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Automatic and Portable Mapping of Data Parallel Programs to
OpenCL for GPU-based Heterogeneous Systems
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General purpose GPU based systems are highly attractive as they give potentially massive performance
at little cost. Realizing such potential is challenging due to the complexity of programming. This article
presents a compiler based approach to automatically generate optimized OpenCL code from data-parallel
OpenMP programs for GPUs. A key feature of our scheme is that it leverages existing transformations,
especially data transformations, to improve performance on GPU architectures and uses automatic machine
learning to build a predictive model to determine if it is worthwhile running the OpenCL code on the GPU
or OpenMP code on the multi-core host. We applied our approach to the entire NAS parallel benchmark
suite and evaluated it on distinct GPU based systems. We achieved average (up to) speedups of 4.51x and
4.20x (143x and 67x) on a Core i7/NVIDIA GeForce GTX580 and a Core i7/AMD Radeon 7970 platforms,
respectively over a sequential baseline. Our approach achieves, on average, over 10x speedups over two
state-of-the-art automatic GPU code generators.
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1. INTRODUCTION

Heterogeneous systems consisting of a host multi-core and general purposed GPU are
highly attractive as they give potentially massive performance at little cost. Realizing
such potential, however, is challenging due to the complexity of programming. Users
typically have to identify potential sections of their code suitable for SIMD style par-
allelization and rewrite them in an architecture-specific language. To achieve good
performance, significant rewriting may be needed to fit the GPU programming model
and to amortize the cost of communicating to a separate device with a distinct address
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A:2 Z. Wang et al.

space. Such programming complexity is a barrier to greater adoption of GPU based
heterogeneous systems.

OpenCL is emerging as a standard for heterogeneous computing. It provides porta-
bility, allowing the same code to be executed across a variety of processors including
multi-core CPUs and GPUs. By exposing fine-grained parallelism, carefully written
OpenCL (or CUDA) programs can achieve good performance across parallel processor
architectures [Stratton et al. 2010].

However, there are many legacy programs written with shared memory program-
ming languages such as OpenMP [Lee et al. 2009]. To benefit from heterogeneous per-
formance, it will require considerable development efforts to rewrite those programs
with OpenCL and the process can be error-prone [Lee and Eigenmann 2010]. This
work aims to provide a simple upgrade path for targeting OpenMP programs on het-
erogeneous platforms. We achieve this by developing a compiler based approach that
automatically generates optimized OpenCL from a subset of OpenMP, and using ma-
chine learning to determine the best performing processor on a CPU-GPU mixed sys-
tem. This allows the user to run the same data parallel program written in OpenMP,
which has been fully tested, with no modifications, while benefiting automatically from
heterogeneous performance.

The first effort in this direction is [Lee et al. 2009]. Here, the OpenMPC compiler
generates CUDA code from OpenMP programs. While promising, there are two signif-
icant shortcomings with this approach. Firstly, OpenMPC does not apply data trans-
formations. As shown in this article data transformation is crucial to achieve good per-
formance on GPUs (Sections 4 and 7.4). Secondly, the programs are always executed
on GPUs. While GPUs may deliver improved performance, they are not always supe-
rior to CPUs [Bordawekar et al. 2010; Lee et al. 2010a]. A technique for determining
when GPU execution is beneficial is needed. This article addresses both of these issues
and when evaluated on the full NAS parallel benchmarks our technique outperforms
OpenMPC by a factor of 10.

Our work examines performance portability across heterogeneous platforms, consid-
ering the trade-offs in heterogeneity – it may be better to run the program as OpenMP
on a multi-core rather than as OpenCL on the GPU. It uses OpenCL as a target lan-
guage and is applied to the entire NAS parallel benchmark suite on different GPU
based systems from different vendors, using automatic machine learning techniques
to predict the best components to use in a heterogeneous system. We generate high
quality OpenCL code achieving up to 202x speedup over sequential C for the ep bench-
mark on AMD Radeon automatically. This article’s technical contributions can be sum-
marized as follows. It is the first to:

— use machine learning to decide between different implementation languages on het-
erogeneous platforms (Section 5)

— use machine learning to automatically build cost-based models for dynamic array
index re-ordering for GPUs (Section 4)

— automatically translate and map all NAS parallel benchmarks onto GPUs, some of
benchmarks are up to 3600 lines long with 66 kernels – a non-trivial task (Section 7).

A key feature of our scheme is that it uses machine learning to build predictive mod-
els to automatically determine if it is worthwhile running the code on the GPU or the
multi-core host. Furthermore, it can adapt this model to different GPU architectures
and generations. We also show that data transformations can be used to significantly
improve performance on GPU architectures. This means that the user can use the
same OpenMP code on different platforms with the compiler determining the best
place for code to run and optimize it accordingly.
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2. MOTIVATION

With the massive interests in GPUs, it is important to know that GPUs are not always
the most suitable device for scientific kernels. This section provides a simple exam-
ple demonstrating the appropriateness of GPU computation depends on the original
program, data size and the transformations available.

Consider the OpenMP fragment in Figure 1a from the NAS parallel benchmark bt,
a benchmark containing over 60 parallel loops potentially suitable for offloading to a
GPU. This program was executed with two different programs input: a small input, W,
and a large input, A. Using our basic OpenMP to OpenCL translator yields the code
shown in Figure 1b. The parallel loop has been translated into a kernel where each of
the loops is parallelized forming a 3D parallel work-item space (i.e. ND-Range) each
point of which is accessed through a call to get global id for dimensions 0, 1 and 2.

This code if executed on a GPU with the W input size however gives disappointing
performance when compared to executing the code on a multi-core as shown in Figure
1c. This is largely due to a relatively small work to be performed on the GPU where a
high percentage of coalesced memory access is required to achieve good performance
(see Table IV in Section 7.6). If we execute the same code with a larger input size
A, the GPU performance improves but is still less than the performance achieved on
the multi-core. The main reason is the memory access pattern of the kernel which
does not allow for memory coalescing on the GPU. This can be changed by performing
global index reordering (see Section 4.1) as shown in Figure 1d, transforming the data
layout of array lhs. This gives the new OpenCL program shown in Figure 1e. Here the
most rapidly varying indexes of the array correspond to the tile IDs giving coalesced
memory accesses. As can be seen later from Table IV, this improves the percentage
of coalesce memory access (feature F2 in Table IV) from 0 to 0.78 and 0.999 for input
sizes W and A, respectively. In Figure 1f we see that the resulting performance of the
GPU code improves substantially for data size W. If this transformed code is executed
with a larger data size A, the GPU performance further improves, with both GPUs
now outperforming the multi-core OpenMP implementation.

This example shows that the translated OpenCL code can give better performance
than the original OpenMP code depending on the data size and transformations avail-
able. As described in Section 7, this decision varies from program to program and
across different platforms and data sizes, and depend on a number of factors (see Fig-
ures 13 and 14). What we would like is a system that learns when to use the GPU,
changing its decision based on the availability of underlying optimizations such as
data layout transformations.

3. OVERALL SCHEME

Our compiler automatically translates OpenMP programs to OpenCL-based code,
performing loop and array layout optimizations along the way. It generates multi-
versioned code for each parallel loop: the original OpenMP parallel loop and an op-
timized OpenCL kernel alternative. At runtime, a machine learning (ML) based pre-
dictive model decides which version to use for execution. Our prototype compiler is
implemented using Clang (v3.0) and LLVM (v3.0) [LLVM 2013].

3.1. Compile-Time

Figure 2 gives an overview of our approach. The OpenMP program is read in and par-
allel loops are optimized and translated to OpenCL kernels. The generated kernels are
passed to a feature extraction phase which collects characteristics or features from the
Abstract Syntax Tree of the generated OpenCL code. These features are later used by
the ML model to select whether the OpenMP loop or OpenCL kernel version is best (Sec-
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#pragma omp parallel for
for ( i =1; i<gr id po ints [0]−1; i ++){

for ( j =1; j<gr id po ints [1]−1; j ++){
for (k=1;k<gr id po ints [2]−1;k++){

. . .
lhs [ i ] [ j ] [ k ] [ 0 ] [ 0 ] [ 0 ] = . . . ;
lhs [ i ] [ j ] [ k ] [ 0 ] [ 0 ] [ 1 ] = . . . ;
. . .

