to KPA, even though this form of attack is excluded
by our model of single-party secure computation.

20

Flattening.

Where the source data does not have sufficient entropy to thwart a frequency
attack, we can mitigate this by “flattening” the data. The flattening approach
we use here is rather different from those in [2] and [69], though not completely
unrelated.

Our scheme can be used in conjunction with any unknown increasing function
f(m) of m. If f(m) is this function, then we encrypt m by c = f(m)k + r,
where r←$ (k3/4, k − k3/4), and decrypt by m = f−1

(

⌊c/k⌋
)

. The disadvantage
is that the ciphertext size will increase, but the entropy may be increased. Of
course, if F is known, there will be little advantage. A particular, and useful,
case of this is where the distribution function F (m) of the plaintexts is known,
or can be reasonably estimated. Then the distribution of the plaintexts can
be “flattened” to an approximate uniform distribution on a larger set [0, N),
where N ≫M . Thus, suppose the distribution function F (m) (M ∈ [0,M)) is
known, and can be computed efficiently for given m. Further, we assume that
Pr(m = m) ≥ 1/N , so F is strictly increasing. This assumption is weak, since
the probability that m is chosen to be an m with too small probability is at
most M/N , which we assume to be negligible.

We interpolate the distribution function linearly on the real interval R[0,M),
by F (x) = (1 − u)F (m) + uF (m + 1) for x = (1 − u)m + u(m + 1), where
u ∈ R[0, 1). Then we will transform m ∈ [0,M) randomly by taking m̃ = NF (x)
where u is chosen randomly from the continuous uniform distribution on R[0, 1).
It follows that m̃ is uniform on R[0, N), since F is increasing, and m̃ = NF (x),
since

Pr(m̃ ≤ y) = Pr(x ≤ F−1(y/N)) = F (F−1(y/N)) = y/N.

Now, since we require a discrete distribution, we take m̄ = ⌊m̃⌋. We in-
vert this by taking m̂ = ⌊F−1(m̄)⌋. Now, since F is strictly increasing,

m̂ = ⌊F−1(m̄/N)⌋ ≤ F−1(m̃/N) < F−1(NF (m+ 1)/N) = m+ 1

m̂ = ⌊F−1(m̄/N)⌋ > F−1((m̃− 1)/N) ≥ F−1(NF (m− 1)/N) = m− 1,
and so m̂ = m. Thus the transformation is uniquely invertible. Of course, this
does not imply that m̂ and m will have exactly the same distribution, but we
may also calculate

Pr(m̂ ≤ x) ≤ Pr(m̄ ≤ NF (x)) < Pr(m̃ ≤ NF (x) + 1) = F (x) + 1/N,

Pr(m̂ ≤ x) ≥ Pr(m̄ < NF (x+ 1)) ≥ Pr(m̄ < NF (x)) = F (x).
This holds, in particular, for integers x ∈ [0,M). Thus the total variation dis-
tance between the distributions of m̂ and m̃ is at mostM/N . Thus the difference
between the distributions of m̃ and m̂ will be negligible, since N ≫M .

This flattening allows us to satisfy the assumptions of the window one-wayness
scenario above. The bit leakage in m is increased, however. The entropy has
apparently been increased to lgN , which allows us to handle relatively small
plaintext spaces [0,M), by expanding them to a larger space [0, N). However, if
an attacker has a good approximation to F , they can undo the transformation,
and then this may be no better than our basic OPE scheme.

Let ρ denote the Shannon entropy of the data. Thus ρ = −∑M
m=1 pm lg pm,

21

where I(m) = − lg pm is the information content of m. We will assume that
F (m) has frequency function pm = F (m)− F (m− 1).

Theorem 2. Suppose we have a random sample of n from the plaintext distri-
bution {pm : m ∈ [M]}. If ρ≫ lg n, the average entropy in the sorted random
sample m1 < m2 < · · · < mm is at least ρ− lg n.

Proof. The probability of the ordered sample is at most n! times that of the
unordered sample. Hence its entropy is at least nρ− lg n! ≥ nρ− n lg n. Thus
the average entropy is at least ρ− lg n.

Note that this is the same as the bit-leakage given in section 4.2.3. Note also
that the same simple proof holds for other defintions of entropy, such as the min
entropy, −maxMm=1 lg pm.

Of course, if ρ < lg n. The sample will contain repeated plaintexts, and the
reduction in information content may be less then lg n, but is hard to estimate,
and will approach ρ as n increases. That is, there will be no entropy in the sorted
data. To see that this actually happens, and could be a devastating vulnerability
when F is known to an attacker, see section 7.3 below.

Finally, we will describe how this should be implemented. First we apply
the OPE scheme once, with perhaps k not too large, to add some entropy to
the data, by “frequency hiding” [37]. Determine F from this data, and apply
the above transformation to make the data more uniform. Then apply the OPE
scheme again, with a larger value of k to generate the ciphertext. We believe
this would offer good security provided the data has sufficient entropy. Again, if
F can be estimated closely by an attacker, this may not provide more protection
than the basic scheme.

For very low-entropy data, there is little point in using OPE, since the order
reveals almost everything. Consider, for example the 0/1 data used as an example
in [37]. This has at most one bit of entropy. Using OPE, the only remaining
unknown is what proportion of the data are 0’s, and hence what proportion
are 1’s. If this ratio can be estimated, for example from similar plaintext data,
then almost all the ciphertexts can be decrypted. The frequency hiding methods
proposed in [37] provide no protection.

Theorem 3. The increase in bit leakage for m as a result of this flattening is
approximately lg(mpm/F (m)), where pm = F (m)− F (m− 1).

