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RESEARCH Open Access

VULCAN integrates ChIP-seq with patient-
derived co-expression networks to identify
GRHL2 as a key co-regulator of ERa at
enhancers in breast cancer
Andrew N. Holding1,2*† , Federico M. Giorgi1,3†, Amanda Donnelly1, Amy E. Cullen1, Sankari Nagarajan1,

Luke A. Selth4 and Florian Markowetz1

Abstract

Background: VirtUaL ChIP-seq Analysis through Networks (VULCAN) infers regulatory interactions of transcription

factors by overlaying networks generated from publicly available tumor expression data onto ChIP-seq data. We

apply our method to dissect the regulation of estrogen receptor-alpha activation in breast cancer to identify

potential co-regulators of the estrogen receptor’s transcriptional response.

Results: VULCAN analysis of estrogen receptor activation in breast cancer highlights the key components of the

estrogen receptor complex alongside a novel interaction with GRHL2. We demonstrate that GRHL2 is recruited to a

subset of estrogen receptor binding sites and regulates transcriptional output, as evidenced by changes in estrogen

receptor-associated eRNA expression and stronger estrogen receptor binding at active enhancers after GRHL2

knockdown.

Conclusions: Our findings provide new insight into the role of GRHL2 in regulating eRNA transcription as part of

estrogen receptor signaling. These results demonstrate VULCAN, available from Bioconductor, as a powerful

predictive tool.

Keywords: Breast cancer, Network analysis, Dynamics, ER, Master regulator, ChIP-seq, VULCAN, GRHL2, P300,

H3K27ac

Introduction
Breast cancer is the most common form of cancer in

women in North America and Europe accounting for

31% of all new cancer cases. In the USA, it is estimated

that 41,400 deaths will have occurred from the disease

in 2018 [1]. The majority of breast cancers, approxi-

mately 70%, are associated with deregulated signaling by

the estrogen receptor-alpha (ER), which drives tumor

growth. Therefore, in ER-positive (ER+) tumors, ER is

the primary therapeutic target. During activation, ER

recruits several cofactors to form an active complex on

the chromatin. FOXA1 is of particular interest as the

protein shares nearly 50% of its genomic binding sites

with ER and has been shown to operate as a pioneer

factor before ER activation [2, 3]. It is through FOXA1

and other cofactors (e.g., SRC-1) [4, 5] that ER is able

to recruit RNA polymerase II at the gene promoter

sites by way of adaptor proteins in order to initiate

transcription [6]. Combinatorial treatments targeting

ER cofactors present a significant opportunity in breast

cancer therapy for increasing patient survival. In

particular, the pioneer factor FOXA1 [7] has been

identified as a novel therapeutic target for the treat-

ment of breast cancer, while the EZH2-ERα-GREB1

transcriptional axis has been shown to play a key role

in therapeutic resistance [8].
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ChIP-seq enables the identification of potential

site-specific interactions at common binding sites be-

tween transcription factors and their cofactors; however,

to fully characterize all potential cofactors of a single

project on this scale is laborious and expensive. To fol-

low up all potential cofactors identified by a

chromatin-wide proteomics method, e.g., RIME [9] or

ChIP-MS [10], would take hundreds of individual

ChIP-seq experiments. Studies like ENCODE [11] have

gone a long way to provide resources to meet these chal-

lenges; however, the inherent scale of the problem

means public studies can only offer data for a subset of

TF in a limited number of models. A single lab to under-

take this level of experimentation is unfeasible and, in

cases where suitable antibodies for the ChIP do not

exist, impossible.

To enable discoveries beyond collections like EN-

CODE, we are proposing a computational framework to

integrate patient data in the prediction of functional

protein-protein interactions. By applying machine learn-

ing methods, we are able to surpass the limitation of

current predictive tools that exist to support the inter-

pretation of data. Previous methods provide information

in the context of predefined biological pathways and

established gene sets [12, 13] or through motif analysis

[14], while our method is built on data specific to the

disease being studied. Further, standard gene set enrich-

ment analysis has inherent limitations because it was

not designed for reconstructing gene networks, whereas

one of the advantages of VULCAN is that it down

weights genes shared by multiple TFs.

Our method, “VirtUaL ChIP-seq Analysis through

Networks” (VULCAN), is able to specifically analyze the

potential disease-specific interactions of TFs in ChIP-seq

experiments by combining machine learning approaches

and patient data. Previously, the strategies employed by

VULCAN were limited to the analysis of transcription

data. By developing VULCAN to overlay co-expression

networks established from patient tumor data onto

ChIP-seq data, we are able to provide candidate

co-regulators of the response to a given stimulus (Fig. 1).

Further, as VULCAN builds on transcriptional master

regulator analysis, the output from the pipeline provides

the end user with functional information in terms of the

activity of potentially interacting TFs. The combination

of disease-specific context and TF activity information

presents a significant step forward in providing valuable

information for the elucidation of on-chromatin interac-

tions from ChIP-seq experiments over previous

strategies.

Through the application of VULCAN to the activation

of the ER in breast cancer, we were able to identify mul-

tiple previously characterized cofactors of the ER along

with GRHL2 as a potential co-repressor of the ER. We

then demonstrated experimentally that GRHL2 is able to

modulate the expression of eRNA at ER bound en-

hancers, and the removal of the P300 inhibitory alpha

helix results in suppression of the inhibitory effect on

eRNA production.

Results
VULCAN integrates ChIP-seq data (Fig. 1, step 1) with

co-expression networks (Fig. 1, step 2) to predict cofac-

tor activity (Fig. 1, step 3). The initial ChIP-seq data is

converted into genomic regions, and if multiple condi-

tions are supplied, the changes in the transcription fac-

tor affinity are calculated. In parallel, master regulator

analysis of tumor transcriptional data is used to provide

tissue-specific information on the regulation of genes by

TFs within the tumor type. The integration of these two

data types provides context-specific results and differen-

tiates VULCAN from the existing methods which make

Fig. 1 An overview of VULCAN. (1) ChIP-seq analysis from multiple conditions is undertaken to generate cistrome data at multiple time points (or

conditions). Binding events are then compared using differential binding analysis to establish log-fold change values for individual binding events

between each time point. (2) Network generation was undertaken with ARACNe-AP by inferring all pairwise TF-target co-expression from patient

datasets (e.g., TCGA breast and METABRIC datasets). (3) All the targets of each specific TF in the network, i.e., the individual regulons, are tested

against the established changes in ER binding through the msVIPER algorithm [15] to identify proteins that interact with the target transcriptional

factor and final prediction is given for potential interacting cofactors
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use of predefined unweighted gene sets or motif analysis.

