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� Many ecological applications require
vegetation maps at high thematic
resolution.

� Categorizing by vegetation (sub)-
communities was better than by
dominating species.
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hyperspectral or 13-band than 8-
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� Highest differentiation between
categories when vegetation was fully
developed.
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Detailed maps of vegetation facilitate spatial conservation planning. Such information can be difficult to
map from remotely sensed data with the detail (thematic resolution) required for ecological applications.
For grass-dominated habitats in the South-East of the UK, it was evaluated which of the following

choices improved classification accuracies at various thematic resolutions: 1) Hyperspectral data versus
data with a reduced spectral resolution of eight and 13 bands, which were simulated from the hyperspec-
tral data. 2) A vegetation classification system using a detailed description of vegetation (sub)-
communities (the British National Vegetation Classification, NVC) versus clustering based on the domi-
nant plant species (Dom-Species). 3) The month of imagery acquisition.
Hyperspectral data produced the highest accuracies for vegetation away from edges using the NVC

(84–87%). Simulated 13-band data performed also well (83–86% accuracy). Simulated 8-band data per-
formed poorer at finer thematic resolutions (77–78% accuracy), but produced accuracies similar to those
from simulated 13-band or hyperspectral data for coarser thematic resolutions (82–86%). Grouping veg-
etation by NVC (84–87% accuracy for hyperspectral data) usually achieved higher accuracies compared to
Dom-Species (81–84% for hyperspectral data). Highest discrimination rates were achieved around the
time vegetation was fully developed.
The results suggest that using a detailed description of vegetation (sub)-communities instead of one

based on the dominating species can result in more accurate mapping. The NVC may reflect differences
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Fig. 1. An example of reflectance of a grassland me
sensor.
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in site conditions in addition to differences in the composition of dominant species, which may benefit
vegetation classification. The results also suggest that using hyperspectral data or the 13-band multispec-
tral data can help to achieve the fine thematic resolutions that are often required in ecological applica-
tions. Accurate vegetation maps with a high thematic resolution can benefit a range of applications,
such as species and habitat conservation.

� 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Biodiversity continues to decline through a variety of anthro-
pogenic drivers (Butchart et al., 2010; Tittensor et al., 2014) and
land is under substantial pressure through an increasing human
population and rising demand for goods and services (Foresight,
2011; Smith et al., 2010). Managing land better to maintain a high
level of biodiversity will be most efficient when planning takes into
account the effect of complex landscapes on ecological systems
and on species (Benton, 2012). Detailed maps of vegetation can
facilitate such planning.

Remote sensing has become an important tool to map and mon-
itor biodiversity, see e.g. Kuenzer et al. (2014). Optical remote
sensing makes use of the differences in reflectance caused by the
variation in chemical composition of plants, the structure of plant
tissue and the plant canopy to assess characteristics of plants such
as plant stress or to map vegetation (Lillesand et al., 2008;
Thenkabail et al., 2012). However, remotely sensed maps often
depict broad habitat categories and do not always provide the level
of detail (thematic resolution henceforth) needed in ecological
applications (Bradley and Fleishman, 2008). A fine thematic resolu-
tion can be difficult to achieve, especially in particular habitats.
Grasslands, for example, can contain a diverse range of species
and individual plant species are relatively small compared to the
spatial resolution of imagery sensors. Indeed, a horizon scan in
2014 pointed out the need for better differentiation and monitor-
ing of ‘more difficult’ habitats, such as native grasslands
(Sutherland et al., 2014).

Hyperspectral data has great potential for the differentiation of
habitats as it allows the detection of more subtle differences in
canopy reflectance compared to multispectral data (Thenkabail
et al., 2012). Hyperspectral sensors measure radiance in many nar-
row bands of the electromagnetic spectrum (Fig. 1) in contrast to
widely used multispectral platforms, such as the satellite platforms
Landsat or Sentinel-2, which return reflectance from fewer and
broader bands (Lillesand et al., 2008; Thenkabail et al., 2012).
The disadvantages of hyperspectral data are its limited availability
particularly at very high spatial resolutions and the lower signal-
to-noise ratio that may occur with narrow bandwidths
(Thenkabail et al., 2012). Current sources of hyperspectral data
are the airborne AVIRIS (https://aviris.jpl.nasa.gov) and the EO1-
Hyperion satellite sensor (https://archive.usgs.gov/archive/sites/
eo1.usgs.gov/hyperion.html). Further satellite missions are in
asured with a hyperspectral
preparation, such as EnMap (www.enmap.org) and HyspIRI
(https://hyspiri.jpl.nasa.gov). These satellite platforms have spatial
resolutions between 30 m (EO1-Hyperion, EnMap) and 60 m
(HyspIRI). Very high spatial resolutions are provided on demand
by airborne or hand-held sensors.

Hyperspectral data have been used to map vegetation in case
studies at a fine thematic resolution, even in grasslands. Floristic
gradients (i.e. species composition) within broader habitat types
have been mapped (Feilhauer and Schmidtlein, 2011; Harris
et al., 2015). Successional stages in dry grassland were grouped
into age-classes (Möckel et al., 2014). Plant functional types (Ellen-
berg indicator values/Grime’s CSR strategy types) were predicted
for mountainous grassland (Schweiger et al., 2017) and wetlands
(Schmidtlein et al., 2012). Vegetation plots dominated by a single
species were differentiated for four species in South African range-
land (Mansour et al., 2012).

While the many narrow and adjacent bands of hyperspectral
data contain a lot of information, they also contain redundant
information (Thenkabail et al., 2012). Analysing large hyperspec-
tral data sets can be time-consuming and this cost could be
reduced if redundant bands were known and could be removed
before data collection or before analysis. However, the knowledge
of how vegetation reflectance varies with the vegetation under
consideration is incomplete (Kattenborn et al., 2018). Certain
bands are well known to contribute to the differentiation of vege-
tation, but additional bands may further improve the vegetation
differentiation. Moreover, the structure and chemical composition
of plants can vary during the vegetation cycle as may the species
composition of communities (Feilhauer and Schmidtlein, 2011).
This can lead to changes in the spectral characteristics of vegeta-
tion during the year (Lillesand et al., 2008). Therefore, the optimal
band combination leading to the highest vegetation differentiation
may vary with the vegetation considered and with time of year.
The ability with which vegetation categories can be discriminated
may also be higher at certain time periods of the year compared to
others.

