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ABSTRACT

Group exponentiation is an important operation used in many

public-key cryptosystems and, more generally, cryptographic pro-

tocols. To expand the applicability of these solutions to computa-

tionally weaker devices, it has been advocated that this operation

is outsourced from a computationally weaker client to a compu-

tationally stronger server, possibly implemented in a cloud-based

architecture. While preliminary solutions to this problem consid-

ered mostly honest servers, or multiple separated servers, some

of which honest, solving this problem in the case of a single (logi-

cal), possibly malicious, server, has remained open since a formal

cryptographic model was introduced in [20]. Several later attempts

either failed to achieve privacy or only bounded by a constant the

(security) probability that a cheating server convinces a client of

an incorrect result.

In this paper we solve this problem for a large class of cyclic

groups, thus making our solutions applicable to many cryptosys-

tems in the literature that are based on the hardness of the discrete

logarithm problem or on related assumptions. Our main protocol

satisfies natural correctness, security, privacy and efficiency re-

quirements, where the security probability is exponentially small.

In our main protocol, with very limited offline computation and

server computation, the client can delegate an exponentiation to

an exponent of the same length as a group element by performing

an exponentiation to an exponent of short length (i.e., the length

of a statistical parameter). We also show an extension protocol

that further reduces client computation by a constant factor, while

increasing offline computation and server computation by about

the same factor.
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1 INTRODUCTION

Server-aided cryptography is an active research direction address-

ing the problem of clients delegating or outsourcing cryptographic

computations to servers. Ideas related to this area have circulated

in the literature already many years ago (see, e.g., [9], which intro-

duced ‘wallets with observers’ where a third party, such as a bank,

installs hardware on a user’s computer to facilitate its future compu-

tations). Recently, this area is seeing an increased interest because of

application scenario like cloud computing (where a client interacts

with a much more powerful server), computations with low-power

devices, such as wireless, RFIDs, etc (where a resource-constrained

client interacts with a more powerful server).

The first formal model for outsourcing of cryptographic opera-

tions was introduced in [20], where the authors especially studied

outsourcing of modular exponentiation, as this operation is a cor-

nerstone of so many cryptographic protocols. In this model, we

have a client, with an input x , who outsources to one or more

servers the computation of a function F on the client’s input, and

the main challenges are:

(1) privacy: only minimal or no information about x should be

revealed to the servers;

(2) security: the servers should not be able, except possibly with

very small probability, to convince the client to accept a

result different than F (x); and

(3) efficiency: the client’s computation time should be much

smaller than computing F (x) without outsourcing the com-

putation.

In [20], the authors studied secure outsourcing of exponentiation

to 2 servers of which at most one was malicious, and to 1 server,

who was honest on almost all inputs. Since then, the problem of

outsourcing exponentiation to a single, arbitrarily malicious server,

has remained unsolved. This open problem was first posed in the



original paper [20] and then reiterated in [25]. This is even the case

in a model, as used in all previous work in the area, where relatively

expensive offline computation can be performed and stored on the

client’s device. In many proposed protocols, the offline computation

even involves the computation of modular exponentiations with

random exponents, which are envisioned to be computed by an

entity different than the client, or pre-computed by the client itself

when additional time or computational power is available. The

model also allows a client to perform in the online phase (a not

large number of) less expensive operations like multiplications,

an assumption that might be reasonable even in computationally

challenged devices, in light of recent advances (see, for instance,

[1], showing how to practically implement group multiplication,

for a specific group, and a related public-key cryptosystem, using

RFID tags).

Previous results.As also mentioned in [20], a number of solutions

had been proposed, even before their paper introduced a security

model, and then broken in follow-up papers. The single-server

solution from [20] assumes that the server is honest on almost all

inputs.

Other solutions were proposed in more recent papers, but these

solution either only consider a semi-honest server [11], or two

non-colluding servers [10], or do not target input privacy [14], or

only achieve constant security probability (of detecting a cheating

server) [8, 23, 25]. The schemes proposed in [30, 31] do not satisfy

our privacy requirement. Finally, the scheme proposed in [32] does

not satisfy our security requirement.

All mentioned solutions for the outsourcing of exponentiation

are based on pre-computed exponentiations of random exponents,

which are somehow stored on the client machine in an offline phase.

These exponentiations might be precomputed by another party and

stored on the client’s device, or might be computed by the client

itself using a pseudo-random power generator. One such generator

was proposed by combining the results in [6, 24], based on a hidden-

subset-sum hardness assumption, although this assumption needs

to be re-evaluated in light of the most recent attacks.

The literature of course contains several elegant general-purpose

solutions, applicable to any polynomial-time computable function,

and starting with [17], which uses garbled circuits [26] and fully-

homomorphic encryption [18] to efficiently, privately and securely

outsource any polynomial-time circuit to a single (semi-honest)

server. Due to their generality, these solutions are only asymptoti-

cally efficient, but not so in practical settings, and are thus out of

scope in this paper.

Our Contributions. In this paper we first of all provide rigorous

definitions, mainly based on [17] as well as [20], for the require-

ments of correctness, privacy, security and efficiency for outsourced

computation protocols in the single, malicious, server model, with

an allowed off-line phase.

In this model, we construct protocols that provably satisfy these

requirements while delegating, to a single malicious server, group

exponentiation, for a large class of cyclic groups, including groups

often used for cryptosystems with provable security under the

Discrete Logarithm or related assumptions. All protocols satisfy

security with probability exponentially small in a statistical secu-

rity parameter λ (which can be set equal to, for instance, 128). Our

protocols’ privacy and security properties do not rely on any ad-

ditional complexity assumptions, as the adversary corrupting the

server is not limited to run in polynomial time. Our protocols dele-

gate function Fexp,д,q (x) = д
x (i.e., variable-exponent, fixed-base

exponentiation over an arbitrary cyclic group G).

Our main protocol (in Section 3) delegates exponentiation in

cyclic groups to a single, possibly malicious, server. The client

delegates an exponentiation with an exponent as long as a group

element (e.g., of σ = 2048 bits), while only performing a single

exponentiation with a much smaller exponent (e.g., of λ = 128

bits). Both the offline phase and the server in the online phase only

require 2 exponentiations with σ -bit exponents. It is based on a

1-round probabilistic verification of the server’s computation, and

satisfies information-theoretic privacy, and security with exponen-

tially small probability 2−λ of the malicious server fooling the client.

The main technical idea is simultaneously enforcing a probabilistic

verification equation (verifiable using less than 2λ group multipli-

cations), a deterministic inequality check and a group membership

protocol (verifiable using no more than 1 group multiplication),

given 2 correct exponentiations available to the client in an offline

phase.

Our second protocol, presented in Section 4, extends the protocol

in Section 3 to achieve the following (tunable) efficiency tradeoff: it

further reduces the number of the client’s group multiplications,

while increasing the number of group exponentiations of random

exponents performed during the offline phase and the number of

the server’s group exponentiations. Here, the main technical idea

consists of running multiple probabilistic verification equations

with smaller exponents at a performance cost for the client smaller

than independently running each of the equations.

As in all previous work in the area, we consider a model with

an offline phase, where a client can precompute exponentiations

to random exponents, or another party can precompute them and

store them on the client’s device. Alternatively, if their hidden-

subset-sum assumption holds when run with a low number of

multiplications, the pseudo-random power generator from [6, 24]

could be used.