VULCAN additionally makes use of the key functionality

of the VIPER algorithm [15] that assigns edge-specific

scores like mode of action and likelihood to the recon-

structed network.

In the following, we first benchmark VULCAN’s per-

formance in a comprehensive comparison to alternative

approaches. We then apply it to our data on temporal

ER binding, which identifies GRHL2 as a novel ER co-

factor, and we explore its function.

Comparison of VULCAN to existing methods

Mutual information networks outperform partial correlation

networks

We generated a mutual information network with AR-

CANe alongside several partial correlation networks at

different thresholds all from the TCGA breast cancer

data. To ensure the robustness of our method, we tested

the overlap of every partial correlation network with the

mutual information network using the Jaccard index (JI)

criterion (Additional file 1: Figure S1). Finally, we

showed how the Jaccard index between partial correl-

ation networks and the ARACNe network is always sig-

nificantly higher than expected by selecting random

network edges (Additional file 1: Figure S2). For further

analysis, we selected the mutual information network

generated by ARACNe as this method outperformed the

partial correlation networks at all thresholds.

GSEA is the optimum method for VULCAN’s target

enrichment analysis

VULCAN applies gene set enrichment analysis [16] to

identify enrichment of our mutual information network

derived regulons in differential ChIP-seq data. To

validate our method, we compared the results of

VULCAN when applied to our ER binding data against

three independent methods previously applied to

benchmark VIPER [15]. First, we implemented a Fisher

p value integration step. This test lacks stringency and

results in nearly all regulons as significantly enriched

(Additional file 1: Figure S3). Second, we implemented a

fraction of targets method, defining for every TF the

fraction of their targets that are also differentially bound.

This alternative to VULCAN ignores the MI strength of

interaction and the individual strengths of differential

bindings, reducing the resolving power of the algorithm

(Additional file 1: Figure S4). Finally, we compared to

Fisher’s exact method, which assesses the overlap be-

tween networks and significant differential binding. This

method is too stringent (as observed in the original

VIPER paper) [15]; and even without p value correction,

there are no significant results, even at low stringency,

demonstrating the low sensitivity of using Fisher’s exact

method (Additional file 1: Figure S5). In summary,

VULCAN GSEA implementation outperformed all three

alternative methods we tested (t test based; fraction of

targets method; and Fisher’s exact method) in our data-

set and was therefore applied to all downstream analysis

of ChIP-seq data.

VULCAN outperforms enrichment analysis tools (GREAT,

ISMARA, and ChIP-Enrich)

To further validate our method, we compared the out-

put of our GSEA analysis with different versions of

promoter-enrichment approaches implemented by

GREAT [12], ISMARA [14], and ChIP-Enrich [13]. The

VULCAN analysis shows a significant overlap in terms

of detected pathways with the GREAT method

(Additional file 1: Figure S6). ChIP-Enrich identifies

enrichment of a number of TFs also predicted by

VULCAN, but it fails to identify ESR1 as the top

transcription factor affected by our experiment

(Additional file 1: Figure S7). ISMARA succeeds at iden-

tifying ESR1 using a motif-based analysis but does not

identify other candidate binding TFs (Additional file 1:

Figure S8). In summary, VULCAN outperforms both

ISMARA and ChIP-Enrich, and significantly overlaps

with GREAT, but provides additional value through

inference of TF factor activity.

Temporal analysis of ER DNA binding profiles after

activation by E2

We performed four replicated ChIP-seq experiments for

ER at three time points (0, 45, and 90min) after estra-

diol treatment (Fig. 2) in the ER+ breast cancer cell line,

MCF7. The cistromic profile of ER at 45 and 90min was

then compared to 0 min to identify binding events

enriched by E2. Our analysis (Fig. 2b, c) identified

18,900 statistically significant binding events at 45 min

(FDR < 0.05) and 17,896 numbers at 90 min. We vali-

dated the ER binding behavior with ChIP-qPCR (Fig. 2a),

and the response was sustained, in agreement with our

previous study [17].

We performed motif enrichment analysis (HOMER

software) on ER binding sites detected by differential

binding analysis. Our analysis confirmed a strong enrich-

ment for a single element, ERE, bound at both 45 and

90min, with a corrected p value of 0.0029 (Fig. 3f ).

When clustered according to peak intensity, the samples

cluster tightly in two groups: treated and untreated

(Additional file 1: Figures S9, S10, and S11), but treat-

ment at 45 and 90min is detectably different on a

genome-wide scale, as highlighted by principal compo-

nent analysis (Additional file 1: Figure S12 and S13).