Another fundamental consideration in vegetation mapping is
how to describe vegetation. Plant community composition shifts
in a continuous manner (Austin and Smith, 1989). Nonetheless,
discrete vegetation categories are often preferred by conservation
practitioners and land managers due to their comparable ease of
use. An example of such a categorization is the National Vegetation
Classification (NVC) (Rodwell, 1991–2000), which is widely used in
Great Britain for habitat mapping and ecological surveying (Hearn
et al., 2011). National vegetation classification systems exist in sev-
eral countries, for example the United States National Vegetation
Classification (USNVC; http://usnvc.org) or the Irish Vegetation
Classification (IVC; http://www.biodiversityireland.ie/projects/na-
tional-vegetation-database/irish-vegetation-classification/). The
NVC corresponds to a phytosociological classification: certain com-
binations of plant species and their abundances are indicative of
certain conditions (soil, land use, etc.) (Rodwell, 2006). NVC sur-
veys on the ground can be time-consuming as survey instructions
suggest the recording of all plant species and their abundances in
several sample plots (Rodwell, 2006). In practice surveyors may
use different, faster techniques and maps recorded by different
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surveyors can show substantial differences (Hearn et al., 2011).
Therefore, it may be attractive to use an alternative vegetation
grouping, potentially requiring less field survey effort and produc-
ing less variation between surveyors, for example by considering
only the most abundant plant species.

Further considerations in vegetation mapping are the size of the
objects to be mapped. In intensively used agricultural areas, many
of the non-arable objects are comparatively narrow, for example
ditches or grass strips along fields. Despite their small size they
may be important as they often contain much of the local biodiver-
sity (Gabriel et al., 2010) and can enhance populations of species
that provide ecosystem services such as pest control (Rouabah
et al., 2015) or pollination (Rands and Whitney, 2011). Some nar-
row objects contain vegetation categories which, at least in inten-
sively used agricultural landscapes, rarely cover a large extent,
such as wild-flower rich roadside vegetation or nettle (Urtica
dioica) patches. Very high spatial resolution imagery is often used
to map vegetation in narrow objects, which requires airborne
rather than satellite sensors (Lillesand et al., 2008).

The aim of this study was to evaluate how using hyperspectral
data in comparison to multispectral data and how the vegetation
classification system influences thematic resolution and accuracy
of vegetation differentiation and hence to provide information that
facilitates the creation of vegetation maps. An agricultural land-
scape was chosen as study area, because agriculture is a major dri-
ver of biodiversity loss and affects a large proportion of the global
land area (Kehoe et al., 2015), creating a need for habitat mapping
and appropriate land management to mitigate these influences.
Specifically:

1) The influence of thematic resolution on the accuracy with
which vegetation categories were differentiated was evalu-
ated using hyperspectral imagery.

2) It was evaluated if using a lower spectral resolution pro-
duced similar results as the hyperspectral data.

3) Vegetation mapping using the NVC was evaluated versus a
grouping based on the dominating plant species.

4) The sensitivity of the results to (a) narrow objects and (b)
the acquisition month was assessed.

2. Methods

2.1. Overview

The study was carried out in an intensively used agricultural
area in East Anglia, UK, focusing on grass-dominated habitats,
including in narrow objects such as margins and ditches. Three
types of remotely-sensed data were used: 1) aerial hyperspectral
data, 2) the aerial hyperspectral data resampled to two coarser
spectral resolutions and 3) hyperspectral data collected with
hand-held spectroradiometers.

To evaluate how the thematic resolution influenced the accu-
racy with which vegetation categories were differentiated, aerial
hyperspectral data were used. Due to the presence of narrow
objects (ditches, margins, etc.) in the study area 1 m � 1 m spatial
resolution imagery was used.

To evaluate if a lower spectral resolution produced similar
results as the hyperspectral data, the aerial hyperspectral data
were resampled to reduced spectral resolutions: (a) the 13 bands
of the Sentinel-2 satellite sensor (‘simulated 13-bands’ henceforth)
and (b) the eight bands (excluding the pan-chromatic band) of the
Landsat satellite 8 OLI sensor (‘simulated 8-bands’ henceforth).
Both Sentinel-2 data and Landsat data are widely used (Lewis,
1998; Pal, 2005; Pettorelli et al., 2014; Reid and Quarmby, 2000;
Sesnie et al., 2008; Sluiter and Pebesma, 2010) and the spectral res-
olution of the Sentinel-2 sensor is particularly suitable for vegeta-
tion mapping (see e.g. Feilhauer et al., 2013; Rapinel et al., 2019).
The reduced spectral resolution data were simulated from the
hyperspectral data in order to attain the same spatial resolution
as in the hyperspectral data (1 m � 1 m). Using satellite instead
of simulated data would have confounded the spectral resolution
comparison with spatial resolution effects because the spatial res-
olution of the satellite data (10–60 m for Sentinel-2 and 30 m for
Landsat) is large relative to some of the objects in our study area.

Vegetation mapping using the NVC versus a grouping based on
the dominating plant species was evaluated using both the hyper-
spectral data and the simulated lower spectral resolution data.

The sensitivity of the results to narrow objects was evaluated by
comparing classifications of vegetation in narrow objects versus
vegetation in broader objects using the airborne hyperspectral
and simulated lower spectral resolution data. Additionally, hyper-
spectral data from narrow objects were collected with hand-held
spectroradiometers carefully positioned to avoid the object edges.

The sensitivity of the results to the acquisition month was
assessed using hyperspectral data acquired with hand-held sensors
at approximately monthly intervals. Acquiring aerial hyperspectral
data on a monthly basis would have been too costly and was not
feasible.

Vegetation was ground-truthed via field visits in which all vas-
cular plant species and their abundances were recorded in several
sample plots per vegetation category. All classifications were car-
ried out with the machine learning algorithm random forest
(Breiman, 2001; Liaw and Wiener, 2002).

