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Abstract:
In this paper, we set up a generalized periodic asymmetric power GARCH (PAP-GARCH) model whose coeffi-
cients, power, and innovation distribution are periodic over time. We first study its properties, such as periodic
ergodicity, finiteness of moments and tail behavior of the marginal distributions. Then, we develop an MCMC
algorithm, based on the Griddy-Gibbs sampler, under various distributions of the innovation term (Gaussian,
Student-t, mixed Gaussian-Student-t). To assess our estimation method we conduct volatility and Value-at-Risk
forecasting. Our model is compared against other competing models via the Deviance Information Criterion
(DIC). The proposed methodology is applied to simulated and real data.
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1 Introduction

Nowadays, the generalized autoregressive conditional heteroskedastic (GARCH) model, introduced by Engle
(1982) and Bollerslev (1986), is a well-established model in the financial econometrics literature. Its popularity
comes from the fact that it can capture some stylized facts of asset returns series, such as volatility clustering
and excess kurtosis in a very parsimonious way. Since its advent, numerous extensions of the standard GARCH
model have been proposed to account for additional empirical characteristics of financial time series (Francq
and Zakoïan, 2019).

In this paper, our contribution to the GARCH literature is three-fold. First of all, building upon the work
of Aknouche, Al-Eid, and Demouche (2018), we develop an estimation algorithm for a generalized periodic
asymmetric power GARCH (PAP-GARCH(p, q)) model, whose coefficients, power, and innovation distribution
are periodic over time. The algorithm accounts for three different cases of innovations. The first case refers to
the standard Gaussian distribution, making the innovation independent and identically distributed (iid). In the
second case, the innovation is rather independent and S-periodically distributed (ipdS), having a standardized
Student-t distribution with an S-periodic degree of freedom. The third case is a combination of the first two
cases.

Aknouche, Al-Eid, and Demouche (2018) set up the PAP-GARCH(1, 1) model and established the strong
consistency and asymptotic normality of the generalized quasi-maximum likelihood estimator (GQMLE) under
general weak and tractable assumptions. However, since the PAP-GARCH model contains a large number of
parameters (as is the case for any periodic model), any estimation method utilizing optimization techniques
would be cumbersome and subject to errors.

To overcome these estimation difficulties we resort to Bayesian methods that do not rely on optimization
routines. By augmenting the parameter space to include all the parameters, standard Bayesian techniques can be
applied. Therefore, we design a Markov Chain Monte Carlo (MCMC) algorithmic scheme for the general order
PAP-GARCH(p, q) model, using the Griddy-Gibbs sampler (Ritter and Tanner, 1992). This posterior sampler is
an extension of the Gibbs sampler to the case where the posterior density of some parameters has a complex or
non-standard form. The Griddy-Gibbs has been employed to GARCH-related model by Bauwens and Lubrano

Abdelhakim Aknouche is the corresponding author.
© 2019 Walter de Gruyter GmbH, Berlin/Boston.

1
Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)

Authenticated
Download Date | 10/20/19 12:33 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Aknouche et al. DE GRUYTER

(1998) and Xia et al. (2017), among others. Also, for the class of models we study, the Bayesian approach has
additional advantages over the classical approach, which are explicitly explained in Ardia (2008).

To evaluate the performance of the proposed algorithm we conduct a simulation study, where we monitor
convergence and mixing based on nonparametric diagnostic tools, such as the Relative Numerical Inefficiency
(RNI), the Numerical Standard Error (NSE) as well as other MCMC correlation measurements. To assess the
predictive performance of the proposed model we conduct in-sample and out-of-sample volatility forecasting
and Value at Risk (VaR) forecasting; see, for example, Aknouche (2017) and Xia et al. (2017).

Second, we carry out a model comparison exercise, using the Deviance Information Criterion (DIC, Spiegel-
halter et al. 2002). In particular, our model is compared against some of its nested versions; the periodic GARCH
(P-GARCH, Bollerslev and Ghysels, 1996), the periodic threshold GARCH (PT-GARCH) and the non-periodic
asymmetric power GARCH (AP-GARCH, Ding, Granger, and Engle 1993). The DIC is also used to select the
order and the period of the PAP-GARCH(p, q) model. We illustrate the methodology of the paper with an em-
pirical application to S&P500 returns.

Third, for the selection of the priors of some of the parameters of our model, we need to examine their
stationary regions. Therefore, prior to designing the MCMC algorithm, we study some stability/probabilistic
properties of the PAP-GARCH(p, q) model, such as periodic ergodicity, existence of moments and tail behavior
of the marginal distributions.

The motivation of this paper comes from the flexibility and usefulness of the PAP-GARCH model in analyz-
ing financial data. To be more specific, in an attempt to control for additional characteristics of financial data,
including leverage and Taylor effects, Ding, Granger, and Engle (1993) put forward the asymmetric power
GARCH model (AP-GARCH); see also Hwang and Basawa (2004), Pan, Wang, and Tong (2008), Hamadeh and
Zakoïan (2011), Francq and Zakoïan (2013), Aknouche and Touche (2015), and Xia et al. (2017).

Compared to other competitive volatility models such as Markov Switching GARCH models (Haas, Mittnik
and Paolella, 2004; Francq and Zakoïan, 2008; Bauwens, Dufays and Rombouts, 2014), the AP-GARCH speci-
fication has a simpler probability structure and it is easier to estimate by maximum likelihood-type methods,
a fact that makes it quite popular. However, a serious deficiency of the AP-GARCH model is that it assumes
time-invariant parameters.

Hence, this model fails to represent time series for which the volatility distribution varies over time accord-
ing to a seasonal or periodic pattern. Notable examples are the day-of-the-week effect and the month-of-the-
year effect, both observed in return series (Bollerslev, Cai and Song, 2000; Franses and Paap, 2000; Tsiakas, 2006;
Osborn, Savva and Gill, 2008; Smith, 2010; Rossi and Fantazani, 2015; Aknouche, 2017). Other non-financial ap-
plications of periodic volatility models include hourly electricity demand, intraday wind power and wind speed
series (Ambach and Croonenbroeck, 2015; Ambach and Schmid, 2015; Ziel, Croonenbroeck and Ambach, 2016).

Bollerslev and Ghysels (1996) introduced a periodic GARCH (P-GARCH) model, where the volatility coeffi-
cients are periodic over time with periodicity S. The P-GARCH model is sufficiently flexible and rich enough to
control for periodicity in volatility and other useful characteristics of return series (Franses and Paap, 2000; Os-
born, Savva and Gill, 2008; Rossi and Fantazani, 2015). However, it can not capture leverage and Taylor effects
as well as heavy tailedness of the marginal distribution.

Aknouche, Al-Eid, and Demouche (2018) generalized the AP-GARCH(1, 1) taking also into account period-
icity, thus solving the problems encountered both in the AP-GARCH and the P-GARCH models. In addition,
the existing literature on periodic GARCH models generally assumes stationarity of the innovation term, so the
periodicity of the model is driven solely by the volatility coefficients (Bollerslev and Ghysels, 1996; Franses and
Paap, 2000; Osborn, Savva and Gill, 2008; Aknouche and Bibi, 2009; Aknouche and Al-Eid, 2012; Rossi and Fan-
tazani, 2015; Ziel, Steinert and Husmann, 2015; Ziel, Croonenbroeck and Ambach, 2016). In many applications,
this might be a restrictive assumption, when there are seasonal return series that are characterized by time-
varying shape marginal distributions. This restrictions is relaxed in the PAP-GARCH(1, 1) model of Aknouche,
Al-Eid, and Demouche (2018), as the periodicity is manifested through both the volatility parameters and the
distribution of the innovation sequence. This makes the model not only more flexible in representing periodic
volatility, at just a minor cost of a few additional parameters, but also important in analyzing financial data.

The paper is organized as follows. In Section 2 we derive the probabilistic properties of the PAP-GARCH(p,
q) model, while in Section 3 we develop the Bayesian Griddy-Gibbs algorithm. Section 4 assesses the perfor-
mance of the algorithm in finite samples through simulation experiments. In Section 5 we conduct our empirical
analysis. Section 6 concludes. Two appendices accompany this paper.