We performed a gene set enrichment analysis (GSEA)

[16] and an associated rank enrichment analysis (aREA)

[15] using the differential binding at gene regulatory re-

gions with time 0 as reference. Individual differential
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Fig. 2 Dynamic behavior during early activation of ER. ChIP-qPCR of the TFF1 gene (a) at three time points shows increased binding of ER at 45

min after MCF7 cells are stimulated by estradiol. The previously reported maximum is followed by a decrease in the TFF1 promoter occupancy at

90 min. p values are generated by one-tailed t test. The maximal point at 90 min was identified as an outlier (> median + 2 × IQR); however, the

removal did not alter the significance of results. (b) Differential binding analysis of ChIP-seq data at three time points to monitor the activation of

ER. The ER exhibits a strong increase in binding at 45 min vs 0 min (c), and the majority of sites still display binding at 90min

Fig. 3 ER occupancy after estradiol treatment in terms of TF network activity. (a) Global TF network behavior as predicted by VULCAN in our

ChIP-seq dataset, highlighting the ESR1 TF at time 0 and 45/90min after estradiol treatment. (b) Global TF activity after estradiol treatment in

MCF7 cells, inferred using the METABRIC network, highlighting TFs significantly upregulated at 45min and 90 min. (c) Global TF activity after

estradiol treatment in MCF7 cells, inferred using the METABRIC network, highlighting TFs significantly downregulated at 45 min and 90min. (d)

Global TF activity after estradiol treatment in MCF7 cells, inferred using the METABRIC network, highlighting TFs significantly upregulated at 45

min but not at 90min. (e) Global TF activity after estradiol treatment in MCF7 cells, inferred using the METABRIC network, highlighting TFs significantly

upregulated at 90min but not at 45min. (f) Most enriched motif in peaks upregulated at both 45 and 90min after estradiol treatment, as predicted

by HOMER
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binding signatures for GSEA were calculated using a

negative binomial test implemented by DiffBind [18].

The collective contribution of differentially bound sites

highlights several ER-related pathways in both the GSEA

and aREA analyses [19–21] (Additional file 1: Figure

S14). The strongest upregulated GSEA pathway in both

time points (Additional file 1: Tables S1 and S2) was de-

rived from RNA-seq in an MCF7 study using estradiol

treatment [20], confirming the reproducibility of our

dataset.

VULCAN analysis of ER activation

VULCAN identifies coactivators and co-repressors of ER

We leveraged the information contained in mutual in-

formation networks to establish TF networks enriched in

the differential binding patterns induced by estradiol.

From our analysis of ER binding, we established four

classes of modulation: early coactivators, early

co-repressors, delayed coactivators, and transient coacti-

vators (Fig. 3).

Using VULCAN, we defined TF network activity of oc-

cupied regulatory regions (Fig. 3a) according to the

binding of ER within their promoter and enhancer re-

gions (limited to 10 kb upstream of the transcription

starting site to ensure gene specificity). We define early

coactivators as those TFs whose network is upregulated

at both 45 and 90min (Fig. 3b); these genes include AR,

SP1, and CITED1. TFs with opposite behavior (namely

TFs whose negative/repressed targets in the ARACNe

model are occupied by ER), or “early co-repressors,” in-

clude GLI4, MYCN, and GRHL2 (Fig. 3c). Some TFs ap-

pear to have their targets transiently bound at 45 min

but then unoccupied at 90 min, and therefore, we

dubbed them “transient coactivators” (Fig. 3d). We fur-

ther defined TFs active at 90 min but not at 45 min as

“delayed coactivators,” noting these cofactors could be

the transient if the response is not completed by 90 min.

While this category exists, and notably contains both

ESR1 and the known ESR1 interactor GATA3, it is just

below the significance threshold at 45 min (Fig. 3e).

We repeated our TF network activity analysis of ER

activation (Fig. 3a–e) on an independent dataset from

TCGA and found similar results to those established

from the METABRIC-derived network (Additional file 1:

Figures S14, S15, S16, S17, S18, and S19).

To ensure the robustness of the results, we performed

a joint analysis of data obtained from both networks. At

45 (Fig. 4a) and 90 min (Fig. 4b), we identified candi-

dates, specifically the ESR1, GATA3, and RARA net-

works, which were consistently and robustly activated by

ER in both time points. The joint analysis also identified

candidate co-repressors, including HSF1 and GRHL2.

VULCAN results are specific to the tissue used for network

modeling

Regulatory networks can be tissue specific due to a variety

of biological reasons, such as chromatin status, cofactor

availability, and lineage-dependent transcriptional rewiring

[15]. We tested whether our VULCAN results can be af-

fected by the choice of the ARACNe-inferred regulatory

network. In order to do so, we required a gene expression

dataset large enough for robust mutual information infer-

ence (> 100 samples), based on the same library prepar-

ation and sequencing protocols as the breast cancer

TCGA dataset used in our analysis (to remove the possi-

bility of technical differences), but ultimately derived from

Fig. 4 Global TF activity after estradiol treatment using different network models. XY scatter showing the TF activity as calculated by VULCAN for

our differential ChIP-seq analysis of ER binding at 45min (a) and at 90min (b) after stimulation with 100 nM E2. Comparison of the results calculated

using the METABRIC (y-axis) and TCGA (x-axis) networks shows consistent results know ER interactors including PGR, RARA, GATA3, and GRHL2. GRHL2

activity is notably enriched against. The regulon of ER is also consistently enriched in both networks. Pearson’s correlation coefficient (PCC) shown

along with the significance
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a tissue as distant as possible from breast cancer (BRCA)

on which network models on this study are derived. For

this purpose, we computed ARACNe regulatory models on

the TCGA dataset for acute myeloid leukemia (AML), a li-

quid tumor histologically very different from BRCA. This

AML-derived network shows globally weaker VULCAN

enrichment scores than the BRCA-derived network and a

weak positive correlation with the results obtained through

breast cancer regulatory models (Additional file 1: Figure

S20). The positive correlation suggests that regulatory net-

works inferred in breast cancer are tissue specific and can

only in part be recapitulated by a leukemia-inferred

network.

VULCAN is able to predict protein-protein interactions in

both patient-derived xenografts (PDX) and prostate cancer

To demonstrate the general applicability of VULCAN, we

applied the algorithm to a breast cancer patient-derived

xenograft dataset (Gene Expression Omnibus series

GSE110824) [22, 23], which showed the expected

enrichment of the ESR1, FOXA1, and GATA3 regulons

(Additional file 1: Figure S21 and Fig. 5a) predicting the

co-localization of the respective proteins on the chroma-

tin. To further test the generality of VULCAN, we applied

the method to another cancer-associated transcription fac-

tor type. More specifically, we evaluated an androgen re-

ceptor ChIP-seq dataset derived from prostate cancer cell

line model LNCaP-1F5 and VCaP (Gene Expression

Omnibus Series GSE39880, AR + DHT, RU486, or CPA)

[24]. By applying a context-specific network built from the

TCGA prostate cancer dataset, we could predict

functional co-localization of FOXA1 and AR in target

genes’ promoters after dihydrotestosterone (DHT)

treatment in prostate cell lines (Additional file 1: Fig-

ure S22 and Fig. 5b), validating the known role of

FOXA1 in AR-regulated gene transcription in prostate

cancer [25, 26].