Proof. We will assume that F (m) is a reasonably smooth distribution, so F ′(m)
exists, and is approximately equal to the frequency function pm = F (m) −
F (m − 1). We have shown that m̃ = NF (m) is approximately uniform on
[0, N]. Also, we have shown that we can estimate m̃ from c(m̃) only to within
r̃ = m̃/n = NF (m)/n. Thus we can estimate m to within r, where

NF (m)/n ≈ NF (m+ r)−NF (m) ≈ rNF ′(m) ≈ rNpm,

and hence r ≈ F (m)/npm. Thus the bit leakage is
lgm− lg(F (m)/npm) = lg n+ lg(mpm/F (m)).

Thus the increase in bit leakage for m is approximately lg(mpm/F (m)).

22

The leakage remains near-optimal for near-uniform distributions, where
α/M ≤ pm ≤ β/M , for some constants α, β > 0. In this case lg(mpm/F (m)) ≤
lg(β/α) = O(1). There are also distributions which are far from uniform, but
the ratio mpm/F (m) remains bounded. Further, suppose we have a distribution
satisfying 1/mα ≤ pm ≤ 1/mβ , for constants α, β > 0 such that 0 < α− β < 1/2.
Then lg(mpm/F (m)) < 1/2 lgm, so the leakage is less than in the scheme of [13].

This transformation also allows us to handle relatively small plaintext spaces
[0,M), by expanding them to a larger space [0, N).

Finally, note that the flattening approach here is rather different from those
in [2] and [69], though not completely unrelated.

7.3. Published Attacks on OPE

Naveed et al. [51] describe four attacks on property-preserving encrypted data,
particularly against the CryptDB system of Popa et al [55]. They are: frequency
analysis, lp-optimisation; sorting attacks; and cumulative attacks. Frequency
analysis is a well known cryptanalytic attack against deterministic encryption
systems. The frequencies of plaintexts are calculated from an auxiliary dataset
and ordered. The frequencies of ciphertexts are calculated and ordered. The
ciphertexts are then assigned to a plaintext such that the ith most frequent
ciphertext is assigned to the ith most frequent plaintext. Where values have the
same frequency, there is a potential for error in the assignment of ciphertext to
plaintext. lp-optimisation is a technique devised by Naveed et al. designed to
minimise that error. After computing the frequencies of the ciphertexts, ψ, and
auxiliary data, π, a permutation X of the plaintext frequencies is determined
such that it minimises ‖ψ −X.π‖p, the lp norm of the distance between the two.
Once this permutation is computed, the permuted plaintext frequencies are used
for frequency analysis. Note that our “flattening” technique discussed in section
7.2 is intended to combat this leakage.

Naveed et al. [51] denote an encrypted dataset as δ-dense where the space of
unique plaintexts which relate to the n encryptions as dense forms a fraction δ
of the overall message space. Given a dense (δ = 1) dataset, and a deterministic
OPE scheme, we can simply sort the ciphertexts and then assign each sorted
ciphertext to its corresponding sorted plaintext value. Even with a randomised
OPE scheme, by estimating the range of ciphertext that correspond to an
encyption of a unique plaintext value we can still conduct this sorting attack.
The auxiliary information is a large database that closely resembles the target
database. Furthermore, Naveed et al. extend this attack to low density datasets
(0 < δ < 1) by the use of auxiliary information using their cumulative attack
strategy which combines frequency analysis with a sorting attack. This attack
additionally uses the cumulative distribution functions (CDFs) of the auxiliary
data and ciphertexts using the observation that an OPE ciphertext value which
is larger than some proportion of the other ciphertexts is likely to correspond
to a plaintext value which is larger that the same proportion of the plaintext
space. Therefore, the attack calculates the histogram and CDF of the ciphertexts
and the histogram and CDF of the auxiliary data. As with lp-optimisation, a
permutation is computed that minimises the distance between the two histograms

23

and the distance between the two CDFs. Using the permutation one can then
match ciphertexts to plaintexts with high probability.

Grubbs et al. [32] improve on Naveed et al.’s cumulative attack by using an
ordered matching technique. This seeks to avoid what they describe as “crossing”,
where a ciphertext c is matched to a plaintext p′ and ciphertext c′ is matched
to plaintext p but c < c′ and p < p′ violating the ordering on the ciphertexts
and plaintexts. They recast the cumulative attack as a graph problem where
the graph G = (U, V,E) is a bipartite graph with vertices U corresponding to
ciphertexts, vertices V to plaintexts, and E the edges connecting the vertices of
U to V . Each edge is labelled with a cost. A matching is a set of edges such
that no common vertex is shared between edges in this set. Each matching is a
decryption of some of the ciphertexts, therefore finding a minimal cost matching
will be a good solution. The edge costs are the l1 distance of frequencies. To be
exact, for an edge (i, j), the cost c(i, j) is:

c(i, j) = |HC(i)− HM (j)|,

where HC and HM are the histograms for the ciphertext and plaintext spaces
respectively.

Durak et al. [28] extend Naveed et al.’s sorting and cumulative attacks for
datasets, such as encrypted columns in a database, which are correlated. They
conduct a sorting attack on each dataset individually and emit pairs (α1, α2)
such that αi is the matching for ciphertext ci where i = 1, 2 corresponds to the
dataset. They then construct functions which map ciphertexts to equally spaced
points in the plaintext domain with in a set bound. These functions are then
applied to the pairs generated from the sorting attack.

Onozawa et al. [54] offer a similar attack to Grubbs et al. but do not use
the ordered matching optimisation technique given in Grubbs et al.

Bindschaedler et al. [11] use Bayesian inference with the maximum likelihood
estimator (MLE) modelled by the multinomial distribution to compute ciphertext-
plaintext mappings. They extend this Bayesian inference to attack correlated
datasets.

