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Abstract

This paper introduces a new class of functional-coefficient predictive regression models,

where the regressors consist of auto-regressors and latent factor regressors, and the coefficients

vary with certain index variable. The unobservable factor regressors are estimated through

imposing an approximate factor model on high dimensional exogenous variables and subse-

quently implementing the classical principal component analysis. With the estimated factor

regressors, a local linear smoothing method is used to estimate the coefficient functions (with

appropriate rotation) and obtain a one-step ahead nonlinear forecast of the response variable,

and then a wild bootstrap procedure is introduced to construct the prediction interval. Under

regularity conditions, the asymptotic properties of the proposed methods are derived, showing

that the local linear estimator and the nonlinear forecast using the estimated factor regressors

are asymptotically equivalent to those using the true latent factor regressors. The developed

model and methodology are further generalised to the factor-augmented vector predictive

regression with functional coefficients. Finally, some extensive simulation studies and an empir-

ical application to forecast the UK inflation are given to examine the finite-sample performance

of the proposed model and methodology.

Keywords: Bootstrap procedure, Factor models, Functional-coefficient models, Local linear

smoothing, Nonlinear forecast, PCA, Vector auto-regression.
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1 Introduction

The functional-coefficient regression/auto-regression models are a natural extension of the tra-

ditional parametric linear regression/auto-regression models, and they can be used to explore

nonlinear dynamic pattern in univariate or multivariate time series data analysis. In the last

two decades, the functional-coefficient modelling approach and its generalised version have ex-

perienced rapid development (c.f., Chen and Tsay, 1993; Hastie and Tibshirani, 1993; Fan and

Zhang, 1999; Cai, Fan and Yao, 2000; Xia, Zhang and Tong, 2004; Kai, Li and Zou, 2011; Jiang et

al, 2013). Fan and Zhang (2008) and Park et al (2015) provide an extensive review of some recent

developments in the field. In the dynamic time series context, we start with an introduction of the

following functional-coefficient predictive regression model:

yt+1 =

qn
ÿ

i=1

α1i(ut)zti +

d0
ÿ

j=1

α2j(ut)yt+1´j + εt+1

= Z
⊺

tα1(ut) + Y
⊺

tα2(ut) + εt+1, t = 1, ¨ ¨ ¨ ,n, (1.1)

where yt+1 is a response variable, Zt = (zt1, ¨ ¨ ¨ , ztqn
)
⊺

is a qn-dimensional column vector of

random covariates, Yt = (yt, ¨ ¨ ¨ ,yt´d0+1)
⊺

is a column vector of d0 lags of the response, ut

is a univariate index variable, α1(¨) = [α11(¨), ¨ ¨ ¨ ,α1qn
(¨)]⊺ and α2(¨) = [α21(¨), ¨ ¨ ¨ ,α2d0

(¨)]⊺ are

two column vectors of coefficient functions, and εt is the model error. If ut = t/n with n

as the time series length, we may call model (1.1) as the time-varying coefficient time series

model (c.f., Robinson, 1989; Cai, 2007). In the econometric terminology, the components of Zt are

exogenous variables which are usually determined by the factors outside of our models, whereas

the components of Yt are determined within our model.

In the present paper, we assume that qn, the number of exogenous covariates, diverges to

infinity as the sample size n grows, but d0, the number of lags, is fixed. When the dimension of

regressors in the models is ultra large or moderately large, a commonly-used approach is to apply

certain shrinkage estimation or screening method to remove the insignificant regressors and then

use the significant regressors to build the functional-coefficient models, enhancing the nonlinear

model prediction accuracy (c.f., Wang and Xia, 2009; Lian, 2012; Fan, Ma and Dai, 2014; Liu, Li and

Wu, 2014; Li, Ke and Zhang, 2015). However, as pointed out in some variable selection literature

such as Fan and Lv (2008), when irrelevant regressors are highly correlated with some relevant ones,

through the shrinkage or screening approach, these irrelevant regressors might be selected into the

model with higher priority than some other relevant regressors, leading to high false positive rates
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and low true positive rates. This problem could become worse in the time series setting as the

regressors usually contain some lags of the response and it is not uncommon to find some strong

correlations among the regressors, see Chen et al (2018a) for some numerical evidences. Therefore,

to address this problem, we need to develop an alternative dimension-reduction technique for the

high-dimensional functional-coefficient predictive regression model (1.1).

As the number of lags is assumed to be fixed, we only need to consider the dimension reduction

on the exogenous regressors Zt. This will be done by imposing an approximate factor modelling

structure commonly used in the analysis of economic and financial time series data:

Zt = BnFt + Vt, (1.2)

where Bn is a qn ˆ k matrix of factor loadings, Ft = (Ft1, ¨ ¨ ¨ , Ftk)
⊺

is a k-dimensional latent

common factor which is stationary and weakly dependent over time, and Vt is a qn-dimensional

column vector of idiosyncratic errors. The number k is usually unknown and can be determined

via some data-driven criteria. In this paper, we allow k to increase slowly with the sample size

n. In recent years, there has been increasing interest on studying the approximate factor model

(1.2), see, for example, Chamberlain and Rothschild (1983), Fama and French (1992), Bai and Ng

(2002), Fan, Liao and Mincheva (2013) and the references therein. Through the factor model (1.2),

the latent factor time series process may carry a large proportion of the “dynamic information”

contained in the high-dimensional observable time series vector Zt. In addition, by assuming that

Ft and Vt are uncorrelated, we readily have

ΣZ = BnΣFB
⊺

n +ΣV , (1.3)

where ΣZ, ΣF and ΣV denote the covariance matrices for Zt, Ft and Vt, respectively. In the high-

dimensional setting with qn ą n, some existing literature such as Fan, Liao and Mincheva (2013)

usually assumes that the idiosyncratic error covariance matrix ΣV is sparse with all the eigenvalues

bounded (e.g., Bickel and Levina, 2008), indicating low correlation among the components of Vt.

On the other hand, the k eigenvalues of B
⊺

nBn are typically assumed to be divergent at the rate

of O(qn), see Assumption 2(ii) in Section 3 below, indicating that the latent factors in (1.2) are

pervasive. Hence, the high-dimensional random covariates Zt satisfying the approximate factor

structure may have high correlation among their components.

In this paper, instead of directly estimating the dynamic relationship between yt+1 and Zt, we
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consider the following functional-coefficient predictive model using the latent factor regressors:

yt+1 = F
⊺

tβ1(ut) + Y
⊺

tβ2(ut) + ǫt+1, (1.4)

where β1(¨) = [β11(¨), ¨ ¨ ¨ ,β1k(¨)]
⊺

and β2(¨) = [β21(¨), ¨ ¨ ¨ ,β2d0
(¨)]⊺ are two column vectors of

coefficient functions, and ǫt is the error term. A significant difference between models (1.1) and

(1.4) is that the factor regressors Ft in the latter are unobservable, while all of the regressors in

the former are observable. Furthermore, the number of regressors in (1.4) is k + d0, which is

much smaller than that in model (1.1). Through a combination of (1.2) and (1.4), we obtain the

functional-coefficient predictive regression model with latent factor regressors and call it as the

Factor-Augmented Functional-Coefficient Model (FA-FCM). The FA-FCM can be viewed as a

generalisation of the linear factor-augmented regression or auto-regression models (c.f., Stock and

Watson, 2002; Bernanke, Boivin and Eliasz, 2005; Bai and Ng, 2006; Pesaran, Pick and Timmermann,

2011; Cheng and Hansen, 2015) in which the factor regressors Ft can be regarded as the “proxy”

when we aim to describe the dynamic relationship between yt+1 and Zt. Through the dimension

reduction, it is expected that the nonlinear forecast using the FA-FCM (1.4) could be more accurate

than that using the conventional functional-coefficient time series model (1.1).