VULCAN outperforms classical motif analysis

Finally, we compared VULCAN to a classical motif ana-

lysis by exploiting the MsigDB C3 collection v6.1 [27] of

gene sets, which contain canonical TF-specific binding

motifs in their promoters. Our analysis shows the correl-

ation of VULCAN results for two transcription factors

(e.g., between GATA3 and ESR1, Additional file 1: Figure

S23) can be relatively high but not significantly overlap-

ping in terms of target genes containing the same ca-

nonical motifs (Additional file 1: Figure S24). We could

prove that this non-relationship is general as it extends

to the majority of TF-TF pairs that were present in the

MsigDB database (Additional file 1: Figure S25).

Optimization of VULCAN parameters

The network generation algorithm uses established

methods to optimize the parameters for the RNA-seq in-

put (e.g., ARACNE-AP calculates the edge significance

based on data-specific permutation test). By default,

VULCAN can calculate key settings from the provided

ChIP-seq data (e.g., DNA fragment length). Additionally,

parameter choice is tunable at the wish of the user. The

distance from promoter transcription starting site (TSS)

can be tuned to the specific organism investigated by the

Fig. 5 Inferring TF co-occupancy in public datasets with VULCAN. (a) VULCAN activity scores for a few TFs derived from the ER-targeted ChIP-seq

breast cancer patient-derived xenograft (PDX) dataset GSE110824. The behavior of ESR1, FOXA1, and GATA3 is correlated, while FOXC1 shows an

inversely correlated pattern (blue line). Interestingly, the sample with the lowest Allred score (V0980 U) has the lowest activity and the other luminal

markers. (b) VULCAN activity scores for FOXA1 in ChIP-seq experiments targeting the androgen receptor (AR) in LNCaP-1F5 prostate-derived cells

(dataset GSE39880). The bar plots show the relative VULCAN normalized enrichment score calculated on absolute peak intensities after treating cells

with dihydrotestosterone (DHT) and partial AR modulators cyproterone acetate (CPA) and mifepristone (RU486). FOXA1 network binding is higher in

the presence of the strong AR recruiter DHT. This shows an increased FOXA1/AR promoter co-occupancy in DHT-treated cells, in agreement with the

conclusions of the study that originated the dataset. Two replicates for each treatment were produced and are reported in matching colors
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ChIP-seq experiment. In this manuscript, we used 1000

nt for Homo sapiens, but it can be lowered to 100 nt for

bacterial chromosomes, to assign peaks that act as rep-

resentative for the gene.

GRHL2 is a novel ER cofactor

In our analysis of ER dynamics, the GRHL2 transcription

factor was consistently identified as a key player, using

both the METABRIC and TGCA networks. GRHL2 is a

transcription factor that is important for maintaining

epithelial lineage specificity in multiple tissues [28, 29].

It has previously been predicted to exist in

ER-associated enhancer protein complexes [30], but its

function in the ER signaling axis is unknown. Therefore,

we set out to experimentally validate GRHL2 as an ER

cofactor.

There is only a weak, positive correlation between ESR1

and GRHL2 expression in the TCGA and METABRIC

breast cancer datasets (Additional file 1: Figure S26).

Furthermore, GRHL2 does not change significantly in

different PAM50 subtypes, although it is overexpressed in

malignant tissue. The low correlation between GRHL2

expression and subtype implies that the protein is

controlled by mechanisms such as phosphorylation [31],

subcellular localization, or on-chromatin protein-protein

interactions.

qPLEX-RIME detects a significant increase in the ER-GRHL2

interaction on activation

We undertook a complementary, unbiased, experimental

approach combining RIME [9] with TMT [32], called

qPLEX-RIME [33], to identify interactors of ER within the

ER-chromatin complex. We generated ER qPLEX-RIME

data from MCF7 cells treated with estradiol at both 45 and

90min and compared this to the VULCAN dataset (Add-

itional file 1: Figure S27). We found known ESR1 interac-

tors with both methods, namely HDAC1, NCOA3,

GATA3, and RARA. These interactors have positive enrich-

ment according to VULCAN [15], implying the TF’s regu-

lon is over-represented within the differentially bound

genes. Importantly, qPLEX-RIME identified a significant in-

crease in the protein-protein interaction between ER and

GRHL2 in estrogenic conditions. As GRHL2 has a negative

enrichment score in VULCAN, this implies either the pro-

tein is recruited by ER to sites that are significantly depleted

for GRHL2’s regulon or that GRHL2 is established as hav-

ing a negative correlation to the genes regulated at these

sites, i.e., the protein is a co-repressor of the ER.

To assess the chromatin-association of ER and

GRHL2, we undertook GRHL2 ChIP-seq in the absence

(0 min) or presence (45 min) of E2 (Fig. 6a). VULCAN

analysis of the GRHL2 differential binding showed that

ER was the key interacting transcription factor, using

both the TCGA- and METABRIC-derived networks

(Fig. 6b).

We undertook a comparison of GRHL2 binding with pub-

lic datasets (Fig. 6c). Our analysis showed that GRHL2 sites

that responded to estradiol were enriched for ER binding

sites (in agreement with our qPLEX-RIME data and VUL-

CAN results) and FOXA1 (compatible with either an ER

interaction or the previously reported interaction with

MLL3 [30]). Importantly, the changes in GRHL2 binding

profiles after E2 treatment were not a result of altered

GRHL2 protein levels (Fig. 7). Individual analysis of peaks

shows that classical ER promoter binding sites, e.g., RARa,

were not the target of this redistribution of GRHL2, as these

sites were occupied by GRHL2 before E2 stimulation. Motif

analysis of the sites within increased GRHL2 occupancy

showed enrichment for the full ERE (p value = 1 × 10−179)

and the GRHL2 binding motif (p value = 1 × 10−51) (Fig. 6g).