2 NOTATIONS AND DEFINITIONS

In this section we formally define outsourcing protocols, and their

correctness, security, privacy and efficiency requirements, mainly

building on the definitional approach from [17], as well as the one

from [20]. We also introduce group notations and definitions that

will be used in the rest of the paper. We start with some basic

notations.

Basic notations. The expression y ← T denotes the probabilis-

tic process of randomly and independently choosing y from set

T . The expression y ← A(x1,x2, . . .) denotes the (possibly proba-

bilistic) process of running algorithm A on input x1,x2, . . . and any

necessary random coins, and obtaining y as output. The expres-

sion (zA, zB ) ← (A(x1,x2, . . .),B(y1,y2, . . .)) denotes the (possibly

probabilistic) process of running an interactive protocol between A,

taking as input x1,x2, . . . and any necessary random coins, and B,

taking as input y1,y2, . . . and any necessary random coins, where

zA, zB are A and B’s final outputs, respectively, at the end of this

protocol’s execution.



System scenario, entities, and protocol.We consider a system

with two types of parties: clients and servers, where a client’s

computational resources are expected to be more limited than a

server’s ones, and therefore clients are interested in delegating (or

outsourcing) the computation of specific functions to servers. In

all our solutions, we consider a single client, denoted as C , and a

single server, denoted as S . We assume that the communication link

between each client and S is private or not subject to confidential-

ity, integrity, or replay attacks, and note that such attacks can be

separately addressed using known techniques in cryptography and

security. As in all previous work in the area, we consider a model

with an offline phase, where exponentiations to random exponents

can be precomputed and made somehow available to the client. This

model has been justified in several ways, all appealing to different

application settings. In the presence of a trusted party (say, setting

up the client’s device), the trusted party can simply perform the

precomputed exponentiations and store them on the client’s device.

If no trusted party is available, in the presence of a pre-processing

phase where the client’s device does not have significant compu-

tation constraints, the client can itself perform the precomputed

exponentiations and store them on its own device. Clients that

always have significant computation constraints could spend more

preprocessing time or use the pseudo-random power generator

from [6, 24], which, based on a hidden-subset-sum assumption,

only performs a relatively smaller number of group multiplications,

to generate a new exponentiation for a pseudo-random exponent.

Here, we note that this latter assumption needs to be re-evaluated

in light of recent attacks. For simplicity of description, we will

consider an Offline algorithm executed by either a trusted party or

a client with no significant computation constraints, and remark

any changes in our results when this algorithm is executed using a

pseudo-random power generator.

Let σ denote the computational security parameter (i.e., the

parameter derived from hardness considerations on the underlying

computational problem), and let λ denote the statistical security

parameter (i.e., a parameter such that evens with probability 2−λ are

extremely rare). Both parameters are expressed in unary notation

(i.e., 1σ , 1λ ). When performing numerical performance analysis, we

use σ = 2048 and λ = 128, as these are currently the most often

recommended parameter settings in cryptographic protocols and

applications.

Let F : Dom(F ) → CoDom(F ) be a function, where Dom(F )

denotes F ’s domain,CoDom(F ) denotes F ’s co-domain, and desc(F )

denotes F ’s description. Assumingdesc(F ) is known to bothC and S ,

and input x is known only toC , we define a client-server protocol for

the outsourced computation of F in the presence of an offline phase

as a 2-party, 2-phase, communication protocol between C and S ,

denoted as (C(1σ , 1λ ,desc(F ),x), S(1σ , 1λ ,desc(F ))), and consisting

of the following steps:

(1) pp ← Offline(1σ , 1λ ,desc(F )),

(2) (yC ,yS ) ← (C(1
σ , 1λ ,desc(F ),pp,x), S(1σ , 1λ ,desc(F )).

As discussed above, Step 1 is executed in an offline phase, when the

input x to the function F is not yet available. Step 2 is executed in

the online phase, when the input x to the function F is available to

C . At the end of both phases,C learns yC (intended to be = y) and S

learnsyS (usually an empty string in this paper). We will often omit

desc(F ), 1σ , 1λ for brevity of description. Executions of outsourced

computation protocols can happen sequentially (each execution

starting after the previous one is finished), or concurrently (S runs

at the same time one execution with each one of many clients).

Correctness Requirement. Informally, the (natural) correctness

requirement states that if both parties follow the protocol,C obtains

some output at the end of the protocol, and this output is, with high

probability, equal to the value obtained by evaluating function F

on C’s input. A formal definition follows.

Definition 2.1. Let σ , λ be the security parameters, let F be a

function, and let (C, S) be a client-server protocol for the outsourced

computation of F . We say that (C, S) satisfies δc -correctness if for

any x in F ’s domain, it holds that

Prob
[

out ← CorrExpF(1
σ
, 1λ) : out = 1

]

≥ δc ,

for some δc close to 1, where experiment CorrExp is detailed below:

CorrExpF(1
σ , 1λ)

1. pp ← Offline(desc(F ))

2. (yC ,yS ) ← (C(pp,x), S)

3. if yC = F (x) then return: 1

else return: 0

Security Requirement. Informally, the most basic security re-

quirement would state the following: if C follows the protocol, a

malicious adversary corrupting S cannot convince C to obtain, at

the end of the protocol, some output y′ different from the value

y obtained by evaluating function F on C’s input x . To define a

stronger and more realistic security requirement, we augment the

adversary’s power so that the adversary can even choose C’s input

x , before attempting to convince C of an incorrect output. We also

do not restrict the adversary to run in polynomial time. A formal

definition follows.

Definition 2.2. Let σ , λ be the security parameters, let F be a

function, and let (C, S) be a client-server protocol for the outsourced

computation of F . We say that (C, S) satisfies ϵs -security against a

malicious adversary if for any algorithm A, it holds that

Prob
[

out ← SecExpF,A(1
σ
, 1λ) : out = 1

]

≤ ϵs ,

for some ϵs close to 0, where experiment SecExp is detailed below:

SecExpF,A(1
σ , 1λ)

1. pp ← Offline(desc(F ))

2. (x ,aux) ← A(desc(F ))

3. (y′,aux) ← (C(pp,x),A(aux))

4. if y′ =⊥ or y′ = F (x) then return: 0

else return: 1.

PrivacyRequirement. Informally, the privacy requirement should

guarantee the following: if C follows the protocol, a malicious ad-

versary corrupting S cannot obtain any information aboutC’s input

x from a protocol execution. This is formalized by extending the

indistinguishability-based approach typically used in formal def-

initions for encryption schemes. That is, the adversary can pick

two inputs x0,x1, then one of these two inputs is chosen at random

and used by C in the protocol with the adversary acting as S , and

then the adversary tries to guess which input was used by C . As



for security, we do not restrict the adversary to run in polynomial

time. A formal definition follows.

Definition 2.3. Let σ , λ be the security parameters, let F be a

function, and let (C, S) be a client-server protocol for the outsourced

computation of F . We say that (C, S) satisfies ϵp -privacy (in the

sense of indistinguishability) against a malicious adversary if for any

algorithm A, it holds that

Prob
[

out ← PrivExpF,A(1
σ
, 1λ) : out = 1

]

≤ ϵp ,

for some ϵp close to 0, where experiment PrivExp is detailed below:

PrivExpF,A(1
σ , 1λ)

1. pp ← Offline(desc(F ))

2. (x0,x1,aux) ← A(desc(F ))

3. b ← {0, 1}

4. (y′,d) ← (C(pp,xb ),A(aux))

5. if b = d then return: 1

else return: 0.