2.2. Remotely-sensed data

2.2.1. Aerial hyperspectral data
Hyperspectral data at a spatial resolution of 1 � 1 m and with a

georeferencing accuracy of ca. 2 m (Fig. 2, see Table 1 for data char-
acteristic and details on the date and time of acquisition) were col-
lected on the 12th and 13th of June 2014 over 63.3 km2 of
predominately agricultural land in East Anglia, UK. The data was
acquired by the NERC Airborne Research and Survey Facility
(ARSF), UK using the AISA Fenix hyperspectral sensor (Specim,
2016). Post processing from radiance to reflectance by the ARSF
Data Analysis Node at the Plymouth Marine Laboratory, UK
included radiometric, atmospheric and cloud shadow correction
with ATCOR-4 (Richter and Schläpfer, 2016) using in-built param-
eters of ATCOR-4, mosaicking of flightlines and mapping to British
National Grid. ATCOR-4 is based on calculations of the MODTRAN 5
radiative transfer model (Berk et al., 1998). The correction results
were visually validated against spectra from three large homoge-
nous tarpaulins (black, grey and white) and from homogeneous
grass vegetation, which were recorded on the ground with hand-
held spectroradiometers during the duration of the airborne data
capture.

2.2.2. Simulated multispectral data
The spectral resolution of the hyperspectral airborne data was

resampled to the lower multispectral resolutions of (1) the simu-
lated 13-bands and (2) the simulated 8-bands. See Appendix A
for band centres and bandwidths. Resampling based on the spec-
tral response functions for the Sentinel-2 and Landsat 8 OLI sensors
was carried out with the spectral resampling tool of ENVI 5.3
(http://www.harrisgeospatial.com/SoftwareTechnology/ENVI.
aspx). This tool uses a Gaussian weighted curve based on the band
spacing, wavelengths and spectral response of the satellite sensor
in question to ensure that the resampled data was as close as pos-
sible to the spectral profile of the sensors. The spatial resolution of
the hyperspectral data was retained in the final resampled image.
The spectral response specifications are provided in Appendix B
(simulated 13-bands) and C (simulated 8-bands).
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Fig. 2. a) The location of the study area (red) in the south of Great Britain; b) A false colour RGB image of the hyperspectral airborne data for the study area together with the
location of ground-truth data (blue polygons). The false colour image is an RGB composite of three bands from the near-infrared (865 nm), red (655 nm) and green (562 nm);
c) An enlargement of the area in the red rectangle in b). Copyright 2016 NERC. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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2.2.3. Hand-held spectroradiometer data
In order to investigate the influence of the acquisition month on

accuracy of vegetation classification, hyperspectral data were col-
lected with hand-held spectroradiometers from vegetation on four
farms in East Anglia (see Table 1 for sensor characteristics and
details on the dates and times of data acquisition). Spectra
(Bradter et al.) were collected in 2012 with the ASD Field Spec
Pro (Analytical Spectral Devices, Inc, Boulder, USA) and in 2013
with the SVC HR-1024i (Spectra Vista Corporation, New York, USA).

Spectroradiometers were supplied by the Natural Environment
Research Council (NERC) Field Spectroscopy Facility (FSF), UK.
Immediately before or after each vegetation spectrum, a reflec-
tance spectrum from a Spectralon reference panel (Labsphere,
North Sutton, USA) was collected, and absolute reflectance calcu-



Table 1
Characteristics of the hyperspectral data.

Data characterisitcs Airborne data Field spectroscopy dataa

Number of spectral bands 622 1024 (SVC HR-1024i) � 2100 (resampled; ASD Field Spec Pro)
Spectral range 400–2500 nm 400–2500 nm
Spectral resolution 3.5–12 nm 3–12 nm (ASD Field Spec Pro)

3.5–6.5 nm (SVC HR-1024i)
Spatial resolution 1 m � 1 m NA
Field of view (diameter) NA 31.5 cm (ASD Field Spec Pro with 18� fore-optic)

13.9 cm (SVC HR-1024i with 8� fore-optic)
Date of acquisition 12th & 13th June 2014 May 2013 (1st–3rd)

June 2013 (27th May–7th June)
July 2013 (6th–19th)
August 2013 (31st)
September 2012 (7th–15th)

Time of acquisition 8:10–9:45 UTC + 1 2–3 h before and after solar noon
(due to cloud cover at more optimal acquisition times around solar noon)

a A single spectrum was recorded as an average of repeat scans, which reduces random noise.
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lated. Spectroradiometers and reference panels were maintained
and calibrated by FSF. Spectroradiometer calibration consisted of
radiance and irradiance calibration, using standards calibrated by
the National Physical Laboratories, and of wavelength verification
(for further details see: https://fsf.nerc.ac.uk/lab/). For principles
of field spectroscopy and guidelines on recording measurements
see e.g. Mac Arthur et al. (2012); Mac Arthur et al. (2007); Milton
(1987).

Per vegetation object one spectrum was collected every ca. 9 m,
unless the category occurred in small patches when distances
between samples were reduced accordingly (see Table 2 for the
number of sample points per month and Bradter et al.). The field
of view of the spectroradiometers (0.02–0.08 m2; Table 1) was
smaller than the pixel size of the airborne hyperspectral data
(1 m2). However it was still large compared to individual plants
within the field of view and always covered groups of several
plants. Data collection was repeated at approximately monthly
intervals during the growing season during sunny conditions
(Table 1; Bradter et al.). If some clouds were present, care was
taken to record the spectra when no clouds were near the sun.
The number of categories (2–10 per month, median: 8) for which
spectra were recorded, and the sample size per category depended
on weather conditions (Table 2; Bradter et al.).

2.3. Spectral covariates

For the hyperspectral data the following covariates were
calculated:

1) The first derivative, which is more independent of the back-
ground reflectance (e.g. soil) than reflectance (Demetriades-
Shah et al., 1990). To counteract the amplification of noise
that occurs with the derivation, smoothing with Savitzky-
Golay filtering (Ruffin et al., 2008) was applied. Several
smoothing levels were tested and a level resulting in the
Table 2
Field spectroscopy data recording and classification: the overall number of spectra and cat
with the minimum, medium and maximum number of spectra per classification categorie

Month Number of
spectra

Recorded
categories

Categories in
classification

May 172 8 7
June 271 10 9
July 244 10 10
August 30 2 2
September 132 2 2
highest vegetation classification accuracy was selected, see
Appendix D. Higher-order derivatives were not used as they
are even more sensitive to noise (Demetriades-Shah et al.,
1990).

2) The position and value of the minimum reflectance in the
region 660–750 nm, which are related to foliage chlorophyll
levels (Miller et al., 1991).

3) The positions and values of maximum or minimum first
derivatives in the following wavelength regions as an associ-
ation with plant characteristics was found, which may help
to differentiate between vegetation categories (Pu et al.,
2004): 495–550 nm, 550–650 nm, 970–1090 nm, 1110–
1205 nm, 1205–1285 nm.

4) The vegetation indices summarized by Roberts et al. (2012),
see Appendix E.

