
This is a repository copy of Synthesizing benchmarks for predictive modeling.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/151221/

Version: Accepted Version

Proceedings Paper:
Cummins, C, Petoumenos, P, Wang, Z orcid.org/0000-0001-6157-0662 et al. (1 more
author) (2017) Synthesizing benchmarks for predictive modeling. In: Proceedings of the
2017 IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
CGO 2017, 04-08 Feb 2017, Austin, Texas, USA. IEEE , pp. 86-99. ISBN
978-1-5090-4931-8

https://doi.org/10.1109/CGO.2017.7863731

© 2017, IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

C
o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *

E
valuated

*
C
G
O
*

A
rt ifact *

A
E
C

Synthesizing Benchmarks for Predictive Modeling

Chris Cummins

Pavlos Petoumenos

University of Edinburgh, UK

{c.cummins,ppetoume}@inf.ed.ac.uk

Zheng Wang

Lancaster University, UK

z.wang@lancaster.ac.uk

Hugh Leather

University of Edinburgh, UK

hleather@inf.ed.ac.uk

Abstract

Predictive modeling using machine learning is an effective

method for building compiler heuristics, but there is a short-

age of benchmarks. Typical machine learning experiments

outside of the compilation field train over thousands or mil-

lions of examples. In machine learning for compilers, how-

ever, there are typically only a few dozen common bench-

marks available. This limits the quality of learned models,

as they have very sparse training data for what are often

high-dimensional feature spaces. What is needed is a way

to generate an unbounded number of training programs that

finely cover the feature space. At the same time the generated

programs must be similar to the types of programs that human

developers actually write, otherwise the learning will target

the wrong parts of the feature space.

We mine open source repositories for program fragments

and apply deep learning techniques to automatically con-

struct models for how humans write programs. We sample

these models to generate an unbounded number of runnable

training programs. The quality of the programs is such that

even human developers struggle to distinguish our generated

programs from hand-written code.

We use our generator for OpenCL programs, CLgen, to

automatically synthesize thousands of programs and show

that learning over these improves the performance of a

state of the art predictive model by 1.27×. In addition, the

fine covering of the feature space automatically exposes

weaknesses in the feature design which are invisible with

the sparse training examples from existing benchmark suites.

Correcting these weaknesses further increases performance

by 4.30×.

Categories and Subject Descriptors D.3.4 [Program-

ming Languages]: Processors—code generation, compilers,

optimization

Keywords Synthetic program generation, OpenCL, Bench-

marking, Deep Learning, GPUs

1. Introduction

Predictive modeling is a well researched method for building

optimization heuristics that often exceed human experts and

Ad-hoc

Drivers

clsmithclsmithDatasets

clsmithclsmithTraining

Programs
Feature

Extractor

clsmithclsmithTraining

Data
Predictive

Model

Parameters

Features

Performance

measurements

Figure 1. Training a predictive model.

reduces development time [1–11]. Figure 1 shows the process

by which these models are trained. A set of training programs

are identified which are expected to be representative of the

application domain. The programs are compiled and executed

with different parameter values for the target heuristic, to de-

termine which are the best values for each training program.

Each program is also summarized by a vector of features

which describe the information that is expected to be impor-

tant in predicting the best heuristic parameter values. These

training examples of program features and desired heuristic

values are used to create a machine learning model which,

when given the features from a new, unseen program, can

predict good heuristic values for it.

It is common for feature vectors to contain dozens of

elements. This means that a large volume of training data is

needed to have an adequate sampling over the feature space.

Without it, the machine learned models can only capture

the coarse characteristics of the heuristic, and new programs

which do not lie near to training points may be wrongly

predicted. The accuracy of the machine learned heuristic is

thus limited by the sparsity of the training points.

There have been efforts to solve this problem using tem-

plates. The essence of the approach is to construct a prob-

abilistic grammar with embedded semantic actions that de-

fines a language of possible programs. New programs may be

created by sampling the grammar and, through setting proba-

bilities on the grammar productions, the sampling is biased

towards producing programs from one part of the space or an-

other. This technique is potentially completely general, since

a grammar can theoretically be constructed to match any de-

sired program domain. However, despite being theoretically

possible, it is not easy to construct grammars which are both

suitably general and also produce programs that are in any

way similar to human written programs. It has been shown to

be successful over a highly restricted space of stencil bench-

marks with little control flow or program variability [4, 8].

But, it is not clear how much effort it will take, or even if it

is possible for human experts to define grammars capable of

producing human like programs in more complex domains.

By contrast, our approach does not require an expert to

define what human programs look like. Instead, we automat-

ically infer the structure and likelihood of programs over a

huge corpus of open source projects. From this corpus, we

learn a probability distribution over sets of characters seen

in human written code. Later, we sample from this distribu-

tion to generate new random programs which, because the

distribution models human written code, are indistinguish-

able from human code. We can then populate our training

data with an unbounded number of human like programs,

covering the space far more finely than either existing bench-

mark suites or even the corpus of open source projects. Our

approach is enabled by two recent developments:

The first is the breakthrough effectiveness of deep learning

for modeling complex structure in natural languages [12, 13].

As we show, deep learning is capable not just of learning the

macro syntactical and semantic structure of programs, but

also the nuances of how humans typically write code. It is

truly remarkable when one considers that it is given no prior

knowledge of the syntax or semantics of the language.

The second is the increasing popularity of public and open

platforms for hosting software projects and source code. This

popularity furnishes us with the thousands of programming

examples that are necessary to feed into the deep learning.

These open source examples are not, sadly, as useful for

directly learning the compiler heuristics since they are not

presented in a uniform, runnable manner, nor do they typically

have extractable test data. Preparing each of the thousands

of open source projects to be directly applicable for learning

compiler heuristics would be an insurmountable task. In

addition to our program generator, CLgen, we also provide

an accompanying host driver which generates datasets for,

then executes and profiles synthesized programs.

We make the following contributions:

• We are the first to apply deep learning over source codes

to synthesize compilable, executable benchmarks.

• A novel tool CLgen1 for general-purpose benchmark

synthesis using deep learning. CLgen automatically and

rapidly generates thousands of human like programs for

use in predictive modeling.

• We use CLgen to automatically improve the performance

of a state of the art predictive model by 1.27×, and expose

limitations in the feature design of the model which, after

correcting, further increases performance by 4.30×.

1https://github.com/ChrisCummins/clgen

R
o
d
in

ia

N
V

ID
IA

 S
D

K

A
M

D
 S

D
K

P
a
rb

o
il

N
A

S

P
o
ly

b
e
n
c
h

S
H

O
C

A
d
-h

o
c

IS
P

A
S

S

P
lo

y
b
e
n
c
h

L
o
n
e
s
ta

r

S
P

E
C

-V
ie

w
p
e
rf

M
A

R
S

G
P

G
P

U
s
im

0

1

2

3

4

5

6

7

#
.
b
e
n
c
h
m

a
rk

s
 u

s
e
d

Figure 2. The average number of benchmarks used in

GPGPU research papers, organized by origin. In this work

we use the seven most popular benchmark suites.