The above attacks are characterised as “snapshot” attacks in the literature
[43] because they rely on access to the entirety of the dataset. Attacks that
abuse leakage from range query access patterns and result rankings such as those
discussed by Kellaris et al. [36]and Lacharité et al. [43] are not particularly
relevant to OPE, as the results from any range query on OPE encrypted data
can be ordered. With an expected O(n log n) uniformly random queries, where
n is the total number of unique items in the dataset, one can obtain the entirety
of the dataset and then apply “snapshot” attacks, rendering these additional
attacks redundant.

All of these attacks rely on auxiliary data. Grubbs et al. [32] use US census
data and data from the 2016 Fraternal Order of Police breach [50] for their study.
This data includes first names, last names, ages and zip codes. It is first encoded
as a a big-endian base 27 integer where each character in a string is encoded as
a base 27 digit. This encoded plaintext is then encrypted using several OPEs.
The ciphertexts are then attacked using auxiliary data to assist cryptanalysis.

24

Table 1: Min entropies of source data used in Grubbs et al. [32]

Dataset # 1st Names Entropy # Last Names Entropy Total Records

FOP (FOP) 3,862 4.52 116,677 6.74 621,662
California Muni (CALC) 3,777 4.76 59,935 7.02 255,956
Washington (WA) 3,525 4.78 67,206 7.30 228,934
Texas Compt. (TXCOM) 2,416 4.93 33,802 6.79 149,678
Florida (FL) 2,091 4.76 32,986 6.50 112,566
Maryland (MD) 2,551 4.68 36,698 6.61 111,183
Connecticut (CT) 2,016 4.38 30,623 7.42 77,613
New Jersey (NJ) 1,964 4.33 29,094 7.12 73,119
Iowa (IA) 1,734 4.67 22,616 7.14 60,035
Ohio (OH) 1,440 4.52 21,034 6.53 58,792
Texas A&M U. (TXAMU) 1,466 4.94 11,437 6.89 25,192
North Carolina (NCAR) 696 4.42 3,688 6.36 6,976
Illinois (IL) 243 4.52 1,021 6.98 1,259

For first names, they used a year by year tally of most popular male names
from 1945 to 1993 gathered by the US Social Security Administration [62]. For
last names, they used frequencies of last names of respondents for the 2000 US
census. For ages, the US Census Bureau American Community Survey is used to
construct a histogram of ages of respondents who specified their employment as
“law enforcement”. For zip codes, they use 2010 census data reporting population
per zip code. The authors succeed in recovering almost all plaintexts from OPE
encrypted first name and last name data.

However, the data that is used by Grubbs et al. is not of sufficient entropy
to ensure that the OPE ciphertexts cannot be easily recovered. Table 1 shows
the min entropies, measured in bits, for the datasets used in Grubbs et al.’s
study. As can be seen from the table the first name data has a min entropy of 4
to 5 bits, equivalent to uniformly distributed data with 16 to 32 unique values.
Similarly, the last name data has a min entropy of 6.5 to 7.3, equivalent to 91 to
158 unique uniformly distributed values. In a data set with 620,000 entries, we
need entropy ≫ lg 620, 000 > 19 for OPE to have reasonable protection. So a
search key with 32 bits or more is required for security, not 4 bits. It is hardly
surprising given the low entropy values that the plaintexts were easily recovered.
This is particularly relevant to their attack on Popa et al.’s OPE protocol [56],
where IND-CPA secure encryption can be used to encrypt the data. In that case,
the encryption itself reveals very little information, so the success of the attack
results entirely from the low entropy of the data.

The authors also discuss padding variable length data. However, the method
they choose is to postpend data with spaces. While this method makes each
plaintext, and, hence, ciphertext fixed length, it does not add any randomness to
the data. To mitigate against frequency attacks, a better method, not discussed,
would have been to pad with random data, suitably demarked, or to combine
first and last names into a single string.

Similarly, Naveed et al.’s study [51] is conducted using data from the National
Inpatient Sample (NIS) database of the US Healthcare Cost and Utilization
Project (HCUP) [1]. However, as shown in Figure 1 of their paper, each field
has a very small number of possible values (the greatest being day of the year

25

from 1 to 365). As with the study of Grubbs et al., their data has low entropy
which makes recovery of plaintexts significantly more probable.

Bindschaedler et al. [11] use the same datasets as Naveed et al. [51] and
Grubbs et al. [32] and, hence, the same criticisms apply to their paper.

Durak et al. [28] use the latitude and longitude of California road intersections
[45] along with location data gathered from a German politician, Malte Spitz,
over 6 months [10]. They only use 2000 data points from the California dataset
resulting in low entropy plaintexts. Similarly, the Spitz data is low entropy, with
1477 unique longitude-latitude pairs and 30,492 timestamps. Furthermore, their
method has a large margin of error, up to 140km for the California dataset.

Additionally, we should point out that frequency analysis and ordering attacks
are sophisticated “guessing” attacks. In all of the above studies, the accuracy of
recovery is verified by comparing the estimate with the plaintext value. However,
an attacker does not have access to the unencrypted data. If, as in the case for
the attack on Kerschbaum’s frequency hiding OPE [37], where a minority of
the data is retrieved (30% for even the lowest entropy data set), how does the
attacker know which records have been correctly inferred and which have not?
This throws into question the efficacy of such attacks.

The conclusion that Grubbs et al. draw: that OPE should not be used
whatsoever is too strong. It is clear from the studies discussed above that OPE
should be used with care. In particular, it should not be used for low entropy
data such as that used in those studies. However, Grubbs et al. concede that
even inappropriate use of OPE is better than no encryption. We would maintain
that, carefully applied, it is considerably better than no encryption.