2 Structure of the PAP-GARCHS(p, q) model

Let {𝜖𝑡, 𝑡 ∈ ℤ} be a PAP-GARCHS(p, q) process with period S and orders p and q, given by the following equation
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⎧{{
⎨{{⎩

𝜖𝑡 = 𝜎𝑡𝜂𝑡

𝜎𝛿𝑡
𝑡 = 𝜔𝑡 +

𝑞
∑
𝑖=1

𝛼𝑡𝑖+(𝜖+
𝑡−𝑖)𝛿𝑡−𝑖 + 𝛼𝑡𝑖−(𝜖−

𝑡−𝑖)𝛿𝑡−𝑖 +
𝑝

∑
𝑗=1

𝛽𝑡𝑗𝜎
𝛿𝑡−𝑗
𝑡−𝑗

� , 𝑡 ∈ ℤ, (1)

where 𝑥+ = max(𝑥, 0), 𝑥− = − min(𝑥, 0) and {𝜂𝑡, 𝑡 ∈ ℤ}, called the model innovation, is a sequence of indepen-
dent and S-periodically distributed (ipdS) unobservable random variables (S ≥ 1) such that ηt is independent
of {𝜖𝑖, 𝑖 < 𝑡}. The volatility parameters 𝜔𝑡 > 0, 𝛼𝑡𝑖+ ≥ 0, 𝛼𝑡𝑖− ≥ 0, 𝛽𝑡𝑗 ≥ 0, and δt > 0 (1 ≤ i ≤ q, 1 ≤ 𝑗 ≤ 𝑝) are
S-periodic over t. To emphasize the periodicity of model (1) we rewrite it in the following form

⎧{{
⎨{{⎩

𝜖𝑆𝑛+𝑣 = 𝜎𝑆𝑛+𝑣𝜂𝑆𝑛+𝑣

𝜎𝛿𝑣
𝑆𝑛+𝑣 = 𝜔𝑣 +

𝑞
∑
𝑖=1

𝛼𝑣𝑖+(𝜖+
𝑆𝑛+𝑣−𝑖)𝛿𝑣−𝑖 + 𝛼𝑣𝑖−(𝜖−

𝑆𝑛+𝑣−𝑖)𝛿𝑣−𝑖 +
𝑝

∑
𝑗=1

𝛽𝑣𝑗𝜎
𝛿𝑣−𝑗
𝑆𝑛+𝑣−𝑗

� 1 ≤ 𝑣 ≤ 𝑆,
𝑛 ∈ ℤ, (2)

where for all 1 ≤ v ≤ S, the vth season (or channel) stands for the set {..., 𝑣 − 𝑆, 𝑣, 𝑣 + 𝑆, ...}.
Model (1), proposed by Aknouche, Al-Eid, and Demouche (2018) for the case p = q = 1, is quite general and

covers a wide range of well-known GARCH-type models. For S = 1, it is just the asymmetric power GARCH
(AP-GARCH(p, q)) model proposed by Ding, Granger, and Engle (1993) and revisited by Pan, Wang, and Tong
(2008); see also Francq and Zakoïan (2013). It reduces to the periodic GARCH(p, q) when δv = 2 and 𝛼𝑣+ =
𝛼𝑣− (1 ≤ 𝑣 ≤ 𝑆), to the periodic power GARCH(p, q) when 𝛼𝑣+ = 𝛼𝑣− (1 ≤ 𝑣 ≤ 𝑆) and to the periodic threshold
GARCH(p, q) when δv = 1 for all 1 ≤ v ≤ S. Besides the stylized facts captured by the AP-GARCH(p, q) model
such as the leverage effect and the Taylor property (Granger, 2005; Haas, 2009; Aknouche and Touche, 2015),
model (1) might also account for periodicity in volatility.

To study the probabilistic structure of the PAP-GARCHS(p, q) model, we express model (1) as a stochastic
recurrence equation with ipdS coefficients. Let r = p + 2q − 2,

𝜁𝑡 = 𝛽𝑡+1,1 + 𝛼𝑡+1,1+(𝜂+
𝑡 )𝛿𝑡 + 𝛼𝑡+1,1−(𝜂−

𝑡 )𝛿𝑡 ,

𝑌𝑡 = (𝜎𝛿𝑡+1
𝑡+1 , … , 𝜎𝛿𝑡−𝑝+2

𝑡−𝑝+2, (𝜖+
𝑡 )𝛿𝑡 , (𝜖−

𝑡 )𝛿𝑡 , … , (𝜖+
𝑡−𝑞+2)

𝛿𝑡−𝑞+2 , (𝜖−
𝑡−𝑞+2)

𝛿𝑡−𝑞+2)
′

∈ ℝ𝑟,

𝐵𝑡 = (𝜔𝑡+1, 0, … , 0) ∈ ℝ𝑟,

and

𝐴𝑡−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜁𝑡−1 𝛽𝑡,2 ⋯ 𝛽𝑡,𝑝−1 𝛽𝑡,𝑝 𝛼𝑡,2+ 𝛼𝑡,2− ⋯ 𝛼𝑡,𝑞−1+ 𝛼𝑡,𝑞−1− 𝛼𝑡,𝑞+ 𝛼𝑡,𝑞−
1 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 0 0 0 ⋯ 0 0 0 0

(𝜂+
𝑡−1)𝛿𝑡−1 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0

(𝜂−
𝑡−1)𝛿𝑡−1 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0
0 0 ⋯ 0 0 1 0 ⋯ 0 0 0 0
0 0 ⋯ 0 0 0 1 ⋯ 0 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0 0
0 0 ⋯ 0 0 0 0 ⋯ 1 0 0 0
0 0 ⋯ 0 0 0 0 ⋯ 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Equation (1) may be cast in the following stochastic recurrence equation

𝑌𝑡 = 𝐴𝑡𝑌𝑡−1 + 𝐵𝑡, 𝑡 ∈ ℤ, (3)

where {(𝐴𝑡, 𝐵𝑡), 𝑡 ∈ ℤ} is an ipdS sequence valued in ℳ𝑟(ℝ) × ℝ𝑟, with ℳ𝑟(ℝ) being the set of square matrices
of dimension r. Let γ(S) be the top Lyapunov exponent associated with the recurrence equation (3) which is
given by (Aknouche and Bibi, 2009)

𝛾(𝑆) = inf { 1
𝑛𝐸 log ∥𝐴𝑛𝑆 … 𝐴2𝐴1∥ , 𝑛 ≥ 1} . (4)

The following result gives necessary and/or sufficient conditions for equation (1) to have a unique strictly
periodically stationary and periodically ergodic solution (see also Aknouche, Al-Eid, and Demouche 2018 for
the definition of periodic ergodicity).
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Theorem 1

a. Assume that 𝐸 log ∣𝜂𝑣∣𝛿𝑣 < ∞ for all 1 ≤ 𝑣 ≤ 𝑆. A necessary and sufficient condition for model (3) to have a unique
nonanticipative strictly periodically stationary and periodically ergodic solution is that

𝛾(𝑆) < 0. (5)

This solution is given by

𝑋𝑡 =
∞
∑
𝑗=0

𝑗−1

∏
𝑖=0

𝐴𝑡−𝑖𝐵𝑡−𝑗, 𝑡 ∈ ℤ, (6)

where the series in the right hand side of (6) converges absolutely almost surely.

b. If (3) admits a strictly periodically stationary solution then

𝜌 ⎛⎜
⎝

𝑆−1
∏
𝑣=0

𝛽𝛽𝛽𝑆−𝑣
⎞⎟
⎠

< 1, (7)

where 𝜷t is the submatrix of At defined by

𝛽𝛽𝛽𝑡 = (
𝛽𝑡,1𝛽𝑡,2 … 𝛽𝑡,𝑝−1 𝛽𝑡,𝑝

𝐼(𝑝−1)×(𝑝−1) 0(𝑝−1)×1
) ,

and 𝜌(𝐴) denotes the spectral radius of the squared matrix A, i.e. the maximum modulus of the eigenvalues of A.

In the special case p = q = 1, condition (5) reduces to

1
𝑆

𝑆
∑
𝑣=1

𝐸 (log (𝛼0𝑣+(𝜂+
𝑣−1)𝛿𝑣−1 + 𝛼0𝑣−(𝜂−

𝑣−1)𝛿𝑣−1 + 𝛽0𝑣)) < 0,

(Aknouche, Al-Eid, and Demouche 2018) while (7) is just ∏𝑆−1
𝑣=0 𝛽0𝑣 < 1. Now conditions for the existence of

moments of the PAP-GARCHS(p, q) process are given as follows.

Theorem 2

a. If 𝛾𝑆 (𝐴) < 0 then there is κ > 0 such that for all t

𝐸 (𝜎𝜅
𝑡 ) < ∞ and 𝐸 (∣𝜖𝑡∣

𝜅) < ∞. (8)

b. Let {𝜖𝑡, 𝑡 ∈ ℤ} be a strictly periodically stationary solution of (1). A necessary and sufficient condition for 𝐸 (𝜖𝑚𝛿𝑡
𝑡 )

(𝑚 ∈ ℕ∗, 1 ≤ 𝑡 ≤ 𝑆) to be finite is that

𝜌 ⎛⎜
⎝

𝑆−1
∏
𝑣=0

𝐸 (𝐴⊗𝑚
𝑆−𝑣)⎞⎟

⎠
< 1, (9)

where 𝐴⊗𝑚 is the Kronecker product: 𝐴 ⊗ 𝐴 ⊗ ⋯ ⊗ 𝐴 with m factors.

