
This is a repository copy of Artificial bee colony-inspired run-time task management for
many-core systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/151386/

Version: Accepted Version

Proceedings Paper:
Abuassal, Ali Mohamed Ahmed, Tempesti, Gianluca orcid.org/0000-0001-8110-8950 and
Trefzer, Martin Albrecht orcid.org/0000-0002-6196-6832 (2018) Artificial bee colony-
inspired run-time task management for many-core systems. In: 2018 IEEE Symposium
Series on Computational Intelligence (SSCI). 2018 SYMPOSIUM SERIES ON
COMPUTATIONAL INTELLIGENCE, 18-21 Nov 2018 IEEE , IND , pp. 1084-1091.

https://doi.org/10.1109/SSCI.2018.8628713

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Artificial bee colony-inspired run-time task

management for many-core systems

Ali Abuassal, Gianluca Tempesti, Martin A. Trefzer
Deptartment of Electronic Engineering, The University of York, York, UK

ali.abuassal, gianluca.tempesti, martin.trefzer@york.ac.uk

Abstract—Efficient resource and application management
is one of the most complex and challenging tasks in high
performance computing. Large-scale computing systems
that contain hundreds, thousands or even millions of cores
demand solutions that can operate in a distributed, robust,
and scalable fashion. However, while hardware parallelism
is relatively straight forward to achieve, this is not generally
the case for software. This leads to under-utilization of the
hardware parallelism as well as imbalanced load distribution
causing inefficiency and hotspots. In response to this challenge,
this paper introduces a novel distributed and decentralized
run-time management algorithm. The proposed method is
guided by an optimization model inspired by artificial bee
colonies (ABC). While ABC have proven useful for optimizing
large sets of numerical test functions, this is the first time they
are applied in the context of many-core system management.
The initial result shows that, the ABC model is promising in
context of run-time management for many-core systems. It is
also anticipated that the algorithms bio-inspired foundations
will inherently enable scalability, reliability, and adaptation.
We are showing initial experiments, where the initial results
indicate the capability of our model to improve the thermal
distribution across the system.

Index Terms—Many-core systems, network-on-chip, bio-
inspired, Artificial Bee Colony, run-time management.

I. INTRODUCTION

The scaling of semiconductor technology has led to the

integration of billions of transistors on a single chip. As

Moore predicted, the number of transistors on a single

chip has so far roughly doubled every two years since

the 1970’s [1]. This increase in chip density, however, is

anticipated to be reaching its end due to physical limita-

tions, particularly in terms of frequency and due to the

difficulty of dissipating heat. Many-core systems (systems

consisting of large numbers of processor units operating

in parallel using only local clocks for synchronization, as

shown in Figure 1) are generally seen as an opportunity to

increase computational performance within these physical

constraints. By moving to many-core, issues with clock

speeds can be avoided by effectively operating in a GALS

(globally asynchronous locally synchronous) regime, where

heat can be better managed since processors in the system

are able to run at lower frequencies (or sometimes be stopped

if required).

Current trends strongly point at on-chip many-core system

architectures. Examples include Intel’s SCC [2], Tilera’s

TILE-Gx family [3] and SpiNNaker [4].These architectures

feature large sets of cores which are connected through

Fig. 1: Example of a many-core system based on a 2D

mesh topology.

a network-on-chip (NoC). Chips with thousands, or even

millions, of cores appear to be a technology perspective

that is expected to become a reality in the near future.

Hence, the problems of scalability and resource management

are real and of significant relevance: if no new paradigms

or algorithms are developed, complex future many-core

systems will suffer from poor efficiency because they will

tend to spend a large amount of their communication and

computation capabilities to manage their own resources,

which will lead to the problem of resource allocation.

In the future, millions of cores might be connected to

form a single computing system (many-core system). This

means that, in order to still be able to efficiently use such

computing environments, scalable approaches need to be

provided which can handle these very large-scale systems.

Thus, scalability has become one of the most important

factors for resource management for future computing sys-

tems. Decentralized methods are generally the approaches

that lead to maximum scalability, since centralized models

commonly suffer from several inherent disadvantages such

as communication bottlenecks and single points of failure.

