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Abstract

The sudden column loss idealisation is a useful design tool to assess structures

for progressive collapse. As such an event is a dynamic problem, suitable account

must be taken of these effects. This can either be achieved by a full dynamic anal-

ysis of the structure or a simplified static approach, with correction factors for the

dynamic influence. This study aims to investigate the response of Reinforced Con-

crete (RC) flat slab structures after a column loss using experimentally validated

Finite Element (FE) models. The nonlinear dynamic response of a structure after

such an event is considered, including the redistribution of loads and displace-

ment profile. These results are then compared to equivalent static cases in order to

determine the Dynamic Amplification Factor (DAF). For the range of structures

considered, the DAF was calculated as between 1.39 and 1.62 for displacements,

with lower factors associated with a higher nonlinear response or slower column

removal. Additionally, the shear forces in remaining columns may exceed 200%

of their fully supported condition, with a different associated DAF. The effects of
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increasing the tensile strength of concrete due to high strain rates are also consid-

ered. Typical Dynamic Increase Factors (DIFs) based on the strain rates were up

to 1.23, however, this only applied for a short time period, and in a limited area.

Therefore, such effects do not significantly influence the response.

Keywords: Progressive Collapse, Column Loss, RC Flat Slab, Dynamic

Amplification

1. Introduction

Progressive collapse has been shown to be an important issue in the design of

structures after the collapses of a number of buildings including Ronan Point in

1968 and the Murrah Federal Building bombing in 1995. One design approach

is to use a scenario-independent analysis, such as a sudden column loss, which

idealises the possible event by removing a support and analysing the response of

the remaining structure and ensuring it has suitable alternative load paths. This

approach is adopted in a number of international codes (see for example [1–3]).

While a static loading simulation is often used in practice, such an event is in

reality a dynamic problem. Previous studies have considered this issue, demon-

strating that a structure may be statically safe but dynamically unsafe [4]. The

inertial effects involved create an amplification of the forces applied to surround-

ing elements, often called the Dynamic Amplification Factor (DAF), defined as

ratio of the peak dynamic value of a parameter to the static case. Most com-

monly displacements are used to calculate this value. Other parameters, such as

forces, may give different DAFs. The magnitude of the amplification factor has

been shown to vary depending on structural form and the extent of damage [5–

10]. The majority of the research on this topic has been focused on response of
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beam structures [11–14], however, it is expected that flat slab construction will

behave differently due to the two dimensional redistribution of forces that can

result in different mechanical response [15, 16]. Additionally the potential for

brittle failures such as punching shear, increase the risk of progressive collapse

[17, 18]. The DAF for flat slabs construction has been experimentally measured

at between 1.13-1.23 [19], however this is based on limited data and parameters

and requires further investigation. Furthermore, Lui et al.’s [20] important work

on the response of flat slab structures to progressive collapse highlights that such

structures can be highly susceptible to extreme events and that further studies are

needed.

Additionally, different rates of loading affects the modulus of elasticity, peak

compressive and tensile strengths, and post peak behaviour of engineering mate-

rials. Typically, for RC structures, the most critical of these is the increase in yield

stress for the reinforcement and cracking stress for concrete, which is modelled by

a Dynamic Increase Factor (DIF). This may reduce the extent of damage during

a dynamic event. Malvar and Ross [21] conducted a comprehensive review on

concrete tensile tests at various strain-rates, which indicated that the tensile DIF is

dependant on the material properties of the concrete, as well as the rate of loading.

In their experimental investigation on beams under a sudden column loss, Yu et al.

[10] measured strain rates of between 10−2 to 10−1/s, and suggested that this only

gives a small increase in material strength and can be conservatively ignored.

In this study the dynamic effects of a column loss event on RC flat slab struc-

tures are investigated for different geometric and material parameters. Numerical

models are first validated against experimental tests on scaled substructures and

then a range of dynamic column loss events are simulated. Subsequently, the re-
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sults are compared to equivalent static cases to determine DAFs corresponding to

each case. Additionally, the role of strain rate on the tensile strength of concrete is

considered to determine the significance of such effects for progressive collapse.

The results provide valuable confirmation of previous studies as well adding to

the understanding of the behaviour of RC flat slab structures, which can lead to

more efficient designs.

2. Description of the finite element model

To assess the response of a concrete flat slab structure to a column loss event,

detailed Finite Element (FE) models were created and analysed using Abaqus/explicit

[22]. An explicit code was used because it is particularly suited to nonlinear tran-

sient dynamics problems. First, the FE model of a slab was validated against

experimental tests on RC slabs, then a structural model was developed to assess

the response of typical flat slab structures for progressive collapse.

Solid 8 node brick elements (C3N8R) with reduced integration were used to

model the concrete sections, which also allow inclusion of geometric nonlinear-

ity effects such as the formation of compressive membranes which can increase

the stiffness of continuous slabs due to the in-plane constraint [15, 23]. A mesh

sensitivity study was conducted to identify the optimum number and size of the

concrete elements. The nonlinear behaviour of the concrete was defined using the

Concrete Damaged Plasticity (CDP) model based on Lubliner et. al and modified

by Lee et. al [24, 25]. This considers the behaviour of the concrete after cracking

as a region of plastic strain, in effect representing a continuum of micro-cracks.

