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Abstract 
The rapid growth in passive mobility tracking technologies has led to departure time choice studies 
based on GPS data in recent years (e.g. Peer et al., 2013). GPS data however typically has limited 
sample sizes and is affected by technical issues like signal losses and battery depletion leading to 
gaps in the data. On the other hand, the rapid growth in mobile phone penetration rates has led to 
the emergence of alternative passive mobility datasets such as Global System for Mobile 
communication (GSM) data. GSM data covers much wider proportions of the population and can 
be used to infer departure time information. This motivates this research where we investigate the 
potential use of GSM data for modelling departure time choice. We describe practical approaches 
to extract relevant information from GSM data and propose a modelling framework that accounts 
for the fact that the desired departure times are unobserved. We assume that the preferred departure 
times vary randomly across the users and apply the mixed logit framework to jointly estimate the 
distribution parameters of the preferred departure times and the sensitivities to schedule delay. 
Comparison of the model results and time valuation metrics derived from the GSM data with 
similar metrics derived from the GPS data of a subset of the users reveals that the fewer time gaps 
in the GSM data lead to reliable model outputs. The proposed framework can be used for mobile 
phone and other passive data sources with unobserved preferred departure times.  

 

 
Keywords: Time of travel, GSM data, GPS data, schedule delay, time valuation 
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1 Introduction 
The modelling of time-of-travel choices has over the years emerged as an important and 
challenging issue worth consideration under travel demand management through policy measures 
such as congestion pricing and flexible working hours (Hess et al., 2007b). Time-of-travel choices 
are principally a trade-off between enduring longer travel times during peak demand periods to 
ensure punctual arrivals at the target destinations versus avoiding the peak periods and opting for 
earlier or later arrivals to reduce the travel times (Small, 1982), although in a toll road setting there 
may be additional differences in toll in the peak.  

In most practical applications, time-of-travel choice problems have been expressed as scenarios 
where an individual is faced with a finite number of discrete departure time periods and chooses 
the alternative with the highest utility (Cosslett, 1977, Small, 1982). Departure time choice 
models, which are basic functions of the factors affecting departure time decisions are thus 
important tools for predicting travel demand and evaluating alternative measures for managing 
this demand. 

Departure time choice models have largely been developed using traditional stated preference 
datasets (e.g. Thorhauge et al., 2017, Ramos et al., 2017, Arellana et al., 2013, Arellana et al., 
2012, Hess et al., 2007b, Hess et al., 2005, De Jong et al., 2003, Daly et al., 1990, Bates et al., 
1990) and revealed preference datasets (e.g. Arellana et al., 2013, Bhat, 1998a, Bhat, 1998b, Small, 
1987, Small, 1982, Abkowitz, 1981). The former are prone to hypothetical bias and behavioural 
incongruence while the latter are generally expensive to obtain, prone to reporting errors, and 
typically involve small samples. This problem is particularly common in developing countries, 
where stringent budget constraints for transport studies act as a barrier for large-scale data 
collection and there is very limited research on modelling departure time choice (e.g. Ramos et 
al., 2017, Arellana et al., 2013). Another reason for the use of stated preference data has been that 
the correlations inherent in revealed preference data make it difficult to capture the trade-offs 
between changes in departure time and other variables. 

The last few decades have been characterised by rapid growth in technologies that enable the 
passive collection of individual mobility trajectories. This has led to departure time choice studies 
based on GPS data from smartphones (e.g. Peer et al., 2013). Although the use of smartphone apps 
has reduced costs, such studies remain expensive and thus usually involve small samples. 

However, the rapid growth in mobile phone penetration rates worldwide (GSM Association, 2017) 
has led to the emergence of network-generated passive mobility datasets such as Call Detail 
Records (CDRs)1 and Global System for Mobile communication (GSM)2 data. These datasets can 
anonymously cover much wider proportions of the population using their current mobile handsets, 
without additional expenses such as recruiting of respondents and procuring of smartphones. Such 
mobile phone datasets have been successfully used in various transportation planning applications 
(Çolak et al., 2015, Iqbal et al., 2014, Jiang et al., 2013, Isaacman et al., 2012, Schlaich, 2010). 
However, a review of the literature shows that there is no study using such data to model departure 
time choice decisions. This motivates this research where we investigate the potential of GSM 
data for departure time choice modelling. It may be noted that GSM data is deemed to be more 
appropriate for capturing departure time choices due to its semi-continuous nature as opposed to 
CDR location data, which is typically discontinuous. 

Since GSM data generation only requires the users’ mobile phones to be active, the regular 
location area updates by the network operator make it possible to capture most of the trips made. 

                                                           
1 CDR data typically consists of the time stamped locations of the responding tower that handles a call/text/web 
access request from a user as well as the details of the request (type, sender/receiver, etc.). 
2 GSM data reports the IDs of all the GSM cells traversed by an active mobile phone (i.e. a phone-set with a valid 
sim that is switched on) at regular time intervals. 
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However, it is important to highlight the limitations of GSM data in the context of departure time 
analysis. The coarse location resolution of GSM data makes it impossible to capture intra-cell 
movements as well as the actual arrival or departure times from points within the cells. Instead, it 
is only possible to observe the cell boundary crossing times, especially where the GSM cells are 
recorded at short time intervals (e.g. 60 seconds in this study). It is worth noting that the differences 
between the actual departure and the (post-departure) cell boundary crossing times as well as the 
differences between the actual arrival and the (pre-arrival) cell boundary crossing times reduce as 
the GSM cell sizes become smaller. This is the case for most metropolitan areas where GSM 
cellular networks are dense, with small cell sizes that can go as low as 100 metres (e.g. De Groote, 
2005). This implies that the cell boundary crossing times would still be within minutes from the 
actual departure or arrival times.  

The above points motivate us to explore the potential of GSM data alongside (or instead of) GPS 
data for modelling departure time choice to inform policy measures related to big data adoption 
for transport studies. We use the Nokia Mobile Data Challenge (MDC) dataset (Laurila et al., 
2012, Kiukkonen et al., 2010), which includes both GSM and smart phone GPS data and enables 
us to get an idea about the strengths and weaknesses of the GSM data in terms of extracting 
information for departure time analysis. Departure time choice models are then developed using 
advanced discrete choice modelling techniques. We focus on modelling departure time choices 
during peak periods as these are most critical in transport planning and operation. The study also 
proposes a theoretical approach for dealing with the absence of information on the desired times 
of travel in passively collected data. The proposed approach is unique in that it allows us to 
understand the sensitivities as well as the valuations attached to schedule delay despite the passive 
nature of the data. Furthermore, we propose a practical approach for imputing missing travel time 
data for some of the time intervals in the analysis period. 

The remainder of the paper is arranged as follows; section 2 presents a brief review of relevant 
literature, section 3 describes the data used for this study and the associated challenges, section 4 
presents the modelling framework, section 5 presents the model results, while section 6 presents 
the summary and conclusions of the study. 

2 Literature review 
Departure time choice decisions generally involve a trade-off between the travel time and the 
schedule delay associated with a given time period. However, estimating the schedule delay 
requires knowledge of the desired times of travel. Most stated preference datasets for departure 
time choice modelling collect information on the desired times of travel which makes it easy to 
estimate the schedule delay terms. However, this is not usually the case for revealed preference 
data, especially passively collected data such as mobile phone data. Peer et al. (2013) is an 
exception where users were asked to report their desired times of travel. Previous studies have 
tried to address this issue in different contexts as summarised below. 