On the other hand, implementing purely decentralized re-

source management models might significantly increase the

level of complexity (and in some cases, make the approach

infeasible) [5]. Distributed run-time management models

that are guided by bio-inspired (in our case social-insect

inspired) algorithms can be considered as realistic alternative

decentralized models for resource management, since they

can provide scalability while avoiding large increases in

system complexity.

In order to map applications onto many-core systems, the

applications need to be divided into individual tasks (known

as task graph) that run on different cores. it is important

to efficiently map the application tasks into the hardware

resources. There are many task graph generation tools that

have been proposed in the literature. This work utilizes

XL-STaGe (which is a cross-layer tool for traffic-inclusive

directed acyclic graph generation and implementation [6])

to generate task graphs.

The general problem of mapping and optimizing applica-

tions on cores can be expressed as the quadratic assignment

problem [7]. The size of the search space for an optimal

mapping grows factorially with the number of cores. More-

over, these mappings can not be efficiently predefined when

the workload is highly dynamic. Consequently, they should

ideally be handled dynamically at run-time.

Recently, resource management for many-core systems

has been the focus of significant research [8] [9], and growth

in the number of cores has encouraged the development of

novel algorithms and methodologies to address this issue.

Several application mapping algorithms that are aware of

resource status have been recently proposed. [10] provides

an intensive survey of the mapping methodologies targeting

multi-core system for both homogeneous and heterogeneous

architectures. A methodology for application-aware task

mapping on Network-on-Chip based architectures is

presented in [11]. The authors propose task allocation

algorithms that consider the network congestion to reduce

latency and to manage power consumption.

The remainder of this paper is organized as follows.

Section 2 describes types of run-time management in many-

core systems. Section 3 discusses the proposed hierarchi-

cal distributed management. Section 4 illustrates the bio-

inspired model. While section 5 lays out the experimental

set-up and results, section 6 concludes the work.

II. A HIERARCHICAL DISTRIBUTED MANAGEMENT

ALGORITHM

The large number of cores in many-core systems increase

the complexity of task mapping and system management.

The main concerns in large systems include (i) scalability;

(ii) dynamic workload; and (iii) reliability. Decentralising

mapping and management decisions across the system is a

necessity to ensure scalability. The workloads of emerging

many-core systems are highly likely to be dynamic (i.e.

new applications may start at any time), leading to different

mapping scenarios. Accordingly, it is important to be able

to fully or partially remap tasks at run-time to support a

dynamic workload assignment. This also plays a crucial role

in the reliability of many-core systems, e.g. imbalanced loads

may introduce hotspot areas in the chip and cause thermal

issues. As a result, distributed resource-aware applications

could be a suitable management candidate to overcome the

aforementioned issues. Distributed management (distributed

decision making) often involves monitors, which are nodes

that are dedicated to watching other nodes.

In this work, two types of monitors (physical and ap-

plication) are introduced to shape a hierarchical distributed

algorithm, providing a hybrid physical and logical moni-

toring mechanism. Figure 2 illustrates the mapping of two

example application task graphs, consisting of 9 and 6

tasks respectively, onto a many-core platform based on the

proposed algorithm and model.

Fig. 2: Proposed distributed run-time management model

when mapping two applications onto a many-core system.

Nodes that are not executing any task are idle nodes, while

application nodes are running tasks are active nodes.

In Figure 2, there are additional run-time management

tasks mapped alongside the applications.

The Physical Monitors (PMs) are responsible for moni-

toring a fixed region of processing elements (PEs), referred

to as physical monitoring area, the size of which is system

dependent but assumed fixed for a given system. The PMs

manage all the nodes within its zone (including active and

idle nodes). The main functionalities of the PMs include

managing task migration, power consumption, temperature,

NoC router frequency, and enabling/disabling nodes. The

PMs are allocated at design time.

An Application Monitor (AM) manages nodes that execute

tasks belonging to the same application. The main function-

ality of AMs is to ensure the ensuring quality of services and

manage task migration besides providing communication

between PMs.

The size of the physical area is defined at design time,

whereas the size of the application area varies at run-time.