Efficiency Metrics and Requirements. Let (C, S) be a client-

server protocol for the outsourced computation of function F . We

say that (C, S) has efficiency parameters (tF , tP , tC , tS , cc,mc), if F

can be computed (without outsourcing) using tF (σ , λ) atomic op-

erations, C can be run in the offline phase using tP (σ , λ) atomic

operations and in the online phase using tC (σ , λ) atomic operations,

S can be run using tS (σ , λ) atomic operations, C and S exchange

a total of at mostmc messages, of total length at most cc . In our

analysis, we only consider the most expensive group operations

as atomic operations (e.g., group multiplications and/or exponen-

tiation), and neglect lower-order operations (e.g., equality testing,

additions and subtractions between group elements). While we

naturally try to minimize all these protocol efficiency metrics, our

main goal is to design protocols where

(1) tC (σ , λ) << tF (σ , λ), and

(2) tS (σ , λ) is not significantly larger than tF (σ , λ),

based on the underlying assumption, consistent with the state of the

art in cryptographic implementations at least for many group types,

that group multiplication requires significantly less computing

resources than group exponentiation.

Group notations and definitions. Let (G,×) be a group, let σ be

its computational security parameter, and let L denote the length

of the binary representation of elements in G. Typically, in crypto-

graphic applications we set L as about equal to σ .

We also assume that (G,×) is cyclic, has order q, and denote as д

one of its generators. By y = дx we denote the exponentiation (inG)

of д to the x-th power; i.e., the value y ∈ G such that д× · · · ×д = y,

where the multiplication operation × is applied x − 1 times. Let

Zq = {0, 1, . . . ,q − 1}, and let Fexp,д,q : Zq → G denote the func-

tion that maps every x ∈ Zq to the exponentiation (inG) of д to the

x-th power. By desc(Fexp,д,q ) we denote a conventional descrip-

tion of the function Fexp,д,q that includes its semantic meaning as

well as generator д, order q and the efficient algorithms computing

multiplication and inverses inG . By texp (ℓ) we denote a parameter

denoting the number of multiplications in G used to compute an

exponentiation (in G) of a group value to an arbitrary ℓ-bit expo-

nent. By tm,exp (ℓ) we denote a parameter denoting the number of

multiplications in G used to computem exponentiations (in G) of

the same group value tom arbitrary ℓ-bit exponents.

We define an efficiently verifiable membership protocol for G as

a one-message protocol, denoted as the pair (mProve,mVerify) of

algorithms, satisfying

• completeness: for anyw ∈ G, mVerify(w ,mProve(w))=1;

• soundness: for anyw < G, and any mProve′,

mVerify(w ,mProve′(w))=0;

• efficient verifiability: the number of multiplications tmVerify(σ )

in G executed by mVerify is o(texp );

• efficient provability: the number of multiplications tmProve(σ ) in

G executed by mProve is not significantly larger than texp .

We say that a group is efficient if its description is short (i.e., has

length polynomial in σ ), its associated operation × and the inverse

operation are efficient (i.e., they can be executed in time polyno-

mial in σ ), and it has an efficiently verifiable membership protocol.

Note that for essentially all cyclic groups frequently used in cryp-

tography, the description is short and its associated × and inverse

operations can be run in time polynomial in σ . The only non-trivial

property to establish is whether the group has an efficiently verifi-

able membership protocol. In the rest of the paper we present our

results for any arbitrary efficient cyclic group, of which we now

show two examples that are often used in cryptography and that

do have efficiently verifiable membership protocols.

Example 1: (G,×) = (Z∗p , · mod p), for a large prime p. This group

was one of the most recommended for early foundational crypto-

graphic schemes like the Blum-Micali pseudo-random generator

[5], etc. Note that multiplication and inverses modulo p can be

computed in time polynomial in logp, and an efficiently verifiable

membership protocol goes as follows:

(1) on inputw , mProve does nothing;

(2) on inputw , mVerify returns 1 if 0 < w < p and 0 otherwise.

The completeness, soundness, efficient provability properties of this

protocol are easily seen to hold. The efficient verifiability property

follows by noting that mVerify runs in time linear in logp, which

is strictly smaller than the time for exponentiation mod p (in fact,

even the time for multiplication mod p).

Example 2: (G,×) = (Gq , · mod p), for large primes p,q such that

p = 2q + 1, where Gq is the q-order subgroup of Z∗p . This group is

one of the most recommended for cryptographic schemes like the

Diffie-Hellman protocol [15], El-Gamal encryption [16], Cramer-

Shoup encryption [12], etc. It is known that Gq is cyclic and is

characterized as the set of quadratic residues modulo p; i.e., the set

of z ∈ Z∗p for which there exists an r ∈ Z∗p such that z = r2 mod p.

Using results from [13] based on this characterization, an efficiently

verifiable membership protocol can be built as follows:

(1) on input w , mProve computes r = w(q+1)/2 mod p and

returns r ;

(2) on input w, r , mVerify returns 1 if w = r2 mod p and 0

otherwise.

The completeness and soundness properties of this protocol are

easily seen to hold. The efficient provability follows by noting

that mProve only performs 1 exponentiation mod p. The efficient

verifiability property follows by noting that mVerify only requires

one multiplication mod p.



3 OUTSOURCING EXPONENTIATION IN ANY

EFFICIENT CYCLIC GROUP

In this section we present our first and main protocol for outsourc-

ing exponentiation in cyclic groups. We first formally state our re-

sult, then informally and formally describe the protocol, and finally

prove its correctness, security, privacy and efficiency properties.

Formal theorem statement.We obtain the following

Theorem 3.1. Let (G,×) be an efficient cyclic group, let σ be its

computational security parameter, and let λ be a statistical security

parameter. There exists (constructively) a client-server protocol

(C, S) for outsourcing the computation of function Fexp,д,q , which

satisfies

1. δc -correctness, for δc = 1;

2. ϵs -security, for ϵs = 2
−λ ;

3. ϵp -privacy, for ϵp = 0;

4. efficiency with parameters (tF , tS , tP , tC , cc,mc), where

• tF is = texp (σ );

• tS is = 2 texp (σ ) + 2 tmProve(σ );

• tP is = 2 texp (σ ), with random exponents from Zq ;

• tC is ≤ texp (λ)+ 2 tmVerify(σ )+ 2multiplications inG and

1 multiplication in Zq ;

• cc = 4 elements in G andmc = 2.

The main takeaway from Theorem 3.1 is that C outsources the

computation of an exponentiation with a σ -bit exponent to S while

C only performs an exponentiation with a λ-bit exponent, 2 group

membership verifications inG , 2 multiplications inG and 1 modular

multiplication inZq . Also remarkable are the running time of S , who

only performs 2 exponentiations and 2 group membership proof

generations inG , and of the offline phase, where only 2 known-base

exponentiations with random exponents are needed. Finally, the

protocol only requires 2 messages, which is clearly minimal in this

model, and only requires the communication of 4 elements in G.

Informal description of protocol (C, S). The main challenge in

coming up with our desired protocol consists of allowing C to

efficiently verify computations performed by the possibly malicious

server. It should be noted that general conversion techniques are

known in the cryptography literature to transform a protocol secure

against a honest party into one secure against a malicious one.