Hess et al. (2007a) propose the use of time period specific constants to capture the aggregate 
scheduling preferences (among other effects) in the absence of the desired times of travel. 
However, Ben-Akiva and Abou-Zeid (2013) argue that the time period specific constants only 
capture the schedule delays if they are specified differently for each socio-economic group based 
on the assumption that individuals in the same socio-economic group have the same desired times 
of travel. This however results in the explosion of constants in the model specification, an issue 
that can be addressed with functional forms to approximate the alternative specific constants (Hess 
et al., 2005). However, another important point to highlight is that relying solely on constants to 
capture scheduling makes it difficult to understand the continuous sensitivity to delay. 

On a different note, Koppelman et al. (2008) propose an approach where the schedule delay for a 
particular departure time period is estimated as the weighted mean of all the possible schedule 
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delays with respect to the different time periods, where the weights are estimated from a time-of-
day distribution of the observed departure times represented by a trigonometric function. 
However, a potential issue with this approach is that it assumes a strong correlation between the 
schedule delays and the observed time-of-day distributions, which may not be the case. A slightly 
related approach is proposed by Kristoffersson and Engelson (2018) who apply reverse 
engineering  techniques that rely on a previously estimated departure time choice model to derive 
conditional departure time probabilities (given the preferred departure time), which are then 
combined with the observed departure time distributions for groups of O-D pairs to derive the 
weights for each preferred departure time period using ordinary least squares. However, a potential 
drawback with this approach is that previous models may be non-existent, and where they exist, 
there may be serious consequences with regard to model transferability. 

Finally, Brey and Walker (2011) propose a hybrid choice framework in which the preferred times 
of travel are assumed to be latent and varying across individuals, and parameterise the probability 
density function as a mixture of normal distributions. However, in their framework, the latent 
preferred times of travel are explained using the trip and the travellers’ characteristics, and are 
measured against the stated preferred times of travel (indicator variables) obtained from a survey, 
which is not possible in this case study. In this study, we propose a simple alternative approach 
which is described in Section 4 of this paper under the modelling framework. 

However, besides using utility theory based models, it is important to note that departure time 
choices can be analysed using alternative methods involving the application of rule-based and data 
mining algorithms (e.g. Ettema et al., 2005, Xiong and Zhang 2013). It is however difficult to 
apply these algorithms in disentangling the causal relationships between departure time and the 
influencing factors and use them for forecasting in different policy scenarios. 

3 Data 
This study uses the Nokia Mobile Data Challenge (MDC) dataset collected as part of the Lausanne 
Data Collection Campaign (LDCC) between 2009 and 2011 (Laurila et al., 2012, Kiukkonen et 
al., 2010). The subsequent sections describe the study area, the mobile phone data, and the 
processes undertaken to extract relevant information for departure time analysis. 

3.1 Study area 
The main study area is Lausanne, located in southwestern Switzerland, however, the spatial 
coverage of the data covers the entire country. 

Lausanne has a dense GSM cellular network with small cell sizes  (see Schulz et al., 2012 for 
details). The small cell sizes make the area generally suitable for the current study as the actual 
departure or arrival times, which are unobservable for GSM data would still be within minutes of 
the observed cell boundary crossing times. 

Another key aspect of Lausanne is that over 68% of the residents are working commuters, and 
over 90% of these use motorised transport modes, which are usually affected by peak period delays 
e.g. due to traffic congestion (ThemaKart, 2017). The travel times in Lausanne typically increase 
by 44% and 63% during the morning and the evening peak periods, respectively (TomTom, 2016).  

3.2 Data description 
The MDC dataset contains several types of records such as demographic data, GSM data, GPS 
data, call logs, and bluetooth data etc. However, this study only uses the demographics, the GSM, 
and the GPS data, which are described in the subsequent sections.  

3.2.1 Demographic data 
The MDC data is one of the few available mobile phone datasets with user demographic details, 
however, the sample size is small given that participation was voluntary. The available data 
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comprises of 83 full-time workers. The other available demographics for each of these include the 
gender and the age-group as summarised in Table 1.  

Table 1: Demographic data summary statistics 

Characteristic  Description Number Proportion (%) 

Gender 
Female 23 27.71 
Male 60 72.29 

       

Age-group 
Under 28 years 24 28.92 

28 years and above 59 71.08 

 
It is important to note that although demographic data is available in this case, such data is usually 
unavailable in most mobile phone datasets due to privacy reasons. Previous studies have focused 
on the subject of demographic prediction and how this can be incorporated into transport 
modelling frameworks (see Bwambale et al., 2017 for details). However, since this is not the main 
focus of this paper, we directly incorporate the reported demographics into the models. 

3.2.2 GSM and GPS data 
The GSM data reports all the GSM cells traversed by each user’s mobile phone at an interval of 
approximately 60 seconds. The data contains approximately 24.8 million records generated by the 
full-time workers. Each record is described by a user ID, a unique internal ID of the GSM cell, the 
unix timestamp and time zone. Table 2 presents an excerpt of the GSM data.  

Table 2: Excerpt of the GSM data 
User ID GSM Cell ID Unix timestamp Time zone 

5451 686 1251762486 -7200 
5451 686 1251762546 -7200 
5451 1785 1251762606 -7200 
5451 1785 1251762663 -7200 

The GPS data (timestamped latitudes/longitudes) was collected concurrently with the GSM data 
using the users’ smartphone GPS receivers, which allows for cross-comparison of the two datasets. 
Despite the higher time resolution of the GPS data versus the GSM data (i.e. 10 seconds versus 60 
seconds), the GPS data contains only 5.2 million records. 

GSM data was collected as long as the user’s mobile phone was switched on albeit that signal 
losses were possible, while for GPS data, the facility needed to be enabled. The average data 
collection period per user was 278 and 205 days for the GSM and the GPS data respectively. We 
use the concept of active time to refer to the time when a user’s phone (or GPS service) is switched 
on, where this is assumed to be the case as long as the time interval between successive records 
does not exceed 10 minutes. For GSM data, the proportion of active time was on average 73.44% 
across users, compared to 5.00% for the GPS data. The corresponding median values and lower 
quartiles were 77.11% and 66.56% respectively for the GSM data compared to 4.37% and 3.16% 
respectively for the GPS data. 

Time gaps in the GPS data may be caused by GPS disabling (e.g. due to battery issues) or signal 
loses in urban environments, buildings and tunnels (NCO, 2018, Gong et al., 2012, Chen et al., 
2010). However, it is important to note that GPS technology has since improved and most of these 
issues may not be encountered in more recent GPS datasets. This observation of course does not 
affect the findings in terms of the potential use of GSM data. The methodology to extract 
meaningful information from both datasets is explained in the next section. 
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3.3 Data processing 
The data processing methodology is presented in Figure 1. In this section, we briefly describe the 
key aspects of each major step. 

 

Figure 1: Summary of the data processing methodology 

 

3.3.1 Data preparation 

a. GSM data 
GSM data is noisy in nature as it sometimes contains cell jumps that do not represent actual 
movement. The noise is mainly caused by cell tower call balancing operations aimed at optimising 
the quality of calls, which makes mobile operators assign mobile phones to neighbouring cells 
even when these phones are not physically located within those cells (Çolak et al., 2015). To 
mitigate cell jumps, the ordered GSM cell sequence of each user was analysed to calculate the 
time periods between intermittent observations of the same cell, and those with time periods less 
than 10 minutes were treated as cell jumps, thus relabelling the cell observations between them 
accordingly (Iqbal et al., 2014).  The cleaned GSM cell sequences were then analysed to extract 
the users’ dwell locations as described in the next section. 

b. GPS data 
The technical issues associated with GPS data as highlighted in Section 3.2.2 may sometimes not 
lead to total signal loss, but rather, may lead to inaccurate GPS locations. Furthermore, GPS 
location accuracy is affected by factors such as the quality of the GPS antenna in the smartphone, 
and the density of GPS satellites at the current location (NCO, 2018). Due to these factors, it is 
likely that different GPS points in the vicinity of one another could be linked to the same dwell 
location and this requires the application of spatial clustering techniques to identify the GPS point 
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clusters. We conducted complete-linkage hierarchical clustering (Everitt et al., 2011, Murtagh, 
1985) with a threshold distance of 300 meters as used in previous studies (Çolak et al., 2015, Jiang 
et al., 2013). This is detailed in Appendix A.  