An application area might span multiple physical areas

Fig. 3: Communication between application nodes,

physical monitors, and application monitor as well as the

hierarchy of the algorithm. Two applications running on

three different physical areas are shown.

and multiple applications can share the same physical area.

Figure 3 illustrates the boundaries between the physical and

application areas as well as the communication between the

AMs, PMs and PEs in the case of two applications running

on the system. In this model, the AMs communicate only

with the active nodes (application nodes) that execute tasks

belonging to their application. PMs, however, communicate

with all nodes within their monitoring areas.

When a new application is about to start on the system,

its AM is initiated on a random idle core. The randomly

chosen initial core acts as a seed for finding resources for

its application. The AM then searches for a suitable set of

cores after communicating with the PMs.

For example in Figure 2, physical area 1 (PM1) runs

tasks belonging to application 1, while PM3 executes part

of application 2 only. The second physical area (managed

by PM2) is shared between the two applications, as some

nodes are executing tasks from application 1 and one node

executes a task belonging to application 2. Once a core has

been given a task and it is activated, a communication link

will be established between this node and its AM.

To determine the mapping/remapping of an application

tasks on a set of cores, we propose a bio-inspired model

that is detailed in the next section.

III. BIO-INSPIRED MODEL

It is increasingly being recognised that bio-inspired algo-

rithms are useful for addressing highly complex problems

to achieve working solutions in short time, especially with

highly dynamical problems (such as managing many-core

systems).

Matthew Rowlings et.al. [12] propose an adaptive task

allocation across many-core systems based on social insects

and their decentralised nature to achieve high scalability in

many-core systems. An optimization flow based on genetic

algorithm to map applications into NoC-based platforms is

shown in [13]. The results demonstrate the ability of the

proposed approach in finding good mapping solutions in

light of the optimization criterion.

In 2011, Karaboga introduced artificial bee colony (ABC)

algorithm [14]. The artificial bee colony algorithm is based

on modelling real bee behaviours in finding food sources

(nectar) and sharing the information with the other bees

in the hive. Honey bees share information by performing

a special dance, known as the waggle dance [15] which

provides information about the direction and distance to

patches of flowers yielding nectar. Honey bees are social

insects and live in large organized communities. Each kind

of bee has specific skills and carries out specific tasks with

the aim of facilitating the survival of the colony.

Karaboga models three bee behaviours in the colony: em-

ployed bees, associated with specific food sources; onlooker

bees, watching the dance of employed bees within the hive;

and the scout bee, which searches for food sources and

shares the information with other bees.

Managing many-core systems can be inspired by the

honey bee colony and how they maintain their colony with

the available resources.

A comparative study into swarm intelligence algorithms

for dynamic task scheduling in cloud computing has been

carried out [16], which suggests that the ABC algorithm

outperforms other algorithms in this context.

Karaboga and Ozturk [17] took the ABC model further

and applied it to clustering tasks. They showed how ABC

outperforms particle swarm optimization (PSO) for the same

clustering tasks. They also experimented with the model for

classification tasks and compared it with traditional classi-

fication algorithms such as Radial Basis Functions (RBF)

and Bayesian Networks. The results proved the advantages

of ABC model.

Scouting feature of honeybees is studied in [18]. Which

concludes that swarms need to decide quickly on a new

source, but not so quickly that it is likely to settle on a source

of low quality when better sources are available or the cur-

rent source has a lower cost. Moreover, the colony preserves

some historical information related to food sources, causing

them to be revisited as they become productive again.

These features can be applied to many-core systems: for

example, if a core gets too hot either its frequency can

be reduced or its task can be migrated to an idle core

if the temperature of the core reaches some threshold. In

addition to that, the model can memorize previous mapping,

therefore, the best historical mapping can be reused or a hot

core can be utilized when it cools down.

The ABC model is extended in [19] by adding inspector

bees which can memorize the best solution across different

cycles, when a source is abandoned by the colony and

is not considered as the best solution for the next cycle,

the inspector preserves this information. Furthermore, bees

overcome the reduction in the amount of nectar on a food

source (flower) by visiting it less often, eventually migrating

to another food source if the amount of nectar falls below

some threshold. In other words, bees compare the cost of

moving (migrating) to other, distant food sources or keep

visiting the same food sources but less often.