The main contribution of this paper is two-fold. First, we introduce a two-stage estimation

procedure to estimate the coefficient functions (subject to appropriate rotation) in model (1.4): the

Principal Component Analysis (PCA) technique is used in stage one to estimate the rotated factor

regressors, and then the local linear smoothing method is used in stage two to estimate the rotated

coefficient functions with the rotation matrix defined in Section 2 below. Second, we introduce a

one-step ahead nonlinear forecasting approach by using the estimates of the rotated coefficient

functions and then construct the prediction interval by a wild bootstrap procedure as in Zhang

and Peng (2010) and Chen et al (2018b). Under some mild conditions, we derive the asymptotic

properties of the developed estimation and forecasting methods, from which we find that the local

linear estimator and nonlinear forecast using the estimated factor regressors are asymptotically

equivalent to the infeasible counterpart using the true latent factor regressors. Furthermore, we

also extend the methodology and theory to the factor-augmented vector auto-regression with

functional coefficients, substantially generalising the parametric linear factor-augmented vector

auto-regression models which have been extensively studied in the literature. Some simulation

studies and an empirical application to predict the UK inflation are given to illustrate our model

and methodology in finite samples. In particular, our empirical result shows that the proposed

nonlinear forecasting method outperforms some commonly-used parametric forecasting methods.
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The rest of the paper is organised as follows. Section 2 introduces the nonlinear estimation and

forecasting methodology. Section 3 gives the asymptotic results of the proposed methods. Section 4

discusses extension of the developed model to nonlinear vector auto-regression with multivariate

response. Section 5 reports the simulation studies. Section 6 applies the models and methods to

analyse a real data set. Section 7 concludes the paper. All the proofs of the asymptotic results are

given in a supplemental document.

2 Methodology

We next introduce nonparametric estimation of the coefficient functions (with appropriate rotation)

and one-step ahead nonlinear prediction of the response, and give a data-driven selection criterion

to determine the numbers of lags and factor regressors in the predictive regression model (1.4).

2.1 Estimation of the rotated coefficient functions

As the factor regressors in model (1.4) are unobservable, in order to develop a feasible nonpara-

metric estimation and forecasting approach, we next introduce a two-stage estimation procedure.

For the time being, we assume that the numbers k and d0 are known, and Section 2.3 below will

discuss how to determine these numbers in practice.

Stage 1: We obtain the estimated factor regressors by using the PCA approach. Specifically,

letting Zn = (Z1, . . . , Zn)
⊺

, an n ˆ qn matrix of observations, we conduct an eigenanalysis on the

n ˆ n (normalised) matrix ZnZ
⊺

n/(nqn), and obtain F̂n =
(

F̂1, . . . , F̂n

)
⊺

, an n ˆ k matrix which

consists of the k eigenvectors (multiplied by
?
n) associated with the k largest eigenvalues of the

matrix ZnZ
⊺

n/(nqn) (ranked in the descending order). In addition, we may further construct the

estimation of factor loading matrix (with rotation) by B̂n = Z
⊺

nF̂n/n, where we have used the

fact of F̂
⊺

nF̂n/n = Ik with Ik being a k ˆ k identity matrix. This PCA estimation method has been

extensively studied in the literature (c.f., Bai and Ng, 2002; Stock and Watson, 2002), which shows

that, under some mild conditions, F̂t is a consistent estimate of the rotated common factor HFt

(see also the proof of Lemma B.2 in the supplemental document), where

H = Q´1
n

(

F̂
⊺

nFn/n
) (

B
⊺

nBn/qn

)

, Fn = (F1, . . . , Fn)
⊺

,

and Qn is a k ˆ k diagonal matrix of the first k largest eigenvalues of ZnZ
⊺

n/(nqn) arranged in

the descending order. Furthermore, one may prove that the rotation matrix H is asymptotically

5
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invertible, indicating the existence of the inverse matrix H´1 with probability approaching one.

Stage 2: We estimate the rotated coefficient functions by the local linear smoothing method (Fan and

Gijbels, 1996). Letting Xt =
[

(HFt)
⊺

, Y
⊺

t

]⊺

, βH(¨) =
[

β
⊺

1(¨)H´1,β
⊺

2(¨)
]⊺

and noting that H´1H = Ik,

we may rewrite model (1.4) as

yt+1 = β
⊺

H(ut)Xt + ǫt+1. (2.1)

As in the literature, we assume that the coefficient functions β1(¨) and β2(¨) have continuous

second-order derivatives (see Assumption 7(ii) in Section 3), implying that βH(¨) has continuous

second-order derivatives as well for given H. Instead of estimating β1(¨) and β2(¨), we next

use the local linear smoothing method to estimate the rotated coefficient functions βH(¨). Let

Yn = (y2, ¨ ¨ ¨ ,yn+1)
⊺

,

Xn(u) =









X
⊺

1 X
⊺

1(u1 ´ u)
...

...

X
⊺

n X
⊺

n(un ´ u)









, Wn(u) = diag tKb(u1,u), ¨ ¨ ¨ ,Kb(un,u)u

with Kb(ut,u) = K ((ut ´ u)/b), where K(¨) is a kernel function and b is a bandwidth. Then a local

linear estimate of βH(u) can be constructed as

β̃H(u) = (Ik+d0
, Ok+d0

)
[

X
⊺

n(u)Wn(u)Xn(u)
]´1 [

X
⊺

n(u)Wn(u)Yn

]

, (2.2)

where u is on the support of the index variable ut and Op is a pˆp null matrix. However, the local

linear estimation in (2.2) is infeasible and cannot be implemented directly as the factor regressors

involved in Xt are unobservable. In practice, we have to replace Xt by X̂t =
(

F̂
⊺

t, Y
⊺

t

)
⊺

with F̂t

obtained in Stage 1, and let X̂n(u) be defined as Xn(u) but with Xt replaced by X̂t. Then, we obtain

the following feasible local linear estimate of βH(u):

β̂H(u) = (Ik+d0
, Ok+d0

)
[

X̂
⊺

n(u)Wn(u)X̂n(u)
]´1 [

X̂
⊺

n(u)Wn(u)Yn

]

. (2.3)

In Section 3 below, we will show that the feasible local linear estimator β̂H(u) has the same

asymptotic distribution as the infeasible one β̃H(u) when both n and qn are sufficiently large.

6

Page 6 of 31Journal of Time Series Analysis



2.2 One-step ahead nonlinear forecast

Given the observations (yt+1,ut, Zt) with t = 1, ¨ ¨ ¨ ,n ´ 1 and (un, Zn), with the feasible local

linear estimation constructed in Section 2.1, we may obtain the one-step ahead prediction of yn+1:

ŷn+1|n = β̂
⊺

H,n´1(un)X̂n, (2.4)

where β̂H,n´1(¨) is the local linear estimate as in (2.3) using the sample (yt+1,ut, Zt), t = 1, ¨ ¨ ¨ ,n´1.

In fact, ŷn+1|n in (2.4) can be regarded as a natural estimate of

yn+1|n = F
⊺

nβ1(un) + Y
⊺

nβ2(un) = β
⊺

H(un)Xn.