}
}

}

kernel void lhsy L1 ( . . . ) {
int k = g e t g l o b a l i d ( 0 ) + 1 ;
int j = g e t g l o b a l i d ( 1 ) + 1 ;
int i = g e t g l o b a l i d ( 2 ) + 1 ;
. . .
lhs [ i ] [ j ] [ k ] [ 0 ] [ 0 ] [ 0 ] = . . . ;
lhs [ i ] [ j ] [ k ] [ 0 ] [ 0 ] [ 1 ] = . . . ;
. . .

}
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p
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8

Intel Core i7 (OpenMP)
ATI Radeon (OpenCL)
NVIDIA GeForce (OpenCL)

(a) Original OpenMP (b) Non-optimized OpenCL (c) Before optimizations

#pragma omp parallel for
for ( i =1; i<gr id po ints [0]−1; i ++){

for ( j =1; j<gr id po ints [1]−1; j ++){
for (k=1;k<gr id po ints [2]−1;k++){

. . .
lhs [ 0 ] [ 0 ] [ 0 ] [ i ] [ j ] [ k ] = . . . ;
lhs [ 0 ] [ 0 ] [ 1 ] [ i ] [ j ] [ k ] = . . . ;
. . .

}
}

}

kernel void lhsy L1 ( . . . ) {
int k = g e t g l o b a l i d ( 0 ) + 1 ;
int j = g e t g l o b a l i d ( 1 ) + 1 ;
int i = g e t g l o b a l i d ( 2 ) + 1 ;
. . .
lhs [ 0 ] [ 0 ] [ 0 ] [ i ] [ j ] [ k ] = . . . ;
lhs [ 0 ] [ 0 ] [ 1 ] [ i ] [ j ] [ k ] = . . . ;
. . .

}

W A

S
p
e
e
d
u
p

0
2

4
6

8

Intel Core i7 (OpenMP)
ATI Radeon (OpenCL)
NVIDIA GeForce (OpenCL)

(d) Transformed OpenMP (e) Optimized OpenCL (f) After optimizations

Fig. 1: Simplified example of generating OpenCL code from OpenMP code. The top left
code (a) snippet is taken from bt. The corresponding OpenCL code (b) delivers poor
performance on both GPUs (c). After applying data transformation to the OpenMP
code (d), we obtain the new OpenCL code shown in (e). The performance of both GPUs
improves significantly, but only for large inputs can they outperform the CPU (f).
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Code
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OpenCL Code 

Generation

Feature 

Extraction

ML Model 

Library

OpenCL 

Code

Code Merge

Code

Features
Output

Fig. 2: Overview of our compilation framework.

tion 4). The features, together with the generated OpenCL code, the original OpenMP
code and a ML predictor built off-line (Section 5) are merged into a single output pro-
gram source.

3.2. Run-Time

At execution time, the program first updates the parameterized feature values based
on the runtime values of parameters and passes the instantiated feature values to
the ML model. The built-in model then predicts where to run the program and to pick
either the OpenMP version for a multi-core CPU or the OpenCL version for a GPU.
Evaluating the model at runtime involves on the order of tens of operations and is
thus negligible. This is the high-level overview of the compilation framework. The next
sections describe each of the stages in more detail.

4. CODE GENERATION AND OPTIMIZATION

Table I lists the OpenMP directives supported by our implementation.
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Parallel Constructs etc: parallel for for reduction

Data Attributes:
default shared private first private

last private threadprivate copyin

Other Constructs:
barrier atomic critical master

single flush

Table I: Supported OpenMP directives.

Work-sharing Constructs. Our compiler converts OpenMP parallel loops, i.e. loops
that are annotated with omp for or omp for reduction, into OpenCL kernels. Other
parallel OpenMP directives associated with task parallelism are not currently sup-
ported. A two-stage algorithm [AMD 2013] is used to translate parallel reduction loops.

Data Attributes. In OpenMP variables may have additional type information spec-
ified by directives: default, shared, private, first private, last private, copyin
and threadprivate. Our framework uses these directives to map data onto the GPU
memory space. Each variable with the share or default directive will be translated
into an OpenCL global variable shared by all OpenCL threads. Variables declared as
private and threadprivate are translated such that there is a private copy for each
OpenCL work item; no memory transfer between the GPU and the CPU is needed. For
each variable specified as copyin or first private, we create a private copy for each
OpenCL work-item but initialize each copy using explicit memory transfers before its
first use. Similarly, we create a private copy of a last private variable and the original
variable is updated by the GPU thread that executes the last work item.

Other Constructs. Our implementation also supports a number of synchronization
and thread constructs. Structured blocks identified with master, single and critical
directives are executed by one thread on the host multi-core. barrier is implemented
by calling the OpenCL clFinish API to synchronize all OpenCL threads. An atomic
operation is translated into the corresponding OpenCL atomic function, according to
the type of the operand (variable). The current level of atomic support can be easily
extended to support part of the C11 atomics, such as atomic load and stores. To fully
support the C11 atomic standard is our future work. Finally, flush is implemented
using the OpenCL barrier(CLK LOCAL MEM FENCE | CLK GLOBAL MEM FENCE) API.

4.1. OpenCL Code Optimization

Our compiler performs a number of optimizations to improve the performance of the
OpenCL code on the GPU1. The optimizations implemented in our compiler are applied
in the following order:

Loop Interchange. High memory bandwidth on GPUs can only be achieved when
memory accesses are coalesced, i.e. adjacent threads access adjacent memory locations
in the GPU off-chip memory. Our framework applies loop interchange to place outer-
most those iterators that occur most frequently in the innermost array subscripts. We
use the LLVM DependenceAnalysis pass to detect to which level the nested loop can be
interchanged.

Global Index Reordering. Global index reordering is the data structure equivalent
of loop reordering. Indexes of an array are permuted to fit an optimization purpose.
This transformation is necessary when loop interchange cannot provide memory co-
alescing. This can be represented as [s1, s2, . . . , sn] 7→ [sx1

, sx2
, . . . , sxn

] where each
xk ∈ 1, . . . , n ∧ ∀i, j, (xi = xj) ⇒ (i = j). In our case we wish to place outermost

1The LLVM “-O3” optimization stack also provides other types of optimizations that primarily performs on
the LLVM IR level. Integrating this into our source to source OpenCL code generator is the future work.
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those indexes which appear as OpenCL work-item indexes. Given that there are a
maximum of three parallel work-item indexes, t1, t2, t3, then for any one access we
wish sxn

= t1, sxn−1
= t2, sxn−2

= t3. An example of this transformation was shown in
Figure 1: [i, j, k, 0, 0, 0] 7→ [0, 0, 0, i, j, k].

After index re-ordering, our compiler renames the function prototype where input ar-
ray arguments will be updated accordingly, and changes the code where this function is
called. This removes the need for additional array copying (in and out) in order to com-
ply with the calling context. Global index reordering requires global alias analysis to
ensure correctness. To do so, we run the code through the “-basicaa” and “-steens-aa”
passes provided by LLVM, where the later pass implements the well-known Steens-
gaard’s pointer analysis [Steensgaard 1996]. Note that our current implementation
only applies global index reordering to statically allocated arrays.

Dynamic Index Reordering. In conjunction with loop interchange global index re-
ordering is often sufficient to achieve memory coalescing. However, in some cases there
is no clear best global data layout, e.g. when different loops in a program require dif-
ferent layouts to achieve memory coalescing. We then consider dynamic index reorder-
ing [Che et al. 2011].