The following result shows that the S marginal distributions of the PAP- GARCHS(p, q) model are regularly
varying provided that some limiting moment conditions are satisfied. Thus, heavy-tailed marginals can be
obtained for the PAP-GARCHS(p, q) model even when its input innovation sequence {𝜂𝑡, 𝑡 ∈ ℤ} has light-tailed
distributions.
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Theorem 3
Assume model (1) satisfies the following three conditions: (i) 𝛾(𝑆) < 0(𝑖𝑖)𝜂𝑡 ℎ𝑎𝑠𝑆𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑛ℝ, such that

𝐸 ∣𝜂𝑣∣𝜏𝑣 < ∞ for some 𝜏𝑣 > 0 (1 ≤ 𝑣 ≤ 𝑆), and (iii) min1≤𝑣≤𝑆 (𝜔𝑣) > 0. Then for all 1 ≤ 𝑣 ≤ 𝑆,

𝑃 (𝜖𝑣 > 𝑥) ∼ 𝑐𝑣𝑥−𝛼𝛿𝑣 ,

where 𝑐𝑣 > 0 and α is the unique solution of

lim
𝑛→∞

1
𝑛 log 𝐸 ∥𝐴𝑛𝑆+𝑣𝐴𝑛𝑆+𝑣−1 … 𝐴𝑣+2𝐴𝑣+1∥

𝛼
2 = 0.

The proofs of the theorems are given in Appendix A.

3 Prior-Posterior analysis

3.1 Likelihood and priors

Let 𝜖𝜖𝜖𝑇 = (𝜖1, … , 𝜖𝑇)′ be a series of observations generated from the PAP-GARCHS(p, q) model (1) with sample-
size T = NS (N ≥ 1). We first need to specify the distribution of the ipdS innovation {𝜂𝑡, 𝑡 ∈ ℤ}.

Consider the following three cases:
Case (i) The pure Gaussian case: 𝜂1, … , 𝜂𝑆 are normally distributed with mean zero and unit variance (𝜂𝑣 ∼

𝑁 (0, 1)), i.e.

𝑓 (𝜂𝑣) = 1
√2𝜋

𝑒− 1
2𝜂2

𝑣 (1 ≤ 𝑣 ≤ 𝑆) .

Case (ii) The pure Student-t case: 𝜂1, … , 𝜂𝑆 are (standardized) Student-t distributed with 𝜏1, … , 𝜏𝑆 > 2 degrees of
freedom, respectively ( 𝜏𝑣

𝜏𝑣−2𝜂𝑣 ∼ 𝑡(𝜏𝑣)), i.e.

𝑓 (𝜂𝑣) =
1

√𝜋 (𝜏𝑣 − 2)

Γ(𝜏𝑣+1
2 )

Γ(𝜏𝑣
2 )

(1 +
𝜂2

𝑣
(𝜏𝑣 − 2)

)
− 𝜏𝑣+1

2

(1 ≤ 𝑣 ≤ 𝑆) .

Case (iii) The mixed Gaussian-Student-t case: It is assumed that for certain seasons {𝑣1, … , 𝑣𝑘} ⊂ {1, … , 𝑆} (1 ≤
𝑘 ≤ 𝑆 − 1) the innovations 𝜂𝑣1

, … , 𝜂𝑣𝑘
are normally distributed with mean zero and unit variance. For the

remaining seasons {𝑣𝑘+1, … , 𝑣𝑆}, 𝜂𝑣𝑗
has a standardized Student-t distribution with 𝜏𝑣𝑗

> 2 (𝑗 = 𝑘 + 1, … , 𝑆)
degrees of freedom. Cases (i) and (ii) are particular instances of Case (iii) and they correspond to k = S and k =
0, respectively.

Observe that the innovation {𝜂𝑡, 𝑡 ∈ ℤ} is iid in the first case and ipdS in the second and third cases. The
choices of k and {𝑣1, … , 𝑣𝑘} are motivated by practical considerations, such as the empirical Kurtosis of each
season and the shapes of the seasonal empirical distributions. Effective model selection criteria, such as the
DIC, allow us to select the best model. The MCMC method of Section 3.2 refers to the general Case (iii).

Assuming that the power δv (1 ≤ v ≤ S) and 𝜏𝑣𝑗
(𝑘 + 1 ≤ 𝑗 ≤ 𝑆) are both unknown, the parameter vec-

tor to be estimated is denoted by 𝜃 = (𝜏′, 𝜃′
1, ⋯ , 𝜃′

𝑆)′ ∈ (0, ∞)𝑟∗ , where 𝑟∗ = (𝑝 + 2𝑞 + 2) 𝑆 + (𝑆 − 𝑘), 𝜏′ =
(𝜏𝑣𝑘+1

, … , 𝜏𝑣𝑆
)′

, 𝜃′
𝑣 = (𝜔𝑣, 𝛼′

𝑣+, 𝛼′
𝑣−, 𝛽′

𝑣, 𝛿𝑣)′ ∈ (0, ∞)(𝑝+2𝑞+2), 𝛼𝑣+ = (𝛼𝑣1+, … , 𝛼𝑣𝑞+)′
, 𝛼𝑣− = (𝛼𝑣1−, … , 𝛼𝑣𝑞−)′

and 𝛽𝑣 = (𝛽𝑣1, … , 𝛽𝑣𝑝)′ (1 ≤ 𝑣 ≤ 𝑆).
Adopting the Bayesian approach, the parameter vector θ is assigned a prior distribution 𝑓 (𝜃). The goal is,

thus, to make inference about the posterior distribution 𝑓 (𝜃/𝜖𝜖𝜖𝑇), which satisfies the following proportionality

𝑓 (𝜃/𝜖𝜖𝜖𝑇) ∝ 𝑓 (𝜃)𝑓 (𝜖𝜖𝜖𝑇/𝜃), (10)

where 𝑓 (𝜖𝜖𝜖𝑇/𝜃) is the likelihood function given by

𝑓 (𝜖𝜖𝜖𝑇/𝜃) =
𝑇

∏
𝑡=1

𝑓 (𝜖𝑡/𝜖𝜖𝜖𝑡−1, 𝜃) =
𝑁−1
∏
𝑛=0

𝑆
∏
𝑣=1

𝑙𝑣+𝑛𝑆(𝜃) (11)
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Aknouche et al. DE GRUYTER

𝑙𝑣+𝑛𝑆(𝜃) =

⎧{{{{
⎨{{{{⎩

1
𝜎𝑣+𝑛𝑆(𝜃)𝑒

− 𝜖2𝑣+𝑛𝑆
𝜎2

𝑣+𝑛𝑆(𝜃) if 𝑣 ∈ {𝑣1, … , 𝑣𝑘} , 0 ≤ 𝑘 ≤ 𝑆

1

𝜎𝑣+𝑛𝑆(𝜃)√(𝜏𝑣 − 2)

Γ(𝜏𝑣+1
2 )

Γ(𝜏𝑣
2 )

⎛⎜
⎝
1 +

𝜖2𝑣+𝑛𝑆
(𝜏𝑣 − 2) 𝜎2

𝑣+𝑛𝑆(𝜃)
⎞⎟
⎠

− 𝜏𝑣+1
2

if 𝑣 ∈ {𝑣𝑘+1, … , 𝑣𝑆}
� (12)

𝜎𝑣+𝑛𝑆(𝜃) = ⎛⎜⎜
⎝

𝜔𝑣 +
𝑞

∑
𝑖=1

𝛼𝑣𝑖+(𝜖+
𝑆𝑛+𝑣−𝑖)𝛿𝑣−𝑖 + 𝛼𝑣𝑖−(𝜖−

𝑆𝑛+𝑣−𝑖)𝛿𝑣−𝑖 +
𝑝

∑
𝑗=1

𝛽𝑣𝑗𝜎
𝛿𝑣−𝑗
𝑆𝑛+𝑣−𝑗(𝜃)⎞⎟⎟

⎠

1
𝛿𝑣

. (13)

Because of the periodic structure of the PAP-GARCHS(p, q) model, it is natural to assume that the param-
eters 𝜃1, ⋯ , 𝜃𝑆 are independent of each other. The joint posterior distribution 𝑓 (𝜃/𝜖𝜖𝜖𝑇) can, then, be es-
timated using the Gibbs sampler, provided we can draw samples from any of the r∗ conditional poste-
rior distributions: 𝑓 (𝜏𝑣𝑗

