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Abstract:Many public-key cryptosystems and, more generally, cryptographic protocols, use group exponen-

tiations as important primitive operations. To expand the applicability of these solutions to computationally

weaker devices, it has been advocated that a computationally weaker client (i.e., capable of performing a rel-

atively small number of modular multiplications) delegates such primitive operations to a computationally

stronger server. Important requirements for such delegation protocols include privacy of the client’s input

exponent and security of the client’s output, in the sense of detecting, except for very small probability, any

malicious server’s attempt to convince the client of an incorrect exponentiation result. Only recently, efficient

protocols for the delegation of a fixed-based exponentiation, over cyclic and RSA-type groups with certain

properties, have been presented and proved to satisfy both requirements.

In this paper we show that a product of many fixed-base exponentiations, over a cyclic groups with certain

properties, can be privately and securely delegated by keeping the client’s online number of modular mul-

tiplications only slightly larger than in the delegation of a single exponentiation. We use this result to show

the first delegations of entire cryptographic schemes: the well-known digital signature schemes by El-Gamal,

Schnorr and Okamoto, over the q-order subgroup in Zp, for p, q primes, as well as their variants based on

elliptic curves. Previous efficient delegation results were limited to the delegation of single algorithms within

cryptographic schemes.

Keywords: Secure Delegation, Modular Exponentiations, Discrete Logarithms, Cryptography, Group Theory,

Elliptic Curves

2020 Mathematics Subject Classification: 11T71, 94A60

1 Introduction

Delegationof cryptographic operations is anactive researchdirectionaddressing theproblemof computation-

ally weaker clients delegating the most expensive cryptographic computations to computationally powerful

servers. Recently, this area is seeing an increased interest because of shifts inmodern computation paradigms
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towards cloud computing, edge computing, large-scale computations over big data, and computations with

low-power devices, such as RFIDs.

The first formal model for delegation of cryptographic operations (also called outsourcing of crypto-

graphic operations, server-aided cryptography, and server-assisted cryptography) was introduced in [31],

where the authors especially studied the case of modular exponentiation, as this operation is a cornerstone

of so many cryptographic schemes and protocols. In this model, we have a client, with an input x, who

delegates to one or more servers the computation of a function F on the client’s input, and the main desired

requirements are:

1. privacy: only minimal or no information about x should be revealed to the server(s);

2. security: the server(s) should not be able, except possibly with very small probability, to convince the

client to accept a result different than F(x); and

3. efficiency: the client’s computation time should bemuch smaller than computing F(x) without delegat-

ing the computation.

Moreover, in all previous work in the area, the computational weakness of the client is really only restricted

to the online phase and relatively expensive offline computation can be performed and stored on the client’s

device, say, at client deployment time. For instance, towards a delegated computation of modular exponen-

tiation, it seems reasonable to assume that even computationally weaker devices are or will soon be able to

perform a moderate number of less expensive operations like modular multiplications (see, e.g., recent ad-

vances in [1], showing how to practically implement group multiplication, for a specific group, and a related

public-key cryptosystem, using RFID tags). This computation gap between servers and clients is significant

in that with currently recommended parameter settings an unoptimized single exponentiation may require,

on average, more than 2000 multiplications. Examples of computationally weaker devices provided in [31]

include RFID tags, embedded devices, and, more generally, low-resource devices, but we note that the del-

egation problem is actually meaningful in any application domain where clients with server access would

rather reduce their computation workload.

In [31], the authors studied delegation of modular exponentiation to 2 servers of which at most one was

malicious, and to 1 server, whowas honest on almost all inputs. Recently, we solved the open problems of pri-

vate, secure and efficient delegation to a single, possiblymalicious, server, of a single fixed-based exponentia-

tion in cyclic groups [21] and a single fixed-exponent exponentiation in RSA-type groups [22]. We showed del-

egation for these exponentiation functions over a more general class of groups in [19], however with slightly

worse efficiency or security properties than in [21, 22]. Previously, in [13], we had also showed private, secure

and efficient delegation to a single, possibly malicious, server, of group inverses, without need for an offline

phase.

Our Contributions. In this paper we show that a product of many fixed-base exponentiations, over a cyclic

group with certain properties, can be privately and securely delegated to a single, possibly malicious, server,

by keeping the client’s online number of modular multiplications only slightly larger than that for delegating

a single exponentiation. Our result holds for a general class of cyclic groups with efficient operation and

inverse, and efficiently verifiable proofs of membership. Although not all cyclic groups are known to satisfy

these properties, we show that this class includes cyclic groups often used in cryptography (i.e., the prime

ordermultiplicative subgroup ofZp, for primes p of a special form, and the analogue additive group based on

elliptic curves). Fixing thefirst of these twogroups for efficiency evaluation, a product ofm exponentiations in

Zp with σ-bit exponents canbedelegatedbya client that onlyuses less than2λ+m+4modularmultiplications

in the online phase, if the probability of not detecting an incorrect result is bounded by 2−λ. This improves

upon non-delegated computation, which would require up to 2mσ + m − 1 modular multiplications, when

exponentiation is performed via a square and multiply algorithm, as well as upon direct and repeated use

of the delegation of a single exponentiation from [21], where the client would use up to 2mλ + 4m modular

multiplication in the online phase.

We use this result to delegate the first cryptographic schemes: the well-known digital signature schemes

by El-Gamal [27], Schnorr [41] andOkamoto [39] over the prime-order subgroup inZp, as well as their variants

based on elliptic curves. Previously, only primitive operations like group exponentiations or inverses were
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delegated, andno complete cryptosystemwasdelegated to a single, possiblymalicious, server. As an example

of the efficiency achieved here, Okamoto’s scheme normally requiring a verification of 3 exponentiationswith

2048-bit exponents can now be delegated by a client that only uses 1 exponentiation to a random and short

(e.g., 128-bit) exponent.

In the process, we formally define delegation of digital signature schemes, including changes to both the

participant and the security model. First, we enrich the participant model of signature schemes, including a

signer and a verifier, with a server who can assist both. Thus, both signer and verifier will be thought of as

clients when interacting with the delegation server. Next, we generalize the standard unforgeability require-

ment to also hold in the presence of 2 additional classes of attacks introduced by the delegated computation

paradigm: (1) eavesdropping of the communication between the server and the two clients (i.e., signer and

the verifier), as well as (2) querying the server oracles, possibly done by the adversary after being able to per-

form a signer or verifier impersonation. We also provide a conversion theorem showing that a non-delegated

signature scheme can be converted into a delegated signature scheme using a suitable delegation protocol for

a desired primitive operation (e.g., single exponentiation, product of exponentiations, etc.). Establishing this

result calls for the use of an alternative, and not weaker, simulation-based, definition of privacy in delegation

protocols (many previous works targeted an indistinguishability-based definitions of privacy but can be seen

to satisfy this definition as well).

Related Work. The first formal model for secure delegation protocols was presented in [31]. There, a secure

delegation protocol is formally defined as essentially a secure function evaluation [45] of the client’s function

delegated to the server. Follow-up models from [29] and [13, 21] define separate requirements of correctness,

(input) privacy and (result) security. There, the privacy requirement is defined in the sense of the adversary’s

indistinguishability of two different inputs from the client, even after corrupting the server; and the security

requirement is defined in the sense of the adversary’s inability to convince the client of an incorrect function

output, even after corrupting the server. In our paper, we use a simulation-based definition of input privacy,

which can be shown to imply the indistinguishability-based definition in [13, 21].

We can partition all other (single-server) secure delegation protocols we are aware of in 3 main classes,

depending on whether they delegate (a) exponentiation in a specific group; (b) other specific computations

(e.g., linear algebra); or (c) an arbitrary polynomial-time function.

With respect to (a), protocols were proposed for a single exponentiation in specific groups related to dis-

crete logarithm or factoring problems (see, e.g., [14, 21, 31] and references therein). These protocols delegate

exponentiation in settings where the client is assumed to be powerful enough to run a moderate number

of group multiplications, but not enough to evaluate the delegated exponentiation function. There are also

many protocols in the literature for the delegation of a single exponentiation, not targeting or achieving all

our requirements (see, e.g., [15, 24, 34, 43]). In our model, protocols for the delegation of exponentiation

in general groups were proposed in [13, 19], and protocols to delegate multiple exponentiations in specific

groups were proposed in [20].

With respect to (b), protocols for linear algebra and/or scientific computation were proposed in, e.g.,

[2, 3, 8, 28, 35]. These protocols delegate various linear algebra operations in settings where the client is

assumed to be powerful enough to run other linear algebra operations of lower time complexity, but not

enough to evaluate the delegated linear algebra function.