5) The local maxima in the first derivative between 690 and
750 nm (red-edge peaks) (Smith et al., 2004) as they have
contributed to distinguishing between vegetation types
(e.g. Boochs et al., 1990). For hand-held spectroscopy data
only (due to their greater sensitivity), the wavelengths of
the red-edge peaks, the local maximum reflectance and their
ratios were calculated.

This resulted in 568 covariates for the airborne data, 1887
covariates for the 2012 and 919 covariates for the 2013 field spec-
troscopy data.

For the simulated data, the following covariates were used:

1) The reflectance of all bands.
2) The ratios between the reflectance of all bands as they are

more robust to differences in illumination (e.g. shading)
compared to reflectance (Lillesand et al., 2008).

3) The vegetation indices typically used with such bands and
described in the product guides for Sentinel-2 and Landsat
data (Appendix F).
egories recorded per month, the number of categories in the vegetation classification
s, and the classification accuracy (OOB accuracy) obtained with random forest.

Min/median/max number of spectra per classification
category

OOB accuracy
(%)

11/21/55 75
20/30/50 85
14/20/60 84
10/15/20 94
54/66/78 97

https://fsf.nerc.ac.uk/lab/
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To avoid wrongly discarding covariates for which an association
with our vegetation categories is unknown or that have weaker
predictive ability, no pre-selection among the covariates was car-
ried out as the accuracy of predictions with random forest does
not necessarily improve with variable selection (Hapfelmeier and
Ulm, 2013).

2.4. Vegetation data

2.4.1. Airborne study area
The study area consists of an intensively managed agricultural

landscape dominated by arable crops and interspersed by grass-
lands (mainly pastures and meadows) and abundant narrow
objects (field margins, road margins, ditches, etc.). Ground-truth
vegetation data in the airborne study area were collected by two
surveyors skilled in plant identification in June 2015, a year after
the imagery was recorded (Table 1). Due to this time lag, surveyors
took care to record only areas with vegetation communities, which
persist for several years, and which only change slowly into other
vegetation communities, for example as a result of vegetation suc-
cession or changes in hydrology (Appendix G). Rainfall varies con-
siderably from year to year in the study area. It was average in the
month of imagery acquisition and below average, but not extreme,
in the month of vegetation recording (Appendix H). The tempera-
ture variation is low in the study area (Appendix H).

At each farm, surveyors mapped an area (‘‘patch” henceforth)
with relatively uniform species composition and structure (‘‘type”
henceforth). Then they mapped a type that was different from the
first and so on. If feasible, more than one patch per type and farm
was mapped. Ground-truth information at the edges of flightlines
where the imagery showed artefacts was removed. In total,
34.3 ha in 116 patches of 83 types on 24 farms were used as
ground-truth vegetation data. For each type and farm, all vascular
plant species and their percentage cover were recorded in two
sample areas of 4 m2 (exceptionally three, if vegetation was highly
variable, or one, if there was only one small patch). For details, see
Appendix I.

2.4.1.1. Vegetation edges. Remotely-sensed mapping of vegetation
can be difficult at edges due to mapping inaccuracies, mixed vege-
tation types in one pixel (Cracknell, 1998), continuous vegetation
changes that are discretized for practical purposes (Rocchini
et al., 2013) or scattering of reflectance from nearby objects
(Otterman and Fraser, 1979). To assess the influence of vegetation
edges on classification accuracy and thematic resolution, the
ground-truth dataset was divided into one dataset (‘‘Wide” hence-
forth) without vegetation edges and one dataset (‘‘Narrow” hence-
forth) in which vegetation edges were frequent. Wide consisted of
patches wider than 5 m from which the outer 2 m were removed
(56 patches of 45 types on 22 farms). Narrow consisted of all types
that were not in Wide (58 patches of 38 types on 18 farms).

2.4.1.2. Thematic resolutions. Vegetation was assigned into cate-
gories at four thematic resolutions, based either on the NVC or
on the three dominant species (Dom-Species henceforth).

Assignment to NVC communities was carried out using Tablefit
(Hill, 1996) and identification keys and community descriptions in
’British Plant Communities’ (Rodwell, 1991–2000). The software
program Tablefit matches vegetation data to NVC communities,
providing the five best fitting NVC (sub)-communities and
goodness-of-fit scores. Goodness-of-fit scores can be quite similar
between the five suggestions and the final choice was made using
the NVC identification keys and plant community descriptions, if
possible to sub-community level. Exceptionally, two NVC sub-
communities were assigned if the vegetation had characteristics
of either category. Some types could not be assigned a NVC com-
munity as some artificial habitats are not included in the NVC
(Rodwell, 2006). NVC was assigned to 93 patches of 66 types on
23 farms.

The following four thematic resolutions were produced:

(i) Coarsest: NVC communities (Appendix G), with all S com-
munities (swamps and tall-herb fens) grouped as one cate-
gory as there were few (ten categories in Wide, nine in
Narrow).

(ii) Communities: NVC communities (12 categories in Wide, 11
in Narrow).

(iii) Sub-communities: NVC sub-communities if possible, other-
wise NVC communities (18 categories in Wide, 19 in
Narrow).

(iv) Finest: as in (iii). In MG1, the largest sub-community MG1a
was additionally subdivided by the dominating grass species
if possible (20 categories in Wide, 23 in Narrow).

Dom-Species was categorised using clustering. For each 4 m2

sample area, the percentage cover of the three most abundant
plant species was used in an unsupervised classification with the
algorithm random forest (Breiman, 2001; Liaw and Wiener,
2002) following Shi and Horvarth (2006), see Appendix J. Four the-
matic resolutions were created: finest: 17 categories in Wide, 18 in
Narrow; 2nd finest: nine categories in Wide, ten in Narrow; 2nd
coarsest: seven categories; coarsest: four categories.

2.4.2. Field spectroscopy study area
Vegetation ground-truth data (Bradter et al.) were collected

from all categories in which field spectroscopy data were recorded
using the same sampling scheme as for the airborne study area
(see 2.4.1 Airborne study area). Vascular plant species were
recorded in up to four sample areas of 4 m2 per category per year.
The vegetation ground-truth data were collected in the same year
the spectra were recorded (Table 1). There were no precipitation
extremes in the months the spectra were collected (Appendix K).
One thematic resolution was investigated (categories as recorded
in field mapping). For commoner categories, up to three spatially
distinct patches (e.g. three margins) were selected and for rarer
categories, one patch (average: 1.9 patches).