Before entering a code region containing loops that prefer a certain index order
for an array X (different from the global one), a reordered copy of the array, X ′,
is created. During the copy process the data gets reordered as follows. Given a pre-
ferred access pattern [sx1

, sx2
, . . . , sxn

] we copy X to X ′ such that X ′[sx1
, sx2

, . . . , sxn
] =

X[s1, s2, . . . , sn]. Within the code section all references to X are redirected to X ′ and
the indexes are reordered appropriately. At the end of the region the data gets copied
back to the original array.

Dynamic index reordering for GPU computing can often be prohibitive. The trans-
formation should only be applied if the benefits of data coalescing outweigh the costs
of data reordering. To be used in a compiler setting we therefore need a mechanism
to automatically determine when this transformation should be applied. Section 5.4
describes a ML based cost model that solves this problem.

Memory Load Reordering. In the original OpenMP programs, accesses to read-only
buffers might be reordered to form a sequence of consecutive load operations that can
be vectorized. Our compiler automatically detects those accesses and replaces scalar
load operations with an OpenCL vector load operation. Our current implementation
simply groups consecutive load and store operations together and replace them with an
OpenCL vloadn or vstoren (n = 2, 4, 8, 16) operation. This is a standard optimization
technique that has been used in prior work [Eichenberger et al. 2004; Yang et al. 2010].

Register Promotion. On many occasions, a scalar variable (or array) that stored in
the global memory space is accessed multiple times by a single OpenCL kernel. To
reduce global memory latencies, our tool automatically creates a private register object
for such a variable. It generates code to load the data from the global memory to the
private register copy (and write back to the global memory from the register after
the last store operation). Doing so can eliminate redundant global memory loads and
stores and thus improve performance. Depending on the implementation, the back-end
OpenCL compiler might also perform register promotion optimization [Lu and Cooper
1997; Chakrabarti et al. 2012] on the generated code.

Prefetching and Local Memory Optimization. For read-only buffers (that are used
by multiple GPU threads) identified by our compiler, we generate code to prefetch the
data to the local memory. Exploiting local memory in general reduces memory latencies
for GPU kernels [Lee et al. 2010b].
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1 static void o c l lh sy L1 ( . . . ) {
s i z e t oc l gws [ 3 ] = { ( ( gr id po ints [2 ] −1) − (1 ) ) , . . .} ;

3 oclSetKernelBuffer ( oc l lhsy L1 ,3 , o c l b u f f e r l h s ) ;
. . .

5 oclWrites ( gpu , o c l b u f f e r l h s ) ;
. . .

7 oclRunKernel ( oc l compute rhs 3 ,3 , oc l gws ) ;
}

9
static void lhsy ( ) {

11 i f ( unlikely ( ! o c l has pred ) ) {
predict ( ) ;

13 }
p lhsy L1 ( . . . ) ;

15 . . .
}

17
int main ( ) {

19 lhsy ( ) ;
. . .

21 oclReads ( host , o c l b u f f e r l h s ) ;
oclSync ( ) ;

23 . . .
}

Fig. 3: The generated host code of the loop shown in figure 1(a).

Host-Device Communication. For each array that is used by both the host and the
GPU we manage two copies: one on the host memory and the other on the GPU mem-
ory. Our runtime records the status of each variable and checks whether the copy on a
device memory space is valid or not. No memory transfer is needed as long as the copy
in the target memory space is valid. Our current implementation uses a conservative
approach: if an element of an array has been updated, the entire array needs to be
synchronised before it can be used by threads running on a different device. There are
advanced techniques available for host-device communication optimizations [Jablin
et al. 2012; Margiolas and O’Boyle 2014], which are orthogonal to our approach.

4.2. Host Code Generation

For each parallel loop, we outline the loop body and generate two versions for it: an
OpenCL and an OpenMP version. The original loop body is replaced with a function
pointer which points to either the OpenCL or OpenMP version of the loop. For exam-
ple, the OpenCL version of the original loop shown in Figure 1 (a) is translated to
ocl lhsy L1 as shown in Figure 3. We try to generate as many work items as possi-

ble to utilize the GPU. Each iteration of the nested parallel loops is translated into a
OpenCL work item. The dimension of the ND-range is determined by the number of
nested loop to be parallelized (up to 3 dimensions due to the restriction of OpenCL).
In Figure 3 the OpenCL work item indexes are calculated at Line 2, which are then
sent to the OpenCL runtime at line 7. The original loop body is replaced with a func-
tion pointer at Line 14. Each generated code has a prediction function, predict, that
decides which device to use to run the program. This is done by setting the function
pointer of each loop to the corresponding code version. Currently we use a single pro-
gram version for all parallel loops and do not use both versions interleaved at runtime.
Finally, host-device communication is managed by our communication library where
read and write operations to OpenCL buffers are identified through the oclReads
and oclWirtes functions respectively (Line 5). The oclWirtes function keep a track
of which device has recently updated the input OpenCL buffer. This information will
be used to determine whether a data transfer is needed at runtime.
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Fig. 4: The process of training a decision tree classifier.

5. PREDICTING THE MAPPING

A crucial part of our approach is to automatically determine the best computing device
for the input program i.e. should it be run on the multi-core host or translated into
OpenCL and executed on the GPU. Our approach is to generate the OpenCL-based
code and then use a ML model to see if this is profitable to run on a GPU. If it is not
profitable, we fall back to the original OpenMP code. As this decision will vary greatly
depending on GPU architectures and the maturity of the OpenCL runtime, we wish to
build a portable model that can adapt to the change of the architecture and runtime.

We wish to avoid any additional profiling runs or exhaustive search over different
data sets, so our decision is based on static compiler analysis of the abstract syntax
tree and runtime parameters. The static analysis characterizes a kernel as a fixed
vector of real values, or features.

5.1. Training the Predictor

Figure 4 shows the process of training the predictor – in our case a decision tree classi-
fier. This involves the collection of a set of training data which is used to fit the model
to the problem at hand. In this work, we use a set of programs that are each executed
on the CPU and the GPU to determine the best device in each case. We also extract
code features for each program as described in the following section. The features to-
gether with the best device for each program from the training data are used to build
the model. Since training is only performed once at the factory, it is a one-off cost. In
our case the overall training process takes less than a day on a single machine.

5.2. Code Features

Our predictor is based on code features (Table IIa). These are selected by the com-
piler writer and summarize what are thought to be significant costs in determining
the mapping. At compile time we analyze the OpenCL code and extract information
about the number and type of operations. We developed a Clang-based tool to extract
those features from the abstract syntax tree of the code. Double precision floating point
operations are given a higher weight (4x) than single precision operations as they
are expensive on many GPU architectures. Obviously, this weight is highly platform
dependent, but this can be estimated by using micro-benchmarks to test how much
extract time is needed for performing the same number of double floating point op-
erations vs single floating operations. Using a analytical model similar to [Sim et al.
2012], we also analyze the memory access pattern to determine whether an access to
global memory is coalesced or not. A potential feature is the amount of control flow
in an application. While this feature can have an impact on performance on the GPU
it was not relevant for the benchmarks we considered. It is thus not included in our
feature set. This may be needed for other OpenCL application domains and it can be
easily integrated into our model. Finally, instead of using raw features, we group sev-
eral features to form combined normalized features that carry more information than
their parts (Table IIb).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Automatic and Portable Mapping of Data Parallel Programs to OpenCL for GPU-based Heterogeneous SystemsA:9

Raw Code Features
comp # compute operations
mem # accesses to global memory
localmem # accesses to local memory
coalesced # coalesced memory accesses
transfer amount of data transfers
avgws average # work-items per kernel

(a) Individual code features

Combined Code Features
F1: transfer/(comp+mem) commun.-computation

ratio
F2: coalesced/mem % coalesced memory

accesses
F3: (localmem/mem) × avgws ratio local to global

mem accesses × avg. #
work-items per kernel

F4: comp/mem computation-mem ratio

(b) Combinations of raw features

Table II: List of code features.