To establish if the recruitment of GRHL2 was primar-

ily related to a transcriptional function or the previously

described interaction with MLL3, we overlapped our

GRHL2 data with that of published H3K4me1/3 [30]

and P300 [34] cistromes. While H3K4me occupancy was

consistent between conditions, we found P300 binding

to be enriched at the E2-responsive GRHL2 sites.

A more detailed analysis of the GRHL2 overlap with

P300 sites showed the greatest co-occupancy of GRHL2/

P300 sites was when both TFs were stimulated by E2

(Fig. 6d). Moreover, the overlap of GRHL2 peaks with

ER ChIA-PET data [ENCSR000BZZ] showed that the

GRHL2-responsive sites were enriched at enhancers over

promoters (Fig. 6e). These findings suggested that the

GRHL2-ER complex is involved in transcription at ER

enhancer sites.

Validation of the ER-GRHL2 interaction by qPLEX-RIME and

co-IP

qPLEX-RIME [33] analysis of GRHL2 in both the

estrogen-free and estrogenic conditions showed high

levels of transcription-related protein interactors includ-

ing HDAC1 (p value = 6.4 × 10−9), TIF1A (p value =

6.4 × 10−9), PRMT (p value = 6.4 × 10−9), and GTF3C2 (p

value = 4.6 × 10−9). p values given for estrogen-free and

estrogenic conditions were comparable. The only protein

differentially bound to GRHL2 in estrogen-free vs estro-

genic conditions was the ER.

We further validated this interaction by co-IP. Our

analysis robustly found that GRHL2 and ER interact in

both MCF7 and T47D cells (Fig. 7). We further validated

the antibody by siRNA knockdown and saw the dis-

appearance of the GRHL2 band at 24 h.

GRHL2 constrains ER binding and activity

We investigated the transcription of enhancer RNAs at

these sites using publicly available GRO-seq data [35]
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Fig. 6 GRHL2 differential ChIP-seq between 0 and 45min. (a) Activation of the ER with estro-2-diol results in a genome-wide increase in GRHL2

binding. (b) VULCAN analysis of the same data shows a significant enrichment for ESR1 sites in both the context of the METABRIC and TGCA

networks. The regulon for FOXA1 is also not enriched. Inspection of known FOXA1/GRHL2 sites (e.g., RARa promoter) shows GRHL2 already

bound. (c) Overlap of GRHL2 binding with public datasets shows that E2-responsive GRHL2 sites show considerable overlap with ER, FOXA1, and

P300 sites; H3K4Me1 and H3K4Me3 show little enrichment. (d) Analysis of P300 binding showed a greater overlap of GRHL2 ER-responsive sites in

the presence of E2 than in control conditions. (e) Overlap with ER ChIA-PET sites showed enrichment for GRHL2 sites at ER enhancers. (f) Analysis

of Gro-SEQ data (GSE43836) at GRHL2 sites. Blue lines are control samples, pink lines are samples after stimulation with E2. In general, GRHL2 sites

(left) show no change in the levels of transcription on the addition of E2; however, E2-responsive GRHL2 sites (right) show a robust increase in

transcription on the activation of the ER. (g) Motif analysis of differentially bound sites gave the top two results as GRHL2 and ER
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[GSE43836] (Fig. 6f ). At E2-responsive sites, eRNA tran-

scription was strongly increased by E2 stimulation; by

contrast, eRNA transcription was largely independent of

E2 stimulation when the entire GRHL2 cistrome was

considered. Analysis of a second GRO-seq dataset,

GSE45822, corroborated these results (Additional file 1:

Figure S28).

To further explore how GRHL2 regulates ER en-

hancers, we measured eRNA expression at the GREB1

[36, 37], TFF1 [38–40], and XBP1 [41, 42] enhancers

after overexpression of GRHL2. At GREB1 and XBP1,

increased GRHL2 resulted in reduced eRNA transcrip-

tion (Fig. 8) (p < 0.05, paired sample t test). Conversely,

eRNA production at the TFF1, XBP1, and GREB1 en-

hancers was moderately increased 24 h after GRHL2

knockdown (Additional file 1: Figure S29). Combining

the data from all three sites established the effect as sig-

nificant by paired sample rank test (p = 0.04, one-tailed

paired sample, Wilcoxon test). Collectively, these data

demonstrate that GRHL2 constrains specific ER enhan-

cer transcription.

A conserved alpha helix between residues 425 and 437

of GRHL2 has previously been shown to inhibit P300

[43]. We therefore overexpressed GRHL2 Δ425–437, a

previously demonstrated non-p300-inhibitory mutant

[43, 44], in three ER-positive breast cancer cell lines

(MCF7, T47D, and ZR75) and compared levels of eRNA

to those recorded for both an empty vector control and

for the overexpression of the wild-type protein (Fig. 8b).

The results of the wild-type study were concordant to

those of our previous analysis (Fig. 8a), suggesting in

general that overexpression GRHL2 leads to the inhib-

ition of eRNA production at certain ER sites. Import-

antly, in all cases, the removal of aa 425–437 from

GRHL2 led to a reduction in the inhibitory effect caused

by overexpression of the wild-type protein and was

found as significant in five out of nine cases test (p <

0.05, t test, single-tail, paired).

We undertook H3K27ac ChIP-seq after knockdown of

GRHL2 by siRNA for 48 h. In both MCF7 and T47D

cells, we saw a significant change in the acetylation

marks surrounding GREB1, and in MCF7, we saw an in-

crease at both XBP1 and GREB1 promoters and a de-

crease at TFF1 (Fig. 9a). Genome-wide, we saw a

redistribution of H3K27 acetylation in both cell lines

(Fig. 9b). Comparison of the sites altered by GRHL2

knockdown showed a stronger signal for ER binding

(Fig. 9c, right).