3.3.2 Identification of home and work locations 
A home location was defined as the GSM cell or GPS point cluster in which a user was observed 
for the longest time between midnight and 6 am on a particular day, while a work location was 
defined as any location other than the home location in which a user spent the longest time between 
8 am and 5 pm on a particular working day. All the other GSM cells or GPS point clusters in which 
a user was seen to spend more than 10 minutes were described as ‘other’ dwell locations (Çolak 
et al., 2015, Jiang et al., 2013). We analysed each day separately to capture the changes in each 
user’s home and work locations across the observation period.  

An important point to note is that the original GSM data did not have the coordinates of the tower 
positions due to privacy reasons. The data only reports the IDs of the GSM cells without showing 
their positions as described in Section 3.2.2. Although the data alone is able to show the cell 
sequences and dwell times, it does not show the relative positions of these cells. To address this 
problem, the GPS points from all the users observed within 30 seconds of a GSM cell were 
extracted, and the mean latitudes and longitudes calculated for each cell. Although this was not 
possible for all the GSM cells, 62% of the inferred home cells, 70% of the inferred work cells, and 
61% of the ‘other’ dwell locations were successfully matched. The data matching process was 
critical as it enabled the estimation of the distances and the travel speeds between the dwell cells, 
which we use to identify trips potentially made using motorised modes. It should be noted that 
under normal circumstances, GSM data should report the coordinates of the towers linked to the 
cells, in which case data matching would not be necessary. 

3.3.3 Extracting HBW trips between the dwell cells 
The focus of our analysis is home-based work (HBW) trips. Unlike direct trips, which have no en-
route activity, trips with intermediate dwell locations (i.e. those labelled as ‘others’) could have 
en-route activities that last very long to the extent that such trips can no longer be categorised as 
clear HBW trips. In this study, we specified an upper limit of one hour on the total duration across 
all the intermediate stops and included only the trips satisfying this criterion in our HBW model. 

During the extraction of HBW trips, we checked whether each user’s phone or GPS receiver was 
active both on departure and at arrival. For departure, we checked the time difference between the 
last observation in each departure dwell location and the first observation outside that location, 
while for arrival, we checked the time difference between the first observation in each arrival 
dwell location and the preceding observation outside that location. In this study, we specified a 
threshold of 2 minutes to ensure that we capture reasonably accurate trip start and end times 
without losing significant portions of the samples3. This, for example, helped us avoid situations 
where a user’s phone was switched off during the trip, and switched back on several hours after 
arrival. The trips meeting all the above conditions were then taken through the subsequent stages 
as described in the next sections. 

3.3.4 Cleaning the trip data to identify trips potentially made using motorised modes 
From a policy perspective, the focus is usually placed on motorised traffic, which is the main 
source of traffic congestion. However, one of the general limitations of mobile phone data is its 
anonymous nature, and therefore, the modes of transport used by the users are not known. A few 
previous studies have explored the possibility of detecting travel modes from mobile phone data 
(e.g. Qu et al., 2015, Doyle et al., 2011), however, as this is not the main focus of this study, we 
apply simple heuristics from the literature to infer the trips potentially made using motorised 

                                                           
3 2 minutes corresponds to the 99th percentile time difference between subsequent GPS and GSM records in the full 
datasets excluding time-gaps above 10 minutes. 



Bwambale, Choudhury, Hess                                                                                                                                      8 

  

modes. Observing a median speed above 15 kilometres per hour for a trip length above 5 
kilometres is considered a good indicator that a user generally uses motorised transport for that 
trip chain (Hydén et al., 1999). Details of the applied heuristics are presented in Appendix B. 

3.3.5 Augmenting the cleaned trip data with the attributes of the alternatives 
Although it may seem convenient to assume that a user’s choice set only comprised of the 
departure time intervals ever observed for the user across the different days in the sample, such an 
assumption is unrealistic since the failure to observe certain time intervals does not necessarily 
mean they were not considered. Although some factors like individual work flexibility have a 
bearing on the time periods to be considered, given the current data limitations, it seems more 
reasonable and safer to assume that all the departure time intervals were available and potentially 
considered (as opposed to making ad hoc assumptions). This implies a need to calculate the 
attributes for those time periods for which no actual trips were observed, a process described in 
this section. 

The morning and the evening peak periods were divided into 15-minute intervals. The average 
travel times associated with each of these intervals were estimated for each of the user’s trip chains 
using timestamps in their cleaned GSM and GPS data. The estimated travel times were then 
combined with time-period specific congestion factors to impute the travel times for the 
unobserved time intervals. The time-period specific congestion factors were estimated with the 
aid of the Google Maps direction tool, which predicts the average travel times between a given O-
D pair at different departure or arrival times (Google Maps, 2018).  

To reduce this task to manageable proportions, we divided Lausanne into 10 representative zones 
bounded by the major roads, thereby generating 90 O-D pairs as shown in Figure 2. For each O-
D pair, we extracted the travel times associated with each 15-minute interval between 5 am and 
11 am (for the home-to-work commute) and 3 pm to 9 pm (for the work-to-home commute). The 
average travel times for each interval across all the O-D pairs were then determined. 

 
Figure 2: Sample zones for travel time analysis (Google Maps, 2018) 

For each analysis period, we computed the time-period specific congestion factors by first 
establishing the interval with the shortest average travel time, and calculating the ratios of the 
travel times for each interval versus the minimum travel time for the analysis period as illustrated 
in Figure 3. 
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(a) 

 
(b) 

Figure 3: Travel time variation (a) Morning peak, (b) Evening peak 

Given the typical ratios for each time interval, we used the observed average travel times for each 
user (i.e. those based on the cleaned GSM and GPS data) to estimate the minimum travel times 
for each of their trip chains, and applied the appropriate time-period specific congestion factors to 
impute the travel times for each time interval. We used the imputed travel times for both the chosen 
and the unchosen alternatives as this mitigates possible endogeneity bias which could arise from 
interrelationships with other underlying factors (Calastri et al., 2017, Sanko et al., 2014). 

3.4 Comparison of the GPS and the GSM processed data 
Due to differences in the temporal coverage of the GSM versus the GPS data (see Section 3.2.2), 
the inferred home and work locations were different for some users as illustrated in Figure 4. As 
observed, most of the inferred GPS and GSM home/work locations are within 5 kilometres of each 
other, an indicator that most belong to the same cell. However, we also have scenarios where the 
inferred dwell locations for the same day are over 40 kilometres apart. In such cases, GSM data, 
which has a higher temporal coverage, is expected to be more reliable. However, since our focus 
is on parameter level comparison in the model development stage, we retain the dwell locations 
for each data type as extracted. 