2.5. Classification and validation

2.5.1. Classification with random forest
Random forest was used for classification as hyperspectral data

have a large number of covariates with many correlations. Random
forest is robust to such data (Grömping, 2009; Strobl et al., 2008). It
is a machine learning algorithm constructing an ensemble of
regression or classification trees and aggregating the results
(Breiman, 2001; Liaw and Wiener, 2002). It has resulted in good
accuracies in vegetation classifications (Bradter et al., 2011;
Chapman et al., 2010; O’Connell et al., 2015; Pal, 2005) and in clas-
sifications with a large number of covariates (Bradter et al., 2013).
For a description of random forest, see e.g. Breiman (2001);
Grömping (2009); Liaw and Wiener (2002); Strobl et al. (2009).
The analysis was carried out in R 3.4.1 (R Core Team, 2016) with
package randomForest (Liaw and Wiener, 2002).

Random forest with an ensemble of classification trees was
used. Random forest requires two tuning parameters, the number
of trees in an ensemble (ntree) and the number of covariates to
be tried at each node split (mtry). Higher ntree settings result in
less variability and more stable accuracies (Genuer et al., 2010;
Liaw andWiener, 2002). The default value in the R package random
forest is ntree = 500 (Liaw and Wiener, 2002). For the airborne
data, ntree = 2000 were used to increase stability of the accuracy
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values. For mtry, the default value (
p
p where p is the number of

covariates, Liaw and Wiener, 2002) was used (see Section 2.5.1.2
for the effect on random forest results of varying mtry). For ntree
and mtry values in the variable selection for field spectroscopy
data, see Section 2.5.1.2.

2.5.1.1. Data imbalance. Categories with more data tend to get clas-
sified with a higher accuracy at the expense of categories with less
data in random forest (Chen et al., 2004; Lin and Chen, 2012). Cat-
egories with large sample sizes in the airborne data were conse-
quently downsampled, which better balances the errors (Chen
et al., 2004; Lin and Chen, 2012), as sample size for common cate-
gories was larger than for rarer categories. In downsampling, for
each classification tree in the ensemble, larger categories were ran-
domly reduced. Downsampling was to 1000 (NVC with Wide),
1500 (Dom-Species with Wide) and 300 pixels (Narrow) per cate-
gory. The total number of pixels, depending on the thematic reso-
lution, was 6815 – 11,577 for NVC with Wide, 4544 – 18,628 for
Dom-Species with Wide, 1930 – 3660 for NVC with Narrow and
1002 – 3289 for Dom-Species with Narrow (see Appendix L).

2.5.1.2. Bands important for vegetation differentiation. To gain fur-
ther understanding of the spectral covariates that were important
in the differentiation of the vegetation categories, covariate selec-
tion was carried out. Random forest provides variable importance
measures (Strobl et al., 2008; Strobl et al., 2007), thus identifying
the covariates, which are important in a classification. The random
forest variable selection of Genuer et al. (2010) was used to iden-
tify the bands which were important to differentiate our vegeta-
tion categories. This variable selection ranks covariates according
to their permutation importance and, adding covariates one by
one in a forward selection, retains those that improve classification
accuracies (for full details see Appendix M). The permutation
importance is calculated by randomly permuting each covariate
in turn to destroy a potential association with the response vari-
able. It is calculated as the difference in ‘out-of-bag’ (OOB) error
from the model with the permuted covariate compared to the
OOB error from the model without permutations. The OOB error
is calculated on the approximately one-third of data that are ran-
domly withheld in the construction of each tree in the ensemble
(Breiman, 2001; Liaw and Wiener, 2002).

Downsampling led to high variation in the selected covariates
between repeat runs. Therefore, covariates important for vegeta-
tion differentiation were identified in the classifications of field
spectroscopy data, as these required no downsampling, but not
for the classifications with aerial data, which required downsam-
pling. For the tuning parameters ntree and mtry, the values pro-
posed by Genuer et al. (2010) were used: for the initial ranking,
ntree = 2000 and mtry = p/2 (p: number of covariates); for the for-
ward selection, default ntree and mtry. The value of mtry effects
the permutation importance, which becomes more conditional
with higher mtry values and more marginal with lower mtry val-
ues (Grömping, 2009; Strobl et al., 2008).

2.5.2. Validation
The ground-truth data per type was split geographically into

two halves for the airborne data. One half was used to train the
classifier and the other for validation (Fig. 3). Geographically sepa-
rated validation data can produce lower accuracies than randomly
sampled validation data which are spatially closer to training data,
therefore presenting a tougher test (Bahn and McGill, 2013). In the
validation data, pixels per category were randomly sampled up to
the downsampling value, repeated five times.

The field spectroscopy data, which had a median number of
spectra per category of 15 – 66 (Table 2), were deemed of insuffi-
cient size for splitting into a training and validation set. Instead,
accuracies were calculated using the OOB accuracy of random
forest.

2.5.2.1. Accuracy measures. Overall accuracy (accuracy henceforth)
was calculated because it is directly relevant for users and easy
to interpret (Foody, 2002). Accuracy was calculated as:

Accuracy ¼ number of correctly classified pixels
total number of pixels

Kappa was also calculated as it is a widely used accuracy mea-
sure in remote sensing (Foody, 2002; Lillesand et al., 2008; Pontius
and Millones, 2011). Kappa can take values between 0 (classifica-
tion is no better than random) and 1 (perfect agreement with
ground-truth data) and, in contrast to the accuracy measure,
assesses the improvement over chance agreement (Foody, 2002;
Lillesand et al., 2008; Pontius and Millones, 2011). The use of ran-
domness as a baseline has been criticized as not useful for map
production (Pontius and Millones, 2011). However, in this study
we believe the kappa value provides useful information, as several
thematic map resolutions were compared and the amount of
chance agreement varies with the number of categories. Kappa is
sensitive to sample size and large differences in category sizes
(Fielding and Bell, 1997). However, differences in category sizes
had already been reduced in the data and sample sizes were con-
stant for thematic resolutions. Kappa was calculated with R pack-
age asbio (Aho, 2016) as:

Kappa ¼ ðN
Xr

i¼1

xii �
Xr

i¼1

ðxiþ � xþiÞÞ=ðN2 �
Xr

i¼1

ðxiþ � xþiÞÞ

where r = number of rows in the error matrix, xii = number of obser-
vations on the error matrix diagonal, xi+ = number of observations
in row i, x+1 = number of observations in column i, N = total number
of observations (Aho, 2016; Lillesand et al., 2008).