Discussion

VirtUaL ChIP-seq Analysis through Networks

VULCAN is valuable for the discovery of transcription

factors acting as co-regulators within chromatin-bound

complexes that would otherwise remain hidden. The

challenge of highlighting the cofactors from a ChIP-seq

experiment lays in the infeasibility of reliable proteomic

characterization of DNA-bound complexes at specific

regions. On the other hand, while RNA-seq is arguably

the most efficient technique to obtain genome-wide

quantitative measurements, any transcriptomic approach

cannot provide a full picture of cellular responses for

stimuli that are provided on a shorter timescale than

mRNA synthesis speed, such as the estradiol administra-

tion described in our study. VULCAN, by combining

RNA-seq-derived networks and ChIP-seq cistrome data,

aims at overcoming the limitations of both. Most not-

ably, our method can work in scenarios where candidate

cofactors do not have a well-characterized binding site

or do not even bind DNA directly.

Through comparative analysis, we have robustly

shown that VULCAN is able to outperform other

readily available methods for the prediction of

on-chromatin interactions of transcription factors.

VULCAN achieves this through the integration of

ChIP-seq and tumor transcriptional data. The inher-

ent limitation of our method therefore is that tumor

transcriptional data must be available in sufficient

quantity to build the underlying network for the ana-

lysis, whereas tools based on predefined networks

have no such limitation. In the majority of cases, this

Fig. 7 Estrogen time course and Co-IP of GRHL2. Analysis by western blot of the GRHL2 showed no changes in the levels of GRHL2 at 45 min, 90

min, or 24 h after stimulation with estradiol in either MCF7 or T47D. Co-IP of ER (bait, red, Santa Cruz:sc-8002) identified GRHL2 (green, Atlas:

HPA004820) as an interactor in estrogenic conditions (M = marker, I = input, FT = flow through, IP = immunoprecipitation). siRNA knockdown of

GRHL2 in MCF7 (right) resulted in a loss of the ~ 75-kDa band
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is not a challenge as projects like the TCGA provide

transcriptome-wide data for a range of cancers. It is

therefore only in the cases of rarer disease types

(such as neuroendocrine tumor) and orphan tissues

that this limitation will be problematic as these are

poorly represented in public data. Even so, in these

cases where specific networks cannot be generated,

pan-tissue regulatory networks are currently being de-

veloped to overcome this limitation and these could

be adapted for VULCAN [45].

Fig. 8 Effect of GRHL2 knockdown after 24 h on eRNA at E2-responsive binding sites and overexpression of GRHL2 Δ425–437. (a) Overexpression

of GRHL2 in MCF7 resulted in a reduction of eRNA transcribed from the GREB1, TFF1, and XBP1 enhancers. The effect was significant at TFF1 and

XBP1 enhancers (p < 0.05, paired t test). (b) Overexpression of GRHL2 Δ425–437 (delta) compared to empty vector (EV) and GRHL2 wild type (OE)

at 24 h. In all three cell lines at all three loci, overexpression of the wild type (WT) led to a reduction in the mean eRNA production at GREB1,

TFF1, and XPB1. This effect was significant in six out of nine experiments (p < 0.05, t test, one-tailed, paired). Overexpression of GRHL2 Δ425–437

had a reduced effect that led to a significant reduction in only two out of nine experiments (p < 0.05, t test, one-tailed, paired). Importantly, in

four out of nine experiments, WT overexpression had significantly less eRNA production than GRHL2 Δ425–437, suggesting the P300 inhibition

domain plays a role in the regulation of eRNA production
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By developing VULCAN, we have been able to redis-

cover the known cofactors of the estradiol-responsive

ER complex and predict and experimentally validate a

novel protein-protein interaction.

GRHL2-ER interaction

GRHL2 has a key role in regulating EMT

In the 4T1 tumor model, GRHL2 was found to be sig-

nificantly downregulated in cells that had undergone

A

B

C

Fig. 9 Changes in H3K27ac on knockdown of GRHL2. (a) The effect of silencing GRHL2 on H3K27ac at 48 h in MCF7 and T47D cell lines was

monitored by ChIP-seq. Analysis of sites proximal to TFF1, XBP1, and GREB1 showed significant changes in acetylation at all three sites in MCF7.

Significant changes were only found at GREB1 in T47D (top right). While XBP1 and GREB1 show an increase in histone acetylation on silencing

GRHL2, TFF1 showed the reverse effect. (b) Genome-wide, the effects of silencing GRHL2 led to a significant redistribution of H3K27ac in both the

MCF7 and T47D cell lines, with both showing an increase and decrease in the histone mark dependent on site. c From left to right. Coverage as

calculated by Homer. H3K27ac was found at GRHL2 sites in both MCF7 and T47D cells, in particular at the E2-responsive sites. The same mark was

also found at P300 sites as expected. Analysis of ER binding at H3K27ac sites showed an enrichment for ER binding at the H3K27ac sites that

were most responsive to knockdown of GRHL2 in MCF7 cells
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EMT [28]. The same study showed that knockdown of

GRHL2 in MCF10A—an ER-negative cell line—led to

the loss of epithelial morphology. Overall, this suggested

that the GRHL2 transcription factor plays an essential

role in maintaining the epithelial phenotype of breast

cells. Similar results were observed with the

MDA-MB-231 model, where expression of GRHL2 re-

sulted in the reversal of EMT [29]. This result has been

recapitulated in hepatocytes, where GRHL2 was found

to suppress EMT by inhibiting P300 [43]. The ability to

suppress EMT has also been noted in prostate cancer,

another cancer driven by a steroid hormone receptor

(AR), and the genes regulated by GRHL2 are linked to

disease progression [46].

GRHL2, a novel co-repressor of ER eRNA production

These earlier data combined with the link between

GRHL2 expression and patient survival indicate a sig-

nificant role for GRHL2 in the progression of breast

cancer. However, its role in the ER signaling axis has,

until now, been unknown. Here, we show that GRHL2

performs its activity at a subset of ER enhancers. Over-

expression of GRHL2 resulted in a significant decrease

in eRNA production at the TFF1 and XBP1 enhancers,

and in agreement with previous studies that correlate

eRNA transcription with gene expression [47–49], we

found the measured eRNA decrease was concurrent

with a significant downregulation in the expression of

the corresponding gene.