The asymptotic property of ŷn+1|n will be given in Theorem 2 in Section 3 below. In practice, it is

often of interest to further construct the confidence interval of yn+1|n. For given 0 ă α ă 1, the

(1 ´ α) confidence interval of yn+1|n can be defined by

[

ŷn+1|n ´ cα/2 ˆ
b

ˆvar(ŷn+1|n), ŷn+1|n + cα/2 ˆ
b

ˆvar(ŷn+1|n)
]

, (2.5)

where cα/2 is the upper α/2-percentile of
(

ŷn+1|n ´ yn+1|n

)

/
a

ˆvar(ŷn+1|n) and ˆvar(ŷn+1|n) is the

estimate of the variance of ŷn+1|n.

However, the confidence interval in (2.5) cannot be directly used as neither cα/2 nor ˆvar(ŷn+1|n)

is known. These quantities may be estimated using the asymptotic result (e.g., Theorem 3), and

then we could construct a feasible confidence interval. However, such an interval construction

based on the asymptotic theory usually does not perform well in small or medium samples. Hence,

we next use a wild bootstrap procedure to estimate cα/2 and ˆvar(ŷn+1|n), and then proceed to

construct the prediction interval. The following bootstrap procedure is similar to those in Zhang

and Peng (2010) and Chen et al (2018b) which construct the point-wise or simultaneous confidence

bands in the functional-coefficient models. It can also be seen as a nonparametric generalisation of

the bootstrap prediction interval introduced by Gonçalves, Perron and Djogbenou (2017) for the

parametric linear factor-augmented regression model.

STEP 1: Using the observations (yt+1,ut, Zt), t = 1, ¨ ¨ ¨ ,n ´ 1, we estimate the rotated coefficient

functions βH(¨) by the local linear smoothing method (2.3), and denote the resulting estimates

by β̂H,n´1(ut) for t = 1, ¨ ¨ ¨ ,n. Let X̂t, t = 1, ¨ ¨ ¨ ,n, be defined as in Section 2.1, where F̂t

is obtained by implementing PCA on the observations of Zt, t = 1, ¨ ¨ ¨ ,n. Construct the

one-step ahead forecast ŷn+1|n as in (2.4).

7
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STEP 2: Generate the bootstrap sample:

y˚
t+1 = X̂

⊺

tβ̂H,n´1(ut) + ǫ˚
t+1, t = 1, ¨ ¨ ¨ ,n ´ 1,

where ǫ˚
t+1 = ǫ̃t+1 ¨ ηt+1, tηtu is a sequence of independent and identically distributed (i.i.d.)

random variables drawn from a pre-specified distribution with mean zero and unit variance,

such as N(0, 1), and ǫ̃t+1 = ǫ̂t+1 ´
řn´1

t=1 ǫ̂t+1/(n ´ 1) with ǫ̂t+1 = yt+1 ´ X̂
⊺

tβ̂H,n´1(ut).

STEP 3: As in Step 1, use the generated data set t(y˚
t+1,ut, X̂t) : t = 1, ¨ ¨ ¨ ,n ´ 1u to re-estimate

the rotated coefficient functions at ut, t = 1, ¨ ¨ ¨ ,n, and denote the resulting estimates as

β̂˚
H,n´1(ut). Construct the one-step ahead forecast:

ŷn+1|n(1) =
[

β̂˚
H,n´1(un)

]
⊺

X̂n.

STEP 4: Repeat Steps 2 and 3 for M times and obtain M bootstrap one-step ahead predicted

values, ŷn+1|n(i), i = 1, ¨ ¨ ¨ ,M. The estimate of the variance of ŷn+1|n is obtained via the

sample variance of
 

ŷn+1|n(i) : i = 1, ¨ ¨ ¨ ,M
(

and is denoted by ˆvar
˚
(ŷn+1|n).

STEP 5: For each i = 1, ¨ ¨ ¨ ,M, use the sequence ŷn+1|n(i) and ˆvar
˚
(ŷn+1|n) to compute q˚

n(i) =
[

ŷn+1|n(i) ´ ŷn+1|n

]

/
b

ˆvar
˚
(ŷn+1|n), and then obtain the estimate of cα/2 by calculating the

upper α/2-percentile of tq˚
n(i) : i = 1, ¨ ¨ ¨ ,Mu. We denote the estimate of cα/2 by ĉ˚

α/2.

Using c˚
α/2 and var˚(ŷn+1|n) obtained in the above bootstrap procedure, we can construct the

feasible (1 ´ α) confidence interval of yn+1|n by

[

ŷn+1|n ´ c˚
α/2 ˆ

b

ˆvar
˚
(ŷn+1|n), ŷn+1|n + c˚

α/2 ˆ
b

ˆvar
˚
(ŷn+1|n)

]

. (2.6)

As in Teräsvirta, Tjøstheim and Granger (2010), here we let the auto-regressors in the time series

model be invariant when generating the bootstrap samples, although other bootstrap methods

may also be applicable in our setting. In addition, the bias of local linear estimation is ignored in

our construction of prediction interval to simplify the methodology. Following the arguments in

Zhang and Peng (2010) and Chen et al (2018b), we can give theoretical justification of the above

bootstrap method. Details are omitted to save the space.
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2.3 The forward selection criterion

In order to implement the estimation and forecasting method introduced in Sections 2.1 and 2.2, we

need to determine d0, the number of lags, and k, the number of latent factor regressors. The model

selection for parametric linear factor-augmented models is recently studied by Djogbenou (2016).

However, his selection criterion is not applicable to our nonparametric model setting. Meanwhile,

estimating the number of factors is an important issue in factor analysis and has been extensively

studied in the literature (c.f., Bai and Ng, 2002; Onatski, 2009; Ahn and Horenstein, 2013; Li, Li

and Shi, 2017). However, the estimated number of factors by some existing approaches such as

the information criterion (Bai and Ng, 2002) or ratio criterion (Ahn and Horenstein, 2013) may not

be “optimal” in nonlinear forecasting. We next use the forward selection criterion as a screening

tool and employ the Bayesian Information Criteria (BIC) as the stopping rule to estimate d0 and k,

motivated by the forward selection method introduced by Wang (2009) and Cheng, Honda and

Zhang (2016) for the high-dimensional regression models without any latent factor regressor.

Let k̃ be an initial estimate of k whose construction will be discussed in Section 5 below. If the

number of lags is assumed to be d, a positive integer, we let β̂H(u|k̃,d) be the feasible local linear

estimated coefficient function (with rotation), similar to the definition of β̂H(u) given in (2.3). Let

X̂t(l,d) be defined as X̂t when the number of lags is d and the number of estimated factors is l. In

our data-driven selection procedure, we examine the change of residual sum of squares defined by

σ̂2
n1(d) =

1

n

n
ÿ

t=1

[

yt+1 ´ β̂
⊺

H(ut|k̃,d)X̂t(k̃,d)
]2

,

and compute the BIC value as in Wang and Xia (2009):

BIC1(d) = log σ̂2
n1(d) + d ¨ log(nb)

nb
(2.7)

when the lags of response are sequentially added to the FA-FCM. Specifically, we start with the

predictive regression model without any lag (d = 0) in which case BIC1(0) = log σ̂2
n1(0). In the

second step, we add the first lag to the model and compute BIC1(1). Continue this forward

procedure by adding one lag in each step, and determine the number of lags in the proposed

FA-FCM as d̂ so that BIC1(d̂+ 1) ą BIC1(d̂).