With respect to (c), [29] proposed a protocol using garbled circuits [45] and fully homomorphic encryption

[30]. This protocol delegates functions in settings where the client is powerful enough to run encryption and

decryption algorithms of a fully homomorphic encryption scheme, but not enough to homomorphically eval-

uate a circuit that computes decryption steps in the garbling scheme for the function. Different protocols, not

using garbled circuits, were later proposed in [16]. These protocols delegate functions in settings where the

client is assumed to be powerful enough to run encryption and decryption algorithms of a fully homomorphic

encryption scheme, but not enough to homomorphically evaluate the delegated function.
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2 Definitions: Groups with Eflcient Membership Proofs

In this section we formally define group notations and definitions that will be used in the rest of the paper.

Groupnotations anddefinitions.Let (G, *)be a group, let σ be its computational security parameter, and let

L denote the length of the binary representation of elements in G. Typically, in cryptographic applications we

set L as about equal to σ.We also assume that (G, *) is cyclic, has order q, andwefixm of its distinct generators

as g1, . . . , gm. By y = gx11 · · · gxmm =
∏︀m

i=1 g
xi
i we denote the product of m (fixed-base) exponentiations (in G).

Let Zq = {0, 1, . . . , q − 1}, and let Fg1 ,...,gm ,q : (Zq × ... × Zq) → G denote the function that maps to each

(x1, . . . , xm) ∈ Zq × ... × Zq the product of m (fixed-base) exponentiations (in G). By desc(Fg1 ,...,gm ,q) we

denote a conventional description of the function Fg1 ,...,gm ,q that includes its semantic meaning as well as

generators g1, . . . , gm, order q and the efficient algorithms computing multiplication and inverses in G.

By texp(ℓ) we denote a parameter denoting the number of multiplications in G used to compute an expo-

nentiation (in G) of a group value to an arbitrary ℓ-bit exponent. By tm,exp(ℓ)we denote a parameter denoting

the number ofmultiplications in G used to computem exponentiations (in G) of the same group value tom ar-

bitrary ℓ-bit exponents. By tprod,m,exp(ℓ)wedenote themax number of groupmultiplications used to compute

a product of m exponentiations of (possibly different) group elements to m arbitrary ℓ-bit exponents.

We define an efficiently verifiable membership protocol for G as a one-message protocol, denoted as the

pair (mProve,mVerify) of algorithms, satisfying

1. completeness: for any w /∈G, mVerify(w,mProve(w))=1;

2. soundness: for any w /∈G, and any mProve′,

mVerify(w,mProve′(w))=0;

3. efficient verifiability: the number of multiplications in G, denoted as tmVerify(σ), executed by mVerify is

o(texp(σ));

4. efficient provability: the number of multiplications tmProve(σ) in G executed by mProve is not signifi-

cantly larger than texp(σ).

We say that a group is efficient if its description is short (i.e., has length polynomial in σ), its associated

operation and the inverse operation are efficient (i.e., they can be executed in time polynomial in σ), and it

has an efficiently verifiable membership protocol. Note that for essentially all cyclic groups frequently used

in cryptography, the description is short and both the associated operation and inverse operation can be run

in time polynomial in σ. The only non-trivial property to establish is whether the group has an efficiently

verifiable membership protocol. We now show two examples that are often used in cryptography and that

do have efficiently verifiable membership protocols. In the rest of the paper we present our results for any

arbitrary efficient cyclic group (using, for notation simplicity, a multiplicative notation for its operation).

Example 1: (G, *) = (Gq , · mod p), for large primes p, q such that p = kq + 1, where k ≠ q is another prime

and Gq is the q-order subgroup ofZ*
p. This group is one of themost recommended for cryptographic schemes

like the Diffie-Hellman key exchange protocol [23], El-Gamal encryption [27], Cramer-Shoup encryption [17],

DSA etc. It is known that by Sylow’s theorem, Gq in this case is the only subgroup of order q in the group Z
*
p

(i.e. gq = 1 mod p if and only if g ∈ Gq). Also, the set of elements of Gq is precisely the set of k-th powers of

elements of Z*
p. Thus, an efficiently verifiable membership protocol can be built as follows:

1. on input w, mProve computes r = w(q+1)/k mod p and returns r;

2. on input w, r, mVerify returns 1 if w = rk mod p and 0 otherwise.

The completeness and soundness properties of this protocol are easily seen to hold. The efficient provability

follows by noting that mProve only performs 1 exponentiation mod p. The efficient verifiability property

follows by noting that mVerify requires one exponentiation mod p to the k-th power. We note that mVerify

is very efficient in the case when k is small (e.g., k = 2), which is a typical group setting in cryptographic pro-

tocols based on discrete logarithms. In the rest of the paper, we assume this specific group when we evaluate

the performance of our protocol(s).
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Example 2: (G, +) = (E(Fp), point addition), for a large prime p > 3: an elliptic curve E over a field Fp, is the

set of pairs (x, y) ∈ E(Fp) that satisfy the Weierstrass equation

y2 = x3 + ax + b mod p,

togetherwith the imaginary point at infinityO, where a, b ∈ Fp and4a
3+27b2 ≠ 0 mod p. The elliptic curve

defined above is denoted by E(Fp). This group is one of the most recommended for cryptographic schemes

like Elliptic-curve Diffie-Hellman key exchange protocol, Elliptic-curve ElGamal encryption, etc. Moreover,

many discrete logarithm based cryptographic protocols defined over the set Zp in Example 1 can be rewrit-

ten as defined over E(Fp). When those protocols are rewritten using the additive operation for this group

instead of modular multiplication over Zp, the multiplication operation is rewritten as point addition and

the exponentiation is rewritten as scalar multiplication in the group E(Fp), and the textbook łsquare-and-

multiplyž algorithm becomes a łdouble-and-add" algorithm. An efficiently verifiable membership protocol

for this group simply consists of verifying the Weierstrass equation, as follows:

1. on input (x, y), mProve does nothing;

2. on input (x, y), mVerify returns 1 if y2 = x3 + ax + b mod p and 0 otherwise.

The completeness, soundness, efficient provability properties of this protocol are easily seen to hold. The

efficient verifiability property follows by noting that mVerify performs only 4 multiplications mod p.

3 Definitions: Delegated Protocols

In this section we formally define delegation protocols, and their correctness, security, privacy and efficiency

requirements, mainly relying on the definition approach from [21], which in turn builds on those from [29, 31].

One new aspect in our definition, of interest for our results in later sections, is that we use a simulation-based

definition of privacy instead of the indistinguishability-based definition in [21].

Basic notations. The expression y ← T denotes the probabilistic process of randomly and independently

choosing y from set T. The expression y ← A(x1, x2, . . .) denotes the (possibly probabilistic) process of run-

ning algorithm A on input x1, x2, . . . and any necessary random coins, and obtaining y as output. The expres-

sion (zA , zB , tr) ← (A(x1, x2, . . .), B(y1, y2, . . .)) denotes the (possibly probabilistic) process of running an

interactive protocol between A, taking as input x1, x2, . . . and any necessary random coins, and B, taking as

input y1, y2, . . . and any necessary random coins, where zA , zB are A and B’s final outputs, respectively, at

the end of this protocol’s execution, and tr denotes the tuple of messages exchanged between A and B. We

denote a distribution D as D = {R1; . . . ; Rn : x}, where R1, . . . , Rn is a sequence of random processes and x

denotes a variable set as a result of their sequential execution.

System scenario, entities, and protocol. We consider a system with a single client, denoted as C, and a

single server, denoted as S. As a client’s computational resources are expected to be more limited than a

server’s ones, C is interested in delegating the computation of specific functions to S. We assume that the

communication link between C and S is private or not subject to confidentiality, integrity, or replay attacks,

and note that such attacks can be separately addressed using communication security techniques from any

applied cryptography textbook (see, e.g., [36]). As in all previous work in the area, we consider a model with

an offline phase, where, say, exponentiations to random exponents can be precomputed andmade somehow

available onto C’s device. This model has been justified in several ways, all appealing to different application

settings. In the presence of a trusted party, such as a deploying entity setting up C’s device, the trusted party

can simply perform the precomputed exponentiations and store them on C’s device. If no trusted party is

available, in the presence of a pre-processing phase where C’s device does not have significant computation

constraints, C can itself perform the precomputed exponentiations and store them on its own device.