Typically, these techniques are based on zero-knowledge proofs of

knowledge of secrets that certify the correctness of the computation

[19]. In their most general version, these techniques do not perform

well with respect to many efficiency metrics. Even considering their

most simplified version, basic proofs of knowledge of exponents

in the literature (such as, e.g., [9]) require the verifier to perform

group exponentiations, which is precisely what the client is trying

to delegate. Accordingly, we need a substantially different protocol

technique to allow the client’s efficient verification of the server’s

computations.

Our main idea consists of a probabilistic verification equation

which is verifiable using only a small number of modular multipli-

cations. More specifically, C injects an additional random element

in the inputs on which S is asked to compute the value of function

F , so to satisfy the following properties: (a) if S returns correct

computations of F , thenC can use these random values to correctly

computey; (b) if S returns incorrect computations of F , then S either

does not meet some deterministic verification equation or can only

meet C’s probabilistic verification equation for one possible value

of the random elements; (c) C’s messages hide the values of the

random element as well as C’s input to the function. By choosing

a large enough domain (i.e., {1, . . . , 2λ }) from which this random

value is chosen, the protocol achieves a very small security proba-

bility (i.e., 2−λ ). As this domain is much smaller thanG , this results

in a considerable efficiency gain on C’s running time.

Our probabilistic verification equation involves the answer from

S , a correct exponentiation available to C (and computed in an

offline phase byC or another trusted party), and the potential func-

tion output computed using the answer from S and another correct

exponentiation computed in the offline phase. Only one of these

values is exponentiated byC , and to an exponent that is ≤ 2
λ , which

can be much smaller than |G |. In itself, this probabilistic test is not

always successful, but we characterize the condition under which

it fails, and this condition can be expressed as 2 computationally

simple deterministic tests: a value distinctness test and a group

membership test.

The value distinctness test can be efficiently verified by C with

no exponentiation or multiplication in G, but it introduces a mi-

nor case (i.e., C’s input is = 0) where the probabilistic test is not

passed; however, in this case, to preserve the protocol’s correct-

ness, C calculates the function Fexp,д,q by himself (i.e., by setting

Fexp,д,q (0) = д
0
= 1), and ignores all other verifications.

The groupmembership test is realized via the assumed efficiently

verifiable group membership protocol. While we do not know of

such a protocol for any arbitrary cyclic group, we showed in Sec-

tion 2 that groups commonly used in cryptography have one.

Formal description of protocol (C, S). LetG be an efficient cyclic

group, and let (mProve,mVerify) denote its efficiently verifiable

membership protocol.

Input to S: 1σ , 1λ , desc(Fexp,д,q )

Input to C: 1σ , 1λ , desc(Fexp,д,q ), x ∈ Zq

Offline phase instructions:

(1) Randomly choose ui ∈ Zq , for i = 0, 1

(2) Set vi = д
ui and store (ui ,vi ) on C , for i = 0, 1

Online phase instructions:

(1) C randomly chooses b ∈ {1, . . . , 2λ }

C sets z0 := (x − u0) mod q, z1 := (b · x + u1) mod q

C sends z0, z1 to S

(2) S computeswi := д
zi and πi :=mProve(wi ), for i = 0, 1

S sendsw0,w1,π0,π1 to C

(3) If x = 0

C returns: y = 1 and the protocol halts

if mVerify(wi ,πi ) = 0 for some i ∈ {0, 1}, then

C returns: ⊥ and the protocol halts

C computes y := w0 ∗v0
C checks that

y , 1, also called the ‘distinctness test’

w1 = y
b ∗v1, also called the ‘probabilistic test’

mVerify(w0,π0) = mVerify(w1,π1) = 1,

also called the ‘membership test’



if any one of these tests is not satisfied then

C returns: ⊥ and the protocol halts

C returns: y

Properties of protocol (C, S): The efficiency properties are verified

by protocol inspection.

• Round complexity: the protocol only requires one round, con-

sisting of one message from C to S followed by one message

from S to C .

• Communication complexity: the protocol requires the transfer

of 2 elements in G and 2 proofs of group membership from

S to C , and 2 elements in Zq from C to S .

• Runtime complexity: During the offline phase, 2 exponenti-

ations in base д and with random σ -bit exponents are per-

formed. Note that known-base exponentiations can be exe-

cuted faster than unknown-base ones using pre-computation

techniques (see, e.g.,[7, 22]). During the online phase, S com-

putes 2 exponentiations to σ -bit exponents inG and 2 group

membership proofs; and C verifies 2 group membership

proofs and computes 2 multiplications in G, 1 modular mul-

tiplication in Zq , and 1 exponentiation in G to a random

exponent that is much smaller (≤ 2
λ ) than 2

σ .

The correctness property follows by showing that if C and S

follow the protocol, C always outputs y = дx . First, assume x = 0;

in this case, C returns y = 1 = д0 at the beginning of step 3. Now,

assuming x , 0, we show that the 3 tests performed by C are

always passed. The membership test is always passed sincewi is

computed by S as дzi , for i = 0, 1, and д is a generator of group G;

the probabilistic test is always passed since

w1 = д
z1
= дbx+u1 = (дx )bдu1 = ybv1.

The distinctness test is always passed, since we assume x , 0,

which implies that −u0 , (x −u0) mod q, which implies, using the

fact that д is a generator and has thus order q, that v−10 = д−u0 ,

дx−u0 = дz0 = w0, equivalently saying that y = w0 ∗ v0 , 1. This

implies that C never returns ⊥, and thus returns y. To see that this

returned value y is the correct output, note that

y = w0 ∗v0 = д
z0 ∗ дu0 = дx−u0 ∗ дu0 = дx .

The privacy property of the protocol against any arbitrary ma-

licious S follows by observing that C’s only message to S does

not leak any information about x . This message is a pair (z0, z1)

where z0 = (x − u0) mod q, z1 = (bx + u1) mod q, and z0 and

z1 are uniformly and independently distributed in Zq , as so are u0
and u1. Then, no information is leaked by z0, z1 about x as: (a) for

any x ∈ Zq , there is exactly one u0 corresponding to z0; that is,

u0 = x − z0 mod q; (b) for any x ∈ Zq , for any b ∈ {1, . . . , 2λ }

chosen by C , there is exactly one u1 corresponding to z1; that is,

u1 = z1 − bx mod q. This implies that, since u0,u1 are uniformly

and independently distributed in Zq , the distribution of x condi-

tioned on z0, z1 is also uniform in Zq . Moreover, by essentially the

same proof, protocol (C, S) satisfies the following property: for any

x , z0 and z1 do not leak any information about b. We will use this

latter privacy property in the proof of the security property.

To prove the security property against any malicious S we need

to compute an upper bound ϵs on the security probability that S

convinces C to output a y such that y , Fexp,д,q (x). If x = 0, C

can calculate Fexp,д,q (x) = д0 = 1 and it does not need to check

whether S is honest or dishonest. Thus ϵs = 0 when x = 0. Now

assume that x , 0. We start by defining the following events with

respect to a random execution of (C, S) where C uses x as input:

• ey,,, defined as ‘C outputs y such that y , Fexp,д,q (x)’

• e⊥, defined as ‘C outputs ⊥’

By inspection of (C, S), we directly obtain the following fact.

Fact 3.1. If event ey,, happens then event (¬ e⊥) happens.