After obtaining d̂, we next re-estimate the number of factor regressors which is optimal for

9
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one-step ahead forecasting. Let

K =
 

tk̃/2u, tk̃/2u + 1, ¨ ¨ ¨ , k̃+ tk̃/2u
(

,

where t¨u denotes the floor function and k̃ is the initial estimate of k. When the number of factor

regressors is l P K, similar to σ̂2
n1(¨) and BIC1(¨), we define the residual sum of squares:

σ̂2
n2(l) =

1

n

n
ÿ

t=1

[

yt+1 ´ β̂
⊺

H(ut|l, d̂)X̂t(l, d̂)
]2

,

and the BIC value:

BIC2(l) = log σ̂2
n2(l) + l ¨ log(nb)

nb
. (2.8)

Then, the final estimate of k is obtained by

k̂ = arg min
lPK

BIC2(l). (2.9)

3 Asymptotic theorems

In this section, we give the asymptotic results for the methodologies developed in Sections 2.1

and 2.2. Throughout the paper, we let } ¨ } denote the Euclidean norm of a vector, } ¨ }F and } ¨ }O
denote the Frobenius norm and operator norm of a matrix, respectively, let an 9 bn denote that

0 ă c ď an/bn ď c̄ ă ∞ when n tends to infinity. We start with some regularity conditions which

are needed to prove our asymptotic theorems.

ASSUMPTION 1. (i) The process t(yt,ut, Ft, Vt)u is stationary and α-mixing dependent with the

mixing coefficient satisfying αj „ cαρ
j as j is sufficiently large, where 0 ă cα ă ∞ and

0 ă ρ ă 1.

(ii) The index variable ut has a compact support C = [0, 1], and its density function f(¨) has

continuous second-order derivatives and is bounded away from zero and infinity over C.

ASSUMPTION 2. (i) The latent factor regressors satisfy that E(Ft) = 0k and max1ďsďk E
[

|Fts|2(2+δ)
]

ă
∞, where 0 ă δ ă ∞, 0k is a k-dimensional null vector and Fts is the s-th element of Ft. In

addition, the k ˆ k matrix ΛF = E
[

FtF
⊺

t

]

is positive definite.

10
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(ii) There exists a k ˆ k matrix ΛB such that

›

›

›

›

B
⊺

nBn

qn

´ ΛB

›

›

›

›

F

= o(1).

The matrix ΛB is positive definite with eigenvalues bounded from zero and infinity.

(iii) There exist two k ˆ k positive definite matrices Q0 and Λ̂F with eigenvalues bounded

from zero and infinity such that

}Qn ´ Q0}F = oP(1) and

›

›

›

›

F̂
⊺

nFn

n
´ Λ̂F

›

›

›

›

F

= oP(1),

where Qn, F̂n and Fn are defined in Section 2.1.

(iv) The eigenvalues of the k ˆ k matrix Λ
1/2
B ΛFΛ

1/2
B are distinct.

ASSUMPTION 3. Letting X‹
t =

(

F
⊺

t, Y
⊺

t

)⊺

, the (k+ d0) ˆ (k+ d0) matrix ΛX(u) = E
[

X‹
tX‹⊺

t |ut = u
]

is continuous and positive definite over u P C. The smallest eigenvalue of ΛX(u) is larger

than a positive constant uniformly over u P C. Moreover, E
[

|yt|2(2+δ)
]

ă ∞.

ASSUMPTION 4. The kernel function K(¨) is positive and Lipschitz continuous with a compact

support.

ASSUMPTION 5. The bandwidth b satisfies kb Ñ 0 and n1´τ´1/(2+δ)b/k Ñ ∞, where τ ą 0 can be

arbitrarily small and δ is defined in Assumption 2(i).

ASSUMPTION 6. (i) The idiosyncratic errors vti satisfy E[vti] = 0 and max1ďiďqn
E[|vti|2δ1] ă ∞

with δ1 ą 2, and there exists a positive constant m0 such that

max
1ďsďk

E





ˇ

ˇ

ˇ

ˇ

ˇ

qn
ÿ

i=1

bisvti

ˇ

ˇ

ˇ

ˇ

ˇ

δ1



 ď m0q
δ1/2
n (3.1)

and

E





ˇ

ˇ

ˇ

ˇ

ˇ

qn
ÿ

i=1

(vt1ivt2i ´ E[vt1ivt2i])

ˇ

ˇ

ˇ

ˇ

ˇ

δ1



 ď m0q
δ1/2
n , (3.2)

where vti is the i-th random element in Vt and bis is the (i, s)-entry of Bn.
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(ii) Let qn/(nb) Ñ ∞,

n = o
(

min
 

[qn/(nb)]
δ1/2k´(1+5δ1/2), [qn/(nb)]

δ˚/2k´(2δ˚+1), [qn/(nb)]
δ1/4k´δ1/4

()

,

where δ´1
˚ = 1/[2(2 + δ)] + 1/δ1. In addition, k = o

(

n(2+δ)τ/4 ^ n1/(2+δ)+5τ/6
)

.

ASSUMPTION 7. (i) The sequence tǫtu is i.i.d. with E[ǫt] = 0, 0 ă σ2
ǫ = E[ǫ2

t] ă ∞ and E[|ǫt|2+δ] ă
∞, where δ is defined in Assumption 2(i). Furthermore, ǫt+1 is independent of (us, Fs, Vs),

s ď t.

(ii) Both β1(¨) and β2(¨) have continuous second-order derivatives.

REMARK 1. The α-mixing dependence condition on the stationary process in Assumption 1(i)

is mild and has been widely used on analysing nonlinear time series (c.f., Bosq, 1998). The

geometric decaying rate on the mixing coefficient and the compact support restriction on the

index variable in Assumption 1 are imposed to facilitate our proofs and can be relaxed at the cost

of more lengthy arguments in the poofs. The conditions in Assumption 2 are common in PCA

estimation of the approximate factor models (c.f., Bai and Ng, 2002, 2006). Assumptions 3–5 and

7(ii) are needed as the local linear smoothing method is used in our estimation and forecasting

procedures. In particular, the strong moment condition and bandwidth restriction can ensure

the validity of uniform consistency results in Theorem 1 and Remark 2 below. Assumption 6(i)

is similar to the condition B4 in Chen et al (2018a), indicating that for any t, vti is allowed to

be weakly dependent over i. For the special case of cross-sectional independent vti (over i), if

maxi E[|vti|δ1] ă ∞ and bis is bounded uniformly over i and s, by the Rosenthal inequality for

sum of independent random variables (e.g., Rosenthal, 1970), we can easily verify (3.1). Similarly

(3.2) can be verified if, in addition, maxi E[|vti|2δ1] ă ∞. Assumption 6(ii) shows that both n and

qn diverge to infinity simultaneously in our asymptotic results and their relationship is relevant

to the moment conditions. In particular, the dimension of exogenous regressors is allowed to be

much larger than the time series length. Assumptions 5 and 6(ii) also impose some mild restriction

on k, the number of factors. This number is allowed to be divergent at a slow polynomial rate of n.

The following theorem shows that the feasible local linear estimator β̂H(u) defined in (2.3) is

asymptotically equivalent to the infeasible one β̃H(u) uniformly over u P C.

THEOREM 1. Suppose that Assumptions 1–6 are satisfied. Then,

sup
uPC

›

›β̂H(u) ´ β̃H(u)
›

› = oP

(

(nb)´1/2
)

. (3.3)
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We next turn to the point-wise asymptotic distribution theory for the feasible local linear

estimator β̂H(u). Let µj =
ş

ujK(u)du, νj =
ş

ujK2(u)du, H0 = Q´1
0 Λ̂FΛB, H̄0 = diag tH0, Id0

u,

Λ(u) = H̄0ΛX(u)H̄
⊺

0,

and define β2
H(¨) as the second-order derivative of βH(¨). Let Dn be a k0 ˆ (k+ d0) matrix (which

might depend on u) such that }Dn}O is bounded and

DnΛ
´1(u)D

⊺

n Ñ D0(u) as n Ñ ∞, (3.4)

where D0(u) is a k0 ˆ k0 symmetric and nonnegative definite matrix and k0 is a fixed positive

integer.