2. Motivation

In this section we make the argument for synthetic bench-

marks. We identified frequently used benchmark suites in a

survey of 25 research papers in the field of GPGPU perfor-

mance tuning from four top tier conferences between 2013–

2016: CGO, HiPC, PACT, and PPoPP. We found the average

number of benchmarks used in each paper to be 17, and that

a small pool of benchmarks suites account for the majority of

results, shown in Figure 2. We selected the 7 most frequently

used benchmark suites (accounting for 92% of results), and

evaluated the performance of the state of the art Grewe et

al. [14] predictive model across each. The model predicts

whether running a given OpenCL kernel on the GPU gives

better performance than on the CPU. We describe the full

experimental methodology in Section 7.

Table 1 summarizes our results. The performance of a

model trained on one benchmark suite and used to predict the

mapping for another suite is generally very poor. The bench-

mark suite which provides the best results, NVIDIA SDK,

achieves on average only 49% of the optimal performance.

The worst case is when training with Parboil to predict the

optimal mappings for Polybench, where the model achieves

only 11.5% of the optimal performance. From this it is clear

that heuristics learned on one benchmark suite fail to general-

ize across other suites.

This problem is caused both by the limited number of

benchmarks contained in each suite, and the distribution of

benchmarks within the feature space. Figure 3 shows the fea-

ture space of the Parboil benchmark suite, showing whether,

for each benchmark, the model was able to correctly predict

the appropriate optimization. We used Principle Component

Analysis to reduce the multi-dimensional feature space to aid

visualization.

As we see in Figure 3a, there is a dense cluster of neigh-

boring benchmarks, a smaller cluster of three benchmarks,

and two outliers. The lack of neighboring observations means

that the model is unable to learn a good heuristic for the two

outliers, which leads to them being incorrectly optimized. In

AMD NPB NVIDIA Parboil Polybench Rodinia SHOC

AMD - 38.0% 74.5% 76.7% 21.7% 45.8% 35.9%

NPB 22.7% - 45.3% 36.7% 13.4% 16.1% 23.7%

NVIDIA 29.9% 37.9% - 21.8% 78.3% 18.1% 63.2%

Parboil 89.2% 28.2% 28.2% - 41.3% 73.0% 33.8%

Polybench 58.6% 30.8% 45.3% 11.5% - 43.9% 12.1%

Rodinia 39.8% 36.4% 29.7% 36.5% 46.1% - 59.9%

SHOC 42.9% 71.5% 74.1% 41.4% 35.7% 81.0% -

Table 1. Performance relative to the optimal of the Grewe et al. predictive model across different benchmark suites on an AMD

GPU. The columns show the suite used for training; the rows show the suite used for testing.

Principle Component 1 →

P
ri
n
c
ip

le
 C

o
m

p
o
n
e
n
t
2
 → Correct

Incorrect

(a)

Principle Component 1 →

P
ri
n
c
ip

le
 C

o
m

p
o
n
e
n
t
2
 → Correct

Incorrect

Additional

(b)

Figure 3. A two dimensional projection of the Grewe et al.

feature space, showing predictive model results over Parboil

benchmarks on an NVIDIA GPU. Two outliers in (a) are

incorrectly predicted due to the lack of nearby observations.

The addition of neighboring observations in (b) corrects this.

Figure 3b, we hand-selected benchmarks which are neigh-

bouring in the feature space and retrained the model. The

addition of these observations (and the information they pro-

vide about that part of the feature space) causes the two

outliers to be correctly optimized. We found such outliers in

all of the benchmark suites of Table 1.

These results highlight the significant effect that the num-

ber and distribution of training programs has on the quality

of predictive models. Without good coverage of the feature

space, any machine learning methodology is unlikely to pro-

duce high quality heuristics, suitable for general use on ar-

bitrary real applications, or even applications from different

benchmark suites. Our novel approach, described in the next

section, solves this problem by generating an unbounded

number of programs to cover the feature space with fine

granularity.

3. Overview of Our Approach

In this paper we present CLgen, a tool for synthesizing

OpenCL benchmarks, and an accompanying host driver for

executing synthetic benchmarks for gathering performance

data for predictive modeling. While we demonstrate our

approach using OpenCL, it is language agnostic. Our tool

CLgen learns the semantics and structure from over a million

lines of hand-written code from GitHub, and synthesizes

programs through a process of iterative model sampling.

CLgen

Host Driver

Language

Corpus

GitHub

Software

Repositories

clsmithclsmithContent Files Rejection

Filter

Search

engine

Code

Rewriter

Model

parameters

Rejection

Filter

LSTM network

Synthesizer

Synthesis

parameters

Argument

Extractor
Benchmark

parameters

clsmithclsmithSynthesized

Benchmarks

Benchmark

Driver

clsmithclsmithSynthesized

Payloads

clsmithclsmithPerformance

Results

Dynamic

Checker

Figure 4. Benchmark synthesis and execution pipeline.

We use a host driver to execute the synthesized programs

to gather performance data for use in predictive modeling.

Figure 4 provides an overview of the program synthesis and

execution pipeline. Our approach extends the state of the

art by providing a general-purpose solution for benchmark

synthesis, leading to better and more accurate predictive

models.

In the course of evaluating our technique against prior

work we discovered that it is also useful for evaluating the

quality of features. Since we are able to cover the space

so much more finely than the prior work, which only used

standard benchmark suites, we are able to find multiple

programs with identical feature values but different best

heuristic values. This indicates that the features are not

sufficiently discriminative and should be extended with more

information to allow those programs to be separated. We

go on to show that doing this significantly increases the

performance of the learned heuristics. We expect that our

technique will be valuable for feature designers.

4. CLgen: Benchmark Synthesis

CLgen is an undirected, general-purpose program synthesizer

for OpenCL. It adopts and augments recent advanced tech-

niques from deep learning to learn over massive codebases. In

contrast to existing grammar and template based approaches,

CLgen is entirely probabilistic. The system learns to program

using neural networks which model the semantics and usage

of a huge corpus of code fragments in the target programming

language. This section describes the assembly of an OpenCL

language corpus, the application of deep learning over this

corpus, and the process of synthesizing programs.

4.1 An OpenCL Language Corpus

Deep learning requires large datasets [15]. For the purpose of

modeling a programming language, this means assembling a

very large collection of real, hand-written source codes. We

assembled OpenCL codes by mining public repositories on

the popular code hosting site GitHub.

This is itself a challenging task since OpenCL is an

embedded language, meaning device code is often difficult

to untangle since GitHub does not presently recognize it as

a searchable programming language. We developed a search

engine which attempts to identify and download standalone

OpenCL files through a process of file scraping and recursive

header inlining. The result is a 2.8 million line dataset of

8078 “content files” which potentially contain OpenCL code,

originating from 793 GitHub repositories.

We prune the raw dataset extracted from GitHub using

a custom toolchain we developed for rejection filtering and

code rewriting, built on LLVM.

Rejection Filter The rejection filter accepts as input a

content file and returns whether or not it contains compilable,

executable OpenCL code. To do this we attempt to compile

the input to NVIDIA PTX bytecode and perform static

analysis to ensure a minimum static instruction count of three.