3. Results

3.1. Hyperspectral imagery and thematic resolution

Overall, kappa and accuracies increased with decreasing the-
matic resolution (Fig. 4, for confusion matrices, see Appendix N)
when using hyperspectral imagery and when vegetation was away
from edges. Even for the finest thematic resolution, kappa (Mean:
0.83 for NVC, 0.82 for Dom-Species) and accuracies (Mean: 84% for
NVC, 83% for Dom-Species) were high. For the coarsest thematic
resolution kappa (Mean: 0.85 for NVC, 0.84 for Dom-Species) and
accuracies (Mean: 87% for NVC, 90% for Dom-Species) were higher,
but the difference between thematic resolutions was moderate for
kappa (Fig. 4).

3.2. Spectral resolution

Using hyperspectral airborne data usually achieved higher
accuracies and kappa than using simulated data with lower spec-
tral resolution when vegetation was away from edges (category
Wide, Fig. 4, for confusion matrices see Appendix N). This was
the case when vegetation was categorized by NVC (accuracy: 84–
87%; kappa: 0.83–0.85; means per thematic resolution) or by the
dominant plant species (Dom-Species; accuracy: 83–90%; kappa:
0.81–0.84). Using simulated 13-band data with the NVC produced
usually only slightly lower, and sometimes even similar accuracies
(83–86%) and kappa (0.82–0.84), while with Dom-Species accura-
cies (81–87%) and kappa (0.78–0.80) were clearly lower compared
to hyperspectral data. The poorest results were produced by simu-
lated 8-band data for the two finer thematic resolutions (NVC:
accuracy: 77–78%, kappa: 0.76: Dom-Species: accuracy: 78%,



a)

b)

c)

Fig. 3. Some example patches showing NVC communities used to train the random forest classifier (thick black line) and predicted NVC communities (thin black line) using
hyperspectral (left), simulated 13-band (middle) and simulated 8-band data (right) for patches of NVC communities MG6 (a), MG7 and MG10 (b) and S2, S25 and M13 (c).
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Fig. 4. Prediction accuracies (top: Kappa, bottom: accuracy) per thematic resolu-
tion for vegetation grouped by the NVC (left) or by the dominating species (right)
using hyperspectral data (orange), simulated 8-band (blue) and simulated 13-band
data (green) for vegetation away from vegetation edges (category Wide). Boxplots
are from five random selections of validation pixels. Boxes showing interquartile
range and median (grey line); whiskers show the maximum of 1.5 * interquartile
range. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 5. Prediction accuracies (top: Kappa, bottom: accuracy) per thematic resolu-
tion for vegetation grouped by the NVC (left) or by the dominating species (right)
using hyperspectral data (orange), simulated 8-band (blue) and simulated 13-band
data (green) for vegetation near vegetation edges (category Narrow). Boxplots are
from five random selections of validation pixels. Boxes showing interquartile range
and median (grey line); whiskers show the maximum of 1.5 * interquartile range.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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kappa: 0.74–0.77). However, at the coarser thematic resolutions,
simulated 8-band data produced results close to those produces
by simulated 13-band and hyperspectral data for the NVC (accu-
racy: 85%, kappa: 0.83) (Fig. 4).

An example for NVC communities showed that the majority of
predicted patches were clearly dominated by the correct vegeta-
tion community for hyperspectral, simulated 13-band and 8-
band data (17, 17 and 16, respectively out of 29) or had a substan-
tial proportion of the area covered by the correct predicted com-
munity (an additional eight for the hyperspectral and simulated
13-band data and nine for the simulated 8-band data, Fig. 3,
Appendix O).

3.3. Vegetation classification system

Grouping vegetation by NVC usually produced higher kappa
compared to Dom-Species when vegetation was away from edges
with few exceptions (Fig. 4, for confusion matrices and plant spe-
cies composition of Dom-Species categories, see Appendix N).
Accuracies showed a similar trend, but the small number (four)
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of vegetation categories at the coarsest Dom-Species resolution led
to very high accuracies (86–90%, Fig. 4).

3.4. Narrow objects

When vegetation was located near edges, accuracies and kappa
were overall poor (Fig. 5). Hyperspectral and simulated 13-band
data produced higher accuracies and kappa compared to the simu-
lated 8-band data. Even so, Kappa remained poor (NVC: 0.45–0.54;
Dom-Species: 0.46–0.54; means of five repetitions per thematic
resolution).

3.5. Acquisition month

In the between-month comparisons with spectroscopy data,
higher accuracies were achieved in June and July (84–85%) than
in May (75%) (Table 2, for confusion matrices and a characterisa-
tion of the vegetation categories, see Appendix P). However, two
categories showed high confusion and were grouped in May and
June, but not in July. In both August and September, due to weather
conditions, data from only two categories could be recorded
achieving accuracies of 94% in August and 97% in September
(Table 2).

3.6. Important spectral covariates

Selected spectral covariates in the classifications with field
spectroscopy data were from the visible, near-infrared and short-
wave infrared part of the electromagnetic spectrum (Fig. 6, Table 3).
Fig. 6. Selected bands in the classifications with field spectroscopy data. 1st derivative
interpretation of the references to colour in this figure legend, the reader is referred to
Some spectral covariates were selected in several months (e.g. first
derivative at 554 nm, 670 nm, 675 nm, 754 nm, 766 nm, 1193 nm,
1205 nm, 1270 nm, 1665 nm, PRI), however, others were selected
only once or twice.
4. Discussion

Spatial conservation planning to slow the rate of biodiversity
loss benefits from detailed maps of where organisms occur (Elith
and Leathwick, 2009). Remote sensing can enable such mapping
over large areas (Kuenzer et al., 2014). However, better differenti-
ation of vegetation is needed to improve the ability to use remote-
sensing data for conservation (Sutherland et al., 2014). In this
study, the influence on the thematic resolution and accuracy of
vegetation classification of the spectral resolution of remotely
sensed data, the month of data acquisition, the system used to cat-
egorize vegetation, and the narrowness of vegetation objects was
evaluated. Hence, this study provides guidance for increasing the
thematic resolution of remotely sensed vegetation maps. Specifi-
cally, hyperspectral data and two reduced spectral resolutions
were evaluated for a ‘difficult to map’ habitat: grass-dominated
farmland vegetation. Further, mapping using the popular NVC veg-
etation categories and categories based on the dominating plant
species was evaluated.