Additionally, account is made for the reduction in elastic stiffness as a result of

damage after crushing or cracking. The uniaxial stress-strain behaviour of con-
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crete in compression, after the linear elastic phase, is modelled with Equation 1

from CEB-fib [26]:

σc = − fcm

(

k · η − η2

1 + (k − 2) · η

)

(1)

where η = ǫc/ǫc1, is the ratio of compression strain to crushing strain, and k

is the plasticity number taken as 2.15 for C25/30 concrete. This gives a parabola

shape beyond the elastic limit, with a softening effect until the ultimate limit,

fcm, due to compressive micro-cracks. After this point, there is a reduction in

capacity as the concrete crushes. While this range is defined for completeness, the

experimental programme and results from the finite element models indicate that

only in the most extreme cases does the compressive strain exceed the crushing

strain.

In tension, concrete is taken to be linear elastic up to its cracking stress, fol-

lowed by a nonlinear tension softening model. This is described by Equation 2

from [27], where subscript t indicates tension, and ck is the cracking point occur-

ring at a strain ǫck = fctm/E0.

σt =



































E0 · ǫt f or σt ≤ fctm

fctm ·

(

ǫt,ck

ǫt

)0.4
f or σt > fctm

(2)

The required plasticity inputs for Abaqus are given in Table 1; these defini-

tions and the values used come from the Abaqus user manual [22]. The Kc factor

is the ratio of the second stress invariant on the tensile meridian to the compres-

sive meridian, while σb0/σc0 is the ratio of initial equibiaxial compressive yield

stress to initial uniaxial compressive yield stress. These values convert the uni-
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Table 1: Concrete Damage Plasticity inputs

Dilation angle (ψ) Eccentricity (m) Kc σb0/σc0

35◦ 0.1 2/3 1.16

axial stress strain relationship for compression and tension into the yield surface

[28]. As the aim of a previous experiential programme [29] was to validate, rather

than calibrate, the numerical model, the default values were chosen. This was

confirmed by the agreement in behaviour seen in an equivalent static study [16],

and the results presented below.

The steel reinforcement was modelled with circular beam elements, ID B31.

The bond between the steel bars and the concrete was achieved by using Abaqus’s

embedded region feature, which constrains the translational degree of freedom

for the reinforcement beam nodes to the interpolated values of the corresponding

degrees of freedom of the surrounding concrete nodes [22]. The steel for the

reinforcement was modelled with a tri-linear stress-strain relationship. Based on

the tensile tests conducted on the used reinforcement, a value of 200GPa was

used for Youngs Modulus and the yield stress was taken as 650MPa. An isotropic

hardening law was used for the strain hardening, after yielding, up to 685MPa and

1.5% strain. Beyond this point the material was considered to be perfectly plastic.

For the dynamic removal cases, the mass of the RC slab was calculated based on

the assumed density and volume of the concrete and the steel. Then the additional

mass to achieve the required equivalent live load was determined and added to the

concrete elements and uniformly distributed across the entire slab’s volume as a

non-structural mass.

Initially, a gravity load was applied to all parts of the model before the support
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Figure 1: A schematic representation of the increase in total load and the removal of a support

during dynamic tests

was removed, including the non-structural masses. This was ramped linearly at

a suitable rate to prevent any inertial effects affecting the simulation at this static

stage. Once the full load was reached, the loading was held constant to further

ensure a static state. From this condition, the vertical reaction force from the

temporary support was obtained. The fixed boundary condition was then replaced

by this equivalent force and the model was ready for the removal phase.

The temporary force was then reduced from its full value to zero linearly,

within the removal time period, typically 50ms. A schematic representation of

the total load and the temporary support load against time is given in Figure 1,

showing the linear increase in load under quasi-static conditions up to T1, and the

sudden removal of the support by linearly reducing the support load between T2

and T3.
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To account for the increase in cracking stress due to the fast loading rates

occurring during sudden events, the Model Code [26] recommends a two phase

model, with the change at a strain rate of 10s−1, as shown in Equation 3.

( ft/ fts) =



































(ε̇ct/ε̇ct0)0.018 f or ε̇ct ≤ 10s−1

0.0062 (ε̇ct/ε̇ct0)1/3 f or ε̇ct > 10s−1

(3)

where

ft/ fts = the concrete tensile DIF at ε̇

ε̇ct = the concrete tensile strain rate

ε̇ct0 = 10−6s−1 (static strain rate)

As strain rates in the order of 0.01–0.1s−1 were expected, a fixed DIF of 1.2

was applied to the cracking stress of all the concrete elements for the entire dy-

namic simulations. Although this overestimates the material strength, such an ap-

proach is numerically far more efficient. The reliability of this value is discussed

later. No change in the material properties of the steel were made as the study

did not suggest that yielding of the steel was a significant influence. Additionally,

as it later discussed, the moment of maximum stress occurs at a moment of low

strain rate, reducing the effect.