In this paper, we propose a dynamic multi-colony artificial

bee (DMCAB) model, based on ABC. The DMCAB model

consists of three essential components; employed bees, un-

Fig. 4: The proposed dynamic multi-colony artificial bee

(DMCAB) model. While tasks are presented by employed

bees, physical and application monitors are presented by

onlooker and scouts bees, respectively. Flowers reserve as

cores.

employed bees, and food sources. Unemployed bees are fur-

ther classified into onlooker and scout bees. Figure 4 shows

a representation of the hardware system in the DMCAB

model when two application are being executed. In which

the application tasks are represented by employed bees.

While physical and application monitors are represented by

onlooker and scout bees respectively, food sources represent

processing nodes. The first two components, employed and

unemployed foraging bees, search for rich food sources,

which is the third component, close to their hive. The

model also defines two leading modes of behaviour which

are necessary for self-organizing and collective intelligence;

recruitment of employed bees to rich food sources and

abandoning of poor sources.

 Algorithm 1. DMCAB : algorithm’s pseudo-code

 1: Initialize employed, onlooker, and scout bees

 5: Assigning employed bees to food sources randomly

 6: While application(s) running: loop

 7: For all the applications

 8: For all the employed bees assigned to food sources

 9: Evaluate the nectar (fitness) of sources by onlooker

 10: If the nectar < the threshold then
 11: Search for new food source by scout

 12: Generate a new mapping

 13: Assigning employed bee(s) to new source(s)

 14: Memorize the abandoned sources

 15: Go to loop

Onlooker bees (physical monitors) watch over fixed

predefined areas. For instance, PM1 in Figure 4 watches

physical area 1 only. Scout bees (application monitors),

manage nodes that are running tasks belonging to its

application. For example, AM1 oversees seven nodes

that are executing application 1, which spreads across

three physical areas. Application monitors, however, do

not oversee idle nodes. In addition to their main task,

application monitors provide communication between the

physical monitors. This hierarchy provides a big picture

of the application. While physical monitors manage the

physical side of the system (such as temperature and power),

the application monitors manage the logical part such as

quality of service. In the DMCAB model, applications

can dynamically start or terminate. They can also grow

or shrink depending on the hardware resources and the

required quality of service.

Pseudo-code for the DMCAB model is exhibited in algo-

rithm 1, which illustrates the steps of the model. The goal of

this model is to guide the distributed monitoring algorithm

through the search space for optimal/near optimal mappings.

PE2 PE3PE1PMAM

T
e

m
p

 &
 E

n
e

rg
y

T
h

ro
u

g
h

p
u

t

Update Energy
& Temp Tables

Update
Throughput
Tables

Triangle
Decision Making

Fig. 5: Monitoring and decision making protocol.

Figure 5 represents the protocol of the monitoring and

decision making. All the nodes update their status by sending

their physical (temperature and power consumption) and

logical (throughput) information to their physical and ap-

plication monitors, respectively. A triangle communication

between a specific node, physical and application monitors

is established prior to voting when making a decision.

Three levels of decision making are considered, namely;

node, physical monitors, and application monitors. Migrating

a task will involve the three levels to vote, for instance, a

physical monitor may detect a hot node and raise a flag

to migrate the task from that node, but since the quality of

service is met, the application monitor votes to keep the task

running on the same node. In the third level, nodes usually

vote be idle and migrate the tasks.

IV. EXPERIMENT AND RESULTS

The aim of the experiment presented in this work is to

demonstrate how the temperature of a many-core system can

be managed while keeping communication-to-computation

cost (CCC) low. A thermal model was developed for this

work to estimate changes in temperature of the nodes

because actual measurement was not available.

A. Hardware Platform

The Graceful platform G0 (Figure 6) consists of 10

Xilinx ZC702 Zynq development boards, based on Zynq-

7000 System-on-Chip devices. These boards consist of a

processing system (PS) that includes a dual-core ARM

Cortex-A9 processor, plus programmable logic, which is

used to implement routing logic. Custom connection boards

were designed to implement the interconnection network

(NoC). The topology setup of the platform is shown in

Figure 8.