Let σ denote the computational security parameter (i.e., the parameter derived from hardness consider-

ations on the underlying computational problem), and let λ denote the statistical security parameter (i.e., a
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parameter such that events with probability 2−λ are extremely rare). Both parameters are expressed in unary

notation (i.e., 1σ , 1λ).

Let F : Dom(F) → CoDom(F) be a function, where Dom(F) denotes F’s domain, CoDom(F) denotes

F’s co-domain, and desc(F) denotes F’s description. Assuming desc(F) is known to both C and S, and

input x is known only to C, we define a client-server protocol for the delegated computation of F in the

presence of an offline phase as a 2-party, 2-phase, communication protocol between C and S, denoted as

(C(1σ , 1λ , desc(F), x), S(1σ , 1λ , desc(F))), and consisting of the following steps:

1. pp ← Offline(1σ , 1λ , desc(F)),

2. (yC , yS , tr)← (C(1σ , 1λ , desc(F), pp, x), S(1σ , 1λ , desc(F)).

As discussed above, Step 1 is executed in an offline phase, when the input x to the function F is not yet avail-

able. Step 2 is executed in the online phase, when the input x to the function F is available to C. At the end of

both phases, C learns yC, intended to be = y, and S learns yS, usually an empty string in this paper. We will

often omit desc(F), 1σ , 1λ for brevity of description.

Correctness Requirement. Informally, the (natural) correctness requirement states that if both parties fol-

low the protocol, C obtains some output at the end of the protocol, and this output is, with high probability,

equal to the value obtained by evaluating function F on C’s input. A formal definition follows.

Definition 1. Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-server protocol

for the delegated computation of F. We say that (C, S) satisfies δc-correctness if for any x in F’s domain, it

holds that

Prob
[︁

out ← CorrExpF(1
σ , 1λ) : out = 1

]︁

≥ δc ,

for some δc close to 1, where experiment CorrExp is detailed below:

CorrExpF(1
σ , 1λ)

1. pp ← Offline(desc(F))

2. (yC , yS , tr)← (C(pp, x), S)

3. if yC = F(x) then return: 1

else return: 0

Security Requirement. Informally, the most basic security requirement would state the following: if C fol-

lows the protocol, a malicious adversary corrupting S cannot convince C to obtain, at the end of the proto-

col, some output y′ different from the value y obtained by evaluating function F on C’s input x. To define a

stronger security requirement, we augment the adversary’s power so that the adversary can even choose C’s

input x, before attempting to convince C of an incorrect output. We also do not restrict the adversary to run

in polynomial time. A formal definition follows.

Definition 2. Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-server protocol

for the delegated computation of F. We say that (C, S) satisfies ϵs-security against a malicious adversary if for

any algorithm A, it holds that

Prob
[︁

out ← SecExpF,A(1
σ , 1λ) : out = 1

]︁

≤ ϵs ,

for some ϵs close to 0, where experiment SecExp is detailed below:

SecExpF,A(1
σ , 1λ)

1. pp ← Offline(desc(F))

2. (x, aux)← A(desc(F))

3. (y′, aux, tr)← (C(pp, x), A(aux))

4. if y′ =⊥ or y′ = F(x) then return: 0

else return: 1.



Delegating a Product of Group Exponentiations with Application to Signature Schemes | 7

Privacy Requirement. Informally, the privacy requirement should guarantee the following: if C follows the

protocol, amalicious adversary corrupting S cannot obtain any information about C’s input x from a protocol

execution. This is formalized here by extending the simulation-based approach typically used in various for-

mal definitions for cryptographic primitives. That is, there exists an efficient algorithm, called the simulator,

that generates a tuple of messages distributed exactly like those in a random execution of the protocol. A

formal definition follows.

Definition 3. Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-server protocol

for the delegated computation of F. We say that (C, S) satisfies privacy (in the sense of simulation) against a

malicious adversary if there exists an efficient algorithm Sim such that for any efficient adversary A and any

input x to C, the following two distributions are equal:

Dsim = {tr ← Sim(desc(F), 1σ , 1λ) : tr}

Dprot = {pp ← Offline(desc(F)); (yC , yA , trx)← (C(pp, x), A(aux)) : trx}

Efficiency Metrics and Requirements. In our analysis, we only consider the most expensive group opera-

tions as atomic operations, such as group multiplications and/or exponentiation, and neglect lower-order

operations, such as equality testing, additions and subtractions between group elements.

Let (C, S) be a client-server protocol for the delegated computation of function F with computational

security parameter σ and statistical correctness parameter λ. We say that (C, S) has efficiency parameters

(tF , tP , tC , tS , sc, cc,mc), if

1. F can be computed (without delegation) using tF(σ, λ) atomic operations;

2. the offline phase can be run using tP(σ, λ) atomic operations;

3. C can be run in the online phase using tC(σ, λ) atomic operations;

4. S can be run using tS(σ, λ) atomic operations;

5. at the end of the offline phase, data with storage complexity sc is stored on C’s device;

6. C and S exchange a total of at most mc messages; and

7. C and S exchange messages of total length at most cc.

While we naturally try to minimize all these protocol efficiency metrics, our main goal is to design protocols

where

1. tC(σ, λ) << tF(σ, λ), and

2. tS(σ, λ) is not significantly larger than tF(σ, λ),

based on the underlying assumption, consistent with the state of the art in cryptographic implementations,

for essentially all group types, that groupmultiplication requires significantly less computing resources than

group exponentiation.

4 Delegating a Product of Exponentiations

In this section we present our protocol for delegation of a product of (fixed-base) exponentiations in a large

class of groups used in cryptographic protocols, which provably satisfies correctness, simulation-based pri-

vacy, security with exponentially small probability, and various desirable efficiency properties. Most notably,

the client’s online complexity is dominated by a single exponentiation to a significantly smaller exponent.

We first formally state our result, then describe the protocol, and finally prove its correctness, security,

privacy and efficiency properties.

Formal theorem statement. We obtain the following
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Theorem 4. Let (G, *) be an efficient cyclic group, let σ be its computational security parameter, and let λ be

a statistical security parameter. There exists (constructively) a client-server protocol (C, S) for delegating the

computation of function Fg1 ,...,gm ,q : (Zq × ... × Zq)→ G, which satisfies

1. δc-correctness, for δc = 1;

2. ϵs-security, for ϵs ≤ 1
2λ
;

3. simulation-based privacy;

4. efficiency with parameters (tF , tS , tP , tC , sc, cc,mc), where

ś tF is = tprod,m,exp(σ);

ś tS is = 2 tprod,m,exp(σ) + 2 tmProve(σ);

ś tP is = 2 tprod,m,exp(σ), with random exponents from Zq;

ś tC is ≤ texp(λ) + 2 tmVerify(σ) + 2multiplications in G and m multiplications in Zq;

ś sc = 2 elements in G and 2m elements of Zq

ś cc = 4 elements in G and 2m elements of Zq

ś mc = 2.

The main takeaway from Theorem 4 is that C delegates the computation of product of multiple (i.e. m) ex-

ponentiations with a σ-bit exponents to S while C only performs an exponentiation with a λ-bit exponent, 2

group membership verifications in G, 2 multiplications in G and m modular multiplications in Zq. In other

words, C’s online complexity is only slightly larger than that in a delegation protocol for a single exponen-

tiation, as in the protocol from [21]. In fact, our protocol can be seen as a non-trivial extension of the single

exponentiationprotocol in [21], basedon twomain ideas: (1) using a single small-coefficient linear verification

test on the entire product of m exponentiations, instead of an independent test on each of the m exponen-

tiations in the product; and (2) carefully redistributing the computation of products of exponentiation from

the client to the server and the offline phase. This results in savings of about a multiplicative factor of m in

the client’s online complexity over a direct use of that protocol to delegate a single exponentiation. Using the

group in Example 1 from Section 2 for a concrete comparison, the client performs 2λ +m + 4multiplications,

while in a direct use of the protocol in [21] that boundwould be 2mλ+4m, and in non-delegated computation

one can perform up to 2mσ + m − 1 multiplications. Using current typical settings in applied cryptography

(i.e., σ = 2048, and λ = 128), and assuming m ranging from 2 to 128, we see that in our protocol the client’s

online multiplications are smaller by 2-3 orders of magnitude than non-delegated computation and 1-2 orders

of magnitude with respect to a direct use of the delegation of a single exponentiation from [21].

Also remarkable are the running time of S, who only performs 2 products of m exponentiations and 2

group membership proof generations in G. In other words, S’s complexity is only about 4 times as that in a

non-delegated computation of the same function.