8. Experimental Results

To provide a fair comparison with the majority of existing OPE schemes, such
as [13], we have only conducted experimental evaluation of our GACD-based
scheme. As mentioned earlier, our polynomial and vector-based schemes do
not directly compare with schemes such as [13], etc. To evaluate the GACD-
based scheme, we devised a simple experiment to pseudorandomly generate
and encrypt 10,000 ρ-bit integers. The ciphertexts were then sorted using
a customised TeraSort MapReduce (MR) algorithm [53]. Finally, the sorted
ciphertexts were decrypted and it was verified that the plaintexts were also
correctly sorted.

8.1. Small-Scale Cloud Implementation

The MR algorithm was executed on a Hadoop cluster of one master node
and 16 slaves. Each node was a Linux virtual machine (VM) having 1 vCPU
and 2GB RAM. The VMs were hosted in a heterogeneous OpenNebula cloud.
In addition, a secure Linux VM having 2 vCPUs and 8 GB RAM was used to
generate/encrypt and decrypt/verify the data.

Our implementation is pure, unoptimised Java utilising the JScience library
[25] arbitrary precision integer classes. It is denoted as algorithm GACD in

26

Table 2: Timings for each experimental configuration (n = 10000). ρ denotes the bit length of
the unencrypted inputs. Init is the initialisation time for the encryption/decryption algorithm,
Enc is the mean time to encrypt a single integer, Exec is the MR job execution time, Dec is
the mean time to decrypt a single integer.

Algorithm ρ Encryption MR Job Decryption
Init. (ms) Enc. (µs) Exec. (s) Init. (ms) Dec. (µs)

GACD 7 50.13 1.51 63.79 11.62 1.47
GACD 15 58.04 2.18 61.28 10.86 2.46
GACD 31 58.66 2.07 63.02 12.18 2.59
GACD 63 70.85 1.94 65.20 10.61 4.22
GACD 127 91.94 2.38 61.08 11.10 6.29
BCLO 7 143.72 191.48 70.78 154.01 192.42
BCLO 15 135.04 74390.95 65.47 148.29 79255.23
Beta 7 189.52 57.87 64.77 208.16 58.27
Beta 15 202.64 124.79 63.70 218.91 121.53
Beta 31 181.14 221.92 63.64 208.22 221.83
Beta 63 176.24 477.23 66.74 193.03 466.03
Uniform 7 167.66 42.61 64.64 182.27 42.92
Uniform 15 166.98 83.40 66.29 176.14 82.53
Uniform 31 162.11 179.92 63.89 176.53 180.52
Uniform 63 156.53 409.13 63.91 173.57 412.79
Uniform 127 162.17 1237.34 65.30 170.74 1232.19

Figure 2: Encryption algorithm initialisation times

0

50

100

150

200

250

0 20 40 60 80 100 120 140

T
im

e
 (

m
s)

Input bit length

GACD

BCLO

Beta

Uniform

Table 2 and Figures 2 to 5. In addition, to provide comparison for our algorithm
we have implemented Boldyreva et al.’s algorithm (referred to as BCLO) [13]
along with two variants of the Boldyreva et al. algorithm. These latter variants
are based on our generic version of Boldyreva et al.’s algorithm (see section 6.1).

27

Figure 3: Average encryption times

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

T
im

e
 (

µ
s)

Input bit length

GACD

BCLO

Beta

Uniform

Figure 4: Decryption algorithm initialisation times

0

50

100

150

200

250

0 20 40 60 80 100 120 140

T
im

e
 (

m
s)

Input bit length

GACD

Uniform

BCLO

Beta

One is an approximation of Boldyreva et al.’s algorithm which samples ciphertext
values from the Beta distribution (referred to as Beta in Table 2). The derivation
of this approximation is given in section 6.2. The second samples ciphertexts
from the uniform distribution (referred to as Uniform in Table 2). This variant
appears in Popa et al.’s CryptDB [55] source code [57] as ope-exp.cc. The
mean timings for each experimental configuration is tabulated in Table 2. The
chosen values of ρ for each experimental configuration are as a result of the
implementations of Boldyreva et al. and the Beta distribution version of the

28

Figure 5: Average decryption times

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

T
im

e
 (
s

)

Input bit length

GACD

BCLO

Beta

Uniform

generic Boldyreva algorithm. The Apache Commons Math [4] implementations
of the hypergeometric and Beta distributions we used only support Java signed
integer and signed double precision floating point parameters respectively, which
account for the configurations seen in Table 2. To provide fair comparison, we
have used similar configurations throughout. It should be pointed out that, for
the BCLO, Beta and Uniform algorithms, when ρ = 7, this will result in only
128 possible ciphertexts, even though we have 10,000 inputs. This is because
these algorithms will only encrypt each plaintext to a unique value. Such a
limited ciphertext space makes these algorithms trivial to attack. Our algorithm
will produce 10,000 different ciphertexts as a result of the “noise” term. Each
ciphertext will have an effective entropy of at least 21 bits for ρ = 7 (see section
4.1). So, our algorithm is more secure than BCLO, Beta, and Uniform for low
entropy inputs.

As shown by Table 2, our work compares very favourably with the other
schemes. The encryption times of our algorithm outperform the next best
algorithm (Uniform) by factors of 28 (ρ = 7) to 520 (ρ = 127). Furthermore, the
decryption times grow sublinearly in the bit length of the inputs. Compare this
with the encryption and decryption times for the generic Boldyreva algorithms
which, as expected, grow linearly in the bit length of the inputs. Boldyreva et
al.’s version performs even worse. We believe this is down to the design of the
algorithm, as stated in [13], which executes n recursions where n is the bit-size
of the ciphertexts. We also discovered that the termination conditions of their
algorithm can result in more recursions than necessary.

It should also be noted that the size of the ciphertext generated by each
algorithm seems to have minimal bearing on the MR job execution time. The
algorithms based on Boldyreva et al. generate ciphertexts of double the bit size of
the plaintexts, since we used a ciphertext space of sizeM2 in our implementations,

29

Table 3: Timings for each experimental configuration (n = 106272000). ρ denotes the bit
length of the unencrypted inputs. Init is the initialisation time for the encryption algorithm,
Enc is the mean time to encrypt a single integer, Exec is the MR job execution time, Dec is
the mean time to decrypt a single integer.