 

Figure 4: Differences between the GPS and GSM inferred home/ work locations 

Furthermore, it is observed that the extracted departure time distributions are different across the 
two datasets, with the home-to-work commute having more pronounced differences (see Figure 
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5). This is because the time gaps in the night GPS traces are more than those in the daytime GPS 
traces, potentially because the users disable their GPS receivers more at night. This is probably 
the reason why the peak period for the home-to-work commute is not clearly defined. On the other 
hand, the peak periods for the GSM data are clearly observed for both the home-to-work, and the 
work-to-home commute. This is in line with the expected behaviour of full-time workers. 

 

Figure 5: Commuter trip frequency distribution 

4 Modelling framework 
Our analysis is based on the random utility framework (Marschak, 1960), and theoretical insights 
from the scheduling model by Small (1982). Let ܷ௡௧௞ be the utility for individual ݊  derived from 
departing in time period ݐ in choice situation ݇. This can be expressed as; 

௡ܷ௧௞ ൌ ௡ܸ௧௞ ൅  ௡௧௞                                                                                        (1)ߝ 

Where ܸ ௡௧௞ and ߝ௡௧௞ are the systematic and the random parts of utility, respectively. Based on 
scheduling theory, ܸ௡௧௞ is usually expressed as a function of the travel time, the corresponding 
schedule delays, and any other key attributes as follows; 

௡ܸ௧௞ ൌ ௧ି௧௜௠௘ߚ  ௡ܶ௧௞ ൅ ௡௧௞ܮ௟ିௗ௨௠௠௬ߚ  ൅ ௡௧௞ሻܧܦ௘ି௧௜௠௘ܵߚ௡௧௞ሺܧ  ൅                      ܮ௡௧௞ሺߚ௟ି௧௜௠௘ܵܮܦ௡௧௞ሻ ൅  (2)                                                             ڮ

Where ܶ ௡௧௞ is the travel time associated with time period ݐ in choice situation ݇ for individual ݊. ܧ௡௧௞, ܮ௡௧௞, ܵܧܦ௡௧௞, and ܵ  ௡௧௞ are the earliness dummy, the lateness dummy, the amount ofܮܦ
earliness, and the amount of lateness associated with time period ݐ for individual ݊  in choice 
situation k. The ݏߚ are the corresponding model parameters to be estimated. It may be noted that 
the earliness terms (ܧ௡௧௞ and ܵ ܵ ௡௧௞ andܮ) ௡௧௞) and the lateness termsܧܦ  ௡௧௞) are mutuallyܮܦ
exclusive.  

Estimating the amount of earliness or lateness associated with a particular departure time period 
requires information on the desired times of travel, which is not available in this case as we are 
relying on passively collected datasets. However from a theoretical perspective, we assume that 
every individual makes efforts to depart at his/her desired time to minimise scheduled delay. By 
re-writing Equation (2), this may be expressed as follows;  
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௡ܸ௧௞ ൌ ௧ି௧௜௠௘ߚ  ௡ܶ௧௞ ൅ ௡௧௞ܮ௟ିௗ௨௠௠௬ߚ  ൅ ܦ௘ି௧௜௠௘ሾܲߚ௡௧௞ሺܧ  ௡ܶ െ ௧ሿሻܦ ൅             ܮ௡௧௞ሺߚ௟ି௧௜௠௘ሾܦ௧െ ܲܦ ௡ܶሿሻ ൅  (3)                                                          ڮ

Where ܲ ܦ ௡ܶ is the preferred departure time for individual ݊, and ܦ௧ is the midpoint of departure 
time interval ݐ in terms of the hours since midnight (e.g. for departure time interval 8:00 am – 8:15 
am, ܦ௧ is 8.125 hours, which corresponds to 8:07:30 am). 

In the absence of the preferred departure times of the users, it is reasonable to assume that these 
vary randomly across the individuals following a certain statistical distribution. The objective we 
are trying to pursue is to estimate the mean and standard deviation of this statistical distribution. 
The use of statistical distributions helps us to avoid the assumption that the preferred departure 
times follow the same trend as the observed departure times as used in Koppelman et al. (2008).  

However, estimating the above specification with different schedule delay early and lateness terms 
presents serious identification and optimisation issues. This is because the earliness and lateness 
dummies depend on the preferred departure time, which is also being estimated at the same time. 
As the optimiser tries to find the preferred departure time, the dummies keep alternating between 
0 and 1, thereby resulting in a function that is not continuously differentiable. This prompts us to 
deviate from Small’s typical model formulation (e.g. Cosslett, 1977, Small, 1982) by investigating 
alternative schedule delay functions that are first of all behaviourally intuitive, and continuously 
differentiable. 

From a behavioural perspective, the schedule delay function needs to reflect reductions in the 
schedule disutility as the observed departure times approach the preferred departure times (from 
both the earliness and lateness sides) and must peak at points where the delay is zero. Furthermore, 
the function needs to have an indifference region around the preferred departure time to reflect the 
fact that the rate of increase in the schedule disutility is small around the preferred departure times, 
and increases as the observed departure times spread further away from the preferred departure 
time. After testing alternative functional forms (e.g. the logistic and the parabolic functions), we 
selected the parabolic function, which gave consistent and intuitive results. The systematic utility 
is now expressed as follows; 

௡ܸ௧௞ ൌ ௧ି௧௜௠௘ߚ  ௡ܶ௧௞ ൅ ݊ܶܦሺܲߙ  െ ʹሻݐܦ ൅                                         (4)                                               ڮ

Where ߙ is a parameter to be estimated, representing the sensitivity to delay. For the schedule 
function above to be behaviourally intuitive, the parameter ߙ is expected to have a negative sign. 
A potential issue with this function is that it does not capture the damping effect of schedule delay 
on marginal disutility as argued in previous studies (e.g. Koppelman et al., 2008), which calls for 
further research to address this issue. 

Assuming the ߚs, the ߙs and ܲ ܦ ௡ܶ (for individual ݊ ) are known, and the random part of utility ߝ௡௧௞ is independently and identically distributed across the choice situations, the alternatives, and 
the individuals, the departure time choice probability for individual ݊ can be estimated using the 
multinomial logit (MNL) model (see McFadden, 1974 for details). However in this case, we have 
several choice situations for the same individual across different days, thus, we need to capture 
the panel effect while calculating the choice probabilities. 

Let ܲ ௡ǡ௞ሺݐȁߚǡ ǡߙ ܦܲ ௡ܶሻ denote the logit probability that individual ݊ chooses departure time period ݐ in choice situation ݇, conditional on ߙ ,ߚ and ܲ ܦ ௡ܶ. Furthermore, let ݐƸ௡ǡ௞ be the departure time 
chosen by individual ݊  in choice situation ݇ , such that ܲ ௡ǡ௞൫ݐƸ௡ǡ௞หߚǡ ǡߙ ܦܲ ௡ܶ൯ gives the logit 
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probability of the observed choice for individual ݊ in choice situation ݇, conditional on ߙ ,ߚ and ܲܦ ௡ܶ. The logit probability of individual ݊’s observed sequence of choices is; 

௡ܲ൫ߚǡ ǡߙ ൯݊ܶܦܲ ൌ  ෑ ܲ݊ǡ݇൫ݐƸ݊ǡ݇หߚǡ ǡߙ ܭ ൯݊ܶܦܲ
݇ൌͳ  

 

ൌ ෑ exp൫ ௡ܸ௧መ௞หߚǡ ǡߙ ൯σ݊ܶܦܲ exp൫ ௡ܸ௧௞כหߚǡ ǡߙ ஼೙א כ൯௧݊ܶܦܲ
௄

௞ୀଵ  
                         (5) 

Where ܥ௡ is the choice set. It is important to note that for users with more than one trip chain, we 
compare the attributes of the same trip chain across the different time periods while computing the 
choice probabilities. That is, each trip chain represents a different choice scenario.  