/𝜃−{𝜏𝑣𝑗 }, 𝜖𝜖𝜖𝑇) (𝑘 + 1 ≤ 𝑗 ≤ 𝑆), 𝑓 (𝛿𝑣/𝜃−{𝛿𝑣}, 𝜖𝜖𝜖𝑇), 𝑓 (𝜔𝑣/𝜃−{𝜔𝑣}, 𝜖𝜖𝜖𝑇), 𝑓 (𝛼𝑣𝑖+/𝜃−{𝛼𝑣𝑖+}, 𝜖𝜖𝜖𝑇),
𝑓 (𝛼𝑣𝑖−/𝜃−{𝛼𝑣𝑖−}, 𝜖𝜖𝜖𝑇) (𝑖 = 1, … , 𝑞) and 𝑓 (𝛽𝑣𝑗/𝜃−{𝛽𝑣𝑗}, 𝜖𝜖𝜖

𝑇) (𝑗 = 1, … , 𝑝) (1 ≤ 𝑣 ≤ 𝑆), where 𝑥−{𝜃𝑗}
denotes the

vector obtained from x after removing the parameter component θj.
To get the latter conditional posterior distributions, prior distributions of the parameters have to be deter-

mined. In general, the choice of conjugate priors is appealing, as it simplifies the posterior analysis. However,
since the volatility σt(θ) is a nonlinear function of θ with a feedback mechanism, it is difficult to find conjugate
priors. That’s why noninformative priors are used. They are given, for all 1 ≤ v ≤ S and k + 1 ≤ j ≤ S, by

𝜔𝑣 ∼ 𝑈(0, 𝐴), 𝛼𝑣+ ∼ 𝑈(0, 𝐴)𝑞 , 𝛼𝑣− ∼ 𝑈(0, 𝐴)𝑞 ,
𝛽𝑣 ∼ 𝑈(0, 𝐴)𝑝 , 𝛿𝑣 ∼ 𝑈(𝑎, 𝐴), 𝜏𝑣𝑗

∼ 𝑈(2, 𝐴),

where UD denotes the uniform distribution on the set D, A is a fairly large positive number and a < A is a quite
small positive number.

To simplify the computations, we reparametrize the standardized Student-t distribution with 𝜓𝑣𝑗
= 1

𝜏𝑣𝑗
. The

prior distribution for ψv is then

𝜓𝑣𝑗
∼ 𝑈( 1

𝐴 ,0.5), (1 ≤ 𝑣 ≤ 𝑆).

Based on the above priors, the conditional posterior distributions of 𝜓𝑣𝑗
, δv, ωv, αv+, αv− and βv can easily be

derived from (10), except for a scale factor. For example, the kernel of the conditional posterior of δv is written
as follows

𝑓 (𝛿𝑣/𝜃−{𝛿𝑣}, 𝜖𝜖𝜖𝑇) ∝
𝑁−1
∏
𝑛=0

𝑆
∏
𝑣=1

𝑙𝑣+𝑛𝑆(𝜃), 1 ≤ 𝑣 ≤ 𝑆, (14)

where 𝑙𝑣+𝑛𝑆(𝜃) is given by (12)–(13). The kernels of the remaining distributions 𝑓 (𝜓𝑣𝑗
/𝜃−{𝜏𝑣𝑗 }, 𝜖𝜖𝜖𝑇), (𝑘+1 ≤ 𝑗 ≤ 𝑆),

𝑓 (𝜔𝑣/𝜖𝑇 , 𝜃−{𝜔𝑣}), 𝑓 (𝛼𝑣𝑖+/𝜖𝜖𝜖𝑇 , 𝜃−{𝛼𝑣𝑖+}), 𝑓 (𝛼𝑣𝑖−/𝜖𝜖𝜖𝑇 , 𝜃−{𝛼𝑣𝑖−}) (i = 1, …, q) and 𝑓 (𝛽𝑣𝑗/𝜖𝜖𝜖𝑇 , 𝜃−{𝛽𝑣𝑗}) (1 ≤ 𝑣 ≤ 𝑆) are
obtained as in (14). However, the parameters ωv, αv+, αv− and βv are restricted to lie in the periodic stationarity
domain described by (5).

3.2 MCMC algorithm

Once determining the kernel of 𝑓 (𝜃𝑗/𝜖𝜖𝜖𝑇 , 𝜃−{𝜃𝑗}) (𝑗 = 1, … , 𝑟∗), we can use some indirect sampling algo-
rithms in order to draw each component of θ. We choose the Griddy-Gibbs sampler (Ritter and Tanner, 1992),
whose implementation seems simple in our context. We illustrate its principle on the power parameter δv (1
≤ v ≤ S). The same scheme can be followed for the remaining parameters 𝜓𝑣𝑗

= 1
𝜏𝑣𝑗

(𝑘 + 1 ≤ 𝑗 ≤ 𝑆) and

(𝜔𝑣, 𝛼′
𝑣+, 𝛼′

𝑣−, 𝛽′
𝑣)′ (1 ≤ 𝑣 ≤ 𝑆).

Griddy-Gibbs scheme

1. Select a grid of g points 𝛿𝑣1 ≤ 𝛿𝑣2 ≤ … ≤ 𝛿𝑣𝑔 from a given interval [𝛿𝑣1, 𝛿𝑣𝑔]; then, evaluate the conditional
posterior 𝑓 (𝛿𝑣/𝜃−{𝛿𝑣}, 𝜖𝜖𝜖𝑇) at each one of these points, to get 𝑓𝑣𝑠 = 𝑓 (𝛿𝑣𝑠/𝜖𝜖𝜖𝑇 , 𝜃−{𝛿𝑣}), (1 ≤ 𝑠 ≤ 𝑔).
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DE GRUYTER Aknouche et al.

2. From the values 𝑓𝑣1, 𝑓𝑣2, … , 𝑓𝑣𝑔, build the discrete distribution pv(.) defined at δvs (1 ≤ s ≤ g) by 𝑝(𝛿𝑣𝑠) = 𝑓𝑣𝑠
∑𝑔

𝑗=1 𝑓𝑣𝑗
.

This can be seen as an approximation to the inverse cumulative distribution of 𝑓 (𝛿𝑣/𝜃−{𝛿𝑣}, 𝜖𝜖𝜖𝑇).

3. Generate a number from the uniform distribution on (0, 1) and transform it using the discrete distribution
p(.) obtained in step (2) to get a random draw for δv.

The following algorithm summarizes the Griddy-Gibbs sampler for drawing from the conditional posterior
distribution 𝑓 (𝜃/𝜖𝜖𝜖𝑇).

Algorithm 1 (Griddy-Gibbs sampler for the PAP-GARCHS(p, q) model).
For 𝑙 = 0, 1, … , 𝐿, let 𝜃(𝑙) be the Griddy-Gibbs draw of θ at the l-th Gibbs iteration.

Step 0 Specify starting values 𝜓(0)
𝑣𝑗 , 𝜃(0)

𝑣 = (𝜔(0)
𝑣 , 𝛼(0)′

𝑣+ , 𝛼(0)′
𝑣− , 𝛽(0)′

𝑣 , 𝛿(0)
𝑣 )′ (𝑘 + 1 ≤ 𝑗 ≤ 𝑆, 1 ≤ 𝑣 ≤ 𝑆).

Step 1 Repeat for 𝑙 = 0, 1, … , 𝐿 − 1.

(a) For 1 ≤ v ≤ S, sample δv from 𝑓 (𝛿𝑣/𝜃−{𝛿𝑣}, 𝜖𝜖𝜖𝑇) using the following Griddy scheme:

(a1) Select a grid 𝛿(𝑙+1)
𝑣1 ≤ 𝛿(𝑙+1)

𝑣2 ≤ … ≤ 𝛿(𝑙+1)
𝑣𝑔 .

(a2) For 1 ≤ s ≤ g calculate 𝑓 (𝑙+1)
𝑣𝑠 = 𝑓 (𝛿(𝑙+1)

𝑣𝑠 /𝜖𝜖𝜖𝑇 , 𝜃(𝑙)
−{𝛿(𝑙)

𝑣 }
) from (14) and define the inverse distribution

𝑝(𝛿(𝑙+1)
𝑣𝑠 ) = 𝑓 (𝑙+1)

𝑣𝑠

∑𝑔
𝑗=1 𝑓 (𝑙+1)

𝑣𝑗
, 1 ≤ 𝑠 ≤ 𝑔.

(a3) Generate a number u from the uniform (0, 1) distribution and transform it using the inverse distribution p(.)
to get 𝛿(𝑙+1)

𝑣 .