With respect to a random execution of (C, S) where C uses x as

input, we now define the following events:

• e1,b , defined as ‘∃ exactly oneb such that S ’s message (w0,w1)

satisfiesw1 = (w0 ∗v0)
b ∗v1’

• e>1,b , defined as ‘∃ more than one b such that S’s message

(w0,w1) satisfiesw1 = (w0 ∗v0)
b ∗v1’.

By definition, events e1,b , e>1,b are each other’s complement event.

In our proof of the privacy property of (C, S), we proved that for

any x , C’s message (z0, z1) does not leak any information about b.

This implies that all values in {1, . . . , 2λ } are still equally likely even

when conditioning over message (z0, z1). Then, if event e1,b is true,

the probability that S’s message (w0,w1) satisfies the probabilistic

test, is 1 divided by the number 2λ of values ofb that are still equally

likely even when conditioning over message (z0, z1). We obtain the

following

Fact 3.2. Prob
[

¬ e⊥ |e1,b
]

≤ 1/2λ

We now show the main technical claim, saying that if S is ma-

licious then it cannot produce in step 2 of the protocol values

w ′0,w
′
1 satisfying all of C’s 3 tests relatively to two distinct values

b1,b2 ∈ {1, . . . , 2
λ }:

Since S can be malicious, in step 2 it can send arbitrary values to

C . Differently saying, C can send w ′i for i = 0, 1 for w ′i = wi or

w ′i , wi , wherewi = д
zi . Since the groupG is cyclic, д is generator

of G and C uses π0,π1 to check in step 3 thatw ′i ∈ G , we can write

w ′0 = д
u ∗w0 andw

′
1 = д

v ∗w1 for some u,v ∈ Zq

then y = w ′0 ∗ v0 = дu ∗ w0 ∗ v0 = дu ∗ дx . Now, recall that the

goal of a malicious S is to passC’s three verification tests and force

C’s output to be y , дx ; then, assume that u , 0 mod q. Now,

consider the following equivalent rewritings of C’s probabilistic

test, obtained by variable substitutions and simplifications:

w ′1 = y
b ∗v1

дv ∗w1 = (д
u ∗ дx )b ∗ дu1

дv ∗ дz1 = дub ∗ дbx+u1

дv ∗ дbx+u1 = дub ∗ дbx+u1

дv = дub

v = ub mod q.

Notice that if u = 0 mod q then the above calculation implies that

v = 0 mod q, and thus S is honest, from which we derive that

ϵs = 0. Now consider the case S is dishonest, in which case we have



that u , 0 mod q. We want to show that b is unique in this case.

If there exist two distinct b1 and b2 such that

ub1 = v mod q and ub2 = v mod q

then u(b1 − b2) = 0 mod q then b1 − b2 = 0 mod q (i.e b1 = b2)

because u , 0 mod q. This shows that b is unique.

We obtain the following fact.

Fact 3.3. Prob
[

e>1,b
]

= 0

The rest of the proof consists of computing an upper bound ϵs on

the probability of event ey,,. We have the following

Prob
[

ey,,
]

≤ Prob [ ¬ e⊥ ]

= Prob
[

e1,b
]

· Prob
[

¬ e⊥ |e1,b
]

+ Prob
[

e>1,b
]

· Prob
[

¬ e⊥ |e>1,b
]

= Prob
[

e1,b
]

· Prob
[

¬ e⊥ |e1,b
]

≤ Prob
[

e1,b
]

·
1

2λ

≤
1

2λ
,

where the first inequality follows from Fact 3.1, the first equality

follows from the definition of events e1,b , e>1,b and the condition-

ing rule, the second equality follows from Fact 3.3, and the second

inequality follows from Fact 3.2.

We finally obtain that ϵs = Prob
[

ey,,
]

= 2−λ , which concludes

the proof for the security property for (C, S). □

Remark. Although we have only analyzed our protocol (C, S) with

respect to a single execution, we note that the proofs of its proper-

ties naturally extend to multiple sequential, parallel or concurrent

executions of the same protocol (both offline and online phase).

4 OUTSOURCING EXPONENTIATION IN ANY

EFFICIENT CYCLIC GROUP WITH

TRADEOFF RUNTIME PERFORMANCE

In this section we present our second protocol for outsourcing

exponentiation in cyclic groups. This protocol can be seen as an

extension of the first protocol, from Section 3, trying to further

reduce the client’s runtime, even at the cost of slightly increas-

ing other computation metrics. The underlying motivation here is

that in many applications slightly increasing a cloud server’s time

complexity may be worth to obtain further reduced client’s time

complexity. We first formally state this subsection’s result, then

describe the protocol, and finally prove its correctness, security,

privacy and efficiency properties.

Formal theorem statement. We actually show a class of proto-

cols varying according to a parameterm ≥ 1, where in the case

m = 1 we have the same protocol as in Section 3. Formally, we

show the following

Theorem 4.1. Let (G, ∗) be an efficient cyclic group, let σ be

its computational security parameter, let λ be a statistical security

parameters, let integer m be a protocol parameter, and let λ′ =

⌈λ/m⌉. There exists (constructively) a client-server protocol (C, S)

for outsourced computation of function Fexp,д,q which satisfies

1. δc -correctness, for δc = 1;

2. ϵs -security, for ϵs = 2−λ ;

3. ϵp -privacy, for ϵp = 0;

4. efficiency with parameters (tF , tS , tP , tC , cc,mc), where

• tF is = texp (σ );

• tS is = tm+1,exp (σ ) + (m + 1) · tmProve(σ );

• tP is = tm+1,exp (σ );

• tC is = tm,exp (λ
′) + (m + 1) multiplications in G +m mul-

tiplications in Zq + (m + 1) · tmVerify(σ );

• cc =m+1 elements in Zq ,m+1 elements and membership

proofs in G;

• mc = 2.

The main takeaway from Theorem 4.1 is that C delegates an ex-

ponentiation with a σ -bit exponent to S while C only performsm

same-base exponentiations with a λ′-bit exponent,m + 1 multipli-

cations and group membership verifications in G andm modular

multiplications in Zq . Here, note that exponent λ
′ is ⌈λ/m⌉, and

that m same-base exponentiations can be performed faster than

independently repeating m times the same exponentiation algo-

rithm, by using optimized algorithms. The protocol still requires

only 2 messages, which is minimal in this model. On the other hand,

the running time of S has increased, in that S now performsm + 1

exponentiations and generatesm + 1 group membership proofs in

G . Similarly, the running time of the offline phase has increased, as

nowm + 1 known-base exponentiations with random exponents

are needed. The communication complexity also has increased to

m + 1 elements in Zq andm + 1 elements inG . While these latter 3

metrics increase with respect to the protocol in Section 3, it should

be noted that parameterm can be chosen by the system designer,

to select the desired tradeoff (as further discussed in Section 5).

Informal description of protocol (C, S). In Section 3 we pre-

sented a protocol which satisfies δc -correctness, ϵp -privacy and

ϵs -security, with δc = 1, ϵp = 0, and ϵs = 2−λ , with the following

running time parameters: tC ≤ texp (λ) + 2 group multiplications,

tS = 2 group exponentiations, and tP = 2 group exponentiations.

In this section we design protocols that further decrease the value

of tC while keeping the same values for δc , ϵp , ϵs , and only slightly

increasing tS , tP .