3. Validation against experimental results

In order to validate the FE model used in this study, experimental results from

scaled slab substructure conducted by Russell et al. [29] were compared to an

equivalent numerical simulation. As most aspects of the model have been previ-

8



(a) Test M-D loaded (b) FE Mesh

Figure 2: Slab details

ously compared against the experimental data for static behaviour, see [16], only

details relevant for a dynamic analysis of a sudden column loss are discussed here.

Two experiential scenarios are used for the validation, these are based on 1/3

scale reinforced concrete slabs. The first replicates a corner column loss, desig-

nated C-D, of a two by one bay flat slab with dimensions 4100x2100mm. The

second case considers an edge column of a continuous slab by removing one of

the middle supports of a 4x1 bay slab, total size 8100x2100m designated M-D,

see Figure 2(a). Both slabs had a depth of 80mm. The slabs were designed to

Eurocode 2 [30], with an A142 (H6@200mm) steel mesh provided for flexural

reinforcement and no shear reinforcement. The supports were composed of steel

plates and bearings, Figure 2(b) provides an example of the modelled support con-

dition. One support was designed with a quick release mechanism for dynamic

response analysis.
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3.1. Validation of column removal time

Figure 3 shows the FE displacements results against time with different re-

moval times compared to the experimental results. Four different times (0, 20,

50 and 100ms) are used to reduce the reaction force provided by the temporary

support, as described with Figure 1. As 0ms is not possible to model computation-

ally, the force was removed within one time step. However, the explicit analysis

required a stable time increment that was typically much less than 0.1ms, which

results in a practically near instantaneous removal scenario. In the test shown in

Figure 3(a), there is a significant difference in the responses as the removal time

changes. The first two cases, 0ms and 20ms show very similar behaviour, with

peaks occurring at approximately the same time. For the 50ms removal time the

peak is noticeably reduced to 79% of the instantaneous peak. Additionally, it can

be seen that the peak displacement occurs later. With the 100ms case the peak

is only 53% of the instantaneous removal and there is very little oscillation. Fur-

thermore, the ratio of peak to final displacements drops from 1.59 for the instan-

taneous case, to 1.42 and 1.06 for 50 and 100ms respectively. This demonstrates

that the modelled removal time is an important factor. By comparing the experi-

mental results to the FE model indicates that the experimental removal time was

between 50 and 100ms. However, as significant oscillations were seen in the ex-

periment, it is likely to be closer to the 50ms value. Of final note, the experimental

case reached its peak quicker than the 50ms case, despite the trend suggesting it

should be longer. This may be due to the linear reduction in force at the support,

which does not truly represent the motion involved in the sudden column removal.

Considering also a case with a higher super-imposed load, presented in Figure

3(b), this again shows the significant effect of removal time on the displacement
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response, with longer removal times producing smaller peaks and final displace-

ments. For this case, the peak experimental results appear to fit better with the

20ms case, although its gradient, i.e. its velocity, matches the 50ms removal very

well. This is further confirmed from video footage with a high speed camera dur-

ing the experimental study suggesting that the support was typically completely

removed within 50ms [29]. This value is therefore a reasonable estimate of the re-

moval time, however, towards the end of the motion, more damage occurred in the

experiment than was predicted with the FE case resulting in the higher deflections.

3.2. Displacements against time

Taking the displacements against time for the corner column loss test, ID C-

D, a comparison can be made between the experimental results and the FE model

as shown in Figure 4. For the case with a super-imposed load of 3.0 kN/m2,

the model shows slightly higher deflections than the experiment. This is due to

a lower level of stiffness, which may be due to the uncertainties in the material

properties, support conditions and accuracy of the measurements. However, the

difference in deflections is less than 2mm, and the damping ratio for both cases is

0.01, based on the logarithmic decrement method after the first peak. At the higher

loading, 6.8 kN/m2, the position in the middle of the adjacent bay shows a very

similar relation to the experimental results, including a slight delay before moving.

The peak displacements show a weaker agreement. Firstly, the numerical case

shows that after the experimental case reaches equilibrium, plastic drift continues

to increase the deflections in the FE model. While this phenomenon was observed

in some experimental tests it did not occur in this specific specimen. Additionally,

a smaller peak is predicted from the numerical case, which could either be due to

the simulated support removal time being too long, or the DIF being too high for
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(a) 3.0kN/m2 of loading

(b) 6.8kN/m2 of loading

Figure 3: Displacements against time for different support removal times compared with experi-

mental results - Test C-D
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Figure 4: Normalised displacement against time for test at different locations and loadings. Ex-

perimental results (solid lines) and FE (dashed lines) are shown for test C-D (corner removal)

the strain rates.

The peak strain rate measured in the top steel over the adjacent support was

0.028s−1, which corresponds to a DIF of 1.2 according to Equation 3, the same

value that was specified as a fixed increase factor. This occurred between 60 and

100ms after removal, while the peak displacement did not occur until 220ms.