We discard any inputs which do not compile or contain fewer

than three instructions.

During initial development it became apparent that isolat-

ing the OpenCL device code leads to a higher-than-expected

discard rate (that is, seemingly valid OpenCL files being

rejected). Through analyzing 148k lines of compilation er-

rors, we discovered a large number of failures caused by

undeclared identifiers — a result of isolating device code

— 50% of undeclared identifier errors in the GitHub dataset

were caused by only 60 unique identifiers. To address this,

we developed a shim header which contains inferred values

for common type definitions (e.g. FLOAT_T), and common

constants (e.g. WGSIZE), shown in Listing 1.

Injecting the shim decreases the discard rate from 40%

to 32%, responsible for an additional 88k lines of code in

the final language corpus. The resulting dataset is 2.0 million

lines of compilable OpenCL source code.

1 / * Enable OpenCL f e a t u r e s * /

2 # d e f i n e c l _ c l a n g _ s t o r a g e _ c l a s s _ s p e c i f i e r s

3 # d e f i n e c l _ k h r _ f p 6 4

4 # i n c l u d e < c l c / c l c . h>

5

6 / * I n f e r r e d t y p e s * /

7 t y p e d e f f l o a t FLOAT_T ;

8 t y p e d e f unsigned i n t INDEX_TYPE ;

. . . (36 more)

9

10 / * I n f e r r e d c o n s t a n t s * /

11 # d e f i n e M_PI 3 .14025

12 # d e f i n e WG_SIZE 128

. . . (185 more)

Listing 1. The shim header file, providing inferred type

aliases and constants for OpenCL on GitHub.

Code Rewriter Programming languages have few of the

issues of semantic interpretation present in natural language,

though there remains many sources of variance at the syntac-

tic level. For example, the presence and content of comments

in code, and the choice of identifying names given to vari-

ables. We consider these ambiguities to be non-functional

variance, and developed a tool to normalize code of these

variances so as to make the code more amenable to machine

learning. This is a three step process:

1. The source is pre-processed to remove macros, conditional

compilation, and source comments.

2. Identifiers are rewritten to have a short but unique name

based on their order of appearance, using the sequential

series {a, b, c, . . . , aa, ab, ac, . . .} for variables and {A,
B,C, . . . , AA,AB,AC, . . .} for functions. This process

isolates the syntactic structure of the code, and unlike prior

work [16], our rewrite method preserves program behavior.

Language built-ins (e.g. get_global_id, asin) are not

rewritten.

3. A variant of the Google C++ code style is enforced to

ensure consistent use of braces, parentheses, and white

space.

An example of the code rewriting process is shown in Figure 5.

A side effect of this process is a reduction in code size,

largely due to the removal of comments and excess white

space. The final language corpus contains 1.3 million lines

of transformed OpenCL, consisting of 9487 kernel functions.

Identifier rewriting reduces the bag-of-words vocabulary size

by 84%.

4.2 Learning OpenCL

Generating valid, executable program code is an ambitious

and challenging goal for unsupervised machine learning. We

employ state of the art deep language modeling techniques to

achieve this task.

We use the Long Short-Term Memory (LSTM) architec-

ture of Recurrent Neural Network [17, 18] to learn a character-

level language model over the corpus of OpenCL compute

kernels. The LSTM network architecture comprises recurrent

1 # d e f i n e DTYPE f l o a t

2 # d e f i n e ALPHA(a) 3 . 5 f * a

3 i n l i n e DTYPE ax (DTYPE x) { re turn ALPHA(x) ; }

4

5 _ _ k e r n e l void saxpy (/ * SAXPY k e r n e l * /

6 _ _ g l o b a l DTYPE * i n p u t 1 ,

7 _ _ g l o b a l DTYPE * i n p u t 2 ,

8 c o n s t i n t nelem)

9 {

10 unsigned i n t i d x = g e t _ g l o b a l _ i d (0) ;

11 / / = ax + y

12 i f (i d x < nelem) {

13 i n p u t 2 [i d x] += ax (i n p u t 1 [i d x]) ; }}

(a) Example content file

1 i n l i n e f l o a t A(f l o a t a) {

2 re turn 3 . 5 f * a ;

3 }

4

5 _ _ k e r n e l void B(_ _ g l o b a l f l o a t * b , _ _ g l o b a l f l o a t * c ,

→֒ c o n s t i n t d) {

6 unsigned i n t e = g e t _ g l o b a l _ i d (0) ;

7

8 i f (e < d) {

9 c [e] += A(b [e]) ;

10 }

11 }

(b) Content file after code rewriting

Figure 5. The code rewriting process, which transforms code

to make it more amenable to language modeling.

layers of memory cells, each consisting of an input, output,

and forget gate, and an output layer providing normalized

probability values from a 1-of-K coded vocabulary [19].

We use a 3-layer LSTM network with 2048 nodes per layer,

implemented in Torch. We train this 17-million parameter

model using Stochastic Gradient Descent for 50 epochs,

using an initial learning rate of 0.002, decaying by a factor

of one half every 5 epochs. Training took three weeks on a

single machine using an NVIDIA GTX Titan, with a final

model size of 648MB. Training the network is a one-off cost,

and can be parallelized across devices. The trained network

can be deployed to lower-compute machines for use.

4.3 Synthesizing OpenCL

We synthesize OpenCL compute kernels by iteratively sam-

pling the learned language model. We implemented two

modes for model sampling: the first involves providing an ar-

gument specification, stating the data types and modifiers of

all kernel arguments. When an argument specification is pro-

vided, the model synthesizes kernels matching this signature.

In the second sampling mode this argument specification is

omitted, allowing the model to synthesize compute kernels of

arbitrary signatures, dictated by the distribution of argument

types within the language corpus.

In either mode we generate a seed text, and sample the

model, character by character, until the end of the compute

kernel is reached, or until a predetermined maximum number

of characters is reached. Algorithm 1 illustrates this process.

Algorithm 1 Sampling a candidate kernel from a seed text.

Require: LSTM model M , maximum kernel length n.

Ensure: Completed sample string S.

1: S ←“__kernel void A(const int a) {” Seed text

2: d← 1 Initial code block depth

3: for i← |S| to n do

4: c← predictcharacter(M,S) Generate new character

5: if c =“{” then

6: d← d+ 1 Entered code block, increase depth

7: else if c =“}” then

8: d← d− 1 Exited code block, decrease depth

9: end if

10: S ← S + c Append new character

11: if depth = 0 then

12: break Exited function block, stop sampling

13: end if

14: end for

The same rejection filter described in Section 4.1 then either

accepts or rejects the sample as a candidate synthetic bench-

mark. Listing 6 shows three examples of unique compute

kernels generated in this manner from an argument specifi-

cation of three single-precision floating-point arrays and a

read-only signed integer. We evaluate the quality of synthe-

sized code in Section 6.

5. Benchmark Execution

We developed a host driver to gather performance data from

synthesized CLgen code. The driver accepts as input an

OpenCL kernel, generates payloads of user-configurable

sizes, and executes the kernel using the generated payloads,

providing dynamic checking of kernel behavior.