(b) Using a Griddy step similarly to (a), sample from 𝑓 (𝜔𝑣/𝜖𝜖𝜖𝑇 , 𝜃(𝑙)
−{𝜔(𝑙)

𝑣 }
) to get 𝜔(𝑙+1)

𝑣 .

(c) Using a Griddy step similarly to (a), sample from 𝑓 (𝛼𝑣𝑖+/𝜖𝜖𝜖𝑇 , 𝜃(𝑙)
−{𝛼(𝑙)

𝑣𝑖+}
) to get 𝛼(𝑙+1)

𝑣𝑖+ , 1 ≤ 𝑖 ≤ 𝑞.

(d) Using a Griddy step similarly to (a), sample from 𝑓 (𝛼𝑣𝑖−/𝜖𝜖𝜖𝑇 , 𝜃(𝑙)
−{𝛼(𝑙)

𝑣𝑖−}
) to get 𝛼(𝑙+1)

𝑣𝑖− , 1 ≤ 𝑖 ≤ 𝑞.

(e) Using a Griddy step similarly to (a), sample from 𝑓 (𝛽𝑣𝑗/𝜖𝜖𝜖𝑇 , 𝜃(𝑙)
−{𝛽(𝑙)

𝑣𝑗 }
) to get 𝛽(𝑙+1)

𝑣𝑗 , 1 ≤ j ≤ p.

(f) Using a Griddy step similarly to (a), sample from 𝑓 (𝜓𝑣𝑗
/𝜖𝜖𝜖𝑇 , 𝜃(𝑙)

−{𝜓(𝑙)
𝑣𝑗 }

) to get 𝜓(𝑙+1)
𝑣𝑗 , 𝑘 + 1 ≤ 𝑗 ≤ 𝑆.

Step 3 Return 𝜃(𝑙), l = 1, …, L.

The Griddy-Gibbs estimate ̂𝜃𝐺 of θ is obtained by averaging the posterior draws of θ, giving

̂𝜃𝐺 = 1
𝐿

𝐿
∑
𝑙=1

𝜃(𝑙). (15)

It is important to note that the efficiency of the Griddy-Gibbs scheme is very sensitive to the choice of the grid
{𝛿𝑣1, … , 𝛿𝑣𝑔}. Here, we follow a similar approach to Tsay (2010), according to which, at the l-th Gibbs iteration,
the range of δv is taken to be [𝛿1𝑣𝑙, 𝛿2𝑣𝑙], where

𝛿1𝑣𝑙 = 0.6max(𝛿(0)
𝑣 , 𝛿(𝑙−1)

𝑣 ), 𝛿2𝑣𝑙 = 1.4min(𝛿(0)
𝑣 , 𝛿(𝑙−1)

𝑣 ), (16)

with 𝛿(𝑙−1)
𝑣 and 𝛿(0)

𝑣 being the estimate of δv at the (l − 1)-th Gibbs iteration and the initial value, respectively.
Despite the fact that this choice may depend on the initial parameter draws, it gives quite satisfactory results

that are not case-sensitive, as indicated by the used MCMC diagnostic tools (see A). On the other hand, it is well-
known that the Griddy algorithm could be enhanced by considering a trapezoidal integration or the Simpson
rule (Bauwens and Lubrano, 1998; Bauwens, Dufays and Rombouts, 2014). However, the use of the Griddy-
Gibbs Step a2) in Algorithm 1 and the variable grid in (16) both seem suitable in our context, as we get fairly
good estimates (see Section 4).
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Aknouche et al. DE GRUYTER

3.3 The Deviance Information Criterion

Selecting the best order and period of the PAP-GARCHS(p, q) model is carried out using the DIC (Spiegelhalter
et al. 2002). This criterion, which may be seen as a Bayesian generalization of the AIC (Akaike Information
Criterion), is easily obtained from MCMC draws, without extra calculations.

In the context of the PAP-GARCHS(p, q), DIC:= DIC(p, q, S) is defined to be

𝐷𝐼𝐶 = −4𝐸𝜃/𝜖𝜖𝜖𝑇 (log (𝑓 (𝜖𝜖𝜖𝑇/𝜃))) + 2 log (𝑓 (𝜖𝜖𝜖𝑇/𝜃)) ,

where 𝑓 (𝜖𝜖𝜖𝑇/𝜃) is the likelihood given by (11)–(13) and 𝜃 = 𝐸 (𝜃/𝜖𝜖𝜖𝑇) is the posterior mean of θ. From the
Griddy-Gibbs draws, the expectation 𝐸𝜃/𝜖𝜖𝜖𝑇 (log (𝑓 (𝜖𝜖𝜖𝑇/𝜃))) can be estimated by averaging the conditional log-
likelihood, log 𝑓 (𝜖𝜖𝜖𝑇/𝜃), over the posterior draws of θ. Moreover, the joint posterior mean estimate of 𝜃 can be
approximated by the mean of the posterior draws of (𝜃(𝑙))1≤𝑙≤𝐿.

The same model comparison criterion is used, when the proposed model is compared against several nested
versions of it.

3.4 Forecast evaluation

To evaluate our PAP-GARCHS(p, q) model, in terms of forecasting, we calculate in-sample and out-of-sample
predictions of the volatility and the Value at Risk (VaR), following a simulation-based approach; see, for exam-
ple, Chen and So, 2006; Hoogerheide and van Dijk, 2010; Xia et al., 2017, among others. Once we generate the
posterior draws 𝜃(𝑙) (𝑙 = 1, … , 𝐿) from Algorithm 1, we can use them to readily generate in-sample volatilities
(𝜎2(𝑙)

𝑡 , t = 1, …, T) according to (13), while replacing θ by 𝜃(𝑙), i.e.

𝜎2(𝑙)
𝑛𝑆+𝑣 = 𝜎2

𝑛𝑆+𝑣 (𝜃(𝑙)) , 𝑙 = 1, … , 𝐿,

= ⎛⎜⎜
⎝

𝜔(𝑙)
𝑣 +

𝑞
∑
𝑖=1

𝛼(𝑙)
𝑣𝑖+(𝜖+

𝑆𝑛+𝑣−𝑖)
𝛿(𝑙)

𝑣−𝑖 + 𝛼(𝑙)
𝑣𝑖−(𝜖−

𝑆𝑛+𝑣−𝑖)
𝛿(𝑙)

𝑣−𝑖 +
𝑝

∑
𝑗=1

𝛽(𝑙)
𝑣𝑗 𝜎𝛿(𝑙)

𝑣−𝑗
𝑆𝑛+𝑣−𝑗(𝜃(𝑙))⎞⎟⎟

⎠

2
𝛿𝑣

.
(17)

Thus, (𝜎2(𝑙)
𝑡 )

1≤𝑙≤𝐿
can be seen as a posterior sample from 𝑓 (𝜎2

𝑡 /𝜖𝜖𝜖𝑇), and a Bayesian in-sample estimate of 𝜎2
𝑡

is given by

�̂�2
𝑡 = 1

𝐿
𝐿

∑
𝑙=1

𝜎2(𝑙)
𝑡 , 𝑡 = 1, … , 𝑇. (18)

To forecast future volatilities 𝜎2
𝑇+ℎ (ℎ = 1, 2, …), we use a sequential method on h as follows:

a. For h = 1, since 𝜎2
𝑇+1 depends on 𝜖𝑇 , 𝜖𝑇−1, … which are available in the sample, we can easily compute 𝜎2(𝑙)

𝑇+1
(1 ≤ l ≤ L) from (17). This may be seen as a posterior sample from the predictive distribution 𝑓 (𝜎2

𝑇+1/𝜖𝜖𝜖𝑇).
Therefore, the volatility forecast �̂�2

𝑇+1 is given, as in (18), by �̂�2
𝑇+1 = 1

𝐿 ∑𝐿
𝑙=1 𝜎2(𝑙)

𝑇+1. Then, 𝜖(𝑙)
𝑇+1 (1 ≤ l ≤ L) can

be generated from 𝑓 (𝜖𝑇+1/𝜖𝜖𝜖𝑇 , 𝜃(𝑙)) using (11) and the one-step ahead predicted return is given by ̂𝜖𝑇+1 =
1
𝐿 ∑𝐿

𝑙=1 𝜖(𝑙)
𝑇+1.

b. For h = 2, with 𝜖(𝑙)
𝑇+1 available, we can generate 𝜎2(𝑙)

𝑇+2 (1 ≤ l ≤ L) using (17). Then 𝜖(𝑙)
𝑇+2 (1 ≤ l ≤ L) can be

generated from 𝑓 (𝜖𝑇+2/𝜖𝜖𝜖𝑇+1, 𝜃(𝑙)) using again (11). This can be utilized to sample 𝜎2(𝑙)
𝑇+3 (1 ≤ l ≤ L) in the

following step.

c. For h ≥ 3 we can sequentially repeat the steps (i) and (ii).