At the time of maximum displacement, the highest strain rate in the steel was

a factor of 10 lower than the peak, which reduces the calculated concrete DIF

to 1.15. This assessment indicates that the tensile concrete DIF is close to the

correct value, although may still overestimate the additional capacity provided

as the slab reaches its first peak. However, the difference in deflections between

the numerical and experimental cases is small and is quickly damped out in both

cases.

The results for the 8.1m specimen, test ID M-D, which included a continuous
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Figure 5: Displacements against time at different locations comparing experimental results (solid

lines) to the FE (dashed lines) - Test M-D with 8.5 kN/m2 of loading

slab over the adjacent supports, creating a 2x1 bay system with the middle edge

column removed, are compared to the FE model in Figure 5. With a loading of 8.5

kN/m2, the displacement values from the FE model tend towards similar values

from the experimental case, in particular at the removal location, the motion is

not as damped as the physical test. A clear oscillating motion can be seen from

the numerical results while the experiment reached its peak more slowly with

almost no oscillation. It should be noted that the other monitored locations in

the adjacent bay show a better agreement, possibly as these locations experience

smaller deflections and less dynamic influence.

3.3. Comparison of natural frequencies

Conducting a modal analysis of the models, to obtain the mode shapes and

associated natural frequencies, allowed further validation of the models. It is ex-
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pected that within the elastic range, where damage has not occurred, the frequency

of oscillation corresponds closely with the 1st modal frequency. At higher load-

ing, the extensive flexural damage and concrete cracking reduces the stiffness of

the slab and therefore decreases the fundamental frequency leading to a different

response from that predicted based on the initial state. The modal analysis is based

on a linear perturbation and therefore nonlinear contact changes such as uplift of

supports or rotation of the bearings will not be captured.

A summary of the results from the modal analysis is given in Tables 2 and 3

comparing them with the fundamental frequency of oscillation from the experi-

mental programme and the dynamic FE tests. In both the corner and middle col-

umn removal cases, the first modal frequencies are higher than the experimental

results at all loading levels. In the elastic range, the overestimation is the smallest,

and is because of the issues in modelling the rotation of the supports. The fre-

quency of oscillation of the FE model at the higher loadings shows a much better

agreement to the experimental case. This suggests that the full nonlinear model

provides a good representation of the reduced stiffness due to the damage and the

distribution of the mass across the sample.

As the natural frequency is a function of the stiffness and the mass, by con-

ducting a modal analysis on the initial elastic state of a structure, with a known

loading, the difference in dynamic oscillation after a sudden column loss is due to

the reduction in stiffness as a result of damage.

4. Description of numerical parameter study

The validated FE model was extended to investigate the influence of changing

parameters on the response of typical flat slab structures after a column loss event.
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Table 2: Comparison of the frequencies from a modal analysis and the dominant frequency ob-

served in the experimental and FE results - Test C-D

Loading
1st Mode (Hz) 2nd Mode (Hz)

Experiment FE FE

(kN/m2) Displacements Displacements Modal Modal

3.0 11.0 9.76 13.6 30.5

6.8 5.41 5.68 9.05 20.2

7.7 3.54 N/A 8.53 19.1

Table 3: Comparison of the frequencies from a modal analysis and the dominant frequency ob-

served in the experimental and FE results - Test M-D

Loading
1st Mode (Hz) 2nd Mode (Hz)

Experiment FE FE

(kN/m2) Displacements Displacements Modal Modal

3.1 13.4 11.1 15.1 30.1

6.9 8.6 7.78 10.1 20.1

8.5 6.0 6.64 9.1 17.9
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The plan and elevation of the floor model is shown in Figure 6(a). Lover = 500mm,

c = 400mm and H = 3000mm are the overhang, column width and storey height

respectively, kept constant for all models. As solid elements were used, the

columns are rigidly connected to the slab at all shared nodes across their cross

section. The span length, L, and the slab thickness, t, were varied from 4 to 6m

and 180 to 250mm respectively. Further information of the model can be obtained

from reference [16].

Each of the models was designed to meet current Eurocode requirements ac-

cording to EN 1992 [30]. Characteristic dead loading was based on the selfweight

of the material plus an additional 1.0kN/m2 to account for other finishes. Live

loading for design was taken at 2.5kN/m2. Unless otherwise stated, the charac-

teristic compressive concrete strength was 30MPa. Based on the design forces,

adequate flexural steel was provided, including the requirement to place 50% of

the tensile steel for hogging moments within 0.125 times the span width. In all lo-

cations, for both top and bottom steel, at least a minimum area of steel according

to EC2 was provided, typically H10 bars at 300mm centres. To meet durability

specifications, 25mm of cover was provided to all steel. Each designed model

configuration met the required shear stress capacity for punching shear without

the inclusion of shear reinforcement.

In total, five different arrangements were considered as listed in Table 4. The

span to depth ratios are based on the effective span length, Le f f , of an internal bay

with a continuous slab over the supports.