THEOREM 2. Suppose Assumptions 1–7 are satisfied and b 9 n´1/5. Then we have

(nb)1/2Dn

[

β̂H(u) ´ βH(u) ´ 1

2
µ2β

2
H(u)b

2

]

d
−Ñ N

[

0k0
,
σ2
ǫν0

f(u)
D0(u)

]

, n Ñ ∞. (3.5)

REMARK 2. If the number of latent factor regressors is fixed, k + d0 would be a fixed positive

integer. In this special case, we may choose k0 = k + d0 and Dn = Ik+d0
, and consequently the

asymptotic normal distribution in (3.5) becomes

(nb)1/2

[

β̂H(u) ´ βH(u) ´ 1

2
µ2β

2
H(u)b

2

]

d
−Ñ N

[

0k+d0
,
σ2
ǫν0

f(u)
Λ´1(u)

]

, n Ñ ∞. (3.6)

Furthermore, when k is fixed, following the uniform consistency results in Hansen (2008) and Li,

Lu and Linton (2012), we may show that

sup
uP[γ,1´γ]

›

›β̃H(u) ´ βH(u)
›

› = OP

(

b2 + [logn/(nb)]
1/2

)

, (3.7)

where γ is a small positive constant between 0 and 1/2. Combining (3.3) in Theorem 1 and (3.7),

we readily have that

sup
uP[γ,1´γ]

›

›β̂H(u) ´ βH(u)
›

› = OP

(

b2 + [logn/(nb)]
1/2

)

. (3.8)
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In Section 2.2, we construct the one-step ahead nonlinear forecast ŷn+1|n using the local linear

estimates. The following theorem describes the asymptotic prediction accuracy. For simplicity, we

let the number of factors k be fixed.

THEOREM 3. Suppose that the conditions in Theorem 2 are satisfied and k is a fixed positive

integer. Then,

ŷn+1|n ´ yn+1 = ∆(un, Xn) ´ ǫn+1 + oP

(

1/(nb)1/2
)

, (3.9)

where

∆(un, Xn) =
[

β̂H,n´1(un) ´ βH(un)
]
⊺

Xn.

Furthermore, conditional on un = u˚ and Xn = X˚, we have

(nb)1/2

[

∆(u˚, X˚) ´ 1

2
µ2b

2X
⊺

˚β
2
H(u˚)

]

d
−Ñ N

[

0,
σ2
ǫν0

f(u˚)
X

⊺

˚Λ
´1(u˚)X˚

]

. (3.10)

REMARK 3. By the definition of yn+1|n in Section 2.2, we may show that

ŷn+1|n ´ yn+1|n = ∆(un, Xn) + oP

(

1/(nb)1/2
)

,

indicating that (nb)1/2
(

ŷn+1|n ´ yn+1|n

)

has the same (conditional) asymptotic normal distribution

as that in (3.10).

REMARK 4. In this section, we assume that the number of factor regressors and lags of response is

correctly specified when deriving the asymptotic theory. Under-estimation and over-estimation

of this number have different impacts on the asymptotic results. For example, if fewer than the

true number of factors is selected in the PCA estimation, the model is under-fitted, leading to

inconsistent functional coefficient estimation and inaccurate one-step ahead prediction. On the

other hand, if more than true number of factors is selected, the model is over-fitted, which would

not affect the estimation consistency but may reduce the estimation efficiency.

4 Extension to FA-FCM with multivariate response

The parametric linear vector auto-regressive models have been commonly applied in analysing

multiple macroeconomic time series data (Sims, 1980; Lütkepohl, 2006). In recent years, to deal with

high-dimensional time series and achieve dimension reduction, there has been increasing interest

on combining the approximate factor model with linear vector auto-regression, and studying the
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so-called factor-augmented vector auto-regressive models. Such a modelling approach is first

introduced by Bernanke, Boivin and Eliasz (2005), and has been extensively studied in the literature

(c.f., Bai and Ng, 2006; Bai, Li and Lu, 2016). In this section, we aim to make a further extension

of the factor-augmented vector auto-regression by allowing the coefficient matrices to vary with

an index variable, and generalise the FA-FCM and the relevant methodologies developed in the

Section 2 to the case of multiple response variables. Specifically, suppose (1.2) and

ȳt+1 = B
⊺

0(ut)Ft +

d1
ÿ

j=1

B
⊺

j(ut)ȳt+1´j + ǭt+1, (4.1)

where ȳt+1 is p0-dimensional column vector of response variables, B0(¨) is a k ˆ p0 matrix of

coefficient functions and Bj(¨) is a p0 ˆ p0 matrix of coefficient functions, j = 1, ¨ ¨ ¨ ,d1, and ǭt is

a p0-dimensional column vector of errors. Model (4.1) generalises the multivariate functional-

coefficient time series model proposed by Jiang (2014) which excludes the latent factor regressors

in the predictive model. To simplify the discussion, we assume that the dimension p0 is fixed.

Consider estimating the matrices of coefficient functions by using the local linear method as in

Section 2.1. Let

X̄t =
[

(HFt)
⊺

, ȳ
⊺

t , ¨ ¨ ¨ , ȳ
⊺

t´d1

]⊺

,

B̄H(¨) =
[

B
⊺

0(¨)H´1, B
⊺

1(¨), ¨ ¨ ¨ , B
⊺

d1
(¨)

]

,

and then rewrite (4.1) as

ȳt+1 = B̄H(ut)X̄t + ǭt+1. (4.2)

As the rotated factor regressors HFt are latent, to develop a feasible nonparametric estimation

method, we have to replace HFt by the PCA estimate F̂t defined in Stage 1 of the estimation

procedure introduced in Section 2.1. Let Ỹn = (ȳ2, ¨ ¨ ¨ , ȳn+1) and

X̃n(u) =









X̃
⊺

1 X̃
⊺

1(u1 ´ u)
...

...

X̃
⊺

n X̃
⊺

n(un ´ u)









,

where X̃t is defined as X̄t but with HFt replaced by F̂t. Then, similarly to (2.3), we can obtain the
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following feasible local linear estimates of B̄H(u) and its derivative B̄1
H(u):

[

B̃H(u), B̃1
H(u)

]

=
[

ỸnWn(u)X̃n(u)
] [

X̃
⊺

n(u)Wn(u)X̃n(u)
]´1

, (4.3)

where Wn(u) is defined in Section 2.1. As in Theorem 1 given in Section 3, under some regularity

conditions, we may analogously prove that the above local linear estimators are asymptotically

equivalent to those directly using the unobservable rotated factor regressors HFt. Details are

omitted here to save space. Finally, the one-step ahead nonlinear forecast of ȳn+1 can be constructed

by following that in Section 2.2, i.e.,

ỹn+1|n = B̃H,n´1(un)X̃n, (4.4)

where B̃H,n´1(¨) is the local linear estimate as constructed in (4.3) using the sample (ȳt+1,ut, Zt),

t = 1, ¨ ¨ ¨ ,n ´ 1.

In this section, we limit our attention to the case of fixed p0, i.e., the number of response

variables is fixed. In practical applications, it may be not uncommon that the dimension of ȳt

grows with n, resulting in high-dimensional vector FA-FCM. For the latter case, the methodology

and theory developed in Sections 2 and 3 need to be substantially extended. For example, a

penalised version of local linear smoothing (e.g., Wang and Xia, 2009) may be applied to estimate

the high-dimensional coefficient matrices in (4.1) and the sparsity assumption is usually needed to

develop sensible asymptotic theory. This will be explored in our future study.