As a by-product of the above volatility prediction scheme, we can also forecast the VaR (Francq and Zakoïan
2019). Under the PAP-GARCHS(p, q) model, the one-step VaRT+1 at the significance level ϕ is the quantile of ϵT+1
(to within a sign “−”) at level ϕ, i.e., 𝜙 = 𝑃 (𝜖𝑇+1 ≤ −𝑉𝑎𝑅𝑇+1). More explicitly, it is given by

𝑉𝑎𝑅𝑇+1 = −𝐹−1
𝑇+1 (𝜙) √𝜎2

𝑇+1 (𝜃),
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where 𝐹−1
𝑇+1 (.) is the inverse of the probability cumulative function of ηT+1 and is S-periodic over time

due to the periodic stationarity of the innovation {𝜂𝑡, 𝑡 ∈ ℤ}. The l-th draw of VaR is given by 𝑉𝑎𝑅(𝑙)
𝑇+1 =

−𝐹−1
𝑇+1 (𝜙) √𝜎2

𝑇+1 (𝜃(𝑙)) (1 ≤ l ≤ L) and is readily obtained from the volatility forecast sample (𝜎2
𝑇+1 (𝜃(𝑙)))

1≤𝑙≤𝐿
.

Hence, the estimated one-period ahead VaR for T + 1 is given by

𝑉𝑎𝑅𝑇+1 = 1
𝐿

𝐿
∑
𝑙=1

𝑉𝑎𝑅(𝑙)
𝑇+1.

More generally, the h-step VaRT+h (h ≥ 1) is defined to be the ϕ-quantile of 𝜖𝑇+1 + … + 𝜖𝑇+ℎ, i.e. a solution of the
equation

𝜙 = 𝑃 (𝜖𝑇+1 + … + 𝜖𝑇+ℎ ≤ −𝑉𝑎𝑅𝑇+ℎ) .

Evaluating the h-step ahead VaRT+h requires the estimation of the ϕ-quantile of 𝜖𝑇+1 + … + 𝜖𝑇+ℎ, which can be
easily obtained from the MCMC sample (𝜖(𝑙)

𝑇+1 + … + 𝜖(𝑙)
𝑇+ℎ)

1≤𝑙≤𝑀
as above.

4 Simulation study

Using simulated series generated from the 5-periodic PAP-GARCH5(1, 1) model, this section examines the finite-
sample performance of the Griddy-Gibbs estimate, ̂𝜃𝐺, based on volatility and VaR forecasting as well as on
other measures. The choice of S = 5 is motivated by computational as well as practical considerations.

Two cases are considered for the distribution of the innovation. The first case refers to the standard Gaussian
distribution, where the innovation sequence is iid with 𝜂𝑣 ∼ 𝑁 (0, 1), (1 ≤ 𝑣 ≤ 𝑆). The second case refers to the
standardized Student-t distribution for which the innovation is ipdS with 𝜂𝑣 ∼ 𝑡 ( 1

𝜓𝑣
) (1 ≤ 𝑣 ≤ 𝑆).

The parameter θ is fixed for each case so as to be in accordance with the empirical evidence, satisfying also
the strict periodic stationarity condition (5). Moreover, at each season, the αv+ is significantly different from αv−,
to ensure asymmetry in the two models. In addition, different power values across seasons are allowed.

For each case, we consider 1000 replications of the PAP-GARCH5(1, 1) series of sample size T = 1000 for
which we calculate the Griddy-Gibbs estimate ̂𝜃𝐺. In evaluating ̂𝜃𝐺, we use L = 1000 iterations from which we
discard the first 400 iterations. The initial parameter draw 𝜃(0) is taken to be the true value of θ. In the Griddy
Gibbs iteration, the range of the grid is given by (16) and each component of θ is generated using g = 300 grid
points.

The posterior means and standard deviations (Std) of the parameters are reported in Table 1 (Gaussian case)
and Table 2 (Student-t case). From these tables, it can be seen that the parameters are well estimated with quite
small bias and small standard deviations.

Table 1: Mean and standard deviation (Std) of ̂𝜃𝐺 for the 5-periodic Gaussian PAP-GARCH5(1,1) series with T = 1000, L =
1000, g = 300 and 1000 repetitions.

Season v ωv αv+ αv− βv δv

1 True 0.2 0.25 0.35 0.4 1.3
Mean 0.2120 0.2786 0.3827 0.4108 1.3071
Std 0.0501 0.0815 0.1062 0.1155 0.2894

2 True 0.1 0.15 0.3 0.2 1.2
Mean 0.1050 0.1654 0.3166 0.1952 1.1970
Std 0.0253 0.0479 0.0897 0.0508 0.1712

3 True 0.15 0.2 0.1 0.25 0.8
Mean 0.1525 0.2167 0.1068 0.2407 0.8046
Std 0.0265 0.0625 0.0298 0.0523 0.0868

4 True 0.4 0.3 0.2 0.15 1
Mean 0.4115 0.3369 0.2241 0.1627 1.0294
Std 0.0661 0.0982 0.0618 0.0467 0.2238

5 True 0.15 0.1 0.18 0.1 1.6
Mean 0.1586 0.1125 0.1987 0.1088 1.5983
Std 0.0381 0.0324 0.0563 0.0316 0.2562
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Table 2: Mean and standard deviation (Std) of ̂𝜃𝐺 for the 5-periodic Student-t PAP0-GARCH5(1,1) series with 𝜓𝑣 = 1
𝜏𝑣

, T =
1000, L = 1000, g = 300 and 1000 repetitions.

Season v ωv αv+ αv− βv δv ψv

1 True 0.2 0.25 0.35 0.4 1.3 0.2
Mean 0.2295 0.2875 0.3722 0.4210 1.3420 0.1884
Std 0.0423 0.0732 0.0608 0.0802 0.2952 0.0420

2 True 0.1 0.15 0.3 0.2 1.2 0.25
Mean 0.1144 0.1701 0.3156 0.1951 1.2202 0.2355
Std 0.0241 0.0354 0.0713 0.0407 0.2208 0.0410

3 True 0.15 0.2 0.1 0.25 0.8 0.3333
Mean 0.1602 0.2135 0.1202 0.2281 0.8135 0.3140
Std 0.0280 0.0534 0.0206 0.0312 0.0954 0.0720

4 True 0.4 0.3 0.2 0.15 1 0.25
Mean 0.3859 0.3409 0.2388 0.1649 1.0584 0.2323
Std 0.0570 0.0841 0.0530 0.0291 0.2014 0.0489

5 True 0.15 0.1 0.18 0.1 1.6 0.2
Mean 0.1640 0.1233 0.2021 0.1203 1.6424 0.1896
Std 0.0288 0.0287 0.0437 0.0258 0.3620 0.0411

To further evaluate the performance of the algorithm, we conduct volatility and VaR forecasting. We first
generate a 5-periodic PAP-GARCH5(1, 1) series, using the parameters of Table 1 for the Gaussian case and of
Table 2 for the Student-t case. Then, we compute the true volatility 𝜎2

𝑡 for 𝑡 = 1, … , 1000 + ℎ, where the horizon
of prediction h is taken to be in the set {1, … , 8}. Finally, we compute the Griddy-Gibbs estimate ̂𝜃𝐺 from which,
using (18), we obtain the prediction �̂�2

𝑡 and its standard deviation over the L Gibbs draws, for 𝑡 = 1, … , 1000+ ℎ.
For the Gaussian and Student-t cases, Table 3 and Table 4 show, respectively, the true volatility 𝜎2

1000+ℎ for all
ℎ ∈ {1, … , 8}, and the posterior means and standard deviations (Std) of the estimated volatilities (𝜎2(𝑙)

1000+ℎ). We
conclude that the predicted volatilities are close to their corresponding true values, indicating that the proposed
MCMC algorithm performs satisfactory.