Even in the offline phase, only 2 products of fixed-base exponentiations with random exponents are

needed by the client to later compute a product of m fixed-base exponentiations. Finally, the protocol only

requires 2 messages, which is clearly minimal in this model, only requires the communication of 4 elements

in G and 2m elements in Zq, and only requires that 2m elements in Zq and 2 group values are stored on C’s

device at the end of the offline phase.

Inwhat followswe prove Theorem 4 by describing our delegation protocol and proving its properties. The

group membership test is realized via the assumed efficiently verifiable group membership protocol. While

we do not know of such a protocol for any arbitrary cyclic group, we showed in Section 2 that two groups

commonly used in cryptography have one.

Informal description of protocol (C, S). Our starting point is the protocol for private, secure and efficient

delegation of fixed-base exponentiation in cyclic groups in [21], also reviewed in Appendix A. There, one

main idea consists of a probabilistic verification equation which is verifiable using a much smaller number

of modular multiplications (i.e., up to 2λ, instead of 2σ, multiplications). Specifically, in that protocol, C

injects an additional random value b ∈ {1, . . . , 2λ} in one of the inputs on which S is asked to computed

the value of the exponentiation function Fg,q, so to satisfy the following properties: (a) if S returns correct

computations of Fg,q, then C can correctly compute y with a single group multiplication; (b) if S returns
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incorrect computations of Fg,q, then S either does not meet some deterministic verification equation or can

only meet C’s probabilistic verification equation for at most one possible value of random value b; (d) C

can check whether the probabilistic verification equation is satisfied with an exponentiation to the (shorter)

exponent b; and (d) C’s messages hide the values of the random element as well as C’s input to the function.

By choosing a large enough domain for b (e.g., setting λ ≥ 128), the protocol achieves a very small security

probability (i.e., 2−λ). As this domain is much smaller than the group, this results in a considerable efficiency

gain on C’s running time.

Towards the design of our protocol proving Theorem 4, a first natural approach is that the client delegates

each of them exponentiations in the product using the delegation protocol for fixed-base exponentiation over

cyclic groups in [21], and finally the client computes the product of the obtained m exponentiations. Note

that this approach would satisfy correctness, privacy and security requirements. However, when it comes to

performance, it is undesirable as it multiplies by a factor of about m both the number of multiplications by

the client and the size of the client’s storage, and therefore we would gradually lose the computation benefit

from the delegation as m gets larger. In the protocol presented here, we target an additive overhead of m,

instead of a multiplicative one, and achieve this with the following two main modifications.

First, we view the probabilistic test of [21] as a small-coefficient linear test over a group value’s exponent.

Then, by using the linear homomorphism properties of the exponentiation function, we can define a single

small-coefficient linear test on the entire product of m exponentiations, instead of an independent test on

each of them exponentiations in the product. Thus, a single randomcoefficient value b is used in the protocol,

instead of m random and independent values, so that C only performs a single exponentiation to the small

exponent b to run the probabilistic verification equation in the resulting small-coefficient linear test.

Second, no products of exponentiations are performed by the client. When these are needed in the proto-

col, they are carefully redistributed to the computationallymore powerful server or to the offline phase,where

more computational power is available. Specifically, our protocol involves 4 products of m exponentiations,

of which 2 are performed in the offline phase and 2 are computed by the server. Finally, the computation of

these products is set up so that by the homomorphism properties of the exponentiation function, analogue

group membership verifications and probabilistic verification test can be performed as in the original proto-

col, although on products of exponentiations instead of single exponentiations.

Formal description of protocol (C, S). Let G be an efficient cyclic group, and let (mProve, mVerify) denote

its efficiently verifiable membership protocol.

Input to C and S: 1σ , 1λ, desc(Fg1 ,...,gm ,q)

Input to C: x1, . . . , xm ∈ Zq

Offline phase instructions:

1. Randomly choose ui,j ∈ Zq, for i = 1, . . . ,m and j = 0, 1

2. Set vj =
∏︀m

i=1 g
ui,j
i and store (u1,j , . . . , um,j , vj) on C for j = 0, 1

Online phase instructions:

1. C randomly chooses b ∈ {1, . . . , 2λ}

C sets zi,0 := (xi − ui,0) mod q, zi,1 := (b · xi + ui,1) mod q for i = 1, . . . ,m

C sends (zi,0, zi,1) to S for i = 1, . . . ,m

2. S computes wj :=
∏︀m

i=1 g
zi,j
i and πj :=mProve(wj), for j = 0, 1

S sends w0, w1, π0, π1 to C

3. C computes y := w0 * v0
C checks that

w1 = yb * v1, also called the ‘probabilistic test’

mVerify(w0, π0) = mVerify(w1, π1) = 1,

also called the ‘membership test’

if any one of these tests is not satisfied then
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C returns:⊥ and the protocol halts

C returns: y

Properties of protocol (C, S): The efficiency properties are verified by protocol inspection.

ś Round complexity: the protocol only requires one round, consisting of onemessage from C to S followed

by one message from S to C.

ś Storage complexity: at the end of the offline phase, tuples (u1,j , . . . , um,j , vj), for j = 0, 1, are stored on

C’s device, resulting in a storage complexity of 2m values in Zq and 2 group elements.

ś Communication complexity: the protocol requires the transfer of 2 elements in G and 2 proofs of group

membership from S to C, and 2m elements in Zq from C to S.

ś Runtime complexity: During the offline phase, 2 product ofm exponentiations in bases g1, . . . , gm and

with random σ-bit exponents are performed. This product ofm exponentiations can be evaluated using

any of the cited literature algorithms for a product of m exponentiations (e.g., the algorithm in [40]).

During the online phase, S computes 2 products of m exponentiations to σ-bit exponents in G and 2

group membership proofs; and C verifies 2 group membership proofs and computes 2 multiplications

in G, m modular multiplications in Zq, and 1 exponentiation in G to a random exponent that is ≤ 2λ

and thus much smaller than 2σ.

The correctness property follows by showing that if C and S follow the protocol, C always output y =
∏︀m

i=1 g
xi
i . We show that the 2 tests performed by C are always passed. The membership test is always passed

since wj is computed by S as
∏︀m

i=1 g
zi
i , for j = 0, 1, and g1, . . . , gm are generators of group G; the probabilistic

test is always passed since

w1 =

m
∏︁

i=1

g
zi,1
i =

m
∏︁

i=1

g
bxi+ui,1
i =

(︃

m
∏︁

i=1

gxii

)︃b

*

m
∏︁

i=1

g
ui,1
i = ybv1.

This implies that C never returns ⊥, and thus returns y. To see that this returned value y is the correct

output, note that

y = w0 * v0 =

m
∏︁

i=1

g
zi,0
i *

m
∏︁

i=1

g
ui,0
i =

m
∏︁

i=1

g
xi−ui,0
i *

m
∏︁

i=1

g
ui,0
i =

m
∏︁

i=1

gxii .

The privacy property of the protocol against any arbitrary malicious S is proved by showing an efficient

simulator Sim such that for any input x1, . . . , xm ∈ Zq to C, the following two distributions are equal: the

distribution Dprot of the messages in a random execution of (C, S) where C uses x1, . . . , xm as input; and

the distribution Dsim output by Sim. First, we observe that C’s only message to S does not depend on values

x1, . . . , xm. Specifically, this message can be written as (z1,0, . . . , zm,0, z1,1, . . . , zm,1)where zi,0 = (xi − ui,0)

mod q, zi,1 = (bxi + ui,1) mod q, and zi,0 and zi,1 are uniformly and independently distributed in Zq, as so

are ui,0 and ui,1 for all i = 1, . . . ,m. Thus, a simulator Sim can be defined as the algorithm that, on input

1σ , 1λ, desc(Fg1 ,...,gm ,q), runs the following instructions:

1. generate a tuple mes1 = (z′1,0, . . . , z
′

m,0, z
′

1,1, . . . , z
′

m,1) of random and independent values in Zq

2. generate message mes2 = (w′

0, w
′

1, π
′

0, π
′

1) by running the same instructions run by S on input 1σ , 1λ,

desc(Fg1 ,...,gm ,q) and (z
′

1,0, . . . , z
′

m,0, z
′

1,1, . . . , z
′

m,1)

3. return: (mes1,mes2)

We obtain that distribution DSim and distribution Dprot are identical since in both distributions the first mes-

sage contains 2m randomand independent values inZq and the secondmessage is computed using the same

algorithm starting from first message.