For the column removal simulation, a uniformly distributed load was applied

for an accidental load case, wac, as given in Equation 4 from US General Services
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(a) Plan and elevation

(b) Rendering of finite elment floor model

Figure 6: Floor model layout for numerical study
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Table 4: Span length and slab thickness for each model

Span length Slab thickness Effective span Span to depth ratio

L (mm) t (mm) Le f f Le f f /t

4000 180 3780 21.0

4000 250 3850 15.4

5000 200 4800 24.0

5000 250 4850 19.4

6000 250 5850 23.4

Administration (GSA) [1]:

wac = 1.2DL + 0.5LL (4)

where DL and LL are the Dead and Live Loads respectively, representing one of

the highest commonly used design load factors.

The Dynamic Amplification Factor (DAF), that is the required increase in ap-

plied force for a static analysis to represent the inertial effects from a dynamic

case, can be determined by comparing the results from the two simulations. The

DAF can be calculated by taking the peak displacement from the dynamic analy-

sis and finding what force factor is needed on a nonlinear static model to achieve

the same displacement. This approach is suitable for attempts to correlate flexural

damage between static and dynamic analyses, which is related to the deflection

response. However, the shear force increase is not directly related to the measured

deflections. Therefore, a DAF based on the peak reaction force occurring at a

column, compared to the static increase condition will be also considered in this

study.
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5. Numerical results and discussion

5.1. Dynamic displacement for different span to depth ratios

Figure 7 shows the normalised displacements against time for models with

different span to depth ratios. The removed column locations are shown in Figure

6(a), for the two column removal case the corner and penultimate column loca-

tions were chosen. The key displacement results are also presented in Table 5

from all the models. Note that due to the high computational cost in running these

simulations, later analyses were terminated earlier, once patterns had been estab-

lished, to ensure responsible use of resources. The results are also normalised

against the ductility factor, µδ, defined from Equation 5.

µδ =
δ

δy

(5)

where δ and δy are the displacement and the static yield displacement of the re-

moval point respectively. A bilinear relationship of the static displacement against

load was applied to get the yield displacement for each scenario, whilst ensuring

the ensure the area under the simplified model is equal to the area under the mea-

sured curve [16].

In general, increasing Le f f /t leads to larger normalised deflections, although

exceptions occur due to the influence of the higher selfweight that comes with

thicker slabs, which explains why larger displacements are seen for the 24.0 case

compared to 23.4 for the internal removal scenario.

In all the cases, while the deflections as a function of the depth remained low,

less than 0.159 times the thickness of the slab for a single column loss, the level

of nonlinearity demonstrated that the structure may be stressed beyond its elas-

tic limit, by up to 3.31 times δy in the highest case. Additionally, removing two
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(a) Corner column removal

(b) Internal column removal

Figure 7: Normalised displacement against time for different span to depth ratios
21



columns naturally creates a larger displacement response, with a higher δmax/δy

ratio, although δmax/t is still only 0.283. This suggests that although material non-

linearity may occur, the slab has not deformed enough for the effects of geometric

nonlinearity to be dominant.

A further comparison is given in Table 6, which shows the frequency and

damping values for the models. In each case, the frequency of oscillation is

slightly lower than the value obtained from the modal analysis. This is due to

the reduction in stiffness of the concrete elements as a result of damage. How-

ever, this change is not typically very large, indicating that the system is close to

elastic. Similarly, the damping ratio is typically under 2% from the model’s free

decay period, suggesting the damage sustained has not affected the response of

the structure significantly.

A comparison of the displacements against time for the four removal scenar-

ios is given in Figure 8 for slabs with Le f f /t = 19.4. From these results all the

single column loss events show a similar level of normalised displacement, with

the corner case slightly higher than the others. When two columns are removed,

significantly higher deflections occur, although the frequency of the oscillations is

smaller, as also shown in Table 6.

5.2. Displacement response for different removal times

The previous results were all based on an assumed instantaneous column re-

moval, commonly used for scenario independent analysis. In reality it may take

longer for the support to be completely removed. Changing this removal time

changes the dynamic response of the structure, as can be seen in Figure 9. For

the corner column removal, Figure 9(a), a longer removal time results in a smaller

and later peak displacement for all cases. It can be noted that up to 20ms, all
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Table 5: Summary of dynamic displacements

Removal location Span to depth ratio, Le f f /t
Max displacement

δmax/t δmax/δy

Corner

15.4 0.018 1.37

19.4 0.051 1.73

21.0 0.055 1.73

23.4 0.159 2.47

24.0 0.123 2.58

Internal

19.4 0.040 1.45

21.0 0.041 1.46

23.4 0.156 3.31

24.0 0.098 2.31

Penultimate 19.4 0.046 1.55

Two Edge 19.4 0.283 4.58
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Table 6: Summary of dynamic values from the displacement response

Removal

location

Span to

depth ratio,

Le f f /t

Modal

frequency

(Hz)