Collecting Training Data. We use two sets of benchmarks to train our model. First
we use a collection of 47 OpenCL kernels taken from various sources: SHOC [Danalis
et al. 2010], Parboil [UIUC 2013], NVIDIA CUDA SDK [NVIDIA Corp. 2013] and AMD
Accelerated Parallel Processing SDK [AMD 2013]. These benchmarks are mostly sin-
gle precision with only one kernel in each program whereas the NAS benchmarks are
double precision and have multiple kernels. We thus also add the NAS benchmarks to
our training set, but exclude the one that we make a prediction for (see Section 6.2).

Predictive Modeling. Our decision tree based model is constructed using the C4.5
algorithm [Quinlan 1993]. The model is automatically built from training data by cor-
relating features to the best performing device (Figure 4). The model performs only
on the generated OpenCL code. As such, it is independent on the type of the input
program of our compiler. An example of a decision tree is given in Figure 13 where a
decision is made by comparing one of the combined features (Table IIb) to a threshold.
If the feature is smaller than the threshold the left subtree is traversed, otherwise the
right one is traversed. This is repeated until a leaf node is reached which is labeled
with one of the classes – “CPU” or “GPU” – telling us which device to use.

5.3. Runtime Deployment

Once we have built the ML model as described above, we can insert the model together
with the syntax code features (extracted at compile time) to the generated code for any
unseen, new programs, so that the model can be used at runtime.

Updating Feature Values. At compile time the OpenCL kernel is analyzed and code
features are extracted and inserted to the generated program together with the trained
ML model. As some loop bounds are dependent on the input, the compiler might be
unable to determine certain feature values. These features are represented as static
symbolic pre-computation of loop bound variables, which will be updated using run-
time values at runtime. If the loop bounds still cannot be determined at the time the
prediction function is called, we simply use the average loop bound value as an esti-
mation.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Z. Wang et al.
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Input

Data
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GENERATED
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Fig. 5: Run time: selecting a code version at execution time. The generated program
first updates features based on input data and passes the updated features to the ML
model. The model then predicts the best device (CPU or GPU) to run the program and
selects a code version (OpenMP or OpenCL) for execution.

Version Selection. Figure 5 depicts the process of version selection during runtime.
The first time a kernel is called the built-in predictive model selects a code version for
execution (Line 12 in Figure 3). It uses instantiated feature values to predict the best
computing device to use and sets function pointers to the corresponding code version.
In our current implementation, prediction happens once during a program’s execution.
The overhead of prediction is negligible (a few microseconds). This cost is included in
our later results.

5.4. A Model for Dynamic Index Reordering

In Section 4.1 we described the dynamic index reordering transformation. This trans-
formation can greatly improve performance on the GPU but it can also lead to slow-
downs if the cost of reordering the data is higher than the benefits. Because the point
at which the benefits outweigh the costs is highly machine-dependent we are using a
portable machine learning approach that can be easily adapted to different systems.
Similar to predicting the mapping we use a decision tree classifier. The features are
the size of the data structure and the ratio between the number of accesses to the data
structure and its size.

We developed a set of micro benchmarks and use them to obtain the training data
for this problem2. We measure the execution time with and without applying dynamic
index reordering to determine whether it is beneficial in each case. Evaluating the
benchmarks and then building the decision tree model takes less than half an hour.

The resulting model is embedded into each output program because array dimen-
sions and loop bounds may not be known at compile time. We thus keep two versions
of each candidate kernel: the original one and one with accesses re-ordered. At runtime
one of them gets picked by the model.

Model. Figure 6 shows the decision trees for dynamic index reordering transforma-
tion on the two GPU platforms. We used the C4.5 algorithm [Quinlan 1993] to con-
struct the decision tree model The model is automatically built from training data
which consists of data points describing a particular scenario for dynamic index re-
ordering and whether it is beneficial or not. Each scenario is represented by two fea-
tures: the size of the data structure and the ratio between the number of accesses and
the size (corresponding to benefits over costs).

6. EXPERIMENTAL METHODOLOGY

6.1. Platforms and Benchmarks

Our main experiments were performed on two CPU-GPU systems: both use an Intel
Core i7 6-core CPU. One system contains an NVIDIA GeForce GTX 580 GPU, the sec-

2We opted for micro benchmarks because the amount of training data from real applications is limited.
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(a) NVIDIA GeForce GTX580
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(b) AMD Radeon HD7970

Fig. 6: The automatically constructed decision trees for dynamic index reordering
transformation on NVIDIA GeForce and AMD Radeon GPU platforms.

Intel CPU NVIDIA GPU AMD GPU
Model Core i7 3820 GeForce GTX 580 Radeon 7970
Core Clock 3.6 GHz 1544 MHz 925 MHz
Core Count 4 (8 w/ HT) 512 2048
Memory 12 GB 1.5 GB 3 GB
Peak Performance 122 GFLOPS 1581 GFLOPS 3789 GFLOPS

Table III: The primary evaluation hardware platforms

ond an AMD Radeon 7970. Both run with the Ubuntu 10.10 64-bit OS. Table III gives
detailed information on our platforms. We also evaluated our approaches on other GPU
platforms which are described in the sections where the results are presented.

All eight of the NAS parallel benchmarks (v2.3) were used for evaluation. We used
the OpenMP C translation of the NAS 2.3 benchmark suite derived from the Omni
compiler project [The Omini Compiler Project 2009]. Unlike many GPU benchmarks
that are single precision, all the benchmarks except is are double precision programs.

6.2. Methodology

We considered all input sizes (S, W, A, B, C) for each NAS benchmark as long as the
required memory fits into the GPU memory. All programs have been compiled using
GCC 4.4.1 with the “-O3” option. Each experiment was repeated 5 times and the aver-
age execution time was recorded. The variation of runtime is small, less than 5%.

We use leave-one-out cross-validation to train and evaluate our ML model for predict-
ing the best computing device. This means we remove the target program to be pre-
dicted from the training program set and then build a model based on the remaining
programs. We repeat this procedure for each NAS benchmark in turn. It is a stan-
dard evaluation methodology, providing an estimate of the generalization ability of
a ML model in predicting an unseen program. This approach is not necessary for the
dynamic index reordering model because we use micro benchmarks as training data
rather than the programs themselves.

Since OpenCL programs can also run on the CPU, an interesting question is to con-
sider running the OpenCL programs on the CPU. However, for the benchmarks we
used, doing so (with CPU-specific optimization) does not give advantages over other
schemes considered in this article. On only one occasion, bt.W, such a scheme gives
slightly better performance (8% faster) than other schemes. We also observed this on
the CPU-tuned SNU OpenCL implementation. This may change when using other sets
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Fig. 7: Performance of OpenMP on Intel CPU, OpenCL on NVIDIA GeForce GTX580
GPU and the version selected by our predictive model. The predictive model outper-
forms the CPU-only approach by 1.69x and the GPU-only approach by 3.9x.
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Fig. 8: Performance of OpenMP on Intel CPU, OpenCL on AMD Radeon HD7970 GPU
and the version selected by our predictive model. The predictive model outperforms
the CPU-only approach by 1.76x and the GPU-only approach by 6.8x.

of benchmarks, hardware platforms or OpenCL runtime, and is an interesting future
research direction.

7. EXPERIMENTAL RESULTS

In this section we evaluate our approach on several heterogeneous systems for the
NAS parallel benchmark suite. We first show the performance of our predictive mod-
eling approach compared to using always the multi-core CPU or always the GPU. This
is followed by a comparison to two state-of-the-art GPU code generation approaches:
OpenMPC [Lee et al. 2009] and OpenACC [The Portland Group 2010]. We then com-
pare our approach against a manual OpenCL implementation of the NAS benchmark
suite [Seo et al. 2011]. Next, we provide detailed analysis of our approach, including
the performance break down of different optimization strategies, OpenCL runtime and
a close look of our predictive models. Finally we present a brief evaluation of our ap-
proach on two heterogeneous systems with integrated GPUs.