To prove the security property against any malicious S we need to compute an upper bound ϵs on the

security probability that S convinces C to output a y such that y = ̸ Fg1 ,...,gm ,q(x1, . . . , xm). We start by defining

the following events with respect to a random execution of (C, S) where C uses x as input:

ś ey,= ̸, defined as ‘C outputs y such that y ≠ Fg1 ,...,gm ,q(x1, . . . , xm)’
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ś ew,= ̸, defined as ‘In its message to C, S sends a pair (w′

0, w
′

1) = ̸ (w0, w1)’

ś e⊥, defined as ‘C outputs⊥’

By inspection of (C, S), we directly obtain the following fact.

Fact 4.1. If event ey,= ̸ happens then event ew,= ̸ ∧ (¬ e⊥) happens.

With respect to a random execution of (C, S) where C uses x1, . . . , xm as input, we now define the following

events:

ś e1,b, defined as ‘∃ exactly one b such that the pair (w
′

0, w
′

1) sent by S to C satisfies w
′

1 = (w′

0 * v0)
b * v1’

ś e>1,b, defined as ‘∃ more than one b such that the pair (w′

0, w
′

1) sent by S to C satisfies w
′

1 = (w′

0 * v0)
b *

v1’.

By definition, events e1,b , e>1,b are each other’s complement event.

Now, let i ∈ {1, . . . ,m}. We observe that no information is leaked by zi,0, zi,1 about xi as: (a) for any

xi ∈ Zq, there is exactly one ui,0 corresponding to zi,0; that is, ui,0 = xi − zi,0 mod q; (b) for any xi ∈

Zq, for any b ∈ {1, . . . , 2λ} chosen by C, there is exactly one ui,1 corresponding to zi,1; that is, ui,1 =

zi,1 − bxi mod q for all i = 1, . . . ,m. This implies that, since ui,0, ui,1 are uniformly and independently

distributed in Zq, the distribution of tuple (x1, . . . , xm) input to C is independent from the distribution of

tuple ((z1,0, z1,1), . . . , (zm,0, zm,1)) sent by C to S. Furthermore, by essentially the same proof, protocol (C, S)

satisfies the following property: for any x1, . . . , xm ∈ Zq, the value of b ∈ {1, . . . , 2
λ} chosen by C is inde-

pendent from tuple ((z1,0, z1,1), . . . , (zm,0, zm,1)). This implies that all possible values for b in {1, . . . , 2λ}

are still equally likely even when conditioning over message ((z1,0, z1,1), . . . , (zm,0, zm,1)) from C to S. Then,

if event e1,b is true, the probability that the pair (w
′

0, w
′

1) sent by S to C satisfies the probabilistic test, is equal

to 1 divided by the number 2λ of values of b that are still equally likely even when conditioning over message

(z1,0, . . . , zm,0, z1,1, . . . , zm,1). We obtain the following

Fact 4.2. Prob
[︀

ew,= ̸ ∧ (¬ e⊥) | e1,b
]︀

≤ 1/2λ

We now show the main technical claim, saying that if S is malicious then it cannot produce in step 2 of the

protocol a pair of values (w′

0, w
′

1) different than the required pair (w0, w1), satisfying both of C’s tests for

two distinct values b1, b2 ∈ {1, . . . , 2
λ}. Since S can be malicious, in step 2 it can send arbitrary values to

C. In particular, S can send a pair (w′

0, w
′

1) different than the pair (w0, w1) required by the protocol, where

wj = Πm
i=1g

zij , for j = 0, 1. Since C uses π0, π1 to check in step 3 that the two group elements belong to the

group, we can assume that w′

0, w
′

1 ∈ G. Moreover, since G is cyclic, and we assumed that each gi is generator

of G, for i = 1, . . . ,m, we can, without loss of generality, consider generator g1 and write

w′

0 = gu1 * w0 and w
′

1 = gv1 * w1 for some u, v ∈ Zq .

Thus, we can also write y = w′

0 * v0 = gu1 * w0 * v0 = gu1 *
∏︀m

i=1 g
xi
i . Now, recall that the goal of a malicious S is

to pass C’s two verification tests and force C’s output to be y = ̸
∏︀m

i=1 g
xi
i , which is true when u = ̸ 0 mod q. We

then consider the following equivalent rewriting of C’s probabilistic test, obtained by variable substitutions

and simplifications:

w′

1 = yb * v1

gv1 * w1 =

(︃

gu1 *

m
∏︁

i=1

gxii

)︃b

*

m
∏︁

i=1

g
ui,1
i

gv1 *

m
∏︁

i=1

g
zi,1
i = gub1 *

m
∏︁

i=1

g
bxi+ui,1
i

gv1 *

m
∏︁

i=1

g
bxi+ui,1
i = gub1 *

m
∏︁

i=1

g
bxi+ui,1
i

gv1 = gub1
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v = ub mod q.

Notice that if u = 0 mod q then the above calculation implies that v = 0 mod q, and thus S is honest, from

which we derive that ϵs = 0. Now consider the case S is dishonest, in which case we have that u ≠ 0 mod q.

We want to show that b is unique in this case. If there exist two distinct b1 and b2 such that

ub1 = v mod q and ub2 = v mod q

then u(b1 − b2) = 0 mod q then b1 − b2 = 0 mod q (i.e b1 = b2) because u ≠ 0 mod q. This shows that b

is unique and we obtain the following fact.

Fact 4.3. Prob
[︀

e>1,b
]︀

= 0

The rest of the proof consists of computing an upper bound ϵs on the probability of event ey,= ̸, using all

previously established facts. We obtain the following

Prob
[︀

ey,= ̸
]︀

≤ Prob
[︀

ew,= ̸ ∧ (¬ e⊥)
]︀

= Prob
[︀

e1,b
]︀

· Prob
[︀

ew,= ̸ ∧ (¬ e⊥) | e1,b
]︀

+ Prob
[︀

e>1,b
]︀

· Prob
[︀

ew,= ̸ ∧ (¬ e⊥) | e>1,b
]︀

= Prob
[︀

e1,b
]︀

· Prob
[︀

ew,= ̸ ∧ (¬ e⊥) | e1,b
]︀

≤ Prob
[︀

e1,b
]︀

·
1

2λ

≤
1

2λ
,

where the first inequality follows from Fact 4.1, the first equality follows from the definition of events

e1,b , e>1,b and the conditioning rule, the second equality follows from Fact 4.3, and the second inequal-

ity follows from Fact 4.2.

We can finally set ϵs = 2−λ, which concludes the proof for the security property for (C, S).

4.1 Performance

Anaive algorithm to compute (without delegation) a product ofm exponentiations consists of first computing

single exponentiations yi = gxii for i = 1, . . . ,m, and then the product
∏︀m

i=1 yi. For this algorithm, which we

call nPoExp, we have that tprod,m,exp(ℓ) = m · texp(ℓ) + m − 1, which is equal to 2mσ + m − 1, when a single

exponentiation is computed using the square-and-multiply algorithm.

Several papers propose faster algorithms to compute single exponentiations (see, e.g., [7, 10, 18, 25, 37,

44]), as well as a product ofm exponentiations (see, e.g., [10, 37, 40, 42]). For instance, using the closed-form

estimate from [11] of Pippenger’s algorithm in [40], one can obtain an algorithm, which we denote as fPoExp,

satisfying tprod,m,exp(ℓ) ∼ ℓ(1 + m/(logm + log ℓ)).

As yet another comparison method to delegate the computation of a product of m exponentiations to

σ-bit exponent, we define protocol nDelPoExp in which a client delegates to a server the computation of each

of the m exponentiations using Protocol 1 from [21] and then directly computes a product of the m obtained

exponentiations.

In Table 1 we show concrete evaluations for our protocol’s main performancemetric: the client’s number

tC of groupmultiplications in the online phase. In particular,we also compare our protocolwith the delegated

protocol nDelPoExp and the non-delegated algorithms nPoExp and fPoExp, for computing exponentiation in

group Z
*
p, for p = 2q + 1, where p, q are primes. First we show the numbers for tC for varying and arbitrary

values of m, while setting σ = 2048 and λ = 128, the currently recommended parameter settings for many

cryptographic applications. Then, in the last row we show closed-form expressions for tC with respect to

arbitrarym, σ, λ.Weobserve that our result’s improvement is significant inmanypractical parameter settings.



Delegating a Product of Group Exponentiations with Application to Signature Schemes | 13

For small values of m, our result improves by 1-2 orders of magnitude over the non-delegated algorithms and

between a constant factor and 1 order of magnitude over the delegation approach based on [21]. For large

values of m, our result improves by at least 3 orders of magnitude over the non-delegated algorithms and at

least 2 orders of magnitude over the delegation approach based on [21].