Algorithm ρ Encryption MR Job Dec.
Init. (ms) Enc. (µs) Exec. (s) (µs)

GACD 15 96.74 6.97 59.97 4.32
GACD 31 93.9 7.95 63.02 4.58
GACD 63 124.4 8.74 71.76 7.28
GACD 127 128.88 9.93 92.09 10.31
Uniform 15 71.24 307.71 56.53 280.22
Uniform 31 77.67 498.78 54.89 506.35
Uniform 63 66.74 1248.96 59.4 1324.25
Uniform 127 68.35 4018.86 69.02 4360.11

Figure 6: Average encryption times

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140

A
vg

.
E

n
cr

y
p

ti
o

n
 T

im
e

 (
ʅs

)

Bit Length of Inputs

GACD

Uniform

where M is the size of the plaintext space. Our algorithm generates ciphertexts
of length ∼3.67 times the bit length of the ciphertext. However, Table 2 shows
that the job timings are similar regardless of algorithm.

Of course, it is impossible to compare the security of these systems exper-
imentally, since this would involve simulating unknown attacks. But we have
shown above that the GACD approach gives a better theoretical guarantee of
security than those of [13, 14, 63], which define security based on a game, rather
than on the conjectured hardness of a known computational problem.

30

Figure 7: Average decryption times

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120 140

A
vg

.
D

e
cr

y
p

ti
o

n
 T

im
e

 (
ʅs

)

Bit length of Inputs

GACD

Uniform

8.2. Large-Scale Cloud Implementation: Microsoft Azure Cloud

We also scaled our experiment to a large HDInsight cluster in Microsoft’s
Azure cloud. Our experimental environment consisted of a HDInsight cluster
comprising two D13v2 head nodes and 123 D4v2 worker nodes (984 worker cores).
As a result of the large number of inputs (106,272,000), the input data was
generated and encrypted using MapReduce programs running on the HDInsight
cluster. In addition, we also had a MapReduce program to decrypt the data and
verify that it had been correctly sorted.

For this experiment, we only performed the tests for our own OPE algorithm
(GACD) and the variant of Boldyreva et al.’s algorithm sampling from the uniform
distribution (Uniform). This was because it showed the best performance for
encryption and decryption from our earlier experiment.

As one can see from Table 3 and Figures 6 and 7, the magnitude of the
difference in performance between the two algorithms remains the same. In
comparison with the results presented previously in this chapter, we note that,
in both cases, the time to encrypt has increased approximately threefold and the
time to decrypt twofold (GACD) and threefold (Uniform). This increase may
be as a result of memory contention between map tasks running on the same
worker node, particularly since the encryption process is memory intensive as a
result of using arbitrary precision integers.

9. Conclusion

This paper has detailed several OPE schemes based on computationally
hard problems. The schemes in section 4 are based on the general approximate
common divisor problem (GACDP). The scheme presented in 5 is based on
the decisional polynomial approximate common divisor problem (DPolyACDP).

31

These appear to be the first OPE schemes to be based on a computational
hardness primitive, rather than a security game.

In section 8 we have reported on experiments to evaluate the practical efficacy
of our first GACDP based scheme. We have compared this with the scheme of
Boldyreva et al. [13]. Our vector and polynomial based schemes do not directly
compare with the scheme of [13], so we do not extend the evaluation to these
schemes. Our results show that the GACDP based scheme is very efficient,
since is uses O(1) arithmetic operations for encryption and decryption. As a
trade-off against the time complexity of our algorithms, our scheme produces
larger ciphertexts, ∼ 3.67 times the number of bits of the plaintext. Furthermore,
the results of 8.2 show that our scheme is scalable. However, as pointed out in
section 8, ciphertext sizes had minimal impact on the running time of the MR
job used in our experiments.

With regard to our stated purpose, our experimental results show that the
efficiency of our scheme makes it suitable for practical computations in distributed
computing environments such as the cloud.

In section 7 we have discussed several published attacks on OPE [11, 28,
32, 51, 54], particularly with regard to our own schemes. We note that our
systems have the desirable frequency-hiding property “built in” as a result of
the randomised encryption scheme. Furthermore, we show that these attacks
are studied using encryptions of low entropy data. This low entropy data makes
recovery of plaintexts highly probable yet no study has been performed on high
entropy data. We conclude that the attacks of Naveed et al. [51], Grubbs et al.
[32], and others do not prove that OPE should not be used but rather that it
should be used with care. When carefully applied, it can prove to be a useful
tool for sorting and searching on encrypted data.

Regarding future work, since our schemes seem promising, we intend to
further investigate their practical deployment.

References

[1] Agency for Healthcare Research and Quality. Overview of the National
(Nationwide) Inpatient Sample (NIS), 2009. URL https://www.hcup-us.

ahrq.gov/nisoverview.jsp.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order Preserving Encryption
for Numeric Data. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data (SIGMOD 2004), pages 563–574. ACM,
2004. doi: 10.1145/1007568.1007632.

[3] C. Aguilar-Melchor, M.-O. Killijian, C. Lefebvre, T. Lepoint, and T. Ricosset.
A Comparison of Open-Source Homomorphic Libraries With Multi-Precision
Plaintext Moduli. WHEAT 2016, July 2016. URL https://wheat2016.

lip6.fr/ricosset.pdf.

32

https://www.hcup-us.ahrq.gov/nisoverview.jsp
https://www.hcup-us.ahrq.gov/nisoverview.jsp
https://wheat2016.lip6.fr/ricosset.pdf
https://wheat2016.lip6.fr/ricosset.pdf

[4] Apache Software Foundation. Commons Math: The Apache Commons
Mathematics Library, 2016. URL http://commons.apache.org/proper/

commons-math/.