Table 3: Volatility forecasts from the 5-periodic Gaussian PAP-GARCH5 (1,1) in Table 4 for the horizon h with h = 1,…,8.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

True value 𝜎2
1000+ℎ 0.2487 0.2576 0.2556 0.2481 0.2777 0.2273 0.2370 0.2493

Mean: �̂�2
1000+ℎ 0.2321 0.2541 0.2550 0.2571 0.2480 0.2526 0.2521 0.2468

Std 0.0282 0.0695 0.0672 0.0801 0.0618 0.0887 0.0696 0.0642

Table 4: Volatility forecasts from the 5-periodic Student-t PAP-GARCH5(1, 1) in Table 2 for the horizon h with h = 1, …, 8.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

True value 𝜎2
1000+ℎ 0.3372 0.3269 0.4194 0.3442 0.2907 0.3570 0.3171 0.2771

Mean: �̂�2
1000+ℎ 0.3308 0.3741 0.3911 0.3726 0.3729 0.3958 0.3701 0.3583

Std 0.035 0.1255 0.1245 0.1178 0.1145 0.1499 0.1021 0.0849

On the basis of 100 replications of this generated series, we calculate the mean absolute error (MAE)
∣�̂�2

1000+ℎ − 𝜎2
1000+ℎ∣ for h = 1, …, 8 for both cases and obtain the corresponding boxplots (Figure 1). The MAEs

are small enough for all time horizons. Of course, the MAE of volatilities prediction becomes large as the time
horizon h increases.
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Figure 1: Mean absolute error of the h-step ahead absolute prediction error of the volatility for h = 1,...,8.
Boxplot of the MAE of  ∣̂𝜎2

1000+ℎ − 𝜎2
1000+ℎ∣ (ℎ = 1, … , 8) for the Gaussian (panel (A)) and Student-t (panel (B)) cases.

Next, we turn our attention to VaR forecasting. The posterior mean and standard deviation of the h-step
VaR1000+h estimate (h = 1,…,8) at the probability levels ϕ = 0.01 and ϕ = 0.05 are both presented in Table 5 (for
the Gaussian case) and Table 6 (for the Student-t case). We observe that for both cases, the standard deviations
of the VaR forecasts are quite small across all time horizons h and naturally increase with respect to h. For the
Student-t case, the VaR estimates are slightly more precise than those obtained from the Gaussian case.

Table 5: Mean and standard deviations of VaR1000+h forecast at the levels ϕ = 0.01 and ϕ = 0.05 for ℎ = 1, … , 8 using the
5-periodic Gaussian PAP-GARCH5(1, 1) in Table 1.

(𝑉𝑎𝑅(𝑙)
1000+ℎ)

𝑙
(𝑉𝑎𝑅(𝑙)

1000+ℎ)
𝑙

(𝑉𝑎𝑅(𝑙)
1000+ℎ)

𝑙
h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Mean (ϕ = 0.01) 1.1654 1.6949 2.0750 2.3448 2.6313 2.8606 3.0818 3.2881
Std (ϕ = 0.01) 0.0104 0.0202 0.0607 0.0494 0.0426 0.0477 0.0841 0.0755
Mean (ϕ = 0.05) 0.8083 1.1663 1.4353 1.6113 1.8355 1.9619 2.1566 2.2774
Std (ϕ = 0.05) 0.0118 0.0286 0.0340 0.0183 0.0304 0.0300 0.0298 0.0507

Table 6: Mean and standard deviations of VaR1000+h forecast at the levels ϕ = 0.01 and ϕ = 0.05 for ℎ = 1, … , 8 using the
5-periodic Student-t PAP-GARCH5(1, 1) in Table 2.

(𝑉𝑎𝑅(𝑙)
1000+ℎ)

𝑙
(𝑉𝑎𝑅(𝑙)

1000+ℎ)
𝑙

(𝑉𝑎𝑅(𝑙)
1000+ℎ)

𝑙
h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Mean (ϕ = 0.01) 1.6320 2.5928 3.0001 3.5134 3.7597 4.2026 4.3246 4.7986
Std (ϕ = 0.01) 0.4251 0.2396 0.2364 0.1014 0.0861 0.1581 0.0655 0.0978
Mean (ϕ = 0.05) 0.9040 1.4366 1.8599 2.1883 2.4368 2.6574 2.8440 3.0553
Std (ϕ = 0.05) 0.0285 0.0324 0.0515 0.0608 0.0864 0.1102 0.0602 0.1439

For the one-step ahead prediction corresponding to h = 1, the boxplots of the MAE of ∣𝑉𝑎𝑅1001 − 𝑉𝑎𝑅1001∣ for
the two cases in question are given in Figure 2.
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Figure 2: Mean absolute error of the one-step ahead absolute Value-at-Risk error. 
Boxplot of the MAE of ∣𝑉𝑎𝑅1001 − 𝑉𝑎𝑅1001∣ for the Gaussian (panel (A)) and Student-t (panel (B)) cases at the levels ϕ =
0.01 and ϕ = 0.05.

The boxplots in Figure 2 also show that the MAEs are quite small. Therefore, the estimates have a good
predictive performance.

5 An application to daily S&P 500 returns

To show the usefulness of the proposed modelling framework, we fit a modified version of the PAP-GARCHS(1,
1) model with periodicity S = 5 to daily returns on the S&P500 index (closing value). The relevant literature has
documented that daily financial asset returns are characterized by the day-of-the-week effect, suggesting the
existence of periodicity of magnitude S = 5 in volatility (Bollerslev and Ghysels, 1996; Franses and Paap, 2000;
Tsiakas, 2006; Osborn, Savva and Gill, 2008; Regnard and Zakoïan, 2011).

Because of the presence of holidays in our sample, model (1) in which 𝜃𝑣 = 𝜃𝑛𝑆+𝑣 (1 ≤ 𝑣 ≤ 𝑆, 𝑛 ∈ ℤ)
does not seem a suitable choice; each day of a week may correspond to a different specification as compared to
the same day of the week before. So, under S = 5 we consider the following variant of model (1), denoted by
𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1):

⎧{
⎨{⎩

𝜖𝑡 = 𝜎𝛿𝑑(𝑡)
𝑡 𝜂𝑡

𝜎𝛿𝑑(𝑡)
𝑡 = 𝜔𝑑(𝑡) + 𝛼𝑑(𝑡)+(𝜖+

𝑡−1)
𝛿𝑑(𝑡−1) + 𝛼𝑑(𝑡)−(𝜖−

𝑡−1)𝛿𝑑(𝑡−1) + 𝛽𝑑(𝑡)𝜎
𝛿𝑑(𝑡−1)
𝑡−1

� , (19)

in which d(t) is defined to be

𝑑 (𝑡) =
⎧{{
⎨{{⎩

1 if the day corresponding to 𝑡 is a Monday
2 if the day corresponding to 𝑡 is a Tuesday

⋮
5 if the day corresponding to 𝑡 is a Friday.

�

The 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) specification (19) with missing values (Franses and Paap, 2000; Regnard and Zakoïan,

2011; Aknouche, 2017) is capable of accommodating the day-of-the-week effect.
As in our simulation study, two cases of the distribution of innovation {𝜂𝑡, 𝑡 ∈ ℤ} in (19) are examined. In

the first case, 𝜂1, … , 𝜂𝑆 are normally distributed with mean zero and unit variance (𝜂𝑣 ∼ 𝑁 (0, 1)), whereas
in the second case 𝜂1, … , 𝜂𝑆 are (standardized) Student-t distributed with 𝜏1, … , 𝜏𝑆 > 2 degrees of freedom,
respectively.

We estimate the two models using our proposed algorithmic scheme, which we run for L = 1000 iterations
with a burn-in period of 400 draws. The initial parameter vector 𝜃(0) is chosen as follows. The initial power
parameter δv at a day v is taken to be inversely proportional to the Kurtosis of that day. For the remaining
parameters, we take the values obtained from the estimation of a GARCH(1, 1) model, applied to the series
of each day. In the Griddy-Gibbs step, 500 grid points are used and the range of parameters at the l-th Gibbs
iteration is given in (16).

5.1 The data and the day-of-the-week effect

Our dataset consists of T = 1509 observations, spanning the period from January 01, 2007 to December 31, 2012.
The time series plots of the index (panel (A)) and its return (panel (B)) are presented in Figure 3. The same
dataset was considered by Chan and Grant (2016) and Aknouche (2017).
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Figure 3: Daily levels and returns of the S&P 500 from January 2007 to December 2012.
(A) level, (B) return.

Some descriptive statistics concerning the S&P500 returns, such as the absolute returns, the squared returns
and the log-absolute returns can be found in Aknouche (2017). To highlight the day-of the week effect, Table 7
shows for each (trading) day the average return, the volatility (approximated by the absolute value), the kurtosis,
and skewness, where it may be seen that these measures are quite different from one day to another.

Table 7: Day of the week effect in daily S&P 500 returns.

Sample size Mean of (ϵt) Mean of (|ϵt|) Mean of
(𝜖2

𝑡)(𝜖2
𝑡)(𝜖2
𝑡)

Kurtosis Skewness

Full series 1509 4.4711e−06 0.0102 2.4646e−04 10.4975 −0.2643
1 Monday 284 0.0012 0.0108 2.6627e−04 9.4713 1.0406
2 Tuesday 308 −0.0003 0.0099 2.2774e−04 10.2425 −1.5226
3 Wednesday 311 0.0001 0.0109 2.5983e−04 7.0415 −0.7051
4 Thursday 305 −0.0002 0.0088 1.5129e−04 5.5615 0.0655
5 Friday 301 −0.0007 0.0108 3.2866e−04 12.7415 −0.1795

This is also confirmed by Figure 4 which exhibits the kernel estimate of the distribution of return for each
trading day together with the full series. These distributions seem to have different shapes. The same finding
may be observed in the boxplot of each day (Figure 5). This reinforces the intuition that a periodic model with
a periodic innovation might be better in explaining the day specificities than a non-periodic model.