Displacement

frequency

(Hz)

Damping ratio

Corner

15.4 11.96 11.85 0.014

19.4 7.96 7.78 0.012

21.0 8.94 8.71 0.016

23.4 5.64 5.23 0.011

24.0 6.51 6.19 0.011

Internal

19.4 9.01 8.75 0.012

21.0 10.46 10.0 0.020

23.4 7.45 5.63 0.010

Penultimate 19.4 8.74 7.62 0.016

Two Edge 19.4 5.44 4.90 0.026
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Figure 8: Normalised displacement against time for different column loss scenarios. Le f f /t = 19.4

the results are very similar indicating the removal time does not play a signifi-

cant role in this range. However, the response is noticeably different for the cases

with longer removal times. Furthermore, for the 250ms case it can be seen that the

removal is so slow that it interrupts the motion of the slab. The internal column re-

moval, Figures 9(b) and 9(c), shows a similar behaviour. The displacements from

the static analysis are also plotted with the dashed line, demonstrating that as the

removal time is increased, the response tends towards the quasi-static. However,

even at the longest times considered, the dynamic effects are still evident. Addi-

tionally, the nonlinearity in the dynamic response can be seen with nearly all cases

exceeding the yield displacement.

5.3. Reaction forces against time

Similar to the static case, reaction forces at the bases of all columns were

monitored after the column loss event to provide an indication into the increase

in axial force at those locations. As punching shear failure, rather than column
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(a) Corner column removal: Le f f /t=19.4

(b) Internal column removal: Le f f /t=19.4

(c) Internal column removal: Le f f /t=24

Figure 9: Normalised displacement against time for different removal times
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failure, is a major concern for progressive collapse of flat slabs, shear demand

will also be considered. Figure 10 shows the change in reaction forces at four re-

maining columns after a corner column is lost. Also the maximum displacement

with time is plotted to allow comparison between the responses. The immediately

adjacent column, A2, shows the largest increase in loading, with other locations,

such a A3, experiencing a decrease. It can also be seen that the force-time re-

sponse for the critical column matches the displacement response. That implies

that the highest shear forces are transmitted through the column at the moment

the slab reaches its temporary static condition. The forces in the other columns

oscillate at a higher frequency, indicating that higher modes are involved. This is

to be expected as reaction forces are related to the acceleration of the slab, which

emphasises higher frequency components of the motion. However, the amplitude

are much smaller than the closest columns, demonstrating this is only a minor

effect.

Figure 11 shows the dynamic removal of an internal column. After column

B2 is removed, A2 and B3 experience the highest increase in column reaction

force. Considering the penultimate column loss in Figure 12, it can be seen that

the 3 orthogonally adjacent columns show very similar responses. In this case

the corner column, A1, undergoes the largest change from the fully supported

condition. This plot also shows the response of Column B3, a support diagonally

across the bay from the removal location. The relative load here oscillates around

a value close to 100%, indicating that the dynamic motion of the slab influences

this location. Therefore, there is a slight increase in loading to these areas after

a sudden column loss event, even though the static analysis predicted it would

reduce. Again, forces in remote columns oscillate at a higher frequency.
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Figure 10: Change in column reaction forces against time. Corner column removal. Le f f /t=19.4

Figure 11: Change in column reaction forces and maximum displacement against time . Internal

column removal. Le f f /t=19.4
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Figure 12: Change in column reaction forces and maximum displacement against time. Penulti-

mate column removal. Le f f /t=19.4

For a sudden removal of two columns, Figure 13 provides the reaction re-

sponse. Although the dominant frequency and behaviour follows the peak dis-

placement of the slab in this case, it is clear that other frequencies also play a role

in the response as a consequence of a larger portion of the structure being involved

in the motion.

Finally, the influence of the removal time on the reaction forces is shown in

Figure 14 for a corner and internal column loss. As with the displacement results

shown previously, increasing the removal time results in a lower and later peak.

5.4. Punching shear assessment

Although each simulation was run excluding shear failure, the punching shear

capacity of the unreinforced flat slab connections can be estimated with the Criti-

cal Shear Crack Theory (CSCT) developed by Muttoni [31]. The CSCT has been
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Figure 13: Change in column reaction forces and maximum displacement against time. Two

column removal. Le f f /t=19.4

demonstrated to be suitable for assessing progressive collapse of flat slab struc-

tures [20, 32]. Additionally, it was previously used to consider the potential for

shear failure during a static analysis of a column loss scenario for the same pa-

rameters presented here [16]. The CSCT theory assumes that shear capacity of a

slab column connection reduces with increasing rotation of the slab, and therefore

is related to the maximum displacement.

From the equivalent static analysis it was shown that the internal column loss

event with the largest span-to-depth ratio was most susceptible to punching shear

failure. However, as in most scenarios the structure did not undergo large defor-

mations and the connection rotations remained relatively small, typically below

0.005 radians. The result of this is that even with the larger shear forces transmit-

ted through the column due to the dynamic effects, punching shear failure was not
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(a) Corner column loss. Reactions at Column B2

(b) Internal column removal. Reactions at Column B3

Figure 14: Change in column reaction forces against time for different removal times. Le f f /t=19.4
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a concern for any of the cases considered.