5.1 Generating Payloads

A payload encapsulates all of the arguments of an OpenCL

compute kernel. After parsing the input kernel to derive

argument types, a rule-based approach is used to generate

synthetic payloads. For a given global size Sg: host buffers

of Sg elements are allocated and populated with random

values for global pointer arguments, device-only buffers

of Sg elements are allocated for local pointer arguments,

integral arguments are given the value Sg , and all other scalar

arguments are given random values. Host to device data

transfers are enqueued for all non-write-only global buffers,

and all non-read-only global buffers are transferred back to

the host after kernel execution.

5.2 Dynamic Checker

For the purpose of performance benchmarking we are not

interested in the correctness of computed values, but we

define a class of programs as performing useful work if they

predictably compute some result. We devised a low-overhead

runtime behavior check to validate that a synthesized program

does useful work based on the outcome of four executions of

a tested program:

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,

2 _ _ g l o b a l f l o a t * b ,

3 _ _ g l o b a l f l o a t * c ,

4 c o n s t i n t d) {

5 i n t e = g e t _ g l o b a l _ i d (0) ;

6 f l o a t f = 0 . 0 ;

7 f o r (i n t g = 0 ; g < d ; g ++) {

8 c [g] = 0 . 0 f ;

9 }

10 b a r r i e r (1) ;

11

12 a [g e t _ g l o b a l _ i d (0)] = 2*b [g e t _ g l o b a l _ i d (0)] ;

13 }

(a) Vector operation with branching and synchronization.

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,

2 _ _ g l o b a l f l o a t * b ,

3 _ _ g l o b a l f l o a t * c ,

4 c o n s t i n t d) {

5 i n t e = g e t _ g l o b a l _ i d (0) ;

6 i f (e >= d) {

7 re turn ;

8 }

9 c [e] = a [e] + b [e] + 2 * a [e] + b [e] + 4 ;

10 }

(b) Zip operation which computes ci = 3ai + 2bi + 4.

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,

2 _ _ g l o b a l f l o a t * b ,

3 _ _ g l o b a l f l o a t * c ,

4 c o n s t i n t d) {

5 unsigned i n t e = g e t _ g l o b a l _ i d (0) ;

6 f l o a t 1 6 f = (f l o a t 1 6) (0 . 0) ;

7 f o r (unsigned i n t g = 0 ; g < d ; g ++) {

8 f l o a t 1 6 h = a [g] ;

9 f . s0 += h . s0 ;

10 f . s1 += h . s1 ;

11 f . s2 += h . s2 ;

12 f . s3 += h . s3 ;

13 f . s4 += h . s4 ;

14 f . s5 += h . s5 ;

15 f . s6 += h . s6 ;

16 f . s7 += h . s7 ;

17 f . s8 += h . s8 ;

18 f . s9 += h . s9 ;

19 f . sA += h . sA ;

20 f . sB += h . sB ;

21 f . sC += h . sC ;

22 f . sD += h . sD ;

23 f . sE += h . sE ;

24 f . sF += h . sF ;

25 }

26 b [e] = f . s0 + f . s1 + f . s2 + f . s3 + f . s4 + f . s5 +

→֒ f . s6 + f . s7 + f . s8 + f . s9 + f . sA + f . sB +

→֒ f . sC + f . sD + f . sE + f . sF ;

27 }

(c) Partial reduction over reinterpreted vector type.

Figure 6. Compute kernels synthesized with CLgen. All

three kernel were synthesized from the same argument spec-

ification: three single-precision floating-point arrays and a

read-only signed integer.

1. Create 4 equal size payloads A1in, B1in, A2in, B2in,

subject to restrictions: A1in = A2in, B1in = B2in,

A1in 6= B1in.

2. Execute kernel k 4 times: k(A1in) → A1out, k(B1in) →
B1out, k(A2in) → A2out, k(B2in) → B2out.

3. Assert:

• A1out 6= A1in and B1out 6= B1in, else k has no output

(for these inputs).

• A1out 6= B1out and A2out 6= B2out, else k is input

insensitive t (for these inputs).

• A1out = A2out and B1out = B2out, else k is non-

deterministic.

Equality checks for floating point values are performed with

an appropriate epsilon to accommodate rounding errors, and

a timeout threshold is also used to catch kernels which are

non-terminating. Our method is based on random differential

testing [20], though we emphasize that this is not a general

purpose approach and is tailored specifically for our use

case. For example, we anticipate a false positive rate for

kernels with subtle sources of non-determinism which more

thorough methods may expose [21–23], however we deemed

such methods unnecessary for our purpose of performance

modeling.

6. Evaluation of Synthetic Programs

In this section we evaluate the quality of programs synthe-

sized by CLgen by their likeness to hand-written code, and

discuss limitations of the synthesis and execution pipeline.

6.1 Likeness to Hand-written Code

Judging whether a piece of code has been written by a

human is a challenging task for a machine, so we adopt a

methodology from machine learning research based on the

Turing Test [24–26]. We reason that if the output of CLgen

is human like code, then a human judge will be unable to

distinguish it from hand-written code.

We devised a double blind test in which 15 volunteer

OpenCL developers from industry and academia were shown

10 OpenCL kernels each. Participants were tasked with

judging whether, for each kernel, they believed it to have

been written by hand or by machine. Kernels were randomly

selected for each participant from two equal sized pools of

synthetically generated and hand-written code from GitHub.

We applied the code rewriting process to all kernels to

remove comments and ensure uniform identifier naming. The

participants were divided into two groups, with 10 of them

receiving code generated by CLgen, and 5 of them acting as

a control group, receiving code generated by CLSmith [27],

a program generator for differential testing1.

We scored each participant’s answers, finding the average

score of the control group to be 96% (stdev. 9%), an unsurpris-

1An online version of this test is available at http://humanorrobot.uk/.

Raw Code Features

comp static #. compute operations

mem static #. accesses to global memory

localmem static #. accesses to local memory

coalesced static #. coalesced memory accesses

transfer dynamic size of data transfers

wgsize dynamic #. work-items per kernel

(a) Individual code features

Combined Code Features

F1: transfer/(comp+mem) commun.-computation ratio

F2: coalesced/mem % coalesced memory accesses

F3: (localmem/mem)×wgsize ratio local to global mem accesses

× #. work-items

F4: comp/mem computation-mem ratio

(b) Combinations of raw features

Table 2. Grewe et al. model features.

ing outcome as generated programs for testing have multiple

“tells”, for example, their only input is a single ulong pointer.

There were no false positives (synthetic code labeled human)

for CLSmith, only false negatives (human code labeled syn-

thetic). With CLgen synthesized programs, the average score

was 52% (stdev. 17%), and the ratio of errors was even. This

suggests that CLgen code is indistinguishable from hand-

written programs, with human judges scoring no better than

random chance.