However as earlier mentioned, the preferred departure times ܲܦ ௡ܶ are not observed, and are 
assumed to vary randomly across individuals. Suppose ܲܦ ௡ܶ is independently and identically 
distributed over the individuals with density ݂ሺܲܶܦȁȳሻ, where ȳ is a vector of the parameters 
of this distribution, such as the mean and standard deviation, the mixed logit probability is 
given by; 

௡ܲሺߚǡ ǡߙ ȳሻൌ  න ൥ෑ ܲ݊ǡ݇൫ݐƸ݊ǡ݇หߚǡ ǡߙ ܭ ൯݊ܶܦܲ
݇ൌͳ ൩ ݂ሺܲܶܦȁȳሻ ݀ܲܶܦ 

ܶܦܲ  
         (6) 

The integration over the density of ܲܶܦ is done over all the individual’s choices combined, since 
the same ܲ  ሻ function for theܮܮapplies to all the choice situations. The log-likelihood ሺ ܶܦ
observed choices is; ܮܮሺߚǡ ǡߙ ȳሻ ൌ  

෍ ln ൭ න ൥ෑ ௡ܲǡ௞൫ݐƸ௡ǡ௞หߚǡ ǡߙ ܦܲ ௡ܶ൯ ௄
௞ୀଵ ൩ ݂ሺܲܶܦȁȳሻ ݀ܲܶܦ 

௉஽் ൱ே
௡ୀଵ  

(7) 

An important consideration is the choice of distribution to be used. Due to our limited knowledge 
of the individuals’ preferences, coupled with the fact that we have not conducted any surveys to 
determine the distribution of the preferred departure times, we assume a truncated normal 
distribution bounded between the limits of the analysis period (i.e. the morning or evening peak 
periods). Since the integral in Equation 7 has no closed form, it is estimated using simulation 
methods. The simulated log-likelihood ሺܵܮܮሻ is expressed as follows; 

ǡߚሺܮܮܵ ǡߙ ȳሻ ൌ  ෍ ln ൭ͳܴ ෍ ൥ෑ ܲ݊ǡ݇൫ݐƸ݊ǡ݇หߚǡ ǡߙ ܭ ൯݊ܶܦܲ
݇ൌͳ ൩ܴ

ൌͳݎ ൱ܰ
݊ൌͳ  (8) 

The ܲ  distribution parameters (i.e. the mean and standard deviation) are estimated alongside ܶܦ
the other model parameters by maximising the simulated log-likelihood using 300 Halton draws 
per user (Bhat, 2001). During parameter estimation, there may be a possibility of confounding 
between random ܲܶܦ and random schedule delay sensitivity ߙ, however, this is mitigated by 
applying the same parameter ߙ to ܲ ܦ ௡ܶଶ, ܦ௧ଶ, and െʹܲܦ ௡ܶܦ௧ (see Equation 4).  
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5 Model results 
This section discusses the process of variable specification, the estimation results, as well as the 
policy insights derived from the estimation results. 

5.1 Variable specification 
The variables available for possible inclusion in the departure time utility equation are; travel time, 
latent schedule delay, trip chain characteristics, and user demographics. However, each of these 
variables was defined in a particular way for different reasons as explained in the subsequent 
paragraphs. 

For travel time, we tested the logarithmic specification to allow for damping effects (Daly, 2010) 
and found no gains in model fit compared to the linear specification. This could be attributed to 
the small ranges of travel time across the alternatives of each user. Therefore, we adopted a linear 
specification.  

|The schedule delay function was entered into the model as specified in Equation 4. We 
investigated the possibility of different ܲܶܦ distribution parameters for different demographic 
groups and could not obtain significant gains in model fit for either dataset. 

The trip chain characteristics were incorporated into the model using the number of intermediate 
stops, and time-period specific parameters were specified to capture the differential impact on 
utility across the time periods. It may be noted that the duration at the intermediate stops is already 
incorporated into the travel time. 

A number of interactions of the schedule delay and the travel time parameters with the user 
demographics were tested. For the GPS data, we could not obtain intuitive results for all the 
interactions tested due to the small sample size per demographic group in the final sample, so we 
specified generic parameters. On the other hand, for the GSM data, we successfully interacted the 
travel time and the schedule delay parameters with age-group alone and age-group by gender, 
respectively. The final systematic utility specifications for the GSM and the GPS data are given 
by Equations (9) and (10), respectively; 

௡ܸ௧௞ ൌ ௧௜௠௘ି௔௚௘ߚ  ௡ܶ௧௞ ൅ ௡௧ଶܦௗ௘௟̴௔௚௘̴௚௘௡ௗ௘௥ܵߙ ൅ ௦௧௢௣௦̴௧ߚ  ௦ܰ௧௢௣௦             (9) 

௡ܸ௧௞ ൌ ௧௜௠௘ߚ  ௡ܶ௧௞ ൅ ௡௧ଶܦௗ௘௟ܵߙ ൅ ௦௧௢௣௦̴௧ߚ  ௦ܰ௧௢௣௦             (10) 

Where ܵ ௡௧ܦ ൌ  ሺܲܦ ௡ܶ െ ܰ ௧ሻ, andܦ ௦௧௢௣௦ is the number of intermediate stops in the trip chain. The ݏߚ and ݏߙ are the model parameters to be estimated.  

5.2 Estimation results 
We present the estimation results for the home-to-work commute and the work-to-home commute 
models for both the GSM and the GPS data in Table 3 for comparison purposes. It may be noted 
that there are differences in the sample sizes of the different models and/or commute directions 
when compared to the values reported in Table 1, which is attributed to the data cleaning rules we 
applied to exclude trips which are very short, very long trips and/or made by non-motorised modes 
(see Appendix B for details). As observed, most of the parameter estimates are statistically 
significant at the 95% level of confidence. In the subsequent sections, we discuss each aspect of 
the results in details. 

5.2.1 Distribution parameters for departure time distribution 
We specified a truncated normal distribution for the preferred departure time (for reasons 
explained in the paragraph after Equation 7). For this distribution, the estimated mean and standard 
deviation are those of the underlying normal distribution. To calculate the true means and standard 
deviations, the estimated parameters were adjusted as follows; 
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ߤ ൌ Ƹߤ  ൅ ቈ ߶ሺȜሻ  െ  ߶ሺȝሻȰሺȝሻ  െ  ȰሺȜሻ቉  ො                 (9)ߪ

ߪ ൌ ෝߪ  ൥ͳ ൅  Ȝ߶ሺȜሻ െ  ȝ߶ȝȰሺȝሻ  െ  ȰሺȜሻ  െ  ቆ ߶ሺȜሻ  െ  ߶ሺȝሻȰሺȝሻ  െ  ȰሺȜሻቇʹ൩ଵȀଶ
                 (10) 

Where, ߤƸ  and ߪො are the estimated mean and standard deviation respectively of the underlying 
normal distribution, ߤ and ߪ are the true mean and standard deviation respectively of the truncated 
distribution. Ȝ ൌ ሺܽ െ ߤƸሻ ොΤߪ , ȝ ൌ ሺܾ െ Ƹሻߤ  ොΤߪ , where ܽ  and ܾ  are the lower and upper bounds 
respectively of the truncated distribution. For the home-to-work commute, these are set to 5 and 
11, respectively, while for the work to home commute, these are 15 and 21 respectively.  