4.1. Classification accuracies

The accuracies for classifying NVC at the community and sub-
community level in this study, when vegetation was away from
in black; bands that were part of other spectral covariates (see Table 3) in red. (For
the web version of this article.)



Table 3
Selected spectral covariates, other than first derivatives, in the classifications with field spectroscopy data. For selected first derivatives, see Fig. 6. For a description of the
vegetation indices, see Appendix E.

Spectral covariate May June June July September

Vegetation indices ARI PRI PRI PRI PRI
CAI mARI WBI

NDVI
RGRI
NDLI
RVSI

Minimum/maximum first derivative 1205–1285 nm 550–650 nm
wavelength position in range
Ratio of red-edge peaks Peak 1 & 2 Peak 1 & 2 Peak 1 & 2

Peak 2 & 3 Peak 2 & 3 Peak 2 & 3
Peak 1 & 3
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edges, were high compared to other studies. At the sub-community
level, 85% of pixels were classified correctly (using hyperspectral
data) versus 67% using 15-band Compact Airborne Spectrographic
Imager (CASI) in a dune habitat (Shanmugam et al., 2003). At the
community level, a classification accuracy of 86% in this study
compares to 76% using CASI data in a dune habitat (Shanmugam
et al., 2003) and 77% using Landsat TM and ancillary data in a peat-
land habitat (Reid and Quarmby, 2000). Very high accuracies (87–
92%) were found using aerial multispectral imagery to classify NVC
communities in the UK uplands, but only when ancillary data were
included (Bradter et al., 2011). Imagery data alone produced low
accuracies of 22–52% (Bradter et al., 2011). The classification accu-
racies in this study are expected to reflect some realism as the
ground-truth data were widely distributed across a large area
(minimum convex polygon around the ground-truth data:
48 km2), and therefore cover a variety of environmental conditions.
However, as in many other studies it was not possible to more
widely separate training and validation data spatially as data for
rarer categories was sparse.

Very high thematic resolutions as in this study are rarely con-
sidered in remotely sensed vegetation classification, but are impor-
tant for ecological applications. Despite working in a ‘difficult to
map’ habitat (grass-dominated farmland vegetation), high accura-
cies were achieved even at the very high thematic resolutions of
NVC sub-communities and finer. Critically, high accuracies were
achieved without adding ancillary data (such as topography, soil
type). Such ancillary helped to improve classification accuracies
in several studies due to the associations between the distribution
of vegetation types and environmental variables (Bradter et al.,
2011; Dirnböck et al., 2003; Dobrowski et al., 2008; Sesnie et al.,
2008). Anthropogenic activities can weaken or remove the associ-
ations between vegetation types and environmental variables
(Dirnböck et al., 2003; Lees and Ritman, 1991). Such activities
can be widespread and intense in arable landscapes, hence it is
important that high classification accuracies can be achieved from
spectral data alone.
4.2. Spectral resolution

Other studies were able to resolve vegetation with a high level
of detail using hyperspectral data (Feilhauer and Schmidtlein,
2011; Harris et al., 2015; Mansour et al., 2012; Möckel et al.,
2014; Schmidtlein et al., 2012; Schweiger et al., 2017). This is con-
sistent with results in this study where for vegetation away from
edges, the hyperspectral data produced high accuracies that were
usually higher compared to the results from the simulated data
with reduced spectral resolution. However, in this study the bene-
fit from using hyperspectral data was small compared to the sim-
ulated 13-band data, for which bands are particularly suitable for
vegetation mapping. The Sentinel-2 satellite mission, which was
the basis for the simulated 13-band data in this study, has been
launched comparatively recently (in 2015 and 2017) and the appli-
cability of Sentinel-2 data for the mapping of grassland habitats
has so far rarely been studied (Rapinel et al., 2019). Importantly
therefore, this study demonstrates that the spatial resolution of
hyperspectral imagery did not produce a considerable gain in
either accuracy or thematic resolution compared to the spectral
resolution of the Sentinel-2 mission for high thematic resolution
mapping of grass-dominated farmland vegetation.

For the two coarsest NVC resolutions, there was little benefit
from using hyperspectral data even compared to the simulated
8-band data. This is in contrast to a study where simulated multi-
spectral data of several sensors, including Landsat 5 TM and Land-
sat 7 ETM+, resulted in poor discrimination of three coarser
thematic resolution vegetation categories (Feilhauer et al., 2013).
It is not surprising that studies using different vegetation lead to
different results as some vegetation categories are more spectrally
distinct than others. In this study a somewhat larger number of
coarse vegetation categories (12 NVC communities in Wide) was
used suggesting that the results in this study are not strongly influ-
enced by large effects of a few highly spectrally similar or dissim-
ilar categories.

This study was concerned with differences in vegetation classi-
fication accuracies caused by the spectral resolution of the hyper-
spectral, simulated 13-band and 8-band data. Consequently, the
spatial resolution of the hyperspectral data had been retained in
the simulated data. A caveat of this study is that due to the high
spectral resolution of the hyperspectral data they originate from
(Thenkabail et al., 2012), the simulated data may have a lower
signal-to-noise ratio compared to recording the same 13 and eight
bands at the same spatial resolution (1 m � 1 m) directly with an
airborne platform. This may have influenced the accuracies and
kappa produced. However, many of our comparisons are relative
to each other and based on the same imagery. Therefore, this lim-
itation may affect less the conclusions of our comparisons between
NVC and Dom-Species and between thematic resolutions.
4.3. NVC versus grouping by dominating species

Classifications with the NVC usually resulted in higher accura-
cies compared to classifications based on the dominant plant spe-
cies (Dom-Species). Intuitively, the Dom-Species approach may
seem well suited to the nature of remote sensing data as the spec-
tral reflectance of an image pixel tends to represent the dominant
vegetation (Ustin and Gamon, 2010). However, Pottier et al. (2014)
found that the abundance of plant species did not explain variation
in spectral separability and suggested this was because remote
sensing data not only reflect the plant species present, but also site
conditions. Similarly, Schmidtlein et al. (2012) found that the
inclusion of non-dominant species produced better vegetation
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models. NVC (sub)- communities are indicative of certain condi-
tions (soil conditions, disturbance, etc.; Rodwell, 1991–2000;
Rodwell, 2006). Different habitat conditions can lead to differences
in the chemical composition of plants or the structure of the plant
canopy, even within the same species (Roberts et al., 2012). The
good performance of using NVC in this study may therefore be
because in addition to reflecting characteristics of dominant plant
species, the NVC reflects differences in site conditions. However, a
disadvantage of the NVC is that different surveyors may produce
inconsistent results (Hearn et al., 2011), which can negatively
affect remotely sensed vegetation mapping. It is therefore impor-
tant to improve NVC survey methods (see Hearn et al., 2011 for
suggestions) in order to provide consistent results. This study
was not affected by such inconsistencies as NVC categories were
assigned by a single person.