7.1. Overall Performance

Figures 7 and 8 show speedups for the NAS benchmarks on the two heterogeneous
systems described in section 6. For each benchmark-input pair the multi-core CPU
performance, the GPU performance and the performance of the device selected by our
predictor is shown. The last column represents the average performance (using the
geometric mean) of each approach as well as of the “oracle” which always picks the best
device in each case. The performance numbers presented are speedups over single-core
execution.

On both systems significant speedups can be achieved by selecting the right device,
CPU or GPU. When always selecting the faster of the two speedups of 4.70x on the
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NVIDIA system and 4.81x on the AMD system can be achieved. This compares to
2.78x and 2.74x when always using the CPU3 and 1.19x and 0.71x on the GPU.

The results show that speedups vary dramatically between the CPU and GPU and
none of the devices consistently outperforms the other. On ep, for example, an embar-
rasingly parallel benchmark, the GPU clearly outperforms the multi-core CPU: up to
11.6x on NVIDIA and 30.2x on AMD. However, on other benchmarks, such as is or lu
the CPU is significantly faster. In the case of lu this is because the OpenMP version
exploits pipeline parallelism using a combination of asynchronous parallel loops and
a bit-array to coordinate pipeline stages. The current SIMD-like execution models of
GPUs are not designed to exploit this type of parallelism. The is benchmark does not
perform significant amount of computation and GPU execution is dominated by com-
munication with the host memory. This leads to underutilization of the GPU and thus
bad performance.

For benchmarks bt, cg and sp we observe that the CPU is faster for small inputs
but the GPU is better on larger input sizes. This behavior is to be expected because
GPUs require large amounts of computation to fully exploit their resources. On small
inputs the overheads of communication with the host dominate the overall runtime
when using the GPU. A similar pattern is shown for ft and mg: GPU performance is
stronger for larger inputs. However, the GPU is not able to beat the CPU even for the
largest input sets. For is, because the program does not have enough parallelism, it is
actually not worthwhile to run it in parallel for any given data set on our platforms.
This is also reported in other studies [Tournavitis et al. 2009].

These observations show the need for a careful mapping of applications to devices.
Our model for predicting the mapping is able to choose the correct device almost all of
the time. On the NVIDIA system it incorrectly picks the GPU for benchmark sp.W and
on the AMD system it picks the GPU for ft.A even though the CPU is faster. Overall
we are able to achieve speedups of 4.63x and 4.80x respectively. This is significantly
better than always choosing the same device and not far off the performance of the
“oracle”.

As can be seen, the best performance depends on the platform, transformations
available and data sizes. Our scheme is able to predict the right option, achieving
95% of oracle performance on the NVIDIA GTX580 system and even 99% on the AMD
HD7970 system.

Prediction accuracy. Our predictive model picks the correct device in 32 of the 33
cases (except for sp.W) on the NVIDIA system (97% accuracy) and in 33 of the 34 cases
(except for ft.A) on the AMD system (97% accuracy).

7.2. Comparison to State-of-the-Art GPU Code Generators

We compared our approach to two automatic GPU code generation systems: (1) Open-
MPC [Lee et al. 2009] which translates OpenMP to CUDA; and (2) the PGI OpenACC
compiler (v 14.4) with the ‘-fast‘ and accelerator-specific optimization flags [OpenACC
2013; Wolfe 2010; The Portland Group 2010]. Because the PGI compiler fails to directly
compile the OpenMP version of the NAS benchmark suite, we used a GPU-specific
OpenACC implementation of the same benchmark suite developed by independent de-
velopers [PathScale Inc 2013]. Because OpenMPC generates CUDA instead of OpenCL
code, we only evaluated it on the NVIDIA platform. Note that we were unable to gen-
erate code for benchmarks is, lu and mg using OpenMPC. The results are shown in
Figure 9.

3Even though the same CPU was used in both cases the numbers vary slightly because the benchmarks sets
are different due to memory constraints on the GPUs.
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Fig. 9: Speedup averaged across inputs of the OpenMPC compiler (NVIDIA only), the
manual SNU implementation of the NAS benchmark suite and our predictive model.

With the exception of ep, the OpenMPC generated code performs poorly compared
to our approach. It only achieves a mean speedup of 0.42x, i.e. slower than sequential
execution. The main reason is that OpenMPC does not perform data transformation,
leading to uncoalesced memory accesses in many cases. On average, our approach out-
performs OpenMPC by a factor of 10.

The PGI OpenACC compiler also gives overall slowdown performance. Note that by
excluding is, lu, and mg which OpenMPC fails to compile, the PGI OpenACC com-
piler actually gives better overall performance than OpenMPC (0.7 vs 0.4). OpenACC
outperforms OpenMPC on the cg benchmark but delivers poorer performance than
our approach on both platform. On average it gives slowdown performance instead of
a 4.18x and 3.9x speedup achieved by our approach on the NVIDIA and AMD plat-
form respectively. Because the PGI OpenACC compiler is an closed source software,
we cannot get deep insights of its implementation. Instead, we used the AMD CodeXL
profiling tool [AMD 2014] to analyze the generated OpenACC code on the AMD GPU.
We discovered that the OpenACC version has significantly longer OpenCL kernel ex-
ecution time compared to our approach. This may attribute to the lacking of array
index transformations to reduce the non-coalesced memory accesses of OpenCL ker-
nels. For some benchmarks, such as lu and is, the GPU gives no advantage and the
OpenACC runtime does not dynamically choose computing devices and thus leads to
poor performance. On average, our approach is 13x and 32x faster than the OpenACC
implementation on the NVIDIA and AMD platforms respectively.

7.3. Comparison to Hand-coded Implementation

Figure 10 compares the generated OpenCL code to the hand-written SNU implemen-
tation [Seo et al. 2011]. This provides independently hand-written OpenCL implemen-
tations of the NAS parallel benchmarks. We selected the largest possible input size for
each benchmark. To provide a fair comparison, the experiments were carried out on
two platforms where the developers have tested the code: a NVIDIA GTX 480 GPU
and an AMD Radeon HD6970 GPU.

The data show mixed results. For benchmarks bt, sp and ft, our automatically gen-
erated code outperforms the hand-written code. This is mainly due to the data re-
structuring performed by our compiler, including dynamic index re-ordering, which is
especially important for benchmarks bt and sp. For cg and ep the speedups for both
OpenCL code versions are similar but our predictive model outperforms SNU NPB on
cg by selecting the right computing device (CPU) and using the OpenMP version.
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Fig. 10: Speedup of the SNU implementation, our generated OpenCL code and the
predictive modeling based approach for the largest possible input size. This experi-
ment was performed on two GPUs that the SNU developers have used for testing and
evaluation.

On the remaining benchmarks, is, lu and mg, our generated code is not as good
as the SNU implementation. The SNU version of lu uses a different algorithm than
the original OpenMP code [Seo et al. 2011]. Their implementation uses a hyperplane
algorithm which is much more suited for GPU execution. Changing the algorithm is
out of the scope of our approach. For is the SNU implementation uses atomic op-
erations to compute a histogram and a parallel prefix sum algorithm which is not
exposed in the OpenMP code and is not supported by our current implementation.
The code for mg works on highly irregular multi-dimensional data structures. In the
generated code these data structures are flattened and indirection in each dimension
is used to navigate through the data. The SNU implementation uses a different ap-
proach that requires a single level of indirection which leads to vastly improved per-
formance. Nonetheless, our ML model is able to pick the right computing device for
those benchmarks and the performance gap between the manual implementation and
our predictive modeling based approach is not significant.

Overall our generated OpenCL code performs well. The hand-coded versions gener-
ally only perform better when algorithmic changes or code restructuring is performed
which is difficult to be achieved by an automatic compiler without human involvement.