Fig. 6: A hardware platform of 10 Nodes based on

Zynq-7000 family

B. Task Graph

Figure 7 displays a fork-join task graph typical of [20]. We

considered this task graph to be load balanced (which is the

process of spreading network traffic, computing workloads

over a group of resources/nodes). Various load balancing

strategies are discussed in [21] and [22].

Fig. 7: Acyclic fork-join task graph from [20].

C. Thermal Model

A thermal model is executed on the physical monitor

where the temperature of each node is estimated based on

workload. It is assumed that the increase in core temperature

(Equation 1) takes place during computation, according to

the following formulas:

T = T0 + δT+ (1)

δT+ = Kh ∗ (Tmax − T0) (2)

Kh = Rc ∗ f (3)

Where:

δT+ Increase in the temperature.

Tmax Maximum temperature.

T0 Previous temperature.

T Current temperature.

Kh Heating scaling factor.

f Frequency.

Rc Empirical constant in range of (20− 45) ∗ 10−12. Its

value is selected based on observation from a real chip to

provide realistic temperature values.

The cooling, on the other hand, happens when there is no

computation, i.e. a core is idle or waiting to receive data.

Equation 4 and Equation 5 illustrate the cooling formula.

T = T0 − δT− (4)

δT− = Kc ∗ (T0 − Tmin) (5)

Where:

δT− Decrease in the temperature.

Tmin Minimum temperature.

T0 Previous temperature.

Kc Cooling scaling factor.

The maximum temperature is considered to be 100°C

which is the critical temperature of the chip. The minimum

temperature, on the other hand, is set to 35°C as this is

typical temperature of a chip in idle state. The cooling

constants and frequency settings are the same for all nodes

but heating constants depend on the empirical constant for

each node (modelling variability) and the frequency, as in

Equation 3. This means that the higher the frequency the

larger the increase in the temperature. Generally speaking,

chips heat up much faster than they cool down.

D. Communication-to-Computation Cost (CCC)

Communication-to-computation cost (Equation 6) plays a

crucial role in the decision making, as application monitors

rely on it to make a decision. In reality, bees tend to calculate

the cost of distance against the amount and quality of food

before migrating to another food source.

In order to calculate the CCC, some parameters need to

be provided; the execution time for each task (computation

time) and the cost of sending data from a node to another

(communication cost). Table I illustrates the estimation of

Fig. 8: An example temperature scenario of the 10-node

system executing an application

the computation cost for each task. Communication cost,

on the other hand, can be seen in Table II, for which we

assume communication costs between any adjacent nodes

is the same across the system. However, if the NoC router

frequency is decreased, the communication cost will increase

as demonstrated in Table II. The number of hops is also

considered since they may introduce more latency.

CCC = Commcost/Compcost (6)

TABLE I: Estimated computation cost for each task

Task Time (ms)

Task1 27
Task2 12
Task3 12
Task4 12
Task5 35

Total 98

TABLE II: Communication Cost for different mappings

based on various frequencies

Communication Cost

@200MHz => 2,@100MHz => 4,@50MHz => 8

Mapping(a) Mapping(b) Mapping(c) Mapping(d)

T1 to T2 C1 C1 C1 C1
T1 to T3 2*C1 2*C1 2*C1 2*C1
T1 to T4 C1 C1 C1 C1
T2 to T5 C2 2*C2 3*C2 2*C2
T3 to T5 2*C2 C2 4*C2 3*C2
T4 to T5 C2 2*C2 C2 2*C2

Total 4C1+4C2 4C1+5C2 4C1+8*C2 4*C1+7*C2

200MHz = 16 = 18 = 24 = 22

100MHz = 32 = 36 = 48 = 44

50MHz = 64 = 72 = 96 = 88

E. Results

For this experiment, we initially mapped an application

of 5 tasks on the hardware platform (Figure 6), as shown

in Figure 9. First we run the initial system without our run-

time management, then we apply the proposed algorithm to

TABLE III: Communication-to-computation cost based on

given communication and computation costs at different

NoC router frequencies

NoC Router Frequency

200MHz 100MHz 50MHz

CCCmapping(a) 0.16 0.33 0.65

CCCmapping(b) 0.18 0.37 0.74

CCCmapping(c) 0.25 0.49 0.98

CCCmapping(d) 0.22 0.45 0.90

minimize the temperature across the system while keeping

low CCC.