Table 1: The number of C’s online multiplications in the example group (Z*
p , · mod p) where p = 2q + 1, and p, q are primes.

m

Fg1 ,...,gm ,q Fg1 ,...,gm ,q

No delegation With delegation

nPoExp fPoExp nDelPoExp Our result

2 8,193 2,389 520 262

5 20,484 2,779 1,300 265

σ = 2048 10 40,969 3,413 2,600 270

λ = 128 50 204,849 8,072 13,000 310

100 409,699 13,426 26,000 360

1000 4,096,999 99,512 260,000 1,260

Arbitrary m 4097m − 1 2048(1 + m
logm+11 ) 260m 260 + m

Arbitrary m, σ, λ 2mσ + m − 1 σ(1 + m
logm+log σ ) 2mλ + 4m 2λ + m + 4

In Table 2 and Table 3 we report performance results measured when running our software implemen-

tation of our protocol in Section 4 and of the protocol nDelPoExp in [21] for the multiplicative group (Z*
p , ·

mod p), for p = 2q + 1, where p, q are large primes, and using σ = 2048 and λ = 128. Our implementa-

tion was carried out on a macOS Catalina Version 10.15.1 laptop with 2.9 GHz Intel Core i9 processor with

memory 32 GB 2400 MHz DDR4. The protocols were coded in Python 3.7 using the gmpy2 package. In each

table we report performance data for one of our protocols, by measuring running times tF , tC , tS, and tP, and

improvement ratio tF/tC, for different values of parameter m (i.e., m = 2, 4, 7, 10, 50, 100), and using both

Table 2: Performance of the protocol when σ = 2048, λ = 128 and group G = Z*
p where p = 2q + 1 where p and q are primes.

Table 3: Performance of the protocol using [21] of protocol nDelPoExp when σ = 2048, λ = 128 and group G = Z*
p where

p = 2q + 1 where p and q are primes.
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an implementation of the modular exponentiation based on the textbook square-and-multiply algorithm (in

column labelled ‘SM’) and the Python built-in function gmpy2.powmod (in column labelled ‘NoSM’). Con-

clusions from our empirical results in Tables 2 and 3 essentially confirm our conclusions from our analytical

results in Table 1.

5 Delegating Signature Schemes

In this section we show private, secure and efficient delegation schemes for well-known (i.e., ElGamal,

Schnorr and Okamoto’s) signature schemes using the delegation of a product of (fixed-base) exponentiation

for cyclic groups from Section 4. We start the presentation by recalling in Section 5.1 the definition of sig-

nature schemes in the standard (i.e., non-delegated) model. In Section 5.2 we augment this definition so to

additionally take into account eavesdropping and oracle query attacks in the delegated model. Then, in Sec-

tion 5.3 we present a general result that shows how to convert signature schemes in the non-delegatedmodel

into signature schemes in the delegated model by using a suitable delegation protocol. Finally, in Section 5.4

we show delegated ElGamal, Schnorr and Okamoto’s signature schemes by simply showing modification to

the original algorithms where signers and/or verifiers use the delegated protocol for computing a product of

exponentiations. The proof that these modifications result in correct, secure and private delegated signature

schemes directly follows from our general result in Section 5.3.

5.1 Definitions: Signature Schemes in the standard model

We now recall the definition of digital signature schemes in the standard (i.e., non-delegated) model.

Notations and algorithm syntax. An oracle, denoted as O(·), is a function. An oracle algorithm, denoted as

AO(·), is an algorithm that during its computation can repeatedly make a query to the oracle and obtain the

corresponding oracle’s output.

In a signature scheme SS, we consider two types of parties: signers and verifiers, and three algorithms:

a key-generation algorithm KG, a signing algorithm Sign, and a verification algorithm Ver, satisfying the fol-

lowing syntax and requirements.

On input a security parameter 1σ, algorithm KG returns a public key pk and amatching secret key sk. On

input a message m of arbitrary length, algorithm Sign returns a signature sig. On input a putative message

m′, and a putative signature sig′, algorithm Ver returns a bit = 1 (resp., 0) to denote that sig′ is a valid (resp.,

not valid) signature of m′.

Requirements: Correctness and Unforgeability. Informally speaking, the correctness requirement states

that if both signer and verifier correctly run the algorithms, the verifier can recognize the signer’s signature

as valid; and the unforgeability requirement states that no efficient algorithm querying the signature oracle

can produce a message with a valid signature. Formal definitions follow.

Definition 5. We say that SS=(KG,Sign,Ver) satisfies δ-correctness if for any message m ∈ {0, 1}*, it holds

that

Prob
[︀

(pk, sk)← KG(1σ); sig ← Sign(pk, sk,m) : Ver(pk,m, sig) = 1
]︀

≥ δ,

for some δ close to 1.

Definition 6. We say that the signature scheme SS=(KG,Sign,Ver) satisfies existential ϵ-unforgeability under

chosen message attack (briefly, ϵ-cma-EU) if for any efficient oracle algorithm A, it holds that

Prob
[︀

out ← SecExpSS,A(1
σ) : out = 1

]︀

≤ ϵ,

for some ϵ close to 0, where experiment SecExp is detailed below:
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SecExpSS,A(1
σ)

1. (pk, sk)← KG(1σ)

2. (m′, sig′)← ASign(pk,sk,·)(pk)

3. Let Q be the set of message queries made by A to oracle Sign(pk, sk, ·)

4. if m′ ∈ Q or Ver(pk, sk,m′, sig′) = 0 then return: 0

else return: 1.

5.2 Definitions: Delegated Signature Schemes

Given a (non-delegated) signature scheme SS = (KG,Sign,Ver), as defined in Section 5.1, and a delegation

protocol (C, S) for a function F, as defined in Section 3, we now formally define an associated delegated

signature scheme dSS.

Notations and algorithm syntax. We consider three parties: a signer, a verifier, and a server, where during

their computations the signer and/or the verifier may act as clients interacting with the server. Since in this

paper we only use one-round client-server delegation protocols, we first model the server as an oracle that

answers client queries, and then model the signer and verifier’s interactions with the server as calls to the

server oracle.

For each one-round delegation protocol (C, S) for a function F, we define an (F, C, S)-associated server

oracle, denoted as S(desc(F), 1σ , 1λ , ·), as the oracle taking as query input C’smessage in (C, S) and returning

as output the server S’s response to this message according to protocol (C, S).

An oracle signature algorithm, denoted as SignS, is defined as an algorithm with the same syntax as sig-

nature algorithm Sign, but with the additional capability of making queries to an oracle S. Analogously, an

oracle verification algorithm, denoted as VerS, is defined as an algorithmwith the same syntax as a verification

algorithmVer, but with the additional capability of making queries to an oracle S. An oracle signature scheme

is defined as a signature scheme (KG,SignS,VerS) where signature and verification algorithms are actually or-

acle signature and oracle verification algorithms, capable of querying the same oracle S. We then say that an

oracle signature scheme (KG,SignS,VerS) is (F, C, S)-compatible if oracle signing algorithm SignS and oracle

verification algorithm VerS are semantically equivalent to the signature algorithm Sign and the verification

algorithm Ver from SS, in the sense that on the same input, the final output from SignS and Vers is identical

to the output from Sign and Ver, respectively (but in the middle of its computation, SignS and VerS may also

perform queries to S). Finally, we formally define the (SS,F, C, S)-compatible delegated signature scheme dSS

as the tuple (S, KG, SignS, VerS), where S is the (F, C, S)-associated server oracle and (KG,SignS,VerS) is the

(F, C, S)-compatible oracle signature scheme.

In our formal description of the protocols, we will actually separate algorithms SignS and VerifyS into

an offline-phase and online-phase version, for the purpose of minimizing the online complexity; however, to

reduce notation in the description of the model, in this subsection we keep both offline and online version as

a single algorithm.

Requirements: Correctness and Unforgeability. The requirements of correctness and unforgeability for

dSS are also obtained by suitably augmenting those for SS. In the case of correctness, the extension is imme-

diate. In the case of unforgeability, we replace the adversary A’s oracle Sign with two oracles:

1. an augmented oracle dSign(pk, sk, ·) which, on input message m, returns a signature sig as well as

the transcript of any query/answer interaction with the server oracle S performed by Sign during the

generation of sig;

2. the server oracle S(desc(F), 1σ , 1λ , ·), which, on input C’s query message qmesC, returns S’s response

to qmesC in an execution of protocol (C,S).