5 Simulation studies

An important issue in the local linear estimation and one-step ahead nonlinear forecasting ap-

proaches is the choice of bandwidth b. As the underlying process is assumed to be stationary and

weakly dependent (see Assumption 1 in Section 3), the classical cross-validation method is not

applicable to our setting. We next use a modified multi-fold cross-validation criterion proposed

by Cai, Fan and Yao (2000) to determine an appropriate bandwidth in the simulation studies.

Let m and Q be two positive integers such that n ą mQ. To determine an optimal bandwidth,

we consider using Q sub-samples of time series, each of length n ´ qm, q = 1, 2, . . . ,Q, to esti-

mate the coefficient functions. Then, we construct the one-step ahead nonlinear forecast for each

“out-sample” with length m by using the estimated FA-FCM based on the time series sub-sample

observed before the out-sample, and calculate the mean squared prediction errors. Specifically, we
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define the following average mean squared error:

AMS(b) =

Q
ÿ

q=1

AMSq(b),

where

AMSq(b) =
1

m

n´qm+m
ÿ

t=n´qm+1

[

yt+1 ´ β̂
⊺

H,q(ut)X̂t

]2
,

and β̂H,q(¨) and X̂t are computed using the sub-sample of time series observations (yt+1,ut, Zt),

1 ď t ď n ´ qm in (2.3) with the bandwidth re-scaled to be b ¨ [n/(n ´ qm)]1/5. In the simulation

studies, as suggested by Cai, Fan and Yao (2000), we use m = t0.1nu and Q = 4. To save

computational time, the above modified cross-validation bandwidth selection is only applied to

the model determined by the data-driven selection criterion in 2.3, and the bandwidth b in (2.7)

and (2.8) is simply chosen by the rule of thumb.

The criterion of selecting the factor number proposed in Section 2.3 requires an initial estimate

k̃. In our numerical studies, the initial estimated number of factors is determined by choosing the

first few eigenvectors of ZnZ
⊺

n/(nqn) (corresponding to the first few largest eigenvalues) such that

at least 80% of the total variation is accounted for.

We next present two simulated examples: one with univariate response variable and the other

with bivariate response vector, corresponding to the methodologies developed in Sections 2 and 4,

respectively.

EXAMPLE 1. Consider the following univariate FA-FCM:

yt+1 = F
⊺

tβ1(ut) + Y
⊺

tβ2(ut) + σ ¨ ǫt+1, t = 1, ¨ ¨ ¨ ,n, (5.1)

where β1(u) = [β11(u), ¨ ¨ ¨ ,β1k(u)]
⊺

and β2(u) = [β21(u), ¨ ¨ ¨ ,β2d0
(u)]

⊺

are two column vectors

of coefficient functions, k = 4, d0 = 3, β11(u) = sin(u), β12(u) = cos(u), β13(u) =
?
u, β14(u) =

log (1 + u), β21(u) = 1
4

sin(u), β22(u) = 1
4

cos(u) and β23(u) = 1
4
. The observations of the index

variable ut are independently generated from U(0, 1), the model errors ǫt are independently

generated from N(0, 1), σ = 0.2, Ft = (Ft1, ¨ ¨ ¨ , Ft4)
⊺

is a four-dimensional latent common factor

vector with each factor component generated from the following AR(1) process:

Ftj = 0.5 ¨ Ft´1,j + ztj, j = 1, 2, 3, 4, (5.2)
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where ztj are i.i.d. and follow the standard normal distribution. In addition, we use the factor

model structure (1.2) to generate the exogenous observations Zt, where each row of the qn ˆ k

factor loading matrix Bn is independently generated from N(04, I4) and the idiosyncratic error

vector Vt „ N(0qn
, Iqn

). The sample size n is set to be 200, 500 and 1000, whereas the dimension

qn is set to be 20, 150 and 500. The replication number is 200.

Table 1:

Percentages of correctly estimating k in Example 1

qn

n
n = 200 n = 500 n = 1000

qn = 20 91.0% 95.5% 98.5%

qn = 150 91.5% 96.5% 97.0%

qn = 500 91.5% 95.0% 97.0%

Table 2:

Percentages of correctly estimating d0 in Example 1.

qn

n
n = 200 n = 500 n = 1000

qn = 20 90.0% 94.5% 95.0%

qn = 150 97.0% 99.5% 100.0%

qn = 500 96.0% 99.0% 100.0%

In the simulation, we use the observations (yt+1,ut, Zt) to construct the local linear estimates

of the rotated coefficient functions in the predictive model (5.1), and subsequently obtain the

one-step ahead nonlinear forecast of the response as in Section 2.2. The common factor vector

Ft and its dimension are usually unknown in practice. In the simulation, the latent factors are

estimated by the PCA technique. The number of factors as well as the number of lags in the

predictive model are determined by the selection criterion in Section 2.3. Tables 1 and 2 report the

frequency of correctly estimating k and d0, showing that the proposed selection method works

well in finite samples. The bandwidth in the local linear smoothing method (for the selected model)

is determined by the modified multi-fold cross-validation method introduced at the beginning of

this section. Furthermore, to save the computational time, for each combination of n and qn, we

only compute the average of the bandwidths (minimising the AMS function) over 20 replications,

and then use this average value as the optimal bandwidth in our simulation.

Table 3: MSPE of the infeasible one-step ahead forecast in Example 1

qn

n
n = 200 n = 500 n = 1000

qn = 20 0.050247 (0.018) 0.043212 (0.009) 0.041964 (0.007)
qn = 150 0.048863 (0.017) 0.042863 (0.009) 0.042404 (0.006)
qn = 500 0.052585 (0.017) 0.042962 (0.008) 0.041039 (0.006)
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Table 4: MSPE of the feasible one-step ahead forecast in Example 1

qn

n
n = 200 n = 500 n = 1000

qn = 20 0.102878 (0.054) 0.090175 (0.040) 0.089434 (0.039)
qn = 150 0.062720 (0.019) 0.055809 (0.012) 0.053106 (0.008)
qn = 500 0.052585 (0.017) 0.046164 (0.009) 0.044172 (0.006)

We next examine the finite-sample performance of the one-step ahead nonlinear forecast

constructed in Section 2.2. The simulated sample is split into two parts: the “in-sample” (containing

the first 90% of the time series observations) used for estimation, and the “out-sample” (containing

the last 10% of the time series observations) used for prediction. The forecasting performance is

measured via the following Mean Squared Prediction Error (MSPE):

MSPE =
1

t0.1nu

n
ÿ

t=n´t0.1nu

(

ŷt+1|t ´ yt+1

)2
, (5.3)

where ŷt+1|t is defined as in (2.4). For the aim of comparison, we also consider the infeasible local

linear estimation defined in (2.2) and use it to construct the infeasible one-step ahead nonlinear

forecast. Tables 3 and 4 give the mean and standard error (in parentheses) of the MSPE values

over 200 replications for the infeasible and feasible nonlinear forecasts, respectively. By comparing

the MSPE values in the two tables, we may find that although the infeasible nonlinear forecast

outperforms the feasible one (which is unsurprising and mainly due to the estimation error in

the PCA estimation of the latent factors), the difference becomes very small when the dimension

qn increases to 500. In addition, Figure 1 gives the 95% prediction interval in the out-sample

forecasting by using the wild bootstrap procedure introduced in Section 2.2.