These results are consistent with previous findings

that GRHL2 inhibits P300 [43] and, while the ER com-

plex results in the activation of eRNA transcription at

these sites, that GRHL2 plays a role in fine-tuning or

modulating this process.

GRHL2 role in the ER signaling axis is independent to its

role in tethering MLL3

In breast cancer, GRHL2 has previously been shown to

directly interact with FOXA1, which may contribute to

the tethering of the histone methyltransferase MLL3

and, consequently, epigenetic marks at GRHL2/FOXA1

binding sites [30]. Our analysis, however, showed no

particular enrichment for H3K4me1/3 marks at

E2-responsive GRHL2 sites compared to other GRHL2

binding sites, and our proteomic analysis of interactors

showed a strong association with proteins related to

transcription. We proposed that these ER-responsive

sites are related to the role of GRHL2 in a transcrip-

tional process independent of its interaction with MLL3.

This was supported by evidence of a significant overlap

with binding of the coactivator P300, transcriptional

proteins detected by qPLEX-RIME analysis of GR, and a

pronounced increase in eRNA transcription at

E2-responsive GRHL2 sites.

ER is bound more strongly at active enhancers (H3K27ac)

that are altered by siGRHL2

Knockdown of GRHL2 led to a genome-wide remodel-

ing of H3K27ac marks, found at active enhancers, con-

firming a role of GRHL2 in partially regulating these

sites. Detailed inspection of the data showed a significant

increase of these marks around the XBP1 and GREB1

genes, supporting our hypothesis that GRHL2 has a par-

tial inhibitory role within the ER regulon. The result was

further supported by finding enrichment of ER binding

events at H3K27ac marks altered by GRHL2 knockdown

(Fig. 9c, right panel). The more complex effect on

H3K12ac, when compared to the effects on eRNA pro-

duction, is likely a result of the diversity of roles that

GRHL2 holds within the cell, leading to a host of down-

stream effects in the regulation of chromatin recruit-

ment of key factors such as MLL3, ER, and FOXA1[30].

Deletion of the P300 inhibitory α-helix from GRHL2 reduces

the protein’s ability to repress the production of eRNA at ER

bound enhancer sites

Finally, to clarify if inhibition of P300 was occurring, we

generated and overexpressed GRHL2 lacking the inhibi-

tory alpha helix between amino acids 425 and 437. In all

cases, GRHL2 Δ425–437 had reduced an inhibitory ef-

fect compared to overexpression of the wild type, con-

firming that GRHL2 primarily plays a repressive role at

these sites.

Conclusion
VULCAN is built on state-of-the-art network analysis

tools previously applied to RNA-seq data. By adapting

network-based strategies to ChIP-seq data, we have been

able to reveal novel information regarding the regulation

of breast cancer in a model system.

We have demonstrated that the VULCAN algorithm

can be applied generally to ChIP-seq for the identifica-

tion of new key regulator interactions. Our method pro-

vides a novel approach to investigate chromatin

occupancy of cofactors that are too transient or for

which no reliable antibody is available for direct

ChIP-seq analysis.

Further, because of our use of clinical data, VULCAN

results are both more likely to be relevant and are spe-

cific to the disease type studied, as demonstrated in the

loss of signal when using a control co-expression net-

work generated from an alternative disease type.

VULCAN enabled us to identify the GRHL2-ER inter-

action and that GRHL2 plays a repressive role. Further

analysis showed the process to be independent of the

previously reported interaction with FOXA1 and MLL3

[30]. Our conclusion, therefore, is that GRHL2 has a

second, previously undescribed role that regulates
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transcription at specific estrogen-responsive enhancers

(Fig. 10).

Given the central role of the ER in breast cancer devel-

opment and GRHL2’s own ability to regulate EMT, the

discovery that ER recruits GRHL2 leading to the altered

eRNA production is an important step in enhancing our

understanding of breast cancer and tumorigenesis.

Methods

VULCAN

An implementation of VULCAN in R is available on

Bioconductor.org [https://bioconductor.org/packages/re-

lease/bioc/html/vulcan.html], and the scripts to replicate

our analysis are available as Rmarkdown files. Unless

otherwise specified, all p values were Bonferroni

corrected.

Sample preparation

MCF7 cells were obtained from the CRUK Cambridge

Institute collection, authenticated by STR genotyping

and confirmed free of mycoplasma. All cells were main-

tained at 37 °C, 5% CO2. For each individual ChIP pull-

down, we cultured 8 × 107 MCF7 cells (ATCC) across

four 15-cm-diameter plates in DMEM with 10% FBS,

glutamine and penicillin/streptomycin (Glibco). Five

days before the experiment, the cells were washed with

phosphate-buffered saline (PBS) and the media were re-

placed with clear DMEM supplemented with

charcoal-treated serum. The media was refreshed every

24 h, which halted the growth of the cells and ensured

that majority ER within the cell was not active. On day

5, the cells were treated with estradiol (100 nM). At the

appropriate time point, the cells were washed with

ice-cold PBS twice and then fixed by incubating with 10

mL per plate of 1% formaldehyde in unsupplemented

clear media for 10 min. The reaction was stopped by the

addition of 1.5 mL of 2.5M glycine, and the plates were

washed twice with ice-cold PBS. Each plate was then

scraped in 1 mL of PBS with protease inhibitors (PI) into

a 1.5-mL microcentrifuge tube. The cells were centri-

fuged at 8000 rpm for 3 min at 4 °C and the supernatant

removed. The process was repeated for a second wash

in 1 mL PBS+PI and the PBS removed before storing

at − 80 °C.