6.2 Limitations

Our new approach enables the synthesis of more human-like

programs than current state of the art program generators,

and without the expert guidance required by template based

generators, but it has limitations. Our method of seeding the

language models with the start of a function means that we

cannot support user defined types, or calls to user-defined

functions. This means that we only consider scalars and ar-

rays as inputs; while 6 (2.3%) of the benchmark kernels from

Table 3 use irregular data types as inputs. We will address

this limitation through recursive program synthesis, whereby

a call to a user-defined function or unrecognized type will

trigger candidate functions and type definitions to be synthe-

sized. Currently we only run single-kernel benchmarks. We

will extend the host driver to explore multi-kernel schedules

and interleaving of kernel executions. Our host driver gener-

ates datasets from uniform random distributions, as do many

of the benchmark suites. For cases where non-uniform in-

puts are required (e.g. profile-directed feedback), an alternate

methodology for generating inputs must be adopted.

7. Experimental Methodology

7.1 Experimental Setup

Predictive Model We reproduce the predictive model from

Grewe, Wang, and O’Boyle [14]. The predictive model is

used to determine the optimal mapping of a given OpenCL

kernel to either a GPU or CPU. It uses supervised learning

to construct a decision tree with a combination of static and

Version #. benchmarks #. kernels

NPB (SNU [29]) 1.0.3 7 114

Rodinia [30] 3.1 14 31

NVIDIA SDK 4.2 6 12

AMD SDK 3.0 12 16

Parboil [31] 0.2 6 8

PolyBench [32] 1.0 14 27

SHOC [33] 1.1.5 12 48

Total - 71 256

Table 3. List of benchmarks.

Intel CPU AMD GPU NVIDIA GPU

Model Core i7-3820 Tahiti 7970 GTX 970

Frequency 3.6 GHz 1000 MHz 1050 MHz

#. Cores 4 2048 1664

Memory 8 GB 3 GB 4 GB

Throughput 105 GFLOPS 3.79 TFLOPS 3.90 TFLOPS

Driver AMD 1526.3 AMD 1526.3 NVIDIA 361.42

Compiler GCC 4.7.2 GCC 4.7.2 GCC 5.4.0

Table 4. Experimental platforms.

dynamic kernel features extracted from source code and the

OpenCL runtime, detailed in Table 2b.

Benchmarks As in [14], we test our model on the NAS

Parallel Benchmarks (NPB) [28]. We use the hand-optimized

OpenCL implementation of Seo, Jo, and Lee [29]. In [14]

the authors augment the training set of the predictive model

with 47 additional kernels taken from 4 GPGPU benchmark

suites. To more fully sample the program space, we use

a much larger collection of 142 programs, summarized in

Table 3. These additional programs are taken from all 7

of the most frequently used benchmark suites identified in

Section 2. None of these programs were used to train CLgen.

We synthesized 1,000 kernels with CLgen to use as additional

benchmarks.

Platforms We evaluate our approach on two 64-bit CPU-

GPU systems, detailed in Table 4. One system has an AMD

GPU and uses OpenSUSE 12.3; the other is equipped with an

NVIDIA GPU and uses Ubuntu 16.04. Both platforms were

unloaded.

Datasets The NPB and Parboil benchmark suites are pack-

aged with multiple datasets. We use all of the packaged

datasets (5 per program in NPB, 1-4 per program in Par-

boil). For all other benchmarks, the default datasets are used.

We configured the CLgen host driver to synthesize payloads

between 128B-130MB, approximating that of the dataset

sizes found in the benchmark programs.

7.2 Methodology

We replicated the methodology of [14]. Each experiment is

repeated five times and the average execution time is recorded.

The execution time includes both device compute time and

the data transfer overheads.

We use leave-one-out cross-validation to evaluate predic-

tive models. For each benchmark, a model is trained on data

from all other benchmarks and used to predict the mapping

1 __kerne l vo id A(_ _ g l o b a l f l o a t * a ,

2 _ _ g l o b a l f l o a t * b ,

3 _ _ g l o b a l f l o a t * c ,

4 c o n s t i n t d) {

5 i n t e = g e t _ g l o b a l _ i d (0) ;

6 i f (e < 4 && e < c) {

7 c [e] = a [e] + b [e] ;

8 a [e] = b [e] + 1 ;

9 }

10 }

Listing 2. In the Grewe et al. feature space this

CLgen program is indistinguishable from AMD’s Fast

Walsh–Hadamard transform benchmark, but has very

different runtime behavior and optimal device mapping. The

addition of a branching feature fixes this.

for each kernel and dataset in the excluded program. We re-

peat this process with and without the addition of synthetic

benchmarks in the training data. We do not test model predic-

tions on synthetic benchmarks.

8. Experimental Results

We evaluate the effectiveness of our approach on two hetero-

geneous systems. We first compare the performance of a state

of the art predictive model [14] with and without the addi-

tion of synthetic benchmarks, then show how the synthetic

benchmarks expose weaknesses in the feature design and how

these can be addressed to develop a better model. Finally we

compare the ability of CLgen to explore the program feature

space against a state of the art program generator [27].

8.1 Performance Evaluation

Figure 7 shows speedups of the Grewe et al. predictive model

over the NAS Parallel Benchmark suite with and without the

addition of synthesized benchmarks for training. Speedups

are calculated relative to the best single-device mapping for

each experimental platform, which is CPU-only for AMD

and GPU-only for NVIDIA. The fine grained coverage of the

feature space which synthetic benchmarks provide improves

performance dramatically for the NAS benchmarks. Across

both systems, we achieve an average speedup of 2.42×
with the addition of synthetic benchmarks, with prediction

improvements over the baseline for 62.5% of benchmarks on

AMD and 53.1% on NVIDIA.

The strongest performance improvements are on NVIDIA

with the FT benchmark which suffers greatly under a single-

device mapping. However, the performance on AMD for the

same benchmark slightly degrades after adding the synthetic

benchmarks, which we address in the next section.

8.2 Extending the Predictive Model

Feature designers are bound to select as features only prop-

erties which are significant for the sparse benchmarks they

test on, which can limit a model’s ability to generalize over a

wider range of programs. We found this to be the case with

the Grewe et al. model. The addition of automatically gener-

ated programs exposed two distinct cases where the model

failed to generalize as a result of overspecializing to the NPB

suite.

The first case is that F3 is sparse on many programs. This is

a result of the NPB implementation’s heavy exploitation of lo-

cal memory buffers and the method by which they combined

features (we speculate this was a necessary dimensionality

reduction in the presence of sparse training programs). To

counter this we extended the model to use the raw feature

values in addition to the combined features.

The second case is that some of our generated programs

had identical feature values as in the benchmark set, but had

different behavior (i.e. optimal mappings). Listing 2 shows

one example of a CLgen benchmark which is indistinguish-

able in the feature space to one the of existing benchmarks

— the Fast Walsh-Hadamard transform — but with different

behavior. We found this to be caused by the lack of dis-

criminatory features for branching, since the NPB programs

are implemented in a manner which aggressively minimized

branching. To counter this we extended the predictive model

with an additional feature containing a static count of branch-

ing operations in a kernel.

Figure 8 shows speedups of our extended model across

all seven of the benchmark suites used in Section 2. Model

performance, even on this tenfold increase of benchmarks, is

good. There are three benchmarks on which the model per-

forms poorly: MatrixMul, cutcp, and pathfinder. Each

of those programs make heavy use of loops, which we be-

lieve the static code features of the model fail to capture. This

could be addressed by extracting dynamic instruction counts

using profiling, but we considered this beyond the scope of

our work. It is not our goal to perfect the predictive model,

but to show the performance improvements associated with

training on synthetic programs. To this extent, we are suc-

cessful, achieving average speedups of 3.56× on AMD and

5.04× on NVIDIA across a very large test set.