4.4. Vegetation in narrow objects

As expected, accuracies from airborne data in narrow objects
were poor throughout. Image pixels from such areas frequently
contain vegetation edges and can also be influenced by the scatter-
ing of reflectance from nearby objects.

In contrast, OOB accuracies from field spectroscopy data, which
were mostly collected in narrow objects, were high. Spectroscopy
data did not contain vegetation edges as these can be avoided dur-
ing data collection. Spatially separate validation data were not
available for the field spectroscopy data and accuracies therefore
can likely not be achieved when classifying more distant samples
(Bahn and McGill, 2013; Beale et al., 2008; Gavish et al., 2018).
Nonetheless, the high separability of categories is promising.

Grass-dominated vegetation in narrow objects in farmland
landscapes can be important for biodiversity (Gabriel et al.,
2010). Due to the difficulties of remotely sensing vegetation in
such objects, vegetation classification in narrow objects is fre-
quently not attempted, thus risking that ecologically important
habitats will be ignored in applications of remotely-sensed prod-
ucts (see O’Connell et al., 2015; Tansey et al., 2009 for methods
to map narrow features in agricultural landscapes in broader habi-
tat classes). Hand-held data collection as in this study is not feasi-
ble for larger mapping projects, but recording data with drones
may be an alternative for very narrow objects. However, although
this study suggests that small pixel sizes could help to map vege-
tation in narrow objects, noise can increase with decreasing pixel
size, which is an important consideration (Lillesand et al., 2008;
Rocchini et al., 2013). Imagery with a pixel size that is much smal-
ler than the objects of interest may result in lower accuracies than
for imagery with larger pixel sizes. For example, resampling to a
larger pixel size (5 m) improved mapping accuracies for NVC cate-
gories in larger objects compared to the 0.25 m pixel size (Bradter
et al., 2011). Alternatively, for mixed pixels spectral unmixing (e.g.
Landmann et al., 2015) can be used or fuzzy-set theory, which pro-
duces a soft classification, in which several categories can be asso-
ciated with a pixel (Lu and Weng, 2007; Rocchini et al., 2013). Such
techniques are alternatives to the hard classification used in this
study and promising for mapping vegetation in narrow objects.

4.5. Time of imagery acquisition

With spectroscopy data, the highest discrimination was
achieved in July, the period when vegetation was fully developed.
This is consistent with other studies that also found that categories
could best be distinguished when vegetation was fully developed
(Belluco et al., 2006; Feilhauer and Schmidtlein, 2011; Rapinel
et al., 2019). However, some studies found that other dates in the
vegetation periods were also good (Cole et al., 2014) suggesting
that it depends on the vegetation under consideration. Good
results were also achieved in June, and to a lesser extent in May
in this study. The period after full vegetation development could
not be as fully assessed due to a lack of data.
4.6. Important spectral predictors for vegetation discrimination

The selected vegetation indices, red-edge peak ratios and mini-
mum/maximum first derivative wavelength positions are known
to be associated with chlorophyll absorption (red-edge peak ratios
andminimum first derivative wavelength position in the range 550
– 560 nm, Boochs et al., 1990; Pu et al., 2004), light use efficiency
(PRI, Roberts et al., 2012), anthocyanins (ARI, mARI, RGRI, Roberts
et al., 2012), cellulose and lignin absorption (minimum first deriva-
tive wavelength position in the range 1205–1285 nm, CAI and
NDLI, Pu et al., 2004; Roberts et al., 2012), vegetation structure
(NDVI, Roberts et al., 2012), vegetation structure and water content
(WBI, Roberts et al., 2012) and vegetation stress (RVSI, Roberts
et al., 2012). The first derivative in the visible and red-edge part
of the electromagnetic spectrum, which were among our selected
spectral covariates, have been linked to leaf pigment content, but
also to canopy structural properties, such as leaf area index and
variation in leaf angles (Kattenborn et al., 2018). The models also
selected first derivatives in the near-infrared and short-wave infra-
red regions (see Fig. 1 for wavelength ranges), which have been
linked to canopy structure and water content/dry matter content
(Kattenborn et al., 2018). The selected spectral covariates therefore
represented differences in the chemical composition of plant spe-
cies, such as pigment, cellulose and lignin content. They also repre-
sent differences in the structure of plant tissue and the plant
canopy. For example, variation in leaf angle contributes to differen-
tiation between graminoids and forbs (Kattenborn et al., 2018) and
could therefore contribute to differentiate vegetation communi-
ties, which have different proportions of forbs.

A reason for the frequent selection of bands in the near infrared
(NIR) and shortwave infrared (SWIR) compared to the visible range
could also be that they have a higher power to discriminate
between vegetation categories. They cover a larger range of reflec-
tance values (larger amplitude) compared to the visible range (see
Fig. 1) and may therefore have more contrasting power to differen-
tiate between categories.
5. Conclusions

The results of this study suggest that for high thematic resolu-
tions, categorizing vegetation by the NVC can achieve higher accu-
racies than categorizing vegetation by the dominating plant
species. Hyperspectral data achieved highest accuracies, but may
not always be worth the cost as simulated 13-band data, with
bands that were particularly suitable for vegetation studies,
achieved accuracies that were only slightly lower. The study area
posed several challenges, such as grass-dominated habitats, which
are difficult to assess by remote sensing (Sutherland et al., 2014),
many narrow objects and a relative rarity of the objects of interest
within a matrix of arable fields making ground-data collection time
consuming. Despite these challenges, high accuracies were
achieved, and at a high thematic and spatial resolution that is
rarely attempted. Vegetation classifications with high accuracies
and with high thematic resolution can benefit a range of conserva-
tion applications, for example monitoring and reporting obliga-
tions (Stenzel et al., 2017), predictive mapping of animal species
(Fletcher et al., 2016) and conservation planning (Elith and
Leathwick, 2009).
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