5.5. Influence of strain rate effects

A final consideration was given to the strain rates in the steel reinforcement

after a column loss. Figure 15 shows the maximum strain rate against time for

the top flexural reinforcement after a corner column is removed, for models with

different span to depth ratios. Also plotted is the displacement against time to

allow further comparisons. It can be seen that the maximum strain rate in the steel

reinforcement does not occur at the time of highest displacement and therefore

stress. Instead it reaches its peak whilst the slab is moving towards its first peak.

The strain rate in the steel reinforcement during the subsequent oscillations is

significantly smaller than the initial peak. Additionally, structures with larger span

to depth ratios in general result in higher strain rates, primarily because higher

deflections occur within the short time period. However, the case with the highest

span to depth ratio, Le f f /t = 24.0, shows very similar peak values to the 19.4

case, despite higher deflections. This suggests that even if more of the structure is

damaged, an individual section of steel reinforcement will not always experience

higher strain rates.

The peak strain rate values from Figure 15 are 0.023 and 0.043s−1 for Le f f /t

values equal to 15.4 and 24.0 respectively. Based on Equation 3 this corresponds

to a DIF for the concrete of 1.20 and 1.21 for the two cases. This small varia-

tion suggests that, for the range and conditions for normal structures, the DIF for

concrete is around 1.20 at its most critical, and much lower past the initial peak.

With this value for the increase in tensile strength for concrete, comparisons

were made to determine its significance. Figure 16 plots the maximum strain

rates for models with different concrete strengths. For the higher grade concrete,
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Figure 15: Maximum steel strain rate against time after corner column loss for different models.

Also showing peak displacements against time.

increasing the tensile strength further due to dynamic effects, does not change the

maximum strain rate with both cases peaking at 0.045s−1. For the fck =20MPa

case, applying a DIF does change the strain rate response. Although the peaks

are almost identical, 0.042 and 0.043s−1 respectively for with and without the DIF

applied, the case with the higher tensile strength shows a later, and narrower, peak

as a result of less damage occurring.

The effect of applying a DIF to the model can be seen in Figure 17, which

compares the normalised displacement against time. As the span to depth ratio

is increased, the effect of the higher tensile capacity, due to strain rates, becomes

more noticeable. This is logical as these cases have already been shown to expe-

rience more flexural damage and therefore increasing the capacity will improve

this response. However, the maximum difference observed here is still less than
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Figure 16: Maximum steel strain rate against time after corner column loss Le f f /t = 19.4

8mm, or 3% of the slab depth. Structures that experience higher deflections due to

their material or geometric properties benefit more from the additional capacity,

although these results suggest it this is not a major effect. Also note that, as the

increase in concrete strength was applied to the entire model for the whole analy-

sis, these plots represent the maximum possible change due to the DIF. In reality

the response will be closer to the condition with no material strength increase.

Figure 18 shows the maximum strain rates for an internal column loss. This

case affects more of the structure and includes the response of the bottom steel

under sagging conditions. Again that the peak strain rates occur before the first

displacement peak, and after this point are an order of magnitude smaller. Com-

paring the response of the top and bottom steel shows the peaks are 0.055 and

0.071s−1 respectively. This corresponds to a concrete DIF of 1.22 for both cases.
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Figure 17: Normalised displacement against time after corner column loss comparing effect of

applying a DIF

The bottom steel peaks occur after the top steel. This is due to the slab chang-

ing from a hogging to a sagging condition after the column is removed, therefore

cracking does not occur in this area until later. Of final note is the location of the

maximum strain rates in the top steel. The most critical area is over supports that

are at the edge of the structure, i.e. B1 and A2. However, when these areas are

excluded, the internal columns still undergo strains at a rate of up to 0.043s−1.

6. Static to dynamic comparison

As both static push down tests with an additional force factor and dynamic

removal simulations have been conducted on the same models, comparisons can

be made to determine the influence of dynamic effects, especially the Dynamic

Amplification Factor (DAF). Figure 19 compares the displacement at the column

35



Figure 18: Maximum steel strain rate against time after an internal column loss. Le f f /t = 24

removal location for the different conditions. The DAF is taken as the load fac-

tor applied to the bays around the removed column, which results in the same

displacement as the peak dynamic result. For the range of structures modelled,

the DAF varies between 1.39 and 1.62. There is a linear relationship shown with

increasing span to depth ratio of the slab linked with a smaller DAF. However,

when just one removal scenario is considered the trend becomes much stronger,

for example for a corner column loss R2=0.947. Additionally, by extrapolating

beyond the data it can be seen that as the structure becomes stiffer the DAF tends

towards 1.97. This suggests that the influence of inertia is not directly related to

the span to depth ratio of the structure, but rather the extent of damage, and there-

fore nonlinearity in the force displacement response. For a purely elastic single

degree of freedom system, with no damping, a DAF of 2 is expected. However, as

structures within the normal design range undergo nonlinear behaviour, the DAF
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Figure 19: DAF from displacement values for different span to depth ratios

can be reduced accordingly.