8.3 Comparison of Source Features

As demonstrated in Section 2, the predictive quality of a

model for a given point in the feature space is improved with

the addition of observations from neighboring points. By

producing thousands of artificial programs modeled on the

structure real OpenCL programs, CLgen is able to consis-

tently and automatically generate programs which are close

in the feature space to the benchmarks which we are testing

on.

To quantify this effect we use the static code features

of Table 2a, plus the branching feature discussed in the

previous subsection, to measure the number of CLgen kernels

generated with the same feature values as those of the

benchmarks we examined in the previous subsections. We

examine only static code features to allow comparison with

the GitHub kernels for which we have no automated method

to execute them and extract runtime features, and CLSmith

generated programs.

B
T
.A

B
T
.B

B
T
.S

B
T
.W

C
G

.A

C
G

.B

C
G

.C

C
G

.S

C
G

.W

E
P
.A

E
P
.B

E
P
.C

E
P
.W

F
T
.A

F
T
.B

F
T
.S

F
T
.W

L
U

.A

L
U

.B

L
U

.C

L
U

.S

L
U

.W

M
G

.A

M
G

.B

M
G

.C

M
G

.S

M
G

.W

S
P
.A

S
P
.B

S
P
.C

S
P
.S

S
P
.W

A
v
e
ra

g
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
e
e
d
u
p
 o

v
e
r

C
P
U Grewe et al.

w. CLgen

(a) AMD Tahiti 7970

B
T
.A

B
T
.B

B
T
.S

B
T
.W

C
G

.A

C
G

.B

C
G

.C

C
G

.S

C
G

.W

E
P
.A

E
P
.B

E
P
.C

E
P
.W

F
T
.A

F
T
.B

F
T
.S

F
T
.W

L
U

.A

L
U

.B

L
U

.C

L
U

.S

L
U

.W

M
G

.A

M
G

.B

M
G

.C

M
G

.S

M
G

.W

S
P
.A

S
P
.B

S
P
.C

S
P
.S

S
P
.W

A
v
e
ra

g
e

1

3

5

7

9

11

13

15

17

S
p
e
e
d
u
p
 o

v
e
r

G
P
U

Grewe et al.

w. CLgen

(b) NVIDIA GTX 970

Figure 7. Speedup of programs using Grewe et al. predictive model with and without synthetic benchmarks. The predictive

model outperforms the best static device mapping by a factor of 1.26× on AMD and 2.50× on NVIDIA. The addition of

synthetic benchmarks improves the performance to 1.57× on AMD and 3.26× on NVIDIA.

Figure 9 plots the number of matches as a function of

the number of kernels. Out of 10,000 unique CLgen kernels,

more than a third have static feature values matching those

of the benchmarks, providing on average 14 CLgen kernels

for each benchmark. This confirms our original intuition:

CLgen kernels, by emulating the way real humans write

OpenCL programs, are concentrated in the same area of the

feature space as real programs. Moreover, the number of

CLgen kernels we generate is unbounded, allowing us to

continually refine the exploration of the feature space, while

the number of kernels available on GitHub is finite. CLSmith

rarely produces code similar to real-world OpenCL programs,

with only 0.53% of the generated kernels have matching

feature values with benchmark kernels. We conclude that the

unique contribution of CLgen is its ability to generate many

thousands of programs that are appropriate for predictive

modeling.

9. Related Work

Our work lies at the intersections of a number of areas: pro-

gram generation, benchmark characterization, and language

modeling and learning from source code. There is no existing

work which is similar to ours, in respect to learning from

large corpuses of source code for benchmark generation.

GENESIS [34] is a language for generating synthetic train-

ing programs. Users annotate template programs with sta-

tistical distributions over features, which are instantiated to

generate statistically controlled permutations of templates.

Template based approaches provide domain-specific solutions

for a constrained feature and program space, for example, gen-

erating permutations of Stencil codes [35, 36]. Our approach

provides general-purpose program generation over unknown

domains, in which the statistical distribution of generated

programs is automatically inferred from real world code.

Random program generation is an effective method for

software testing. Grammar-based fuzz testers have been de-

veloped for C [37] and OpenCL [27]. A mutation-based ap-

proach for the Java Virtual Machine is demonstrated in [38].

Goal-directed program generators have been used for a vari-

ety of domains, including generating linear transforms [39],

MapReduce programs [40], and data structure implementa-

tions [41]. Program synthesis from input/output examples

is used for simple algorithms in [42], string manipulation

in [43], and geometry constructions in [44].

Machine learning has been applied to source code to aid

software engineering. Naturalize employs techniques devel-

oped in the natural language processing domain to model cod-

ing conventions [45]. JSNice leverages probabilistic graphical

models to predict program properties such as identifier names

for Javascript [46].

Figure 8. Speedups of predictions using our extended model over Grewe et al. on both experimental platforms. Synthetic

benchmarks and the additional program features outperform the original predictive model by a factor 3.56× on AMD and 5.04×
on NVIDIA.

0 2000 4000 6000 8000 10000

#. kernels

0

500

1000

1500

2000

2500

3000

3500

#
.
m

a
tc

h
e
s

GitHub

CLSmith

CLgen

Figure 9. The number of kernels from GitHub, CLSmith,

and CLgen with static code features matching the bench-

marks. CLgen generates kernels that are closer in the feature

space than CLSmith, and can continue to do so long after we

have exhausted the extent of the GitHub dataset. Error bars

show standard deviation of 10 random samplings.

There is an increasing interest in mining source code repos-

itories at large scale [16, 47, 48]. Previous studies have in-

volved data mining of GitHub to analyze software engineer-

ing practices [49–52], for example code generation [53], code

summarization [54], comment generation [55], and code com-

pletion [56]. However, no work so far has exploited mined

source code for benchmark generation. This work is the first

to do so.

10. Conclusion

The quality of predictive models is bound by the quantity and

quality of programs used for training, yet there is typically

only a few dozen common benchmarks available for experi-

ments. We present a novel tool which is the first of it’s kind

— an entirely probabilistic program generator capable of gen-

erating an unbounded number of human like programs. Our

approach applies deep learning over a huge corpus of publicly

available code from GitHub to automatically infer the seman-

tics and practical usage of a programming language. Our tool

generates programs which to trained eyes are indistinguish-

able from hand-written code. We tested our approach using a

state of the art predictive model, improving its performance

by a factor of 1.27×. We found that synthetic benchmarks

exposed weaknesses in the feature set which, when corrected,

further improved the performance by 4.30×. Our hope for

this work is to demonstrate a proof of concept for an exciting

new avenue of program generation, and that the full release

of CLgen will expedite discovery in other domains. In future

work we will extend the approach to multiple programming

languages, and investigate methods for performing an auto-

matic directed search of feature spaces.