EXAMPLE 2. We next consider the bivariate FA-FCM with the following form:

ȳt+1 = B
⊺

0(ut)Ft +

2
ÿ

j=1

B
⊺

j(ut)ȳt+1´j + ǭt+1, (5.4)

where ȳt = (y1t,y2t)
⊺

is a bivariate response vector, Ft is a four-dimensional latent factor vector

generated in the same way as in Example 1, ǭt = (ǫ1t, ǫ2t)
⊺

with ǫ1t and ǫ2t being independently

generated from N(0, 1), B0(¨) is a 4 ˆ 2 matrix of coefficient functions and Bj(¨) is a 2 ˆ 2 diagonal

19

Page 19 of 31 Journal of Time Series Analysis



matrix of coefficient functions, j = 1, 2. Specifically,

B
⊺

0(u) =

[

B0,11(u) B0,12(u) B0,13(u) B0,14(u)

B0,21(u) B0,22(u) B0,23(u) B0,24(u)

]

B
⊺

1(u) =

[

B1,11(u) B1,12(u)

B1,21(u) B1,22(u)

]

, B
⊺

2(u) =

[

B2,11(u) B2,12(u)

B2,21(u) B2,22(u)

]

,

where B0,11(u) = sin(u), B0,12(u) = cos(u), B0,13(u) =
?
u, B0,14(u) = log (1 + u), B0,21(u) = 2u,

B0,22(u) = (1 + u)2, B0,23(u) = 1/ exp(u) and B0,24(u) = cos2(u); for k = 1, 2, Bk,11(u) = Bk,22(u) =

0.2 ¨ I(u ď 0.5) ´ 0.4 ¨ I(u ą 0.5) and Bk,12(u) = Bk,21(u) = 0.3 ¨ I(u ď 0.5) + 0.2 ¨ I(u ą 0.5),

I(¨) denotes the indicator function. The definitions of B1(u) and B2(u) ensure that the generated

bivariate observations ȳt have a stationary pattern over time. In addition, the generating scheme

for the index variable ut and the exogenous variables Zn is the same as that in Example 1. The

sample size n is set to be 200, 500 and 1000, and the dimension qn of Zn is set to be 20, 150 and 500.

Table 5:

Percentages of correctly estimating k in Example 2

qn

n
n = 200 n = 500 n = 1000

qn = 20 92.5% 94.5% 96.5%

qn = 150 90.5% 95.5% 98.0%

qn = 500 93.5% 96.0% 98.5%

Table 6:

Percentages of correctly estimating d0 in Example 2.

qn

n
n = 200 n = 500 n = 1000

qn = 20 73.0% 86.0% 96.0%

qn = 150 71.5% 80.5% 90.5%

qn = 500 74.0% 82.0% 91.5%
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(a) (n,qn) = (200, 20) (b) (n,qn) = (500, 20) (c) (n,qn) = (1000, 20)

(d) (n,qn) = (200, 150) (e) (n,qn) = (500, 150) (f) (n,qn) = (1000, 150)

(g) (n,qn) = (200, 500) (h) (n,qn) = (500, 500) (i) (n,qn) = (1000, 500)

Figure 1: The solid curve denotes the true values of the response yt+1, the dotted curve denotes the one-step ahead
nonlinear forecasted values ŷt+1|t, and the grey area denotes the 95% prediction interval of the response in the
out-sample.
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The methods used to choose the optimal bandwidth in the local linear estimation, determine

the number of common factors and estimate the number of lags in the bivariate predictive model

are the same as those in Example 1. Tables 5 and 6 give the percentages of correctly choosing 4

latent factors and the percentages of accurately identifying 2 lags in the model, respectively. Like

in the case of univariate response (see Example 1), the proposed methods have reliable numerical

performance in specifying the predictive model structure.

Table 7: MSPE of the infeasible one-step ahead forecast in Example 2

qn

n
n = 200 n = 500 n = 1000

qn = 20 0.711482 (0.362) 0.645547 (0.207) 0.622903 (0.130)
qn = 150 0.752796 (0.415) 0.644184 (0.181) 0.625819 (0.123)
qn = 500 0.700678 (0.377) 0.640495 (0.248) 0.590312 (0.129)

Table 8: MSPE of the feasible one-step ahead forecast in Example 2

qn

n
n = 200 n = 500 n = 1000

qn = 20 0.750918 (0.305) 0.688301 (0.244) 0.650344 (0.130)
qn = 150 0.793823 (0.426) 0.677696 (0.180) 0.652213 (0.124)
qn = 500 0.745995 (0.380) 0.661221 (0.250) 0.645943 (0.129)

As in Example 1, we split the simulated sample into the in-sample (with the first 90% of

the time series observations) used for estimation and out-sample (with the last 10% of the time

series observations) used for prediction. To measure the forecasting accuracy, we compute the

accumulated MSPE for both y1,t+1 and y2,t+1 within the out-sample, where both the infeasible and

feasible local linear estimation of the rotated coefficient functions are considered. The relevant

MSPE values are given in Tables 7 and 8, from which we may find that the nonlinear forecast using

the feasible local linear estimation has a prediction accuracy similar to the infeasible one assuming

the latent factors are known a priori (in particular when the dimension pn is as large as 150). In

addition, Figures 2 and 3 give the 95% prediction interval for y1,t+1 and y2,t+1, respectively, in the

out-sample forecasting, where the bootstrap procedure is used.
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(a) (n,qn) = (200, 20) (b) (n,qn) = (500, 20) (c) (n,qn) = (1000, 20)

(d) (n,qn) = (200, 150) (e) (n,qn) = (500, 150) (f) (n,qn) = (1000, 150)

(g) (n,qn) = (200, 500) (h) (n,qn) = (500, 500) (i) (n,qn) = (1000, 500)

Figure 2: The solid curve denotes the true values of the response y1,t+1, the dotted curve denotes the one-step
ahead nonlinear forecasted values, and the grey area denotes the 95% prediction interval of the response in the
out-sample.
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(a) (n,qn) = (200, 20) (b) (n,qn) = (500, 20) (c) (n,qn) = (1000, 20)

(d) (n,qn) = (200, 150) (e) (n,qn) = (500, 150) (f) (n,qn) = (1000, 150)

(g) (n,qn) = (200, 500) (h) (n,qn) = (500, 500) (i) (n,qn) = (1000, 500)

Figure 3: The solid curve denotes the true values of the response y2,t+1, the dotted curve denotes the one-step
ahead nonlinear forecasted values, and the grey area denotes the 95% prediction interval of the response in the
out-sample.
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6 An empirical example

In this section, we apply the developed predictive model and forecasting methodology to forecast

the UK inflation change. The data set were downloaded from the Office for National Statistics

(ONS) and the Bank of England (BoE) websites, and covers the time period from the first quarter

(Q1) of 1997 to the fourth quarter (Q4) of 2013. This data set has been analysed in Chen et al (2018a)

which explore the nonlinear dynamic relationship between the response yt and the exogenous

regressors Zt as well as the lags yt´j, j = 1, 2, , ¨ ¨ ¨ . This is different from the predictive regression

structure considered in the present paper. In the following empirical analysis, the response yt is

defined as the UK consumer price index (CPI), and the exogenous variables Zt are the 53 series of

measuring the real activity and other economic indicators to forecast CPI.