Note that by giving the adversary access to oracle dSign, we model the adversary’s eavesdropping attacks on

executions of the delegation protocol between a signer (acting as client) and the server, as well as between
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a verifier (acting as client) and the server. Moreover, by giving the adversary access to oracle S, we model

the adversary’s interaction with the server while colluding with a signer or verifier. Formal definitions of

correctness and unforgeability requirements for dSS follow.

Definition 7. Let F bea function, and (C, S) be adelegationprotocol for F, and let S be the (F, C, S)-associated

server oracle. We say that the (SS,F, C, S)-compatible delegated signature scheme dSS = (S, KG, SignS, VerS)

satisfies δ-correctness if for any message m ∈ {0, 1}*, it holds that

Prob
[︁

(pk, sk)← KG(1σ); sig ← SignS(pk, sk,m) : VerS(pk,m, sig) = 1
]︁

≥ δ,

for some δ close to 1.

Definition 8. Let F be a function, and (C, S) be a delegation protocol for F, and let S be the (F, C, S)-

associated server oracle. We say that the (SS,F, C, S)-compatible delegated signature scheme dSS = (S, KG,

SignS, VerS) satisfies existential ϵ-unforgeability under chosen message attack (briefly, ϵ-cma-EU) if for any

efficient oracle algorithm A, it holds that

Prob
[︀

out ← SecExpdSS,A(1
σ) : out = 1

]︀

≤ ϵ,

for some ϵ close to 0, where experiment SecExp is detailed below:

SecExpdSS,A(1
σ)

1. (pk, sk)← KG(1σ)

2. (m′, sig′)← AdSign(pk,sk,·),S(·)(pk)

3. Let Q be the set of message queries made by A to oracle dSign(pk, sk, ·)

4. if m′ ∈ Q or VerS(pk, sk,m′, sig′) = 0 then return: 0

else return: 1.

5.3 Delegated Signature Schemes: a general result

We show the relationship between non-delegated signature schemes, delegation protocols and delegated

signature schemes in the following theorem.

Theorem 9. Let F be a function, and (C, S) be a delegation protocol for F, and let S be the (F, C, S)-

associated server oracle. Also, let SS = (KG,Sign,Ver) be a (non-delegated) signature scheme and let dSS

= (S,KG,SignS,VerS) be the (F, C, S)-compatible delegated signature scheme. If SS satisfies δ-correctness and

ϵ-unforgeability under chosen message attack, then dSS satisfies δ′-correctness and ϵ′-unforgeability under

chosen message attack, for δ′ = δ and ϵ′ = ϵ.

Themain takeaway from Theorem 9 is to provide a shortcut to provably turn a conventional signature scheme

into a delegated signature scheme, as defined in Section 5.2: just design a suitable delegation protocol, as de-

fined in Section 3, for a function F of interest in the computation or verification of a signature. In particular,

the delegated signature scheme comes with protection of the original signature scheme against more power-

ful attacks such as eavesdropping on the delegation protocol messages, and querying the server oracle.

Critical to establish the relationship in the theorem is the delegation protocol’s simulation-based privacy

property. First of all, we observe that the correctness property of the delegated signature scheme directly

follows from the analogue property of the original signature scheme. Then, we show that the unforgeability

of the delegated signature scheme follows by the unforgeability of the non-delegated signature scheme and

the delegation protocol’s simulation-based privacy property. Specifically, assume an adversary A is able to

violate the unforgeability of the delegated signature scheme. One can construct an adversary A′ that violates

the unforgeability of the non-delegated signature scheme, as follows:
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1. A′ runs algorithm A and processes A’s queries as follows

2. When A queries dSign(pk, sk, ·) with message m, A′ does the following:

A′ queries Sign(pk, sk, ·) with message m, thus obtaining signature sig

A′ runs simulator Sim to obtain the transcripts {tr} containing

queries to S and replies from S performed during

the executions of algorithms SignS and VerS

A′ simulates the oracle dSign(pk, sk, ·)’s answer as (sig, {tr})

3. When A queries S(·) with message qmesC, A
′ does the following:

A′ runs S on input query message qmesC thus obtaining answer qansS
A′ simulates the oracle S(·)’s answer as qansS

We note that the simulation-based privacy of the delegation protocol for F implies that the the success of A′

in breaking SS is the same as the success of A in breaking dSS. The theorem follows.

5.4 Delegating ElGamal, Schnorr and Okamoto’s Schemes

In this sectionwe show delegated signature protocols for 3 well-known signature schemes: those by El Gamal

[27], Schnorr [41] andOkamoto [39]. In each case, the delegated signature scheme, denoted as dSS, is obtained

by combining the non-delegated signature scheme, denoted as SS and reviewed in Appendix B, with the del-

egation protocol (C, S) for a product of exponentiations in the associated group, described in Section 4, and

then applying Theorem 9. In all considered non-delegated signature schemes, the online complexity of the

signature generation and verification process is dominated by a product of 2 or 3 fixed-base exponentiations.

In the design of each dSS scheme, we replace each of these products with an execution of protocol (C, S) and

also carefully split the signature and verification computations between offline and online phases of the two

algorithms. For uniformity of presentation andperformance evaluation, both our reviewof the non-delegated

signature scheme in Appendix B and the presentation of our delegated signature schemes in the rest of this

section use as example group G = (Z*
p , · mod p), where p = 2q + 1, for p, q primes. We obtain that with

respect to this group, our delegated schemes improve the online complexity of the signature generation and

verification process by a factor between 30 and 50 over the non-delegated version and by a factor between 2

and 3 over the delegation approach built on [21], as detailed in Table 4.

Table 4: Comparison of the number of C’s online multiplications in non-delegated and delegated versions of signature schemes

in [27, 39, 41], all defined in group G = (Z*
p , · mod p), where p = 2q + 1, and p, q are primes.

Schemes

Fg1 ,...,gm ,q Fg1 ,...,gm ,q

No delegation With delegation

nPoExp fPoExp nDelPoExp Our result

ElGamal 8, 198 2, 394 525 267

Schnorr 8, 193 2, 389 520 262

Okamoto 12, 290 2, 521 780 262

Delegated El Gamal Signature Scheme. Let (C, S) be the client-server protocol from Section 4 for the dele-

gationof the function Fg1 ,g2 ,q computing theproduct of twoexponentiations over groupG. Also, by (Cinv , Sinv)

we denote the client-server protocol from Section 3 of [13] for the delegation of the function computing an in-

verse of an element in Zq. Finally, let H denote a cryptographic hash function. Our delegated version of the

signature scheme in [27] goes as follows.

1. Key generation: Let g be a generator of the q-order subgroup of group G. Randomly choose x ∈

{0, . . . , q − 1} and set y := gx mod p. The public key is (p, q, g, y) and the private key is x.
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2. Offline Signing: on input public key (p, q, g, y) and private key x, choose random k ∈ {0, . . . , q − 1}

such that gcd(k, q) = 1 and set r := (gk mod p) mod q. Output offline signature (r).

3. Online Signing: on input public key (p, q, g, y), private key x, offline signature (r) and a message m,

compute s := k−1(H(m) − xr) mod q and output signature (r, s) if 0 < r < q and 0 < s < q or ⊥

otherwise.

4. Offline Verifying: on input a public key (p, q, g, y), run the offline phase of the delegation protocol (C, S)

with inputs g1 = g and g2 = y, resulting in offline output pp.

5. Online Verifying: on input a public key (p, q, g, y), offline output pp, a message m, and a signature

(r, s)with 0 < r < q and 0 < s < q, run the following instructions. First, compute u = s−1 mod q. Then,

compute x1 = H(m)u mod q and x2 = −ru mod q, query S with inputs g1 = g, g2 = y, x1 and x2, and

use S’s reply to compute the product π. Finally, check that π = r mod p. In a slightly improved version,

we observe that the computation of u could also be delegated using protocol (Cinv , Sinv).

Note that in the scheme the verification algorithm checks whether

gH(m)s
−1

y−rs
−1

= r mod p,

which is equivalent to the check

gH(m) = yrrs mod p

in the original ElGamal’s scheme. We also note that contrarily to the original scheme, in the above there is a

negligible probability (when r = 0 or s = 0) that Sign does not compute a valid signature.

The delegated Schnorr Signature Scheme. Our delegated version of the signature scheme in [41], de-

scribed below, uses a cryptographic hash function H and a client-server protocol (C, S) for the delegation of

function Fg1 ,g2 ,q computing the product of two exponentiations over group G.