[5] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy,
and R. Venkatesan. Orthogonal Security With Cipherbase. In 6th Biennial
Conference on Innovative Data Systems Research (CIDR’13), 2013.

[6] L. Babai and L. Fortnow. Arithmetization: A new method in structural
complexity theory. computational complexity, 1(1):41–66, 1991. doi: 10.
1007/BF01200057.

[7] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi. Secure Multiparty Computation from SGX. In Financial
Cryptography and Data Security, pages 477–497. Springer-Verlag, 2017. doi:
10.1007/978-3-319-70972-7 27.

[8] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (FOCS 1997), pages 394–
403. IEEE, 1997. doi: 10.1109/SFCS.1997.646128.

[9] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among
Notions of Security for Public-Key Encryption Schemes. In Proceedings
of the 18th Annual Cryptology Conference (CRYPTO 1998), pages 26–45.
Springer-Verlag, 1998. doi: 10.1007/BFb0055718.

[10] K. Biermann. Betrayed by our own data, 2011. URL https://www.zeit.

de/digital/datenschutz/2011-03/data-protection-malte-spitz.

[11] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov.
The Tao of Inference in Privacy-protected Databases. Proc. VLDB Endow.,
11(11):1715–1728, 2018. doi: 10.14778/3236187.3236217.

[12] T. Boelter, R. Poddar, and R. A. Popa. A Secure One-Roundtrip Index for
Range Queries. Cryptology ePrint Archive, Report 2016/568, 2016.

[13] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-Preserving
Symmetric Encryption. In Proceedings of the 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2009), pages 224–241. Springer-Verlag, 2009. doi: 10.1007/
978-3-642-01001-9 13.

[14] A. Boldyreva, N. Chenette, and A. O’Neill. Order-Preserving Encryption
Revisited: Improved Security Analysis and Alternative Solutions. In Pro-
ceedings of the 31st Annual Cryptology Conference (CRYPTO 2011), pages
578–595. Springer-Verlag, 2011. doi: 10.1007/978-3-642-22792-9 33.

33

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
https://www.zeit.de/digital/datenschutz/2011-03/data-protection-malte-spitz
https://www.zeit.de/digital/datenschutz/2011-03/data-protection-malte-spitz

[15] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman.
Semantically Secure Order-Revealing Encryption: Multi-input Functional
Encryption Without Obfuscation. In Proceedings of the 34th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2015), Part II, pages 563–594. Springer-Verlag,
2015. doi: 10.1007/978-3-662-46803-6 19.

[16] Y. Chen and P. Q. Nguyen. Faster Algorithms for Approximate Common
Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the
Integers. Cryptology ePrint Archive, Report 2011/436, 2011.

[17] Y. Chen and P. Q. Nguyen. Faster Algorithms for Approximate Common
Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the
Integers. In D. Pointcheval and T. Johansson, editors, Proceedings of the
31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2012), pages 502–519. Springer-
Verlag, 2012. doi: 10.1007/978-3-642-29011-4 30.

[18] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu. Practical Order-Revealing
Encryption with Limited Leakage. In Revised Selected Papers from the 23rd
International Conference on Fast Software Encryption (FSE 2016), pages
474–493. Springer-Verlag, 2016. doi: 10.1007/978-3-662-52993-5 24.

[19] J. H. Cheon and D. Stehlé. Fully Homomophic Encryption over the Integers
Revisited. In Advances in Cryptology – EUROCRYPT 2015, pages 513–536.
Springer-Verlag, 2015.

[20] J. H. Cheon, H. Hong, M. S. Lee, and H. Ryu. The polynomial approximate
common divisor problem and its application to the fully homomorphic
encryption. Information Sciences, 326:41 – 58, 2016. doi: 10.1016/j.ins.
2015.07.021.

[21] J. H. Cheon, D. Kim, J. Lee, and Y. Song. Lizard: Cut off the Tail! Practical
Post-Quantum Public-Key Encryption from LWE and LWR. Cryptology
ePrint Archive, Report 2016/1126, 2016.

[22] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the
CLT13 Multilinear Map. Journal of Cryptology, 32(2):547–565, 2019. doi:
10.1007/s00145-018-9307-y.

[23] H. Cohn and N. Heninger. Approximate common divisors via lattices. In
Proceedings of the 10th Algorithmic Number Theory Symposium (ANTS-X),
volume 1, pages 271–293. Mathematical Sciences Publishers, 2012. doi:
10.2140/obs.2013.1.271.

[24] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully Homomorphic
Encryption over the Integers with Shorter Public Keys. In Advances in
Cryptology – CRYPTO 2011, pages 487–504. Springer-Verlag, 2011. doi:
10.1007/978-3-642-22792-9 28.

34

[25] J.-M. Dautelle. JScience, Sept. 2014. URL http://jscience.org.

[26] K. Djemame, D. Armstrong, R. E. Kavanagh, J. Deprez, A. J. Ferrer,
D. Garćıa-Pérez, R. M. Badia, R. Sirvent, J. Ejarque, and Y. Georgiou.
TANGO: Transparent heterogeneous hardware Architecture deployment for
eNergy Gain in Operation. CoRR, abs/1603.01407, 2016.

[27] L. Ducas and D. Micciancio. FHEW: Bootstrapping Homomorphic En-
cryption in Less Than a Second. In E. Oswald and M. Fischlin, editors,
Proceedings of the 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT 2015), Part I,
pages 617–640. Springer-Verlag, 2015. doi: 10.1007/978-3-662-46800-5 24.

[28] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by
order-revealing encryption? In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2016), pages
1155–1166. ACM, 2016. doi: 10.1145/2976749.2978379. URL http://doi.

acm.org/10.1145/2976749.2978379.