Themain idea in our new protocol is based on a detailed consider-

ation of the role of the probabilistic verification equation ‘w = ybv’

in the protocol of Section 3. Specifically, it is possible to usem > 1

such equations, each with the same base y and an independent

value of the random exponent b(i), while:

(1) the worst-case number of C’s multiplications increases by a

factor strictly smaller thanm;

(2) the security analysis performed using a single probabilistic

verification equation can be extended to allm equations, thus

reducing the security probability by an exponential factor

ofm.

Then, since it suffices to target a security probability of 2−λ for

the resulting protocol, we can choose a smaller, by a factor of

m, domain (i.e., {1, . . . , 2 ⌈λ/m ⌉ − 1}) for the random exponents

b(1), . . . ,b(m). The efficiency gain is in the observation that per-

formingm probabilistic verifications can require a number of C’s



group multiplication smaller thanm times those needed in a sin-

gle probabilistic verification. This is because any preprocessing

techniques, including those described in [7, 27], can be run on-

line and become effective if used to compute multiple same-base

exponentiations. On the other hand, performing m probabilistic

verification equations requiresm+1 offline exponentiations fromC

andm+1 exponentiations from S (here, a directm-fold repetition of

the protocol from Section 3 would actually incur a number of 2m ex-

ponentiations but we reduce this number tom+1 by observing that

the security property continues to hold even when using the same

w0 across allm equations). The actual efficiency tradeoff achieved

by the resulting protocol (i.e., the reduction in the number of C’s

group multiplications and the increase in the number of offline

exponentiations to random exponents and S ’s exponentiations) will

vary depending on the specific algorithm used to computem same-

base exponentiations. In what follows, we describe protocol (C,S)

based on a generic multiple-exponentiation algorithm and prove

its correctness, privacy and security properties. Later, in Section 5,

we analyze the protocol’s performance metrics based on specific

instantiations of this algorithm, and for different values ofm (which

can be chosen by the system designer to calibrate the tradeoff); in

particular, we show thatm = 5 minimizes the number tC of C’s

group multiplications.

Formal description of protocol (C, S).

Let ManyExp(z,x(1), . . . ,x(s), β) denote an algorithm that, on in-

put z ∈ G and exponents x(1), . . . ,x(s) ∈ {1, . . . , 2β }, computes

exponentiations zx (1), . . . , zx (s) inG . Algorithm ManyExp could be

instantiated using s executions of the textbook square-and-multiply

algorithm, or using improved techniques based on precomputations

(here perfomed in the online phase), such as those from [7, 22, 27].

Letm be a protocol parameter that can be chosen by the system

designer, and let λ′ = ⌈λ/m⌉.

Input to S: 1σ , 1λ , desc(Fexp,д,q ), parameter 1m

Input to C: 1σ , 1λ , desc(Fexp,д,q ), x ∈ Zq , parameter 1m

Offline phase instructions:

1. Uniformly choose u0, . . . ,um ∈ Zq
2. Run algorithm ManyExp(д,u0,u1, . . . ,um ,σ )

to compute (v0,v1, . . . ,vm )

3. Store (u0,v0), (u1,v1), . . . , (um ,vm ) on C

Online phase instructions:

1. C sets z0 = (x − u0) mod q

For i = 1, . . . ,m,

C uniformly chooses b(i) ∈ {1, . . . , 2λ
′
}

C sets zi = (b(i) · x + ui ) mod q

C sends z0, z1, . . . , zm to S

2. S runs algorithm ManyExp(д, z0, z1, . . . , zm ,σ )

to compute (w0,w1, . . . ,wm )

For j = 0, . . . ,m,

S computes πj = mProve(w j )

S sends (w0,π0), (w1,π1), . . . , (wm ,πm ) to C

3. If x = 0

C returns: y = 1 and the protocol halts

C computes y = w0 ∗v0
C checks that y , 1, also called the ‘distinctness test’

C checks that mVerify(wi ,πi ) =1, for i = 0, 1, . . . ,m,

also called the ‘membership test’

C runs ManyExp(y,b(1), . . . ,b(m), λ′)

to compute yb(1), . . . ,yb(m)

For i = 1, . . . ,m,

C checks thatwi = y
b(i) ∗vi ,

also called the ‘i-th probabilistic test’

if any one of the above checks is not satisfied then

C returns: ⊥ and the protocol halts.

4. C returns: y

Properties of protocol (C, S): The efficiency properties are verified

by protocol inspection.

• Round complexity. The protocol only requires one round, con-

sisting of one message from C to S followed by one message

from S to C .

• Communication complexity. The protocol requires the trans-

fer ofm + 1 elements inG and membership proofs from S to

C andm + 1 elements in Zq from C to S .

• Runtime complexity. Only ≤ m+ 1 exponentiations inG with

the same base and random σ -bit exponents are performed

during the offline phase. During the online phase, S computes

m + 1 exponentiations in G with the same base and random

σ -bit exponents, and m + 1 membership proofs, while C

performsm multiplications in Zq ,m + 1 multiplications in

G,m + 1 membership proof verifications and computesm

exponentiations in G with the same base and random λ′-bit

exponents.

The correctness property follows by showing that ifC and S follow

the protocol, C always outputs y = дx . This is proved for the case

x = 0 exactly as done for the protocol in Section 3. Then, assume

x , 0. We can prove that C passes the G-membership test and the

distinctness test exactly as done for the protocol in Section 3. Even

the i-th probabilistic test is passed, for all i = 1, . . . ,m, since

wi = д
zi
= дb(i)x+ui = (дx )b(i) ∗ дui = yb(i) ∗vi .

This implies thatC never returns⊥, and thus returnsy = Fexp,д,q (x),

since

y = w0 ∗v0 = д
z0 ∗ дu0 = дx−u0 ∗ дu0 = дx .

The privacy property of the protocol against a malicious S fol-

lows, similarly as for the protocol in Section 3. Note that C’s only

message to S is a tuple (z0, . . . , zm ) where z0 = (x − u0) mod q

and zi = (b(i) · x + ui ) mod q, for i = 1, . . . ,m. Here, values

u0,u(1), . . . ,u(m) are uniformly and independently distributed in

Zq , and thus so are z0, z(1), . . . , zm . This is the cases for any x

and for any b(1), . . . ,b(m) ∈ {1, . . . , 2λ
′
}. Thus, we obtain that the

protocol satisfies the following two properties for all j = 0, . . . ,m:

(1) for any x , z0, z1, . . . , zm are uniformly and independently dis-

tributed inZq ; and (2) for anyx and anyb(1), . . . ,b(m) ∈ {1, . . . , 2
λ′},

values z0, z1, . . . , zm are uniformly and independently distributed

in Zq . Property (1) implies that C’s message does not leak any in-

formation about x , and property (2) implies that C’s message does

not leak any information about x and b(1), . . . ,b(m). The first fact

suffices to imply the privacy property. The second fact will be used

in the proof of the security property.



To prove the security property against a malicious S , we need

to compute an upper bound ϵs on the security probability that S

convinces C to output a y such that y , Fexp,д,q (x). If x = 0, C

can calculate Fexp,д,q (x) = д0 = 1 and it does not need to check

whether S is honest or dishonest. Thus ϵs = 0 when x = 0. Now,

assume that x , 0. We start by defining the following events with

respect to a random execution of (C, S) where C uses x as input:

• ey,,, defined as ‘C outputs y such that y , Fexp,д,q (x)’

• e⊥, defined as ‘C outputs ⊥’

• e⊥,i , defined as ‘The valuewi sent by S does not satisfy the

i-th probabilistic check’

By inspection of (C, S), we directly obtain the following facts.