From Table 3, it is observed that the mean preferred departure times for the home-to-work 
commute are 7.9742 and 8.0105 (approximately 8:00 am), while those for the work-to-home 
commute are 17.7240 (approximately 05:45 pm) and 17.2903 (approximately 05:15 pm) in the 
GSM and the GPS models, respectively. Although flexible working time is not unusual in 
Switzerland, normal business hours generally start between 08:00 am and 08:30 am and end 
between 05:00 pm and 06:30 pm (Switzerland Tourism, 2018), which is consistent with our 
findings.  

Furthermore, it is observed that the corresponding standard deviations are slightly higher for the 
home-to-work commute when compared to the work-to-home commute. The lower amount of 
variation during the work-to-home commute is probably the reason behind the higher evening 
traffic congestion in Lausanne and other major Swiss cities (TomTom, 2016). 

5.2.2 Sensitivity to schedule delay 
Generally, individuals prefer to depart at particular times due to certain constraints at both the 
origin and the destination. Thus, any deviations from the desired times of travel are expected to 
cause disutility, hence the negative parameter signs for the schedule delay terms reported in Table 
3. For GSM data where we have different schedule delay parameters for different demographic 
groups, where we note that female workers are more sensitive to shifting departure time compared 
to male workers in the same age-group. This is the case during both the home-to-work and the 
work-to-home commute. The higher sensitivity of female workers is potentially attributed to the 
strictness in their schedule as a result of the need to balance family and professional life in the face 
of common views on traditional gender roles in Switzerland (Nguyen, 2018, The Economist, 
2018).   

Furthermore, it is observed that younger workers are more sensitive to schedule delay than older 
workers of the same gender during the home-to-work commute. This is expected as younger 
workers are more junior and typically have less flexibility (i.e. expected to report on time). 
However, the situation is different for the work-to-home commute. Here, it is observed that older 
female workers are more sensitive than young female workers. This again could be attributed to 
the levels of responsibility at home as older female workers are more likely to have families 
already. However, the lower sensitivity of older male workers in comparison with younger male 
workers is an interesting observation that needs to be investigated further. 

For the GSM data, we also observe that the sensitivity to schedule delay is generally higher during 
the home-to-work commute when compared to the work-to-home commute. This is expected as 
late arrival on the home-to-work commute probably has more serious consequences than on the 
work-to-home commute. However, this was not captured in the GPS data due to differences in the 
sample composition resulted by the big time gaps in the GPS data. 
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Table 3: Model estimation results 

 Variable 

Home-to-work commute  Work-to-home commute 

GSM data  GPS data  GSM data  GPS data 

Parameter t-stat  Parameter t-stat  Parameter t-stat  Parameter t-stat 

Travel time (hours)      
 

     
Workers < 28 years -2.9700 -2.37  

-0.9486 -1.05 
 -1.0674 -2.59  

-0.2340 -0.32 
Workers >= 28 years  -1.3266 -1.35   -1.0314 -2.15  

Schedule delay term (hours2)       
 

     
Female workers < 28 years -0.7682 -6.51  

-0.2560 -1.88 

 -0.4412 -5.70  

-0.3093 -6.13 
Female workers >= 28 years -0.6441 -5.34   -0.4785 -7.12  
Male workers < 28 years -0.6841 -3.49   -0.4148 -4.46  
Male workers >= 28 years  -0.5468 -6.20   -0.3749 -6.78  

Preferred departure time 
distribution parameters      

 

Ƹߤ        0.2236   0.5562   1.7503   0.9783 ߪ ො 1.0029 7.85  1.5077 1.99  0.7465 11.98  0.4729 4.40ߪ  17.2903   17.7244   8.0081   7.9661 ߤ 112.59 17.2903  170.59 17.7240  18.76 8.0105  67.55 7.9652  

Number of stops (Time period 
specific parameters)*      

 

 ଵ଴ -0.6124 -1.70  15.1026 11.49  1.4974 1.61  -4.7149 -4.67ߜ  ଽ  -1.0169 -3.17  15.1030 8.56  1.6290 1.77  11.1953 8.50ߜ  4.55- 4.8664-  1.68 1.5522  1.43- 2.3982-  2.88- 1.0663-  ଼ߜ  ଻  -1.2352 -3.28  -2.3215 -1.26  1.8133 1.95  -4.7535 -4.36ߜ  ଺  -1.1063 -2.76  -2.1946 -1.13  1.3622 1.44  12.1103 8.28ߜ  ହ  -1.1779 -2.68  -1.9351 -0.91  1.7281 1.87  11.5697 8.53ߜ  ସ  -0.3398 -0.81  16.7402 6.94  1.2878 1.39  11.7430 7.91ߜ  ଷ  -1.3742 -2.05  -1.5777 -0.66  1.8313 2.00  -3.4635 -3.05ߜ  ଶ  -0.8544 -1.80  -1.3607 -0.53  2.0265 2.18  -2.9766 -2.63ߜ  ଵ  -2.2939 -2.24  -1.1547 -0.43  1.8821 1.97  -2.4504 -2.17ߜ      
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Table 3 cont’d 

 Variable 

Home-to-work commute  Work-to-home commute 

GSM data  GPS data  GSM data  GPS data 

Parameter t-stat  Parameter t-stat  Parameter t-stat  Parameter t-stat  ߜଵଵ  -1.2679 -3.30  -2.2488 -1.79  1.8324 1.99  -4.7034 -4.72  ߜଵଶ  -1.1857 -3.69  -2.1632 -1.87  1.3271 1.45  11.2286 8.07  ߜଵଷ  -0.9265 -2.95  -2.1864 -2.09  1.1121 1.19  -4.6527 -4.75  ߜଵସ  -1.1458 -2.84  -2.3160 -2.67  0.8245 0.88  -4.4459 -4.61  ߜଵହ  -1.1957 -2.61  -2.3777 -3.25  0.8900 0.94  -4.1544 -4.35  ߜଵ଺  -1.7638 -4.76  -2.4956 -4.26  0.3669 0.38  -3.7369 -4.05  ߜଵ଻  -1.1030 -2.80  -2.7512 -6.41  1.1553 1.26  -3.2570 -3.67  ߜଵ଼  -2.8825 -4.97  -2.7162 -8.04  1.2105 1.30  -2.7495 -3.25  ߜଵଽ  -1.0044 -3.49  -2.6429 -10.06  0.9961 1.03  -2.2151 -2.77  ߜଶ଴  -1.2905 -4.90  -2.5495 -13.12  0.9618 1.01  -1.7011 -2.28  ߜଶଵ  -1.2117 -4.28  -2.4537 -15.91  1.1151 1.21  -1.2485 -1.80  ߜଶଶ  -0.5033 -1.98  -2.3064 -17.13  0.7528 0.79  -0.8655 -1.35  ߜଶଷ  -0.6143 -2.71  -2.0963 -16.51  1.6520 1.89  -0.5606 -0.96 

Measures of fit in estimation 

Number of observations 2043  69  2668  112 
Number of decision makers 78  29  78  35 
LL(C) -6492.76  -219.29  -8479.05  -355.94 
LL(F) -5575.19  -203.50  -7644.19  -323.95 
Number of parameters 31  27  31  27 ɏୟୢ୨ଶ  w.r.t LL(C) 0.1365  -0.0511  0.0948  0.0140 
LR w.r.t LL(C) 1835.15  31.58  1669.71  63.99 
p-value of LR 0.0000  0.2480  0.0000  0.0001 