[29] J. Dyer, M. Dyer, and J. Xu. Practical Homomorphic Encryption Over
the Integers for Secure Computation in the Cloud. In Proceedings of the
16th IMA International Conference on Cryptography and Coding (IMACC
2017), volume 10655 of Lecture Notes in Computer Science, pages 44–76.
Springer-Verlag, 2017. doi: 10.1007/978-3-319-71045-7 3.

[30] J. Dyer, M. Dyer, and J. Xu. Order-Preserving Encryption Using Approx-
imate Integer Common Divisors. In Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, pages 257–274. Springer-Verlag, 2017.
doi: 10.1007/978-3-319-67816-0 15.

[31] S. D. Galbraith, S. W. Gebregiyorgis, and S. Murphy. Algorithms for the
approximate common divisor problem. LMS Journal of Computation and
Mathematics, 19(A):58–72, 2016. doi: 10.1112/S1461157016000218.

[32] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart.
Leakage-Abuse Attacks against Order-Revealing Encryption. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 655–672, 2017. doi: 10.
1109/SP.2017.44.

[33] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo. Using
Innovative Instructions to Create Trustworthy Software Solutions. In Pro-
ceedings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP 2013), pages 11:1–11:1. ACM,
2013. doi: 10.1145/2487726.2488370.

[34] N. Howgrave-Graham. Approximate Integer Common Divisors. In Re-
vised Papers from the International Conference on Cryptography and Lat-
tices (CaLC 2001), pages 51–66. Springer-Verlag, 2001. doi: 10.1007/
3-540-44670-2 6.

35

http://jscience.org
http://doi.acm.org/10.1145/2976749.2978379
http://doi.acm.org/10.1145/2976749.2978379

[35] H. Kadhem, T. Amagasa, and H. Kitagawa. MV-OPES: Multivalued-Order
Preserving Encryption Scheme: A Novel Scheme for Encrypting Integer
Value to Many Different Values. IEICE Transactions on Information and
Systems, 93(9):2520–2533, 2010. doi: 10.1587/transinf.E93.D.2520.

[36] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure
outsourced databases. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16), pages 1329–1340.
ACM, 2016. doi: 10.1145/2976749.2978386.

[37] F. Kerschbaum. Frequency-Hiding Order-Preserving Encryption. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS 2015), pages 656–667. ACM, 2015. doi:
10.1145/2810103.2813629.

[38] F. Kerschbaum and A. Schroepfer. Optimal Average-Complexity Ideal-
Security Order-Preserving Encryption. In Proceedings of the 21st ACM
SIGSAC Conference on Computer and Communications Security (CCS
2014), pages 275–286. ACM, 2014. doi: 10.1145/2660267.2660277.

[39] E. Khoury, M. Medlej, C. A. Jaoude, and C. Guyeux. Novel order
preserving encryption scheme for wireless sensor networks. In Pro-
ceeding of the 2018 IEEE Middle East and North Africa Communic-
ations Conference (MENACOMM 2018), pages 1–6, April 2018. doi:
10.1109/MENACOMM.2018.8371028.

[40] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim. Secur-
ity of Stateful Order-Preserving Encryption. In Information Security
and Cryptology (ICISC 2017), pages 39–56. Springer-Verlag, 2018. doi:
10.1007/978-3-319-78556-1 3.

[41] S. F. Krendelev, M. Yakovlev, and M. Usoltseva. Order-preserving encryp-
tion schemes based on arithmetic coding and matrices. In Proceedings of the
2014 Federated Conference on Computer Science and Information Systems
(FedCSIS 2014), pages 891–899. PTI, 2014. doi: 10.15439/2014F186.

[42] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-Gate Secure Computation
with Malicious Adversaries. In Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12), pages 285–300. USENIX, 2012.

[43] M. Lacharité, B. Minaud, and K. G. Paterson. Improved Reconstruction
Attacks on Encrypted Data Using Range Query Leakage. In Proceedings
of the 2018 IEEE Symposium on Security and Privacy (SP 2018), pages
297–314, 2018. doi: 10.1109/SP.2018.00002.

[44] K. Lewi and D. J. Wu. Order-Revealing Encryption: New Constructions,
Applications, and Lower Bounds. In Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security (CCS 2016), pages
1167–1178. ACM, 2016. doi: 10.1145/2976749.2978376.

36

[45] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng. On
trip planning queries in spatial databases. In Advances in Spatial and
Temporal Databases, pages 273–290. Springer Berlin Heidelberg, 2005. doi:
10.1007/11535331 16.

[46] D. Liu and S. Wang. Programmable Order-Preserving Secure Index for
Encrypted Database Query. In Proceedings of the 5th IEEE International
Conference on Cloud Computing (CLOUD 2012), pages 502–509. IEEE,
2012. doi: 10.1109/CLOUD.2012.65.

[47] Z. Liu, X. Chen, J. Yang, C. Jia, and I. You. New order preserving encryption
model for outsourced databases in cloud environments. Journal of Network
and Computer Applications, 59:198 – 207, 2016. doi: 10.1016/j.jnca.2014.07.
001.

[48] J. L. Massey. Guessing and Entropy. In Proceedings of 1994 IEEE Inter-
national Symposium on Information Theory (ISIT 1994), page 204. IEEE,
1994. doi: 10.1109/ISIT.1994.394764.

[49] V. Mavroudis, A. Cerulli, P. Svenda, D. Cvrcek, D. Klinec, and G. Danezis.
A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted
Components. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017), pages 1583–1600.
ACM, 2017. doi: 10.1145/3133956.3133961.

[50] K. McCarthy. US police contracts and private forum posts dumped online,
2016. URL https://www.theregister.co.uk/2016/01/29/us_police_

contracts_and_private_forum_posts_dumped_online/.