A similar comparison can be made based on the maximum column reaction

forces. Standard approaches for the DAF assume that the loading on the sur-

rounding supports is increased by the same factor as for displacement predictions

(see for example GSA guidelines [1]). However, as reaction forces are less influ-

enced by nonlinear effects, such approaches may not be appropriate. Figure 20

shows the required DAF to create the same static forces in the critical surrounding

columns as caused by the peak dynamic case. As with the displacement values,

the amplification factor is calculated for different span to depth ratios. For the

corner loss condition, with column A1 removed, the reaction based DAF is given

in Figure 20(a). It is shown that there is a linear relationship against the span

to depth ratio (R2=0.789), and the DAF ranges between 1.38 and 1.43 for usual

37



(a) Corner column removal scenario

(b) Internal column removal scenario

Figure 20: DAF from reaction forces for different span to depth ratios
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structural arrangements. Considering the internal column removal, shows that the

two most critical remaining columns have very similar trend lines, although col-

umn B3 has a much weaker agreement based on its R2 value. In this case the DAF

varies between 1.31 and 1.53. However, when these trends are extrapolated for

stiffer structures, they reach maximum values of 2.13 and 2.15, as shown by the

intercept marked on Figure 20(b). This may indicate that for structures with very

short spans, the distribution of loads to surrounding columns changes from the

typical bending profile.

The results discussed before indicated that increasing the removal time for the

column decreases the influence of the dynamic effects. Therefore, a modification

to the DAF can be applied to consider the effect of removal time, which is defined

as the ratio of the DAF from instantaneous removal to the DAF calculated from

the slower period. Figure 21 plots this factor against a normalised removal time,

based on the fundamental period of floor section with elastic properties. The

nature of this reduction factor means that as the value reaches 1, the response

matches that of an instantaneous removal. Additionally, the lowest value would be

0.5, corresponding to an undamped elastic system with very slow column removal

to minimise inertial effects. For the range of conditions presented, if the support

is removed within 10% of the fundamental period, the reduction factor is above

0.995. Similarly, at 20% of the fundamental period, the factor exceeds 0.975.

However, if we take the corner case, with removal time of 80% of the fundamental

period, the DAF is reduced to 1.21, demonstrating inertial effects may still be

significant. At the longest case considered, twice the fundamental period, the DAF

reduced to 1.10, which indicated that the dynamic effects are not removed entirely

even in very slow column removal scenarios. When using scenario-independent
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Figure 21: Reduction in DAF from displacement values due to column removal time

analysis approaches in design it is still recommended to assume instantaneous

removal.

7. Summary and conclusions

This study applied an experimentally validated finite element model to con-

sider the response of a Reinforced Concrete (RC) flat slab structure after different

column loss scenarios, focusing on the dynamic issues involved. By varying ma-

terial and geometric factors and comparing to equivalent static cases the influence

of the dynamic effects, such as force amplification and material strength increase

due to strain rate effects, were considered.

The dynamic response of RC flat slab structures after a column loss demon-

strates that a sudden removal can considerably increase the peak displacements
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and the shear forces compared to the static condition. The DAF for displace-

ment values is related to the extent of damage and nonlinearity within the force

displacement response. The DAFs calculated for all flat slabs considered in this

study were between 1.39 and 1.62. Similar amplification factors were measured

for the reaction forces (1.31–1.53), with peak shear forces exceeding 200% of

the fully supported condition. These results are in line with previously presented

results for beam systems, however, the redistribution of forces is naturally more

complicated for due to the RC slab behaviour. Although these values are less than

the 2.0 factor commonly used in design, it is clear that a good understanding of

the failure mechanisms and redistribution of forces for the structure is required if

lower values are used.

Additionally, the results demonstrated that removing a column more slowly

results in smaller peak deflections. This can be compared to the natural period of

the elastic floor section. If the support is removed within 10% of the period of the

floor, the dynamic response is almost identical to the instantaneous condition. As

this time increases, the equivalent DAF also decreases, however, even at a time

length of twice the natural period, dynamic effects still play a considerable role,

indicating that to achieve the static removal scenario requires a much slower case.

Finally, although the sudden removal, and the related strain rates, change the

material properties, their influence is limited. Based on the measured strain rates

in the steel reinforcement, the peak concrete DIF was around 1.20. However, this

value is only relevant in limited areas and for a short period of time. Furthermore,

comparing the effect of increasing the tensile capacity of the concrete, demon-

strates that such an increases does not significantly change the response of the

structure, as also seen with 2D frame structures [13, 14]. This is partly due to
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the fact that, for the range of slabs considered in this study, the concrete was not

stressed far beyond its elastic limits in most cases. Exceptions for this may oc-

cur with low strength concrete, or very severe damaging events such as multiple

column loss.
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