* 1 refers to the first 15-minute interval in the period of analysis (i.e. 5:00 to 5:15 for morning home-to-work commute, and 15:00 to 15:15 for the evening work-to-home commute). The rest of the numbers refer 
to the subsequent 15-minute intervals in ascending order. 
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5.2.3 Sensitivity to travel time 1 

From Table 3, the parameter signs for the travel time variable are negative in both the home-to-2 

work and the work-to-home commute models, which is consistent with a priori expectations. In 3 

general, time periods with higher travel times are less attractive, and prompt individuals to choose 4 

earlier or later time periods at the expense of increasing the schedule delays.  5 

Keeping all other things constant, it is observed that the sensitivity to travel time during the home-6 

to-work commute is generally higher than that during the work-to-home commute in both the 7 

GSM and the GPS models. This implies that people are less willing to spend longer times in traffic 8 

during the home-to-work commute as opposed to the reverse direction, which could be attributed 9 

to the higher stakes attached to the home-to-work leg. 10 

5.2.4 Time-period specific parameters related to the number of stops 11 

Another important issue worth highlighting concerns the time-period specific parameters related 12 

to the number of stops. For easy parameter identification, we normalised to zero the effect linked 13 

to the last departure time interval of each analysis period (i.e. 10:45 am to 11:00 am for the 14 

morning home-to-work commute and 08:45 pm to 09:00 pm for the evening work-to-home 15 

commute). Thus, the reported parameters represent the differential impact on utility with respect 16 

to the reference time periods and can either be positive or negative. These are reproduced in Figure 17 

6 for easy visualisation. 18 

(a) GSM data (b) GPS data 

Figure 6: Time period specific parameters for the number of stops 19 

The interpretation of these parameters is however difficult given that they probably incorporate 20 

some other unobserved factors associated with the different time periods. Nevertheless, for GSM 21 

data (Figure 6a), the trend of the parameters in the work-to-home model shows that if some 22 

someone is to make a trip with more stops, they will find the earlier departure time periods more 23 

suitable, which is reasonable. However, the trend is different in the home-to-work model, where 24 

it is observed that the later departure time periods would be more suitable. This could be attributed 25 

to the less traffic during the inter-peak period and the opening times at the various stop locations. 26 

For GPS data (Figure 6b), there is no clear trend in the parameters for both commute directions, 27 

which is attributed to the weaknesses in the data as mentioned earlier which contributes to higher 28 

levels of noise.   29 

5.2.5 Overall model performance 30 

From Table 3, it is observed that the adjusted-rho square values of the GPS models are far less 31 

compared to those of the GSM models. While acknowledging that the models cannot be directly 32 
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compared due to differences in the sample compositions, the overall poor performance of the GPS 1 

models is largely attributed to the small GPS sample sizes.  2 

5.3 Policy insights 3 

Travel time is usually at its worst when the schedule delay for most individuals is at the minimum. 4 

Therefore, people are generally faced with a trade-off between travel time and schedule delay 5 

when choosing the most appropriate departure time periods. Thus, to gain better insights, it is 6 

critical to analyse the sensitivities to schedule delay versus travel time to obtain the values attached 7 

to schedule delay.  8 

The time valuation of schedule delay ሺܸܶܵܦሻ represents the amount of delay an individual is 9 

willing to experience for a unit reduction in travel time by changing his/her departure schedule. 10 

This unitless metric is calculated as the ratio of the partial derivatives of the systematic utility with 11 

respect to schedule delay and travel time as follows; 12 

 For the GSM data  ܸܶܵܦ௔௚௘̴௚௘௡ௗ௘௥ ൌ   ߲ ௡ܸ௧௞ ௡௧Τ߲ܦ߲ܵ ௡ܸ௧௞ ߲ ௡ܶ௧௞Τ  ൌ ௗ௘௟̴௔௚௘̴௚௘௡ௗ௘௥ߙ   כ ௧௜௠௘ି௔௚௘ߚ௡௧ܦܵʹ             (11) 

 For the GPS data  ܸܶܵܦ ൌ   ߲ ௡ܸ௧௞ ௡௧Τ߲ܦ߲ܵ ௡ܸ௧௞ ߲ ௡ܶ௧௞Τ  ൌ ௗ௘௟ߙ   כ ௧௜௠௘ߚ௡௧ܦܵʹ             (12) 

 13 

Since we used square-transformations, the time valuation of schedule delay depends on the amount 14 

of earliness/lateness of the individual as shown in Equations (11) and (12). We therefore used the 15 

estimation data (including the normal draws) to calculate the average values across individuals, 16 

which we report in Table 4. 17 

Table 4: Time valuation of schedule delay 18 

Commute 
direction 

GSM data  GPS data 

Female worker 
< 28 years 

Female worker 
>= 28 years 

Male worker 
< 28 years 

Male worker 
>= 28 years 

Weighted 
mean 

 
Generic 

Home to work 1.2196 2.5116 0.9995 2.2031 2.0167  2.3435 

Work to home 1.6729 1.8290 1.5570 1.6747 1.7025  4.6266 

Weighted 
mean 

1.4824 2.1352 1.2964 1.8893 1.8388  3.4850 

To assess how realistic our estimates are, we compared them with the typical averages for Europe 19 

reported in the meta study conducted by Wardman et al. (2012), summarised in Table 5. 20 

Table 5: Time valuations from other sources 21 

Average values for Europe  
(Wardman et al., 2012) 

GSM data GPS data 

0.81 to 1.71  
(Schedule delay early to schedule delay late) 

1.84 
(From Table 4) 

3.49 
(From Table 4) 

 22 

A comparison of the GSM and the GPS valuation estimates shows that those of the former are 23 

closer to the average range for Europe. As mentioned earlier, this is likely due to the weaknesses 24 
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in the specific GPS dataset that has been used (collected in 2010), and the findings cannot be 1 

generalised. It is expected that more recent datasets could lead to different findings as GPS 2 

technology has greatly improved over the last few years. Although we do not have any ground 3 

truth data from the study area for direct validation, the above results give some reassurance that 4 

GSM data can be used for understanding departure time choice. Indeed, these results show that 5 

mobile phone data can be feasibly used to analyse time-of-travel choices despite the lack of 6 

information on the preferred departure/arrival times. The availability of demographic data offers 7 

additional benefits in terms of explaining the differences in sensitivity across individuals. 8 

6 Summary and conclusions 9 

An initial comparison of the GSM and the GPS datasets collected in parallel for the same users 10 

showed that the amount of time gaps in the GPS data (in this specific case) were very substantial. 11 

This was potentially due to technical issues such as signal losses in urban environments and large 12 

public transport vehicles, as well as the users turning off their GPS apps due to battery issues. On 13 

the other hand, the amount of time gaps in the GSM data were not as pronounced. Due to these 14 

challenges, the GPS data could not capture most of the trips made, and the extracted sample size 15 

was very small compared to that extracted from the GSM data. Consequently, the models based 16 

on GPS data were not as reliable in this case as those based on GSM data. An important point to 17 

note is that advances in smartphone GPS technology have occurred since 2010, and it is likely that 18 

some of the technical issues encountered in this study have been resolved. Therefore, it is would 19 

be important to re-evaluate the feasibility of GPS data using more recent datasets. Nevertheless, 20 

this paper has successfully demonstrated the potential of GSM data as an alternative source of 21 

information for departure time choice modelling.  22 

An important aspect we recognise is the fact that the preferred departure/arrival times of the users 23 

are not known due to the anonymous nature of mobile phone data and yet this is an important 24 

aspect of departure time choice models. We propose a modelling framework in which the 25 

unobserved preferred departure times are assumed to vary across the users following a particular 26 

distribution, and estimate the distribution parameters (i.e. the mean and standard deviation) using 27 

the mixed logit framework. This approach allows us to simultaneously estimate the distribution 28 

parameters alongside the sensitivities to schedule delay, which are found to be intuitive. Although 29 

we have applied the proposed approach in the context of anonymous mobile phone data, it can be 30 

applied to model departure time choice using traditional RP datasets where the desired times of 31 

travel are sometimes not known. 32 

Furthermore, since mobile phone data only reports the revealed departure time preferences of the 33 

users, the modeller does not know the other alternatives that were considered while making these 34 

choices. We make a general assumption that all the possible departure time intervals in the analysis 35 

period (i.e. morning or evening peak period) were considered. However, the attributes for some of 36 

the departure time intervals may not be observed for some users if they rarely travel during those 37 

periods. Consequently, we propose a practical approach for imputing the travel times associated 38 

with different departure time intervals using time-period specific congestion factors derived from 39 