The initial mapping is shown in Figure 9, in which

the temperature of node 4 increases rapidly, creating a

hotspot. On the other hand,Figure 10 illustrates the possible

remapping when migrating task 5 if the algorithm decides

to do so. The decision is made according to the voting in

Table IV.

Figure 11 depicts temperature of the nodes without apply-

ing run-time management. Contrarily, Figure 12 illustrates

the same system when we applied our proposed run-time

management. The result shows that, in a system which has

no dynamic run-time management the average temperature

of the system was 69.64 °C, and peaked at 92.9 °C. By

applying our runt-time management system the average tem-

perature has dropped to 64.05 °C, and the peak temperature

has dropped to 79.06 °C. This is an improvement as the

temperature dropped by 8.03% and 14.9%, respectively,

V. CONCLUSION AND FUTURE WORK

As many-core systems become large and extremely com-

plicated, their reliability and scalability decreases. Moreover,

their workload dynamically changes, and such dynamic

workload scenarios require equally dynamic remapping/run-

time mapping of the application. This work has introduced

a bio-inspired run-time management algorithm based on

hierarchical distributed physical and logical monitoring al-

gorithms to improve resource allocation and robustness in

many-core systems.

Initial results show that the proposed model is capable of

improving the thermal distribution across the system, while

keeping low communication-to-computation cost.

Our next step will be validating the proposed algorithm in

hardware and testing the scalability by running large multiple

applications. We are aiming to use the Graceful platform G1,

which is a custom array of 64 nodes, connected via a custom

network-on-chip (NoC). This many-core platform provides

extensive monitoring and actuation facilities, providing a

useful experimental platform for the proposed algorithms

and methodologies.

ACKNOWLEDGEMENTS

This work was supported by funding from the Department

of Electronic Engineering at the University of York and the

Graceful project (EP/K040820/1) funded by EPSRC.

Fig. 9: One possible mapping of an application of 5 tasks onto a many-core system of 10 nodes

Fig. 10: (a) An example of an initial mapping and (b) to (d) possible remapping when task 5 is migrated

Fig. 11: Temperature of nodes when the system has no dynamic run time management

TABLE IV: decision making based on voting

Decision on each level based on temperature and CCC

Temperature (°C) < 75 75 <=< 79 > 79

CCC < 0.40 0.40 <=< 0.60 > 0.60 < 0.40 0.40 <=< 0.60 > 0.60 < 0.40 0.40 <=< 0.60 > 0.60

Application Monitor Stay Scale⇑ Migrate Stay Scale⇑ Migrate Stay Scale⇑ Migrate
Physical Monitor Stay Stay Stay Scale⇓ Scale⇓ Scale⇓ Migrate Migrate Migrate

Node Migrate Migrate Migrate Migrate Migrate Migrate Migrate Migrate Migrate

Decision Stay Scale⇑ Scale⇑ Scale⇓ Stay Scale⇑ Scale⇓ Scale⇓ Migrate

CCC = 0.22

Mapping (a) Mapping (d) Mapping (b)

CCC = 0.163 CCC = 0.33 CCC=0.45 CCC=0.22 CCC=0.45 CCC=0.18

Migrate Task5

from Node7 to Node5

Migrate Task5

from Node4 to Node7

Fig. 12: Temperature of nodes managed by the proposed run-time management for mappings shown related to examples

illustrated in Figure 10.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated circuits,”
IEEE Solid-State Circuits Society Newsletter, pp. 33–35, Sept 2006.

[2] J. Howard and S. Dighe, “A 48-Core IA-32, message-passing proces-
sor with DVFS in 45nm CMOS,” in IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), February
2010, pp. 108–109.