Acknowledgments

Our thanks to the volunteers at Codeplay Software Ltd and

the University of Edinburgh for participating in the qual-

itative evaluation. This work was supported by the UK

Engineering and Physical Sciences Research Council un-

der grants EP/L01503X/1 (CDT in Pervasive Parallelism),

EP/L000055/1 (ALEA), EP/M01567X/1 (SANDeRs), EP/M0

15823/1, and EP/M015793/1 (DIVIDEND). The code and

data for this paper are available at:

http://chriscummins.cc/cgo17.

References

[1] P. Micolet, A. Smith, and C. Dubach. “A Machine

Learning Approach to Mapping Streaming Workloads

to Dynamic Multicore Processors”. In: LCTES. 2016.

[2] Z. Wang, G. Tournavitis, B. Franke, and M. O’Boyle.

“Integrating Profile-driven Parallelism Detection and

Machine-learning-based Mapping”. In: TACO (2014).

[3] A. Magni, C. Dubach, and M. O’Boyle. “Automatic

Optimization of Thread-Coarsening for Graphics Pro-

cessors”. In: PACT. ACM, 2014, pp. 455–466.

[4] C. Cummins, P. Petoumenos, M. Steuwer, and H.

Leather. “Towards Collaborative Performance Tuning

of Algorithmic Skeletons”. In: HLPGPU. 2016.

[5] Z. Wang and M. O’Boyle. “Mapping Parallelism to

Multi-cores: A Machine Learning Based Approach”.

In: PPoPP. 15. ACM, 2009, pp. 75–84.

[6] Y. Wen, Z. Wang, and M. O’Boyle. “Smart Multi-

Task Scheduling for OpenCL Programs on CPU/GPU

Heterogeneous Platforms”. In: HiPC. IEEE, 2014.

[7] Z. Wang and M. O’Boyle. “Partitioning Streaming

Parallelism for Multi-cores: A Machine Learning Based

Approach”. In: PACT. ACM, 2010, pp. 307–318.

[8] T. L. Falch and A. C. Elster. “Machine Learning Based

Auto-tuning for Enhanced OpenCL Performance Porta-

bility”. In: IPDPSW. IEEE, 2015.

[9] A. Collins, C. Fensch, and H. Leather. “Auto-Tuning

Parallel Skeletons”. In: Parallel Processing Letters

22.02 (June 2012), p. 1240005.

[10] H. Leather, E. Bonilla, and M. O’Boyle. “Automatic

Feature Generation for Machine Learning Based Opti-

mizing Compilation”. In: TACO 11 (2014).

[11] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather.

“Fast Automatic Heuristic Construction Using Active

Learning”. In: LCPC. 2014.

[12] A. Graves. “Generating Sequences with Recurrent

Neural Networks”. In: arXiv:1308.0850 (2013).

[13] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to

Sequence Learning with Neural Networks”. In: NIPS.

2014.

[14] D. Grewe, Z. Wang, and M. O’Boyle. “Portable Map-

ping of Data Parallel Programs to OpenCL for Hetero-

geneous Systems”. In: CGO. IEEE, 2013.

[15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”.

In: Nature 521.7553 (2015), pp. 436–444.

[16] M. Allamanis and C. Sutton. “Mining Source Code

Repositories at Massive Scale using Language Model-

ing”. In: MSR. 2013, pp. 207–216.

[17] M. Sundermeyer, R. Schl, and H. Ney. “LSTM Neural

Networks for Language Modeling”. In: Interspeech.

2012.

[18] T. Mikolov. “Recurrent Neural Network based Lan-

guage Model”. In: Interspeech. 2010.

[19] A. Graves and J. Schmidhuber. “Framewise Phoneme

Classification with Bidirectional LSTM and Other

Neural Network Architectures”. In: Neural Networks

5.5 (18), pp. 602–610.

[20] W. M. McKeeman. “Differential Testing for Software”.

In: DTJ 10.1 (1998), pp. 100–107.

[21] A. Betts, N. Chong, and A. Donaldson. “GPUVerify: A

Verifier for GPU Kernels”. In: OOPSLA. 2012, pp. 113–

131.

[22] J. Price and S. Mcintosh-Smith. “Oclgrind: An Exten-

sible OpenCL Device Simulator”. In: IWOCL. ACM,

2015.

[23] T. Sorensen and A. Donaldson. “Exposing Errors Re-

lated to Weak Memory in GPU Applications”. In: PLDI.

2016.

[24] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and

W. Xu. “Are You Talking to a Machine? Dataset and

Methods for Multilingual Image Question Answering”.

In: arXiv:1505.05612 (2015).

[25] R. Zhang, P. Isola, and A. A. Efros. “Colorful Image

Colorization”. In: arXiv:1603.08511 (2016).

[26] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. “Show

and Tell: A Neural Image Caption Generator”. In:

CVPR (2015).

[27] C. Lidbury, A. Lascu, N. Chong, and A. Donald-

son. “Many-Core Compiler Fuzzing”. In: PLDI. 2015,

pp. 65–76.

[28] D. H. Bailey, E. Barszcz, J. Barton, D. Browning, R.

Carter, L. Dagum, R. Fatoohi, S. Fineberg, P. Frederick-

son, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-

ishnan, and S. Weeratunga. “The NAS Parallel Bench-

marks”. In: IJHPCA 5.3 (1991), pp. 63–73.

[29] S. Seo, G. Jo, and J. Lee. “Performance Characteriza-

tion of the NAS Parallel Benchmarks in OpenCL”. In:

IISWC. IEEE, 2011.

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,

S. H. Lee, and K. Skadron. “Rodinia: A Benchmark

Suite for Heterogeneous Computing”. In: IISWC. IEEE,

Oct. 2009.

[31] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L.

Chang, N. Anssari, G. D. Liu, and W. W. Hwu. “Par-

boil: A Revised Benchmark Suite for Scientific and

Commercial Throughput Computing”. In: Center for

Reliable and High-Performance Computing (2012).

[32] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula,

and J. Cavazos. “Auto-tuning a High-Level Language

Targeted to GPU Codes”. In: InPar. 2012.

[33] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.

Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. “The

Scalable HeterOgeneous Computing (SHOC) Bench-

mark Suite”. In: GPGPU. ACM, 2010.

[34] A. Chiu, J. Garvey, and T. S. Abdelrahman. “Genesis: A

Language for Generating Synthetic Training Programs

for Machine Learning”. In: CF. ACM, 2015, p. 8.

[35] J. D. Garvey and T. S. Abdelrahman. “Automatic Per-

formance Tuning of Stencil Computations on GPUs”.

In: ICPP (2015).

[36] C. Cummins, P. Petoumenos, M. Steuwer, and H.

Leather. “Autotuning OpenCL Workgroup Size for

Stencil Patterns”. In: ADAPT. 2016.

[37] X. Yang, Y. Chen, E. Eide, and J. Regehr. “Finding and

Understanding Bugs in C Compilers”. In: PLDI. 2011.

[38] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. “Coverage-

Directed Differential Testing of JVM Implementations”.

In: PLDI. 2016.

[39] Y. Voronenko, F. De Mesmay, and M. Püschel. “Com-

puter Generation of General Size Linear Transform

Libraries”. In: CGO. IEEE, 2009, pp. 102–113.