Fact 4.1. If event ey,, happens then event (¬ e⊥) happens.

Fact 4.2. If event ¬e⊥ happens then event ((¬ e⊥,1)∧ . . .∧(¬ e⊥,m ))

happens.

With respect to a random execution of (C, S) where C uses x as

input, we now define the following events for all i = 1, . . . ,m:

• e1,b(i), defined as ‘∃ exactly one b(i) such that S’s message

(w0, . . . ,wm ) satisfieswi = (w0 ∗v0)
b(i) ∗vi ’

• e>1,b(i), defined as ‘∃ more than one b(i) such that S ’s mes-

sage (w0, . . . ,wm ) satisfieswi = (w0 ∗v0)
b(i) ∗vi ’.

By definition, events e1,b(i), e>1,b(i) are each other’s complement

event, for all i = 1, . . . ,m.

In our proof of the privacy property of (C, S), we proved that

for any x , C’s message z0, z1, . . . , zm does not leak any informa-

tion about b(1), . . . ,b(m). By recalling that values b(1), . . . ,b(m)

are randomly and independently chosen by C , we obtain that all

values in {1, . . . , 2λ
′
} are still equally likely for each b(i) even

when conditioning over message (z0, z1, . . . , zm ) and over values

b(1), . . . ,b(i − 1). Then, for each i = 0, 1, . . . ,m, if event e1,b(i) is

true, the probability that values (w0,w1, . . . ,wm ) in S’s message

satisfy the i-th probabilistic test, is 1 divided by the number 2λ
′
of

values of b(i) that are still equally likely even after conditioning

over message (z0, z1, . . . , zm ) and over values b(1), . . . ,b(i − 1).

We obtain the following

Fact 4.3. For all i = 1, . . . ,m, it holds that Prob [di | d1 ∧ . . . ∧ di−1 ] ≤

2
−λ′ , where di denotes event ¬ e⊥,i ∧ e1,b(i).

By applying the rule of conditional probability, we can write

Prob [d1 ∧ . . . ∧ dm ] =

m
∏

i=1

Prob [di | d1 ∧ . . . ∧ di−1 ] .

By further using the result from Fact 4.3, and the expression λ′ =

⌈λ/m⌉, we obtain the following

Fact 4.4. It holds that Prob [d1 ∧ . . . ∧ dm ] ≤ 2
−λ , wheredi denotes

event ¬ e⊥,i ∧ e1,b(i), for all i = 1, . . . ,m.

We continue with the main technical claim, saying that if S is

malicious then it cannot produce in step 2 of the protocol values

w ′
0
, . . . ,w ′m satisfying all ofC’s three tests relatively to two distinct

values b1(i),b2(i) ∈ {1, . . . , 2
⌈

λ
m

⌉

} for each i = 1, . . . ,m:

Since S can be malicious, in step 2 it can send correct answer or

incorrect answer. Differently saying, it can sendw ′j wherew
′
j = w j

orw ′j , w j wherewi = д
zj for each j = 0, . . .m. Since the groupG

is cyclic, д is generator ofG andC checks in step 3 thatw ′j ∈ G , we

can write

w ′j = д
α j ∗w j for some α j ∈ Zq for j = 0, . . . ,m

then y = w ′
0
∗v0 = д

α0 ∗w0 ∗v0 = д
α0 ∗дx . The goal of malicious S

to pass all three checks and C’s output y , дx then α0 , 0 mod q.

Now, consider ‘probabilistic check’ for each i = 1, . . . ,m:

w ′i = y
b(i) ∗vi

дαi ∗wi = (д
α0 ∗ дx )b(i) ∗ дui

дαi ∗ дzi = дα0b(i) ∗ дb(i)x+ui

дαi ∗ дb(i)x+ui = дα0b(i) ∗ дb(i)x+ui

дαi = дα0b(i)

αi = α0 · b(i) mod q

Notice that ifα0 = 0 mod q then αi = 0 mod q for all i = 1, . . . ,m

from above calculation which implies that S is honest then auto-

matically ϵs = 0. If αi = 0 mod q then α0 = 0 because b(i) , 0 for

i ∈ {1, . . . ,m}. Now, if there exist some j ∈ {1, . . . ,m} such that

α j , 0, in this case we want to show that b(j) is unique. If there

exist two distinct b1(j) and b2(j) such that

α jb1(j) = α0 mod q and α jb2(j) = α0 mod q

then α j (b1(j) −b2(j)) = 0 mod q then b1(j) −b2(j) = 0 mod q (i.e

b1(j) = b2(j)) because α j , 0 mod q. Which shows that each b(i)

is unique for all i = 1, . . . ,m.

We obtain the following fact.

Fact 4.5. Prob
[

e>1,b(i)
]

= 0

The rest of the proof consists of computing an upper bound ϵs on

the probability of event ey,,. We have the following

Prob
[

ey,,
]

≤ Prob [ ¬ e⊥ ]

= Prob
[

¬ e⊥ ∧ (e1,b(1) ∧ . . . ∧ e1,b(m))
]

+ Prob
[

¬ e⊥ ∧ ¬(e1,b(1) ∧ . . . ∧ e1,b(m))
]

≤ Prob
[

(¬ e⊥,1 ∧ e1,b(1)) ∧ . . . ∧ (¬ e⊥,m ∧ e1,b(m))
]

+ Prob
[

¬ e⊥ ∧ (e>1,b(1) ∨ . . . ∨ e>1,b(m))
]

= Prob
[

(¬ e⊥,1 ∧ e1,b(1)) ∧ . . . ∧ (¬ e⊥,m ∧ e1,b(m))
]

+ Prob
[

(¬ e⊥ ∧ e>1,b(1)) ∨ . . . ∨ (¬ e⊥ ∧ e>1,b(m)))
]

≤

m
∏

i=1

2−λ
′

+

m
∑

i=1

Prob
[

¬ e⊥ ∧ e>1,b(i)
]

= (2−λ
′

)m +

m
∑

i=1

Prob
[

e>1,b(i)
]

· Prob
[

¬ e⊥ |e>1,b(i)
]

=2−λ

where the above equalities and inequalities are explained as fol-

lows. The first inequality is derived from Fact 4.1. The first equality

follows from partitioning the event ¬ e⊥ into two disjoint events,



using the definition of events e1,b(i), e>1,b(i). The second inequality

follows from Fact 4.2. The second equality is obtained by a distribu-

tive rule. The third inequality follows from Fact 4.4 and a union

bound. The third equality follows from the conditioning rule. The

last equality follows from Fact 4.5 and by the definition of λ′.

We finally obtain that ϵs = Prob
[

ey,,
]

≤ 2
−λ , which concludes

the proof of the security property for (C, S). □

5 PERFORMANCE ANALYSIS

In this section we describe parametric (as a function of parameters

σ , λ,m) and numeric performance evaluations of our protocols in

Section 3, 4. We also compare these two protocols with the non-

outsourced computation of the same function.