As in Chen et al (2018a), we divided the dataset into two parts used for estimation and

prediction, respectively. The first part of the training set covers the time period from Q1/1997

to Q4/2012, and the second part of the forecasting set covers the time period from Q1/2013

to Q4/2013. All of the quarterly observations have been seasonally adjusted. Furthermore, as

in Stock and Watson (1998, 1999) and Chen et al (2018a), we considered one of the following 4

transformations on the time series variables (depending on their nature): (i) no transformation, (ii)

first difference, (iii) logarithm, and (iv) first difference of logarithms. The transformed CPI and

the 53 predictor series were further normalised to have zero mean and unit variance. Due to the

high-dimension of the exogenous regressors, we imposed the approximate factor model structure

(1.2) on Zt. Consider the following FA-FCM:

yt+1 =

k
ÿ

i=1

Ftiβ1i(ut) +

d0
ÿ

j=1

yt+1´jβ2j(ut) + ǫt+1, ut = yt. (6.1)

The initial estimate of the factor number is k̃ = 4, accounting for 82.34% of the total variation. The

number of lags, d0, was determined via the forward selection procedure with the BIC stopping

rule. As seen from Figure 4, the number d0 is estimated as 6. Furthermore, using the selection

criterion in Section 2.3, the final estimate of the factor number is 5.

We first applied the feasible local linear method to estimate the rotated coefficient functions in

(6.1), where the Epanechnikov kernel was used and the optimal bandwidth is 0.03 determined by

the multi-fold cross-validation criterion introduced in Section 5. Then we constructed the one-step

ahead nonlinear forecast as in (2.4). In order to measure the prediction accuracy, we computed the
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Figure 4: The change of the BIC function.

MSPE and the mean absolute prediction error (MAPE) defined as

MSPE =
1

4

4
ÿ

t=1

(

y64+t ´ ŷ64+t|63+t

)2
, MAPE =

1

4

4
ÿ

t=1

ˇ

ˇy64+t ´ ŷ64+t|63+t

ˇ

ˇ .

The MPSE and MAPE values for the out-sample prediction using the proposed FA-FCM are 0.0562

and 0.2176, respectively. For the aim of comparison, we also consider using the traditional AR and

VAR models and the unemployment rate Phillips curve1 in the out-sample prediction as in Chen

et al (2018a). The relevant MSPE values are 0.0767 (AR), 0.1027 (VAR) and 1.1900 (Phillips) and

the relevant MAPE values are 0.2338 (AR), 0.2456 (VAR) and 1.0170 (Phillips), respectively.2 In

addition, we compare the one-step ahead prediction performance between our modelling method

and the linear factor-augmented modelling method and find that our FA-FCM method has a better

forecasting performance.

1The Phillips curve is named after A.W. Phillips who published some pioneering works in studying the relationship
between unemployment rates and wage changes (e.g., Phillips, 1958, 1959). It is also commonly used to forecast the
inflation change with the following specification (e.g., Stock and Watson, 1999; Chen et al, 2018a):

∆yt+1 = yt+1 ´ yt = α+ β(L)U˚

t + γ(L)∆yt + et+1,

where yt denotes the CPI, U˚

t denotes the unemployment rate, β(L) = β0 + β1L+ β2L
2 + β3L

3 and γ(L) = γ0 + γ1L+

γ2L
2 + γ3L

3 are lag polynomials, L denotes the lag operator, and ∆ denotes the first difference operator.
2The MPSE and MAPE results for the AR and VAR models and the unemployment rate Phillips curve are directly

quoted from Table 5.3 in Chen et al (2018a).
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7 Conclusion

In this paper we have introduced a new nonlinear factor-augmented predictive regression model

with functional coefficients, and developed a feasible local linear smoothing method to estimate

the coefficient functions (with appropriate rotation), where the latent (rotated) factor regressors

are estimated by the PCA approach. The number of factor regressors and the number of auto-

regressors are determined by the data-driven selection procedure with the BIC stopping rule. The

one-step ahead nonlinear forecast of the response is obtained by using the local linear estimated

functional coefficients and the prediction interval is constructed via the wild bootstrap procedure.

The asymptotic theory in Section 3 shows that the proposed local linear estimator and nonlinear

forecast using the estimated factor regressors are asymptotically equivalent to those assuming that

the true latent factor regressors were observable. Such an asymptotic property is supported by the

simulation studies in finite samples. Furthermore, the developed predictive model and forecasting

methodology are applied to predict the UK inflation change and have satisfactory forecasting

performance. In particular, our method outperforms some commonly-used forecasting approaches

in the empirical application.

A possible extension of our predictive model framework is to include some lags of Ft in the

factor-augmented functional-coefficient models. These lags may contain some useful dynamic

information, which is helpful to improve the model forecasting performance. The estimation and

prediction methods developed in the present paper can be easily generalised to deal with this

case, but the selection criterion in Section 2.3 needs to be appropriately modified to estimate an

“optimal” number of lags of Ft.
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Gonçalves, S., Perron B. and Djogbenou, A. (2017). Bootstrap prediction intervals for factor models. Journal of Business

and Economic Statistics, 35, 53–69.

Hansen, B. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory 24,

726–748.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society, Series B, 55,

757–796.

Jiang, J. (2014). Multivariate functional-coefficient regression models for nonlinear vector time series data. Biometrika,

101, 689–702.

Jiang, Q., Wang, H., Xia, Y. and Jiang, G. (2013). On a principal varying coefficient model. Journal of the American

Statistical Association, 108, 228-236.

Kai, B., Li, R. and Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric

varying-coefficient partially linear models. The Annals of Statistics, 39, 305–332.

Li, D., Ke, Y. and Zhang, W. (2015). Model selection and structure specification in ultra-high dimensional generalised

semi-varying coefficient models. The Annals of Statistics, 43, 2676–2705.

29

Page 29 of 31 Journal of Time Series Analysis



Li, D., Lu, Z. and Linton, O. (2012). Local linear fitting under near epoch dependence: uniform consistency with

convergence rates. Econometric Theory, 28, 935–958.

Li, H., Li, Q. and Shi, Y. (2017). Determining the number of factors when the number of factors can increase with

sample size. Journal of Econometrics, 197, 76–86.

Lian, H. (2012). Variable selection for high-dimensional generalized varying-coefficient models. Statistica Sinica, 22

1563–1588.

Liu, J., Li, R. and Wu, R. (2014). Feature selection for varying coefficient models with ultrahigh dimensional covariates.

Journal of the American Statistical Association, 109, 266–274.

Lütkepohl, H. (2006). New Introduction to Multiple Time Series Analysis. Springer.

Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models. Econometrica, 77, 1447–1479.

Park, B. U., Mammen, E., Lee, Y. K. and Lee, E. R. (2015). Varying coefficient regression models: a review and new

developments. International Statistical Review, 83, 36–64.

Pesaran, M. H., Pick, A. and Timmermann, A. (2011). Variable selection, estimation and inference for multi-period

forecasting problems. Journal of Econometrics, 164, 173–187.

Phillips, A. W. (1958).The relationship between unemployment and the rate of change of money wages in the United

Kingdom 1861–1957. Economica 25, 283–299.

Phillips, A. W. (1959). Wage changes and unemployment in Australia, 1947–1958. Economic Society of Australia and

New Zealand Economic Monograph 219.

Robinson, P. M. (1989). Nonparametric estimation of time-varying parameters. Statistical Analysis and Forecasting of

Economic Structural Change (ed. by P. Hackl). Springer, Berlin, pp. 164–253.

Rosenthal, H. P. (1970). On the subspaces of Lp (p ą 2) spanned by sequences of independent random variables. Israel

Journal of Mathematics, 8, 273–303.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1–48.

Stock, J. H. and Watson, M. W. (1998). Diffusion indexes. NBER Working Paper 6702.

Stock, J. H. and Watson, M. W. (1999). Forecasting inflation. NBER Working Paper 7023.

Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a large number of predictors.

Journal of the American Statistical Association 97, 1167–1179.
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