7.4. Performance Breakdown

Figure 11 shows the impact of the transformations described in Section 4 whenever
they were applicable to a benchmark.

BT. As shown in Section 2 bt contains many multi-dimensional arrays and deeply
nested loops. Without applying any of the transformations performance is thus poor on
the GeForce system. But even when applying loop interchange and static data trans-
formations the performance only improves marginally (up to 0.81x). This is because
there are several, large sections of the program that require different data layouts to
achieve memory coalescing and perform well on the GPU. Hence, when also apply-
ing dynamic array index re-ordering performance improves markedly. However, when
compared to CPU performance we only see speedups for large input sizes W and A. On
the Radeon system (Figure 11e) a similar behavior can be observed.

CG. This benchmark only contains one-dimensional arrays and is thus not amenable
to loop interchange or data transformations. However, as the Figures 11b and 11f show,
good performance on GPUs can already be achieved without any transformations. For
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Fig. 11: Speedup over single-core execution on Corei7 (OpenMP) and both the NVIDIA
GTX580 and AMD HD7970 systems (OpenCL). Where applicable we show the perfor-
mance of the transformation steps: LI=loop interchange; SD=static data transforma-
tions; DD=dynamic data transformations.

small input sizes slowdowns can be observed due to insufficient amounts of computa-
tion. But for large input sizes the GPU outperforms the CPU with speedups of up to
5.56x and 6.79x on the two GPU architectures.

EP. Figures 11c and 11g show results for ep, an embarrassingly parallel benchmark
that performs a significant amount of computation per work item. Its data struc-
tures are one-dimensional arrays and data transformations are thus not applicable.
But even without any transformations speedups of up to 78x on the GeForce and
202x on the Radeon systems over single-core execution are observed. This compares
to speedups of only up to 10x on the Corei7.
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Fig. 12: OpenCL time breakdown on AMD HD7970. Each category is normalized to
the sequential execution of the program (lower is better). This diagram includes the
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FT. For the ft benchmark we see speedups on the GPU of up to 2.6x for large input
sizes (see figures 11d and 11h). With small inputs using the GPU leads to slowdowns,
even after applying data transformations.

IS. On both architectures significant slowdowns are shown for GPU execution on
all input sizes–from 0.03x to 0.78x on the GeForce GPU and from 0.01 to 0.04 on the
Radeon GPU (Figures 11i and 11m). But even on the CPU only small speedups can be
achieved. This is dominated by communication with the host memory. Furthermore,
each OpenCL work-item needs to keep a private copy of a large array which means
that the total number of work-items is limited by the GPU memory. This leads to
underutilization of the GPU which further reduces performance. Data transformations
are not applicable to this benchmark because it only works on one-dimensional arrays.

LU. Even though the OpenMP code shows good speedups on the CPUs, performance
on GPUs is poor despite applying data transformations (Figures 11j and 11n). lu is a
complex program and its OpenMP version exploits pipeline parallelism using a com-
bination of asynchronous parallel loops and a bit-array to coordinate pipeline stages.
The current SIMD-like execution models of GPUs are not designed to exploit this type
of parallelism. As a result, large parts of lu can not utilize GPU’s massive parallel
processing units and have to be serialized which explains the slowdown on the GPUs
(as can be seen from the expensive host-device communication shown in Figure 12).

MG. For this benchmark, we see that speedups are only achieved for large input
sizes and after data transformations have been applied (Figures 11k and 11o). How-
ever, on none of the architectures does the GPU outperform the CPU.

SP. Similar to bt dynamic data realignment is required to unlock the best perfor-
mance for benchmark sp (Figures 11l and 11p). Static data transformations cannot
improve on the original data layout. Speedups of up to 8.6x on the GeForce GPU and up
to 4.1x on the Radeon GPU are shown for large input sizes. This compares to speedups
of up to 2.0x on the CPU. For small data sizes, however, the CPU outperforms the GPU.

7.5. Breakdown of OpenCL Runtime

Figure 12 shows the breakdown of OpenCL execution time for each benchmark (with
the largest possible input size) on the AMD HD7970 system. This information was
collected using the AMD CodeXL profiling tool [AMD 2014]. The time is normalized to
single-core exeuction of the original OpenMP program (lower is better). Each stacked
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F1 F2 F3 F4
S 0.0020 0 0 0.81
W 0.0004 0 0 0.82
A 0.0003 0 0 0.82

(a) w/o data transformations

F1 F2 F3 F4
S 0.0020 0.731 0 0.81
W 0.0004 0.780 0 0.82
A 0.0003 0.999 0 0.82

(b) w/ data transformations

Table IV: Features of bt

GPU

F1 (Commun. - Computation Ratio) < 0.69

F4 (Computation � Mem Ratio) < 12

F3 (% Local Mem Access    Avg. #Work-items per Kernel)  < 29

F2 ( % Coalesced Mem Access) < 0.70

F4 < 6.50

GPU

F3 < 0.05

F4 < 1.40

CPU

GPU

CPU

F2 < 0.9

F1 < 1.4E-02CPU

GPU

F4 < 1.40

GPU CPU
CPU GPU

C3 : BT.A, BT.B 

(w/ data transformations)

C2: B.S, B.W

(w/ data transformations)

NoYes

C1: BT.S, BT.W, BT.A, BT.B 

(w/o data transformations)

F3 < 9

Fig. 13: The model used for bt on NVIDIA GeForce GTX 580. Predictions for bt with
and without data transformations are marked as C1, C2 and C3.

bar consists of host-device data transfer time, cumulative OpenCL kernel execution
time, and overhead for executing OpenCL host APIs the CPU.

Some benchmarks, e.g. ep, bt, cg and sp, can make effective use of the GPU with
small kernel execution time and overall faster performance. Some benchmarks, by
contrast, are not suitable for GPU execution. For example, for is, the small number
of work-items leads to under-utilization of the GPU and because each GPU processing
unit is simpler and weaker then a CPU core, this results in longer kernel execution
time. For lu, the frequent CPU serial execution introduces intensive host-device com-
munication and leads to slowdown performance. This figure shows that not all OpenCL
programs can utilise the GPU and the available parallelism and the communication
cost of task off-loading are important factors when determining which device to use to
run the program.

7.6. Analysis of Predictive Models

Figures 13 and 14 show the decision trees constructed for the two systems by excluding
bt from the training set. The learning algorithm automatically places the most rele-
vant features at the root level and determines the architecture-dependent threshold
for each node. All this is done automatically without the need of expert intervention.

As an example, the features for benchmark bt are shown in table IV.4 We show the
features both before and after applying data transformations according to the exam-

4The feature values for all benchmarks can be found at http://homepages.inf.ed.ac.uk/s0898672/
cgo2013-features.tgz.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Automatic and Portable Mapping of Data Parallel Programs to OpenCL for GPU-based Heterogeneous SystemsA:19

C2: BT.A 

(w/ data transformations)

F1 (Commun. - Computation Ratio) < 0.03

F4 (Computation � Mem Ratio) < 7.65

F3 < 21

F2 ( % Coalesced Mem Access) < 0.99

F3 (% Local Mem Access    Avg. #Work-

items per Kernel) < 3300

CPU GPU

CPU GPU

F3 < 0.02

GPUF4 < 134

GPUF4 < 30

GPU CPU

NoYes

C1:    

BT.S, BT.W 

(w/ data transformations)

BT.S, BT.W, BT.A

(w/o data transformations)

GPU

Fig. 14: The model used for bt on AMD Radeon HD7970. Predictions for bt with and
without data transformations are marked as C1 and C2.

ple shown in section 2. This demonstrates the impact of the transformations on the
mapping decision.