ChIP-seq

Frozen samples were processed using established ChIP

protocols [50] to obtain DNA fragments of ~ 300 bp in

Fig. 10 Overview of the role of GRHL2 in ER activation. On activation of the ER by the ligand E2, the protein is released from a complex containing

HSPs and translocates to the nucleus. The holo-ER dimer forms a core complex at estrogen response elements (ERE) with FOXA1 (pioneer factor) and

GATA3. ER further recruits P300 and GRHL2. GRHL2 has an inhibitory effect on P300 (a transcriptional activator interacting with TFIID, TFIIB, and RNAPII),

thereby reducing the level of eRNA transcription at enhancer sites. Overexpression of GRHL2 further suppresses transcription, while knockdown of

GRHL2 reverses the process
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length. The libraries were prepared from the purified

DNA using a ThruPLEX DNA-seq kit (Rubicon Genom-

ics) and sequenced on the Illumina HiSeq Platform. Se-

quencing data is available from Gene Expression

Omnibus, accession GSE109820 and GSE123475.

Differential binding analysis

Sequencing data was aligned using BWA [51] to the hu-

man genome (hg19). Reads from within the DAC Black-

listed Regions was removed before peak calling with

MACS 2.1 [52] on default parameters. The aligned reads

and associated peak files were then analyzed using Diff-

Bind [18] to identify significant changes in ER binding.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed as

described by Subramanian et al. [53] using the curated

pathway collection (C2) from MSIGDB v 5.0 with 1000

set permutations for each pathway investigated, followed

by Benjamini-Hochberg p value correction.

Motif analysis

Motif analysis of the binding regions was undertaken

with Homer v4.4 [54] using default parameters.

Motif logo rendering was performed using Weblogo

v2.8.2 [55].

VULCAN analysis

We reconstructed a regulatory gene network using

ARACNe-AP as described by Alvarez [56]. RNA-seq

breast cancer data was downloaded from TCGA in Janu-

ary 2015 and VST-Normalized as described by Anders

and Huber [57]. The ARACNe transcriptional regulation

network was imported into R using the VIPER BioCon-

ductor package, and it was interrogated using the differ-

ential binding profiles from our ChIP-seq experiment as

signatures, 45 min vs control and 90 min vs control. The

peak-to-promoter assignment was performed using a

10-kb window with respect to the transcription starting

site (TSS) of every gene on the hg19 human genome.

The algorithm msVIPER (multi-sample Virtual Inference

of Protein activity by Enriched Regulon analysis) was

then applied, leveraging the full set of 8 replicates per

group, with 1000 signature permutations and default

parameters.

qPLEX-RIME

Samples were prepared as previously described for RIME

[9]; the protocol was modified to include TMT isobaric

labels for quantification [33].

TF binding overlap

Publicly available data was downloaded as described in

the source publication [3, 30, 34, 35], and overlap was

calculated with bedtools (v2.25.0). Presented data was

normalized as a percentage of GRHL2 sites.

eRNA quantification

MCF7 cells were transfected with Smart Pool siRNA

(Dharmacon, L-014515-02), siControl, GRHL2 overex-

pression vector (Origene, RC214498), GRHL2 Δ425–437

(Origene), or empty control vector using Lipofectamine

3000 (Thermo Fisher Scientific) according to the manu-

facturer’s protocol in 6-well format. Expression was

monitored by rtPCR using TaqMan assay with GAPDH

as a control transcript. Knockdown efficiency was ~ 75%,

and the GRHL2 overexpression vector led a 730-fold in-

crease in expression over control plasmid. One micro-

gram of purified RNA was reverse transcribed with

Superscript III reverse transcriptase (Thermo Fisher Sci-

entific, 18080085) using random primers (Promega,

C1181) according to the manufacturer’s instructions.

eRNAs were quantified with qPCR using Power SYBR™

Green PCR Master Mix (Thermo Fisher Scientific,

4367660) and denoted as relative eRNA levels after nor-

malizing with UBC mRNA levels.

Primer name Sequences Reference

eGREB1 F ACTGCGGCATTTCTGTGAGA This study

eGREB1 R ACTGCAGTTTGCCTGTCACT This study

eXBP1 F TGTGAGCACTTGGCATCCAT Nagarajan et al. [58]

eXBP1 R ACAGGGCCTCATTCTCCTCT Nagarajan et al. [58]

eTFF1 F AGGGGATGTGTGTGAGAAGG Li et al. [59]

eTFF1 R GCTTCGAGACAGTGGGAGTC Li et al. [59]

UBC F ATTTGGGTCGCGGTTCTTG Peña et al. [60]

UBC R TGCCTTGACATTCTCGATGGT Peña et al. [60]

Co-immunoprecipitation

ERα (F10) antibody, Santa Cruz (sc-8002), was cleaned

using Amicon 10K Buffer Exchange Column (EMD, Cat

# UFC501096) to remove the sodium azide. 2.5 μg ERα

(F10) antibody rotated overnight at 4 °C with 100 μL

Dynabeads Protein A, Invitrogen (10001D).

Nuclear lysate was harvested via cell lysis (20 mM

Tris-HCl, 20 mM NaCl, 0.2 mM EDTA) followed by nu-

clear lysis (20 mM Tris-HCl, 20 mM NaCl, 0.2 mM

EDTA 1% IGEPAL). The uclear lysate was then incu-

bated overnight at 4 °C with the Dynabeads Protein A.

Elution via 10 min incubation at 70 °C with 1× NuPAGE

LDS Sample Buffer, Invitrogen (NP0007), and 1×

NuPAGE Sample Reducing Agent, Invitrogen (NP0004),

and subjected to western blotting.
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Knockdown of GRHL2

Knockdown of GRHL2 was undertaken using

ON-TARGETplus SMARTpool Human GRHL2, Dharma-

con (#L-014515-02-0050) and Lipofectamine® RNAiMAX

Reagent Protocol (Thermo) according to the manufac-

turer’s protocol. Control samples were prepared following

the same method using ON-TARGETplus Control pool

Non-targeting pool, Dharmacon (#D-001810-10-50) in

place of siGRHL2.

Additional files

Additional file 1: Supplemental figures and tables. (PDF 3249 kb)
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