Google maps for a sample of O-D pairs. This approach is particularly beneficial in the absence of 40 

Google Distance Matrix API services for duration in traffic.    41 

The model results reflect the generally expected behaviour. When these results were applied to 42 

estimate the time valuations of schedule delay, we obtained reasonable estimates from the models 43 

based on GSM data in comparison with those from the literature, which are largely based on stated 44 

choice data. We conclude that the results of this study serve as a proof-of-concept that mobile 45 

phone network records are a promising source of information for transport modelling and policy 46 

analysis, especially in contexts where traditional data sources are unavailable. This is the case in 47 

most developing countries with limited budgets for transport studies. 48 
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Appendix A: Cluster identification for GPS data 1 

As cluster analysis on large datasets is a very challenging task because most spatial clustering 2 

algorithms require a full distance matrix, we conducted the clustering in stages. 3 

We first split the data of each user according to the date observed. Full distance matrices 4 

comprising of all the possible pairs of GPS points observed on a particular day were then generated 5 

(Nychka et al., 2018). Thereafter, we conducted complete-linkage hierarchical based on the 6 

matrices of each day to identify groups of points that were potentially linked to the same dwell 7 

location  (Everitt et al., 2011, Murtagh, 1985). Complete-linkage clustering ensures that we 8 

constrain the output cluster diameter to a specified size. This is particularly desirable when we 9 

know the accuracy range of the records. In this study, we specified a threshold distance of 300 10 

meters as used in previous studies (Çolak et al., 2015, Jiang et al., 2013).  11 

However, it is worth noting that spatial clustering algorithms need at least two data points to 12 

identify clusters. As a result, some of the identified clusters might have few points, and would not 13 

pass as potential dwell locations. We therefore specified a minimum duration of at least 10 minutes 14 

per day calculated using consecutive GPS points. The centroids of the points within the identified 15 

clusters were then labelled as potential dwell points. 16 

The potential dwell points of each user from different days were combined and complete-linkage 17 

clustering conducted again with a threshold distance of 300 meters. This was aimed at clustering 18 

potential dwell points from different days in the vicinity of one another, thereby limiting the dwell 19 

region size to 300 meters. The centroids of the dwell regions of each user were then computed and 20 

labelled as candidate dwell points. At this stage, we did not impose a lower limit on the number 21 

of potential dwell points within dwell regions. Therefore, isolated potential dwell points that did 22 

not form clusters were simply re-labelled as candidate dwell points. 23 

After establishing the candidate dwell points of each user, we identified all the GPS points within 24 

a radius of 150 meters from these locations and ordered the data according to timestamp. This was 25 

followed by applying a minimum dwell time constraint of 10 minutes each time a user was 26 

continuously observed within the vicinity of a candidate dwell point. Whenever this condition was 27 

met, the candidate dwell point was relabelled as a confirmed dwell point. This is illustrated in 28 

Figure A1. 29 

 
(a) 

 
(b) 

Figure A1: GPS dwell point identification (a) identification of a candidate dwell point from the potential 30 
dwell points, (b) application of a dwell time constraint to confirm the candidate dwell point 31 

 32 

 33 
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Appendix B: Cleaning the trip data to identify travel modes 1 

B1. Setting the minimum travel time constraint 2 

To begin with, it is important to note that the observed travel times of the users relate to the inter-3 

boundary components of the O-D links since the trip start and end times are only captured when 4 

the users cross the home/work location dwell boundaries. However, these inter-boundary travel 5 

times need to be sufficient to enable the observation of reasonable variations in travel time across 6 

different time periods. As earlier mentioned, the morning and evening peak travel time increment 7 

factors for Lausanne are 1.44 and 1.63 respectively. Since these factors are quite low, for very 8 

close O-D pairs, the variations in travel time would not be significant enough to influence changes 9 

in departure time choices. In this study, we specify a median travel time of 10 minutes as the lower 10 

threshold for direct trips between the users’ home-to-work O-D pairs and only consider those 11 

meeting this criterion. It may be noted that the exclusion of close O-D pairs also mitigates the 12 

observation of potential false trips due to signal jumps that were undetected during the data pre-13 

processing phase (Iqbal et al., 2014). 14 

B2. Identification of trips with unreasonably long travel times 15 

We analyse each user’s travel time for a particular trip in relation to the minimum travel time 16 

observed for the user along the same trip chain to identify trips with unreasonably long travel 17 

times. Travel times generally increase due to traffic congestion, however, when the increase is 18 

very big, we suspect other factors such as uncaptured trip segments due to switching off of phones.  19 

To determine the most reasonable upper limits of travel time, we calculate the ratios of the 20 

observed travel times versus the minimum travel times for each of the user’s trips. These ratios 21 

give an indication of the levels of congestion (i.e. the higher the ratio, the higher the level of 22 

congestion). We then combine the computed ratios for all the users and estimate the upper limit 23 

as follows; ܷ ݐ݈݅݉݅ ݎ݁݌݌ ൌ  ܳ͵ ൅ ͳǤͷ כ ሺܳ͵ െ ܳͳሻ, where ܳ ͳ and ܳ ͵ are the first and third 24 

quartiles respectively (Tukey, 1977). We use the GSM data for this analysis as it captures most of 25 

the trips made.  26 

The estimated upper limits of the ratios were 2.21 and 2.12 for the home-to-work, and the work-27 

to-home commutes respectively. It may be noted that these limits seem reasonable when compared 28 

to the congestion factors reported for Lausanne, that is, 1.44 and 1.63 for the morning and the 29 

evening peaks respectively (TomTom, 2016). We exclude trips whose travel times exceeded the 30 

estimated upper limits. 31 

B3. Identification of potential travel modes 32 

We first apply a minimum distance constraint of 5 kilometres as previous studies have shown that 33 

people are less likely to walk or cycle beyond this distance (Hydén et al., 1999). It may be noted 34 

that we do not use euclidean distances, rather, we calculate the minimum distances by road for 35 

each O-D pair using the Google Distance Matrix API (Google Developers, 2018). 36 

However, another important aspect is the speed of the users. We only consider trip chains where 37 

the users’ median speeds exceed 15 kilometres per hour, thereby excluding those where the users 38 

typically walk or cycle (Bernardi and Rupi, 2015). It may be noted that the calculated speeds are 39 

generally over-estimated since we use centre-to-centre O-D distances versus the inter-boundary 40 

travel times. Despite this limitation, observing median speeds above 15 kilometres per hour for 41 

trip lengths above 5 kilometres is considered a good indicator that the users generally use 42 

motorised transport for those trip chains.  43 