[40] C. Smith. “MapReduce Program Synthesis”. In: PLDI.

2016.

[41] C. Loncaric, T. Emina, and M. D. Ernst. “Fast Synthesis

of Fast Collections”. In: PLDI. 2016.

[42] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus.

“Learning Simple Algorithms from Examples”. In:

ICML. 2016.

[43] S. Gulwani. “Automating string processing in spread-

sheets using input-output examples”. In: POPL. 2011.

[44] S. Gulwani, V. A. Korthikanti, and A. Tiwari. “Synthe-

sizing geometry constructions”. In: PLDI. 2011.

[45] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton.

“Learning Natural Coding Conventions”. In: FSE. 2014,

pp. 281–293.

[46] Veselin Raychev, Martin Vechev, and Andreas Krause.

“Predicting Program Properties from “Big Code””. In:

POPL. 2015.

[47] M. White, C. Vendome, M. Linares-Vasquez, and D.

Poshyvanyk. “Toward Deep Learning Software Reposi-

tories”. In: MSR. 2015.

[48] E. Kalliamvakou, L. Singer, G. Gousios, D. M. German,

K. Blincoe, and D. Damian. “The Promises and Perils

of Mining GitHub”. In: MSR. 2009.

[49] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Car-

roll. “Exploring the Ecosystem of Software Develop-

ers on GitHub and Other Platforms”. In: CSCW. 2014,

pp. 265–268.

[50] E. Guzman, D. Azócar, and Y. Li. “Sentiment Analysis

of Commit Comments in GitHub: an Empirical Study”.

In: MSR. 2014, pp. 352–355.

[51] R. Baishakhi, D. Posnett, V. Filkov, and P. Devanbu.

“A Large Scale Study of Programming Languages and

Code Quality in Github”. In: FSE. 2014.

[52] B. Vasilescu, V. Filkov, and A. Serebrenik. “Percep-

tions of Diversity on GitHub: A User Survey”. In:

Chase (2015).
[53] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API

Learning”. In: arXiv:1605.08535 (2016).

[54] M. Allamanis, H. Peng, and C. Sutton. “A Convolu-

tional Attention Network for Extreme Summarization

of Source Code”. In: arXiv:1602.03001 (2016).

[55] E. Wong, J. Yang, and L. Tan. “AutoComment: Mining

Question and Answer Sites for Automatic Comment

Generation”. In: ASE. IEEE, 2013, pp. 562–567.

[56] V. Raychev, M. Vechev, and E. Yahav. “Code Com-

pletion with Statistical Language Models”. In: PLDI.

2014.

A. Artifact description

A.1 Abstract

Our research artifact consists of interactive Jupyter notebooks.

For your convenience, we provide two methods of validating

our results: an ‘AE’ notebook which validates the main exper-

iments of the paper, and a comprehensive ‘Paper’ notebook

which replicates every experiment of the paper, including

additional analysis. The most convenient method to evaluate

our results is to access our pre-configured live server:

http://[redacted]:8888/notebooks/AE.ipynb

using the password [redacted], and to follow the instruc-

tions contained within.

A.2 Description

A.2.1 Check-list (Artifact Meta Information)

• Run-time environment: A web browser.

• Output: OpenCL code, runtimes, figures and tables from the

paper.

• Experiment workflow: Run (or install locally) Jupyter note-

books; interact with and observe results.

• Experiment customization: Edit code in Jupyter notebook; full

API and CLI for CLgen.

• Publicly available?: Yes, code and data. See:

http://chriscummins.cc/cgo17/

A.2.2 How Delivered

Jupyter notebooks which contain an annotated version of this

paper, interleaved with the code necessary to replicate results.

We provide three options to run the Jupyter notebooks:

1. Remote access to the notebook running on our pre-

configured experimental platform.

2. Download our pre-packaged VirtualBox image with

Jupyter notebook installed.

3. Install the project locally on your own machine.

A.3 Installation

Access the Jupyter notebooks using one of the three methods

we provide. Once accessed, proceed to Section A.4.

A.3.1 Remote Access

The Jupyter notebooks are available at:

http://[redacted]:8888, password [redacted].

A dashboard showing server load is available at:

http://[redacted]:19999

High system load may lead to inconsistent performance

results; this may occur if multiple reviewers are accessing the

server simultaneously.

A.3.2 Virtual Machine

Copy our pre-configured 5.21 GB VirtualBox image using:

$ scp cgo@[redacted]:vm.ova ~

Password: [redacted]

Install the virtual machine using VirtualBox’s “Import Appli-

ance” command:

The image was prepared using VirtualBox 5.1.8. It has the

following configuration: Ubuntu 16.04, 4 GB RAM, 10 GB

hard drive, bridged network adapter with DHCP, US keyboard

layout, GMT timezone.

Start the machine and log in using username and password

cgo. Once at the shell, run launch. This will start the Jupyter

notebook server and print its address. You can access the

notebooks at this address using the browser of the host device.

Please note that the VirtualBox image does not have OpenCL,

so new runtimes cannot be generated.

A.3.3 Local Install

See http://chriscummins.cc/cgo17/ for instructions.

Note that we only support Ubuntu 16.04 or OS X, and sudo

privileges are required to install the necessary requirements.

Other Linux distributions may work but will require extra

steps to install the correct package versions.

A.4 Experiment Workflow

1. Access the Jupyter notebook server using one of the three

options described in Section A.3.

2. From the Jupyter server page, tick the checkbox next to

one of the two notebooks: AE.ipynb for minimal arti-

fact reproduction or Paper.ipynb for a comprehensive

interactive paper.

3. Click the button “Duplicate”.

4. Click on the name of the newly created copy, e.g.

Paper-Copy1.ipynb or AE-Copy3.ipynb.

5. Repeatedly press the play button (tooltip is “run cell, select

below”) to step through each cell of the notebook.

OR select “Kernel” > “Restart & Run All” from the menu

to run all of the cells in order.

A.5 Evaluation and Expected Result

Each code cell within the Jupyter notebook generates an

output. Expected results are described in text cells.

We include both the code necessary to evaluate the data

used in the paper, and the code necessary to generate and

evaluate new data. For example, we include the large neural

network trained on all of the OpenCL on GitHub (which took

3 weeks to train), along with a small dataset to train a new

one.

A.6 Experiment Customization

The experiments are fully customizable. The Jupyter note-

book can be edited “on the fly”. Simply type your changes

into the cells and re-run them. For example, in Table 1 of the

Paper.ipyn notebook we cross-validate the performance of

predictive models on an AMD GPU:

To replicate this experiment using the NVIDIA GPU, change

the first line of the appropriate code cell to read data =

nvidia_benchmarks and re-run the cell:

Note that some of the cells depend on the values of prior cells

and must be executed in sequence.

CLgen has a documented API and command line interface.

You can create new corpuses, train new networks, sample

kernels, etc.

A.7 Notes

For more information about CLgen, visit:

http://chriscummins.cc/clgen

For more information about Artifact Evaluation, visit:

http://ctuning.org/ae/submission-20161020.html