1. Key generation: Let g be a generator of the q-order subgroup of group G. Randomly choose x ∈ Zq and

set y := gx mod p. The public key is (G, p, q, g, y) and the private key is x.

2. Offline Signing: on input public key (G, p, q, g, y) and private key x, choose random k ∈ Zq and set

I := gk mod p. Output offline signature I.

3. Online Signing: on input public key (G, p, q, g, y), private key x, offline signature I and a message m,

compute r := H(I,m) and s := rx + k mod q. Output signature (r, s).

4. Offline Verifying: on input a public key (G, p, q, g, y), run the offline phase of the delegation protocol

(C, S) resulting in offline output pp.

5. Online Verifying: on input public key (G, p, q, g, y), a messagem, offline output pp and signature (r, s),

set x1 = s and x2 = −r mod q, query S with inputs g1 = g, g2 = y, x1 and x2, and use S’s reply to

compute the product π. Finally, check that H(π,m) = r mod p.

The Delegated Okamoto Signature Scheme. Our delegated version of the signature scheme in [39], de-

scribed below, uses a cryptographic hash function H and a client-server protocol (C, S) for the delegation of

function Fg1 ,g2 ,g3 ,q, computing the product of three exponentiations over group G.

1. Key generation:Let p = 2q+1where p, q are primes, let g1 and g2 begenerators for the q-order subgroup

of group G, and let t be a sufficiently large integer; e.g., t ≥ 128. Randomly choose s1, s2 ∈ Zq and set

v := g−s11 · g−s22 mod p. The public key is (p, q, g1, g2, t, v) and the private key is (s1, s2).

2. Offline Signing: on input public key (p, q, g1, g2, t, v) and private key (s1, s2), choose random r1, r2 ∈

Zq, set x := gr11 · gr22 mod p and output offline signature x.

3. Online Signing: on input public key (p, q, g1, g2, t, v) and private key (s1, s2), offline signature x and

a message m, compute e := H(x,m) ∈ Z2t , followed by (y1, y2) such that y1 = r1 + es1 mod q and

y2 = r2 + es2 mod q. Output signature (e, y1, y2).

4. OfflineVerifying:on input apublic key (p, q, g1, g2, t, v), run the offlinephase of thedelegationprotocol

(C, S) resulting in offline output pp.
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5. Online Verifying: on input a public key (p, q, g1, g2, t, v), offline output pp, amessagem, and signature

(e, y1, y2), set x1 = y1, x2 = y2, x3 = e, query S with inputs g1, g2 and g3 = v, and use S’s reply to

compute the product π. Finally, check that H(π,m) = e mod p.

6 Conclusions

We considered the problem of delegating the computation of a product of group exponentiations to a single,

possibly malicious, server. We solved this problem by showing a protocol that provably satisfies formal cor-

rectness, privacy, security and efficiency requirements, in a large class of cyclic groups; specifically, cyclic

groups whose multiplication and inverse operations can be efficiently computed, and which admit an effi-

ciently verifiable protocol to prove that an element is in the group. The considered class of cyclic groups

includes groups often discussed in cryptography literature, such as prime-order subgroups in Zp and elliptic

curve groups.

As an application, we showed the first private, secure and efficient delegated (to a single, possibly mali-

cious, server) versions of an entire cryptographic scheme. Previous research only achieved these properties

for delegation of a single operation in a scheme’s algorithm. Specifically, we showed delegated versions of

well-known signature schemes whose most expensive computations could be rephrased as products of expo-

nentiations over cyclic groups. This implies that in any delegated model of computation, certain well-known

signature schemes can be run with improvements of 1-2 orders of magnitude in the online runtime for the

entire signature generation and verification process.

Moreover, we believe that our methods provide hope towards private, secure and efficient delegation of

more complex cryptographic protocols to a single, possibly malicious, server.
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A Delegation of a Single Fixed-Base Exponentiation

Let (G, *) be a cyclic group having order q, efficient operation, efficiently computable inverses, and an effi-

ciently verifiable membership protocol, denoted as (mProve, mVerify). Let g be a generator for G, and denote

as y = gx a (fixed-base) exponentiation (in G). Let Zq = {0, 1, . . . , q − 1}, and let Fg,q : (Zq × ... × Zq) → G

denote the function that maps to each x ∈ Zq a fixed-base exponentiations (in G). By desc(Fg,q) we denote

a conventional description of the function Fg,q that includes its semantic meaning as well as generator g,

order q and the efficient algorithms computing multiplication and inverses in G. The delegation protocol for

a single fixed-base exponentiation in G was formally defined in [21] as follows.

Input to S: 1σ , 1λ, desc(Fg,q)

Input to C: 1σ , 1λ, desc(Fg,q), x ∈ Zq

Offline phase instructions:

1. Randomly choose ui ∈ Zq, for i = 0, 1

2. Set vi = gui and store (ui , vi) on C, for i = 0, 1

Online phase instructions:

1. C randomly chooses b ∈ {1, . . . , 2λ}

C sets z0 := (x − u0) mod q, z1 := (b · x + u1) mod q

C sends z0, z1 to S

2. S computes wi := gzi and πi :=mProve(wi), for i = 0, 1

S sends w0, w1, π0, π1 to C

3. If x = 0

C returns: y = 1 and the protocol halts

if mVerify(wi , πi) = 0 for some i ∈ {0, 1}, then

C returns:⊥ and the protocol halts

C computes y := w0 * v0
C checks that

y = ̸ 1, also called the ‘distinctness test’

w1 = yb * v1, also called the ‘probabilistic test’

mVerify(w0, π0) = mVerify(w1, π1) = 1,

also called the ‘membership test’

if any one of these tests is not satisfied then

C returns:⊥ and the protocol halts

C returns: y
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B Non-Delegated Signature Schemes

We review non-delegated signature schemes from [27, 39, 41], all defined using group G = (Zp , · mod p),

where p = 2q+1, for p, q primes.We note that G has a q-order subgroupwith an easily computable generator

(e.g., any quadratic residue modulo p different than 1).

B.1 ElGamal Signature Scheme

The signature scheme from [27] can be defined over group G, and using a cryptographic hash function H, as

follows.

1. Key generation: Randomly choose primes p, q such that p = 2q + 1 and a generator g for the q-order

subgroup of group G = (Zp , · mod p). Randomly choose x ∈ {0, . . . , q − 1} and set y := gx mod p.

The public key is (p, q, g, y) and the private key is x.

2. Signing: on input private key x and a message m, randomly choose k ∈ {1, . . . , q − 1}, set r := gk

mod p and compute s := k−1(H(m) − xr) mod q. If s = 0 then start again. Output signature (r, s).

3. Verifying: on input a public key (p, q, g, y), a message m, and signature (r, s) with 0 < r < q and

0 < s < q, only accept the signature if

gH(m) = yrrs mod p.

B.2 The Schnorr Signature Scheme

The signature scheme [41] can be defined over groupG, andusing a cryptographic hash functionH, as follows.

1. Key generation: Randomly choose primes p, q such that p = 2q + 1 and a generator g for the q-order

subgroup of group G = (Zp , · mod p). Randomly choose x ∈ Zq and set y := gx mod p. The public

key is (p, q, g, y) and the private key is x.

2. Signing: on input private key x, public key (p, q, g, y) and a message m, randomly choose k ∈ Zq and

compute I := gk mod p, r := H(I,m) and s := rx + k mod q. Output signature (r, s).

3. Verifying: on input a public key (p, q, g, y), a message m, and signature (r, s), compute I := gs · y−r

mod p and only accept the signature if

H(I,m) = r.

B.3 The Okamoto Signature Scheme

The signature scheme from [39] can be defined over group G, , and using a cryptographic hash function H, as

follows.

1. Key generation: Randomly choose primes p, q such that p = 2q + 1 and two generators g1, g2 for

the q-order subgroup of group G = (Zp , · mod p). Also, let λ be a statistical parameter; e.g., λ = 128.

Randomly choose s1, s2 ∈ Zq and set v := g−s11 · g−s22 mod p. The public key is (p, q, g1, g2, 1
λ , v) and

the private key is (s1, s2).

2. Signing: on input private key (s1, s2) and a message m, randomly choose r1, r2 ∈ Zq and compute

x := gr11 · gr22 mod p, e := H(x,m) ∈ Z2t , y1 = r1 + es1 mod q and y2 = r2 + es2 mod q. Output

signature (e, y1, y2).

3. Verifying: on input a public key (p, q, g1, g2, t, v), a message m, and signature (e, y1, y2), compute

x := gy11 · gy22 · ve mod p and only accept the signature if

H(x,m) = e.
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