At the root of the tree in figure 13 we look at the value for the communication-
computation ratio (F1). In all versions the value is far below the threshold. We thus
proceed to the left subtree until reaching the fourth level of the tree. This node looks at
the percentage of coalesced memory accesses (F2). Without data transformations none
of the accesses are coalesced and the left branch is taken, eventually leading to CPU
execution. With data transformations memory coalescing has been improved (see bold
values in table IVb). For input sizes S and W the percentage of coalesced accesses is
less than 80%. For A almost all accesses are coalesced due to dynamic index reordering
(see section 4.1). All values are above the threshold so the right branch is taken. We
follow the same branches until another node of F2 is reached. This time the threshold
is higher, namely 0.9. For input sizes S and W the left branch is taken which leads
to execution on the CPU. For the larger input size A we take the right branch and
eventually reach a node predicting to run on the GPU. All programs get mapped to the
right device.

Figure 14 shows the decision tree constructed for the AMD Radeon system. The first
node also looks at the ratio between communication and computation. The threshold
is lower (0.03), but for all versions of bt the ratio is still below the threshold. The
same path is followed by all versions until the fourth level of the tree is reached. At
this point we look at the percentage of coalesced accesses. The versions without data
transformations are mapped to the CPU because none of the accesses are coalesced.
Even when applying data transformations, for input sizes S and W the value is below
the threshold and the code gets mapped to the CPU. Only input size A is mapped to
the GPU. All programs are again mapped to the right device.

7.7. Dynamic Index Reordering

The benchmarks bt and sp contain candidate regions for dynamic index reordering.
Figure 15 shows the performance of the benchmarks with different input sizes when
applying dynamic index reordering to none, the first or the second of those regions.
The performance is normalized to the runtime when the transformation is not applied.
In each case the runtime is broken up into the runtimes for the two candidate code
regions, the overhead of the transformation (if applicable) and the rest of the program.

The first candidate region makes up only a small fraction of the overall runtime of
both benchmarks; 1-3% on the NVIDIA and 1-11% on the AMD system. When applying
dynamic index reordering here the performance of this region barely improves, because
there are not many memory accesses that benefit from the transformation. The cost of
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Fig. 15: Performance impact of dynamic index reordering when applying the transfor-
mation to none, the first or the second of the candidate regions. The runtime is broken
up into the runtime for the two candidate code regions, the runtime of the transforma-
tion (if applicable) and the rest of the program.
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(b) Intel Ivy Bridge

Fig. 16: Speedup averaged across inputs of the manual SNU code and our model on
systems with integrated GPUs.

reordering the data thus often outweighs the benefits which leads to minor slow-downs
overall.

The second region, on the other hand, makes up a larger chunk of the overall run-
time. Applying dynamic index reordering significantly reduces the runtime of this re-
gion. Since the overhead of data reordering is comparatively small big overall runtime
reductions are achieved by applying the transformation to this region: up to 75% on
the NVIDIA system and 62% on the AMD system.

Similar to predicting which device to run a program on, we also use decision trees
to determine when dynamic index reordering is beneficial (see Section 5.4 for details).
Applying this model for bt and sp achieves an accuracy of 79% on the NVIDIA and
94% on the AMD system.

7.8. Performance on Integrated Systems

GPU technology is constantly evolving. To check our approach also works on new de-
vices we evaluated it on two systems with integrated GPUs, AMD Llano (A8-3850) and
Intel Ivy Bridge (Core i5 3570K). Figure 16 shows a summary of the results using the
SNU implementation and our predictive modeling approach. The manual SNU code
only achieves speedups of 1.6x and 0.7x on average compared to 3.1x and 2.7x of our
approach.
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The integrated GPUs on these systems are less powerful than the discrete GPUs we
evaluated before. This demonstrates even more the need for a model that only maps
code to the GPU when it is beneficial. Integrated GPUs share the system memory with
the CPU, making data movements between the devices cheaper or even unnecessary in
the case of Intel IvyBridge. Because most benchmark in the NAS parallel benchmark
suite are compute-intensive this advantage does not lead to improved performance
overall. Nonetheless, our portable ML based approach is still able to achieve a speedup
on average.

8. RELATED WORK

GPU Programming Languages. Programming support for GPUs has been a critical
issue and CUDA has been a significant reason for the success of general-purpose com-
puting on GPUs. Impressive performance has been achieved with orders of magnitude
improvements found for certain applications [Ryoo et al. 2008]. Despite the popularity
of CUDA, it mainly targets NVIDIA GPUs and is not directly portable to other GPUs
or more general heterogeneous architectures. OpenCL has the promise of having more
general applicability at the cost of a potentially more complex programming model.
Due to the relative immaturity of language implementations recent work has focused
on how to improve performance either using different code transformations [Lee and
Eigenmann 2010] or partitioning across multiple GPUs [Kim et al. 2011]. The bench-
marks considered are largely those well fitted to GPU architectures. In [Bordawekar
et al. 2010; Grewe and O’Boyle 2011; Lee et al. 2010a] it was shown that while GPUs
can often give significant performance for kernels, in some cases it is better not to use
the GPU but use the multi-core instead.

High Level Programming Models. There have been several different approaches to
generating GPU code from simpler higher level languages. In C to CUDA [Baskaran
et al. 2010] nested loops are represented in a polyhedral framework which when
mapped to the GPU give excellent performance. However, the set of programs that can
be handled this way is extremely small and cannot be applied to more general parallel
programs with arbitrary data dependence and control-flow structure. In Sponge [Hor-
mati et al. 2011] again good performance is achieved. The benchmarks used were
rewritten from the Parboil benchmarks, a CUDA benchmark suite, in StreamIt for-
mat so again the benchmarks are those that are well fitted to GPUs. Apart from Gregg
et al. [Gregg et al. 2010], none of these approaches uses OpenCL and most of them rely
on the user to provide separate kernel version for CPUs and GPUs. We circumvent this
problem by automatically generating multi-versions of the input program and building
a portable machine learning model to automatically select a code version at runtime.

Automatic Generation of GPU Programs. The OpenMPC compiler [Lee et al. 2009]
translates OpenMP to CUDA programs. Unlike our approach OpenMPC does not per-
form dynamic data transformations nor use predictive modeling to select a code version
across different GPU architectures. The OpenACC programming interface [OpenACC
2013] defines a set of compiler directives for expressing loop- and region-based paral-
lelism. Using an OpenACC enabling compiler, the parallelism can be translated into
OpenCL or CUDA implementations or be off-loaded onto an accelerator. In [Baskaran
et al. 2010] CUDA programs are automatically generated from sequential, affine C pro-
grams using the polyhedral model. In all of the above approaches the code always gets
executed on the GPU. Prior work on automatic generation of parallel GPU code from
sequential programs also includes Par4ALL [Amini et al. 2012], PPCG [Verdoolaege
et al. 2013] and [Wang et al. 2014a]. Unlike our approach, they do not consider the
problem of selecting the most suitable device from the host CPU and the GPU to run
the code.
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Optimizing GPU Programs. CGCM [Jablin et al. 2011] is a CPU-GPU communica-
tion system to optimize CUDA applications between the host and the GPU. In the
following work [Jablin et al. 2012], DyManD was proposed to overcome the limitation
of CGCM by replacing static analysis with a dynamic runtime system. DyManD is able
to optimize programs that can not automatically handle by CGCM. CUDA-lite [Ueng
et al. 2008] relies on programmer annotations to translate exploit GPU performance
by coalescing memory accessing. Sung et al. [Sung et al. 2010] propose a data layout
transformation for structure grid programs (e.g. stencil code). The input to their tool
are arrays that are in a restricted form. Dymaxion [Che et al. 2011] allows program-
mers to manually apply index reordering for CUDA programs. In contrast to Dymaxion
which has a single data layout for the entire program, our compiler automatically ap-
plies dynamic index reordering to parts of the program when such a transformation
is profitable. Furthermore, in Dymaxion index reordering can only be applied when
transferring data from the host to the GPU, while our technique is applied when the
data is already on the GPU. Recently, Kayiran et al. proposed a dynamic scheduling
approach to determine the optimal number of GPU threads to reduce the resource
contention on the GPU [Kayiran et al. 2013]. The StarPU runtime system provides a
unified framework for scheduling numerical kernels on heterogeneous systems [Au-
gonnet et al. 2011]. StarPU requires the developers to provide a cost model for each
task and uses a heuristics to dynamically schedule parallel tasks. This fine-grained,
runtime-based approach complements to our compiler-based approach.