[3] Tilera Corporation, “Tile-gx processor family,” 2011.
[4] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker

Project,” Proceedings of the IEEE, no. 5, pp. 652–665, May 2014.
[5] S. Kobbe and et.al, “Distrm: Distributed resource management for

on-chip many-core systems,” in 2011 Proceedings of the Ninth

IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), Oct 2011.
[6] P. Campos, N. Dahir, C. Bonney, M. Trefzer, A. Tyrrell, and G. Tem-

pesti, “XL-STaGe: A cross-layer scalable tool for graph generation,
evaluation and implementation,” in 2016 International Conference on

Embedded Computer Systems: Architectures, Modeling and Simula-

tion (SAMOS), July 2016, pp. 354–359.
[7] C. Marcon, E. Moreno, N. Calazans, and F. Moraes, “Evaluation of

algorithms for low energy mapping onto NoCs.” in IEEE International

Symposium on Circuits and Systems (IS-CAS), May 2007.
[8] B. M. Al-Hashimi, “Hardware reliability of embedded systems: Are

we there yet?” in 2013 23rd International Workshop on Power and

Timing Modeling, Optimization and Simulation (PATMOS), Sept 2013.
[9] K. R. Basireddy, E. W. Wachter, B. M. Al-Hashimi, and G. V. Merrett,

“Workload-aware runtime energy management for HPC systems,” in
International Workshop on Optimization of Energy Efficient HPC &

amp; Distributed Systems (OPTIM 2018), May 2018.
[10] A. K. Singh and et.al, “Mapping on multi/many-core systems: Survey

of current and emerging trends,” in 2013 50th ACM/EDAC/IEEE

Design Automation Conference (DAC), May 2013, pp. 1–10.
[11] C. Chou and R. Marculescu, “User-aware dynamic task allocation in

networks-on-chip.” Automation and Test in Europe, August 2008.

[12] M. Rowlings, A. M. Tyrrell, and M. A. Trefzer, “Social-insect-
inspired adaptive task allocation for many-core systems,” in 2016

IEEE Congress on Evolutionary Computation (CEC), July 2016.
[13] J. V. Bruch and et.al, “Deadline, energy and buffer-aware task

mapping optimization in noc-based socs using genetic algorithms,”
in 2017 VII Brazilian Symposium on Computing Systems Engineering

(SBESC), Nov 2017, pp. 86–93.
[14] D. Karaboga, “An idea based on honey bee swarm for numerical

optimization,” in Technical Report-TR06, October 2005.
[15] C. Grüter, M. S. Balbuena, and W. M. Farina, “Informational conflicts

created by the waggle dance,” vol. 275, pp. 1321–1327, 2008.
[16] G. Elhady and M. Tawfeek, “A comparative study into swarm intelli-

gence algorithms for dynamic tasks scheduling in cloud computing,”
in 2015 IEEE Seventh International Conference on Intelligent Com-

puting and Information Systems (ICICIS), Dec 2015, pp. 362–369.
[17] D. Karaboga and C. Ozturk, “A novel clustering approach: Artificial

bee colony (abc) algorithm,” in Applied Soft Computing, 2011.
[18] S. Janson, M. Middendorf, and M. Beekman, “Searching for a new

homescouting behavior of honeybee swarms,” Behavioral Ecology,
vol. 18, no. 2, pp. 384–392, 2007.

[19] C. ”Birtolo, G. Capasso, D. Ronca, and G. Sorrentino, “Modeling
an artificial bee colony with inspector for clustering tasks,” in Evo-

lutionary Computation in Combinatorial Optimisation, C. Blum and
G. Ochoa, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 182–193.

[20] B. Sethuraman and R. Vemuri, “optimap: a tool for automated
generation of noc architectures using multi-port routers for fpgas,”
in Proceedings of the Design Automation Test in Europe Conference,
vol. 1, March 2006.

[21] M. H. Willebeek-LeMair and A. P. Reeves, “Strategies for dynamic
load balancing on highly parallel computers,” IEEE Transactions on

Parallel and Distributed Systems, vol. 4, no. 9, Sept 1993.
[22] J. Doe, “Load balancing strategies in parallel computing : Short

survey,” 2015.

	Introduction
	A Hierarchical Distributed Management Algorithm
	Bio-Inspired Model
	Experiment and results
	Hardware Platform
	Task Graph
	Thermal Model
	Communication-to-Computation Cost (CCC)
	Results

	Conclusion and Future Work
	References