So far we have expressed the performance of our protocols

in terms of group multiplications and two parameter functions:

texp (ℓ), the number of multiplications in G to compute one expo-

nentiation to an arbitrary ℓ-bit exponent; and tm,exp (ℓ), the number

of multiplications in G to computem exponentiations of the same

group value tom arbitrary ℓ-bit exponents. A more concrete eval-

uation of the performance of our protocols requires a (possibly

optimized) instantiation of these two functions. As there can be dif-

ferent algorithms for the computation of one exponentiation or of

m exponentiations of the same base tom arbitrary ℓ-bit exponents,

we opt for the following two representative istantiations:

(1) Basic setting: using the textbook square-and-multiply algo-

rithm to evaluate group exponentiation, and computingm

exponentiations by simply independently applying this same

algorithmm times, we can set

• texp (ℓ) = 2ℓ

• tm,exp (ℓ) = 2mℓ

(2) Improved setting: using improved algorithms from the lit-

erature to evaluate group exponentiation, we can obtain

even asymptotic improvements over the above expressions

in the basic setting. In particular, we use the improved algo-

rithms discussed in [27], which contains a detailed literature

account and closed-form estimates for the number of multi-

plications of the main discussed algorithms. We obtain that:

• texp (ℓ) is about ℓ(1+
1

log ℓ
), using Brauer’s 1939 algorithm,

as described in [27],

• tm,exp (ℓ) is about ℓ(1+
m

log ℓ
), using Yao’s 1976 algorithm,

as described in [27].

We also refer the reader to [7, 22, 28, 29] for other algorithms

claiming improvements, although note that these papers do

not provide additional closed-form evaluations.

The table below compares the performance of our outsourc-

ing protocols in Section 3 and Section 4 with a non-outsourced

computation of the client under both basic (B) and improved (I)

settings of functions texp , tm,exp . The table reports expressions (as

a function of σ , λ,m, λ′, for efficiency metrics tF (the number of

multiplications to compute function Fexp,д,q ), tP (the number of

multiplications used in the protocol’s offline phase), tC (the num-

ber of multiplications by C in the protocol’s online phase), tS (the

number of multiplications by S in the protocol’s online phase), ϵp

(the probability parameter in the privacy definition), and ϵs (the

probability parameter in the security definition).

For simplicity of description, we only consider the case when

the group membership protocols do not add any multiplication (as

shown in Example 1 of Section 2, when G = Z∗p ).

Perf B/I
Fexp,д,q with

no Outsourcing

Fexp,д,q with Outsourcing

Section 3 Section 4

tF
B 2σ 2σ 2σ

I σ (1 + 1
logσ
) σ (1 + 1

logσ
) σ (1 + 1

logσ
)

tP
B 0 4σ 2σ (m + 1)

I 0 σ (1 + 2
logσ
) σ (1 + m+1

logσ
)

tC
B 2σ 2λ + 3 2mλ′ + 2m + 1

I σ (1 + 1
logσ
) λ(1 + 1

log λ
) + 3λ′(1 + m

log λ′
) + 2m + 1

tS
B 0 4σ 2σ (m + 1)

I 0 σ (1 + 2
logσ
) σ (1 + m+1

logσ
)

ϵp B & I 0 0 0

ϵs B & I 0 2−λ 2−λ

Table 1: Parametric performance of our protocols.

The analysis for Example 2, whenG = Gq ⊆ Z
∗
p , for p = 2q + 1 and

p,q primes, is similarly obtained as it only addsm + 1 exponentia-

tions in G for S andm + 1 multiplications in G for C .

We believe the main takeaways by analyzing the expressions in the

above table are as follows:

• our protocol in Section 3 reduces tC by a multiplicative factor

of about σ/λ with respect to non-outsourced computation,

when using both basic and improved settings;

• the protocol in Section 4 reduces tC by a multiplicative factor

of: (1) about σ/λ with respect to non-outsourced computa-

tion, when using the basic parameter settings, and (2) about

σ/λ′ with respect to non-outsourced computation, when us-

ing the improved parameter settings, where λ′ = ⌈λ/m⌉ by

definition, andm ≥ 1 can be chosen by the system designer;

• the protocol in Section 4 reduces tC by a multiplicative factor

of about λ/λ′ with respect to the protocol in Section 3, how-

ever by increasing parameters tP and tS by a multiplicative

factor of aboutm times, when using both basic and improved

settings;

• the impact of using basic or improved settings for functions

texp , tm,exp is only on lower-order terms of the performance

metrics tF , tP , tC , tS .

As for the numeric analysis, in Figure 1 and 2, we show the perfor-

mance of our protocols in Sections 3 (whenm = 1) and Section 4

(for anym ≥ 1). We set σ = 2048 and λ = 128, as these are the cur-

rently most recommended settings, and use the improved settings

for functions texp , tm,exp .

Figure 1 shows the number of multiplications by the client in

the online phase (tC ) asm increases, both in the Example 1 case

G = Z ∗p and in the Example 2 case G = Gq . We notice that in both

cases tC decreases asm increases up to 5, and then either keeps the

same value or increases for larger values ofm.

Figure 2 shows the server’s number of multiplications in the

online phase (tS ) asm increases, both in the Example 1 caseG = Z ∗p
and in the Example 2 caseG = Gq . We note that asm increases, this



Figure 1: Metric tC as a function ofm

metric monotonically increases in both cases, exhibiting a much

higher slope in the case G = Gq than in the case G = Z∗p . This

is because whenG = Gq , the efficiently verifiable group member-

ship protocol requiresm + 1 variable-base exponentiations from S ,

which we cannot optimize using improved algorithms (working on

multiple exponentiations on the same base).

As for metric tP , we note that in both Example 1 and Example 2

cases, it is equal to the (plotted) value of tS in the Example 1 case.

Interesting tradeoff points, obtained by instantiating parameters

in the improved setting, are the following:

(1) G = Z∗p :m = 1, tC = 145, tP = tS = 2, 420, which minimizes

tS for Example 1;

(2) G = Z∗p :m = 5, tC = 65, tP = tS = 3, 165, which minimizes

tC for Example 1;

(3) G = Gq : m = 1, tC = 152, tP = 2, 420, tS = 4, 841, which

minimizes tS for Example 2;

(4) G = Gq : m = 5, tC = 71, tP = 3, 165, tS = 14, 523, which

minimizes tC for Example 2.

Finally, we considered benchmarks for modular multiplication

and exponentiation modulo a 2048-bit prime executed using com-

modity computing resources and extrapolated the running time of

tC whenm = 5 and G = Z∗p as just below 0.24ms and the running

time of tC whenm = 5 and G = Gq as just above 0.26ms.

6 CONCLUSIONS

We considered the problem of outsourcing group exponentiation

to a single, possibly malicious, server, originally left open in [20].

We solved this problem by showing protocols that provably satisfy

formal correctness, privacy, security and efficiency requirements,

in a large class of cyclic groups; specifically, cyclic groups whose

multiplication and inverse operations can be efficiently computed,

and which admit an efficiently verifiable protocol to prove that

an element is in the group. In the presented protocols, the prob-

ability that a cheating server convinces the client of an incorrect

computation result can be proved to be exponentially small. Pre-

vious best results could only achieve a constant probability. The

considered class of cyclic groups includes groups often discussed

in cryptography literature, such as

Figure 2: Metric tS as a function ofm

• Z∗p , for a large prime p, and

• Gq ⊆ Z
∗
p , for primes p,q such that p = 2q + 1.

Our methods suggest that expensive operations in many crypto-

graphic protocols (specifically, those basing their security on as-

sumptions related to the discrete logarithm problem in frequently

discussed groups) can be outsourced to a cloud server, with consid-

erable savings on client computation (e.g., by performing about 70

group multiplications instead of 1 group exponentiation).
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