Data Layout Transformation. Data layout crucial for application performance and
there is an intensive body of work for data layout transformation on CPUs. A good re-
view of existing CPU techniques could be found on Karlsson’s report [Karlsson 2009].
DL is a runtime data layout transformation framework for GPU applications [Sung
et al. 2012]. It offers a number of useful data layout transformations such as trans-
forming array-of-structures to/from structure-of-arrays and in-place layout conversion.
Prior work also includes Dymaxion[Che et al. 2011] and in-place matric transposi-
tion [Sung et al. 2014; Gustavson et al. 2012]. Impressive results have been achieved
by those approaches. Unlike prior work that relies on the programmer to determine
the cost and benefit of data transformations, our approach uses machine learning to
automatically learn a cost model that automatically decide whether a transformation
is beneficial for given program, input and hardware.

Mapping Parallel Programs. The majority of prior research on parallelism map-
ping has focused on building platform-specific heuristics [Ramanujam and Sadayap-
pan 1989; Huang et al. 2009] for a certain class of platforms. Such an approach is
tightly coupled to a specific architecture and as a result can not adapt to the fast
evolving GPU architecture. Our predictive model, on the other hand, can adapt to the
change of hardware and compilers by automatically learning from data. Some other
approaches use iterative compilation and search to tune GPU programs [Datta et al.
2008]. These approaches, however, can lead to excessive profile runs for a single pro-
gram. Our recent work [Grewe et al. 2013; Wen et al. 2014] takes the machine learning
based approach further to automatically partitioning GPU kernels between the CPU
and GPU in the presence of workload contention (i.e there are multiple programs com-
pete for the shared computing resources). Our scheme achieves significant speedups
over a GPU-only scheme, demonstrating the advantages of machine learning based
parallelism mappings.

Predictive Modeling. In addition to optimizing sequential programs [Cooper et al.
1999], recent studies have shown that predictive modeling is effective in optimizing
parallel programs [Wang and O’Boyle 2009, 2010; Collins et al. 2013; Wang and O’boyle
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2013; Emani et al. 2013; Wang et al. 2014b] and scheduling parallel workload [Grewe
et al. 2011]. The Qilin [Luk et al. 2009] compiler uses off-line profiling to create a re-
gression model that is employed to predict a data parallel program’s execution time.
Unlike Qilin, our approach does not require any profiling runs during compilation.
Recently, machine learning is used to predict the best mapping of a single OpenCL
kernel [Grewe and O’Boyle 2011; Ogilvie et al. 2014]. In contrast to this work, our
compiler automatically transforms large OpenMP programs into OpenCL-based pro-
grams and predicts whether the OpenMP or OpenCL code gives the best performance
on the system.

9. CONCLUSION AND FUTURE WORK

This article has described a compilation approach that takes shared memory programs
written in OpenMP and outputs OpenCL code targeted at GPU-based heterogeneous
systems. The proposed approach uses loop and array transformations to improve the
memory behavior of the generated code. OpenCL is a portable standard and we evalu-
ate its performance on different platforms, NVIDIA GeForce and AMD Radeon discrete
GPUs, and integrated GPUs. This approach was applied to the whole NAS parallel
benchmark suite where we show that in certain cases the OpenCL code generated can
produce significant speedups (up to 202x). However GPUs are not best suited for all
programs and in some cases it is more profitable to use the host multi-core instead.
We developed an approach based on machine learning that determines for each new
program whether the multi-core CPU or the GPU is the best target. If the multi-core
is selected we run the appropriate OpenMP code as it currently outperforms OpenCL
on multi-cores. This model is learned on a per platform basis and we demonstrate that
the model adapts to different platforms and achieves consistent prediction accuracy.
We thus build on the portability of OpenCL as a language by developing a system that
is performance portable as well.

Future work will examine a much greater range of program optimizations. In par-
ticular we wish to examine exploitation of the GPU memory hierarchy and apply auto-
vectorization; both of these are likely to benefit the AMD Radeon and other GPUs.
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Fred Gustavson, Lars Karlsson, and Bo Kågström. 2012. Parallel and Cache-Efficient In-Place
Matrix Storage Format Conversion. ACM Trans. Math. Softw. (2012).

Amir Hormati, Mehrzad Samadi, Mark Woh, Trevor N. Mudge, and Scott A. Mahlke. 2011.
Sponge: portable stream programming on graphics engines. In ASPLOS XVI.

Lei Huang, Deepak Eachempati, Marcus W. Hervey, and Barbara Chapman. 2009. Exploiting
global optimizations for OpenMP programs in the OpenUH compiler. In PPoPP ’09.

Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu, and David I. August. 2012.
Dynamically managed data for CPU-GPU architectures. In CGO ’12.

Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R. Beard, and
David I. August. 2011. Automatic CPU-GPU communication management and optimization.
In PLDI ’11.

Lars Karlsson. 2009. Blocked in-place transposition with application to storage format conver-
sion. Technical Report.

Onur Kayiran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. 2013. Neither
More nor Less: Optimizing Thread-level Parallelism for GPGPUs. In PACT ’13. 157–166.

Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. 2011. Achieving a single compute
device image in OpenCL for multiple GPUs. In PPoPP ’11.

Jaekyu Lee, N.B. Lakshminarayana, Hyesoon Kim, and R. Vuduc. 2010b. Many-Thread Aware
Prefetching Mechanisms for GPGPU Applications. In MICRO 2010.

Seyong Lee and Rudolf Eigenmann. 2010. OpenMPC: Extended OpenMP Programming and
Tuning for GPUs. In SC ’10.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. 2009. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In PPoPP ’09.

Victor W. Lee and others. 2010a. Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In ISCA ’10.

LLVM. 2013. The LLVM Compiler Infrastructure Project. http://llvm.org/. (2013).
John Lu and Keith D. Cooper. 1997. Register Promotion in C Programs. In PLDI ’97.
Chi-keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting Parallelism on Het-

erogeneous Multiprocessors with Adaptive Mapping. In MICRO 42.
Christos Margiolas and Michael F. P. O’Boyle. 2014. Portable and Transparent Host-Device

Communication Optimization for GPGPU Environments. In CGO ’14.
NVIDIA Corp. 2013. NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html. (2013).
William Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2014. Fast Automatic

Heuristic Construction Using Active Learning. In LCPC ’14.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Automatic and Portable Mapping of Data Parallel Programs to OpenCL for GPU-based Heterogeneous SystemsA:25

OpenACC. 2013. The OpenACC Application Program Interface. http://www.openacc-standard.
org/. (2013).

PathScale Inc. 2013. NPB2.3-OpenACC-C. https://github.com/pathscale/NPB2.3-OpenACC-C.
(2013).

J. Ross Quinlan. 1993. C4.5: programs for machine learning.
J. Ramanujam and P. Sadayappan. 1989. A methodology for parallelizing programs for multi-

computers and complex memory multiprocessors. In Supercomputing ’89.
Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and

Wen-mei W. Hwu. 2008. Optimization Principles and Application Performance Evaluation of
a Multithreaded GPU Using CUDA. In PPoPP ’08.

Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance characterization of the NAS
Parallel Benchmarks in OpenCL. In IISWC ’11.

Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc. 2012. A Performance
Analysis Framework for Identifying Potential Benefits in GPGPU Applications. In PPoPP ’12.

Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In POPL ’96.
John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike Murphy, Ziang Hu,

and Wen-mei W. Hwu. 2010. Efficient Compilation of Fine-grained SPMD-threaded Programs
for Multicore CPUs. In CGO ’10.
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