[51] M. Naveed, S. Kamara, and C. V. Wright. Inference Attacks on Property-
Preserving Encrypted Databases. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS 2015), pages
644–655. ACM, 2015. doi: 10.1145/2810103.2813651.

[52] NIST Information Technology Laboratory. Advanced Encryption Standard
(AES). Federal Information Processing Standards Publication 197, National
Institute of Standards and Technology, 11 2001.

[53] O. O’Malley. TeraByte Sort on Apache Hadoop. Whitepaper, Yahoo, Inc.,
May 2008. URL http://sortbenchmark.org/YahooHadoop.pdf.

[54] S. Onozawa, N. Kunihiro, M. Yoshino, and K. Naganuma. Inference attacks
on encrypted databases based on order preserving assignment problem. In
Advances in Information and Computer Security, pages 35–47. Springer
International Publishing, 2018. doi: 10.1007/978-3-319-97916-8 3.

[55] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:
Protecting Confidentiality with Encrypted Query Processing. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP 2011),
pages 85–100. ACM, 2011. doi: 10.1145/2043556.2043566.

37

https://www.theregister.co.uk/2016/01/29/us_police_contracts_and_private_forum_posts_dumped_online/
https://www.theregister.co.uk/2016/01/29/us_police_contracts_and_private_forum_posts_dumped_online/
http://sortbenchmark.org/YahooHadoop.pdf

[56] R. A. Popa, F. H. Li, and N. Zeldovich. An Ideal-Security Protocol for
Order-Preserving Encoding. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (SP 2013), pages 463–477. IEEE, 2013. doi:
10.1109/SP.2013.38.

[57] R. A. Popa, C. Redfield, S. Tu, H. Balakrishnan, F. Kaashoek, S. Madden,
N. Zeldovich, and A. Burrow. CryptDB. Source code, 2014. URL https:

//css.csail.mit.edu/cryptdb/.

[58] H. Quan, B. Wang, Y. Zhang, and G. Wu. Efficient and Secure Top-k Queries
With Top Order-Preserving Encryption. IEEE Access, 6:31525–31540, 2018.
doi: 10.1109/ACCESS.2018.2847307.

[59] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On Data Banks and Privacy
Homomorphisms. Foundations of Secure Computation, 4(11):169–180, 1978.

[60] J. Saia and M. Zamani. Recent Results in Scalable Multi-Party Computation.
In SOFSEM 2015: Theory and Practice of Computer Science, pages 24–44.
Springer-Verlag, 2015. doi: 10.1007/978-3-662-46078-8 3.

[61] N. P. Smart, M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. G.
Paterson, and G. Peer. LIMA: A PQC Encryption Scheme. Technical
report, University of Bristol, 2017. URL https://lima-pq.github.io/

files/lima-pq.pdf.

[62] Social Security Administration. US social security name statistics, 2019.
URL https://www.ssa.gov/OACT/babynames/.

[63] I. Teranishi, M. Yung, and T. Malkin. Order-Preserving Encryption Secure
Beyond One-Wayness. In Proceedings of the 20th International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT 2014), pages 42–61. Springer-Verlag, 2014. doi: 10.1007/
978-3-662-45608-8 3.

[64] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully Homo-
morphic Encryption over the Integers. In Proceedings of the 29th Annual
International Conference on Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2010), pages 24–43. Springer-Verlag, 2010. doi:
10.1007/978-3-642-13190-5 2.

[65] M. Varia, S. Yakoubov, and Y. Yang. HETest: A Homomorphic Encryption
Testing Framework. Cryptology ePrint Archive, Report 2015/416, 2015.

[66] L. Xiao and I.-L. Yen. A Note for the Ideal Order-Preserving Encryption
Object and Generalized Order-Preserving Encryption. Cryptology ePrint
Archive, Report 2012/350, 2012.

[67] L. Xiao and I.-L. Yen. Security analysis for order preserving encryption
schemes. In Proceedings of the 46th Annual Conference on Information
Sciences and Systems (CISS 2012), pages 1–6. IEEE, 2012. doi: 10.1109/
CISS.2012.6310814.

38

https://css.csail.mit.edu/cryptdb/
https://css.csail.mit.edu/cryptdb/
https://lima-pq.github.io/files/lima-pq.pdf
https://lima-pq.github.io/files/lima-pq.pdf
https://www.ssa.gov/OACT/babynames/

[68] C. Yang, W. Zhang, and N. Yu. Semi-order preserving encryption. Inform-
ation Sciences, 387:266 – 279, 2017. doi: 10.1016/j.ins.2016.12.025.

[69] D. H. Yum, D. S. Kim, J. S. Kim, P. J. Lee, and S. J. Hong. Order-
Preserving Encryption for Non-uniformly Distributed Plaintexts. In Revised
Selected Papers from the 12th International Workshop on Information
Security Applications (WISA 2011), pages 84–97. Springer-Verlag, 2012.
doi: 10.1007/978-3-642-27890-7 7.

39

	Introduction
	Background
	Notation
	Scenario
	Formal Model of Scenario
	Observations from Scenario

	Related Work
	An OPE scheme using Integer Approximate Common Divisors
	Key Generation.
	Encryption.
	Decryption.

	Security of the Scheme
	Security Models
	One-Wayness.
	IND-OCPA
	Window One-Wayness.

	A Vector-based Generalisation of the Scheme

	An OPE scheme using Polynomial Approximate Common Divisors
	OPE Scheme
	Security

	Algorithms of Boldyreva type
	Generic Algorithms
	An Approximation

	Leakage Abuse Inference Attacks
	Sorting Attacks
	Frequency Attacks
	Published Attacks on OPE

	Experimental Results
	Small-Scale Cloud Implementation
	Large-Scale Cloud Implementation: Microsoft Azure Cloud

	Conclusion