13
Brought to you by | Ludwig-Maximilians-Universität München Universitätsbibliothek (LMU)

Authenticated
Download Date | 10/20/19 12:33 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Aknouche et al. DE GRUYTER

Figure 4: Kernel density estimate of the distribution of returns for the full series and each trading day.

Figure 5: Boxplots of the distribution of returns for the full series and each trading day.

5.2 The PAP-GARCH  (1, 1) model with Gaussian errors

As a first step in our empirical analysis, we compare the 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) given by (19) with other alternative

competing models, some of which have already been used in the relevant literature. The set of these models
includes the 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻𝑆(1, 1), given by (1), for 𝑆 ∈ {2, … , 4}, the standard GARCH(1, 1), the 𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1)
of Bollerslev and Ghysels (1996), the AP-GARCH(1, 1) of Ding, Granger, and Engle (1993) and the 5-periodic
threshold 𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1), which is named 𝑃𝑇-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1). For all models in question, the innovations are

iid having a standard Gaussian distribution.
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Table 8 shows the estimated DIC values along with the rank of each one of the competing models. It
can be observed that the DICs are significantly different from each other. In particular, the best model is the
𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1), as it produced the smallest DIC (−7034.3004). The second best position is occupied by the
AP-GARCH(1, 1) model, followed by the standard GARCH(1, 1) model, which is preferred to the threshold and
periodic GARCH models. Thus, we retain the 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1) model in our analysis. Note that the ranking
of the models is related to this particular data set and therefore we can not extract safe conclusions as to why,
for example the second and third best models are the AP-GARCH(1, 1) and the GARCH(1, 1), respectively. In
any case, the proposed 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1) is the dominant one.

Table 8: DIC values for various conditionally Gaussian periodic GARCH models.

Model AP-GARCH1(1, 1) PAP-GARCH2(1, 1) PAP-GARCH3(1, 1) PAP-GARCH4(1, 1)

DIC −7030.6480 −6942.8207 −7019.6105 −7000.7523
Rank 2 7 4 5
Model 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1) 𝑃𝑇-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) 𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1) GARCH(1, 1)
DIC −7034.3004 −6930.7031 −6971.5962 −7025.0591
Rank 1 8 6 3

Table 9 displays the posterior means of the parameters for the 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model, along with their

standard deviations (Std), their numerical standard errors (NSE) and their relative numerical inefficiency (RNI);
see appendix B for a description of the NSE and RNI.

Table 9: Bayesian Griddy-Gibbs estimates of the Gaussian 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model for the S&P500 returns.

Day Parameters Mean Std RNI NSE

Monday δ1 0.6183 0.0258 3.8105 0.0016
ω1 0.2830e−04 0.0207e−04 3.0642 0.1146e−06

α1+ 0.3056 0.0630 3.2201 0.0037
α1− 0.5115 0.0391 3.7839 0.0020
β1 0.7466 0.0181 2.9539 0.0012

Tuesday δ2 0.6239 0.0245 4.2003 0.0016
ω2 0.2023e−04 0.0125e−04 3.0120 0.0687e−06

α2+ 0.2028 0.0379 3.1586 0.0022
α2− 0.3265 0.0468 3.2612 0.0024
β2 0.8536 0.0206 2.4796 0.0015

Wednesday δ3 0.9222 0.0371 3.5016 0.0022
ω3 0.4265e−04 0.0709e−04 2.9078 0.3821e−06

α3+ 0.2688 0.0646 2.9837 0.0034
α3− 0.4649 0.0423 3.4362 0.0021
β3 0.6673 0.0191 2.4585 0.0013

Thursday δ4 0.8139 0.0595 3.7871 0.0037e−06

ω4 0.1062e−04 0.0343 3.1505 0.1923
α4+ 0.1244 0.0241 2.7845 0.0013
α4− 0.2627 0.0415 3.1916 0.0023
β4 0.7912 0.0276 2.6221 0.0021

Friday δ5 0.4589 0.0224 4.0096 0.0014e−06

ω5 0.2352 0.0462 2.8572 0.2470
α5+ 0.3220 0.0686 2.1526 0.0041
α5− 0.3935 0.0647 2.9243 0.0035
β5 0.6785 0.0203 2.4539 0.0015

The performance of our algorithm is satisfactory, judging from the small standard deviations, RNI and NSE
values. Moreover, the parameters are quite different from 1 day to another. In particular, αv− is quite different
from αv+ for all 𝑣 ∈ {1, … , 𝑆}, which implies the presence of asymmetric volatility in the data. On the other
hand, the estimated model is characterized by high persistence and overall the estimates are comparable with
those from similar models in the literature when S = 1 (e.g. Pan, Wang and Tong, 2008; Xia et al., 2017).

In addition, simple and partial (sample) autocorrelations of the residuals given by 𝑒𝑡 = 𝜖𝑡
𝜎𝑡( ̂𝜃)

(t = 1, …, T),

the squared residuals (𝑒2𝑡 ) and the absolute residuals (∣𝑒𝑡∣) are shown in Figure 6. The residuals look like an
independent white noise that validates the estimated model. Note that these results are stable enough under
different initial values and different numbers of iterations for the Griddy-Gibbs sampler.
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Figure 6: Sample autocorrelations of the residuals (panel (A)), the squared residuals (panel (B)) and absolute residuals
(panel (C)) under the Gaussian innovation.

The estimated volatility induced by the Gaussian 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) is displayed in Figure 7, showing a

pattern similar to the actual variability of the S&P500 returns.

Figure 7: Volatility induced by the Gaussian 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model.

We finally use the estimated 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model to get one-step ahead predictive distribution (cf.

Figure 8) of the volatility (panel (A)), the return (panel (B)) and the value at risk at levels 5% (panel (C)) and
1% (panel (D)). The posterior means of these predictive distributions together with their MCMC standard de-
viations are reported in Table 10. In summary, the estimated 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1) model seems to give good
results.
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Figure 8: The one-step-ahead predictive distribution of the volatility (panel (A)), the return (panel (B)) and the value at
risk at 5% (panel (C)) and 1% (panel (D)) for the Gaussian case.
(A) Volatility �̂�𝑇+1, (B) return ̂𝜖𝑇+1, (C) 5% 𝑉𝑎𝑅𝑇+1. (D) 1% 𝑉𝑎𝑅𝑇+1.

Table 10: One day-ahead prediction of the volatility, the return and the value at risk at levels 5% and 1% for the S&P500
under the Gaussian assumption.

̂𝜖𝑇+1̂𝜖𝑇+1̂𝜖𝑇+1 �̂�2
𝑇+1�̂�2
𝑇+1�̂�2
𝑇+1 α = 0.01 𝑉𝑎𝑅𝑇+1𝑉𝑎𝑅𝑇+1𝑉𝑎𝑅𝑇+1 α = 0.05 𝑉𝑎𝑅𝑇+1𝑉𝑎𝑅𝑇+1𝑉𝑎𝑅𝑇+1

Mean 0.0191 1.5111e−04 0.4343 0.3071
Std 0.0024 3.6861e−05 0.8348e−4 0.5009e−4

5.3 The PAP-GARCH  (1, 1) model with Student-t errors

We now estimate a 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) given by (19) based on the same S&P500 series but under the as-

sumption that the innovation {𝜂𝑡, 𝑡 ∈ ℤ} is ipd5 with a standardized Student-t distribution, i.e. 𝜏𝑣
𝜏𝑣−2𝜂𝑣 ∼

𝑡(𝜓−1𝑣 ) (1 ≤ 𝑣 ≤ 5). The means of the posterior estimates, their standard deviations, their RNI and their NSE
are reported in Table 11. The estimates are quite good considering their small std, RNI and NSE. The periodic-
ity of the model is significant in view of the estimates across seasons which are quite different.

Table 11: Bayesian Griddy-Gibbs estimates of the Student-t 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model for the S&P500 returns.

Day Parameters Mean Std RNI NSE

Monday δ1 0.5680 0.0146 4.2532 0.0078
ω1 0.1441e−04 0.0038e−04 2.1617 0.7803e−07

α1+ 0.2785 0.0360 4.2542 0.0019
α1− 0.3052 0.0117 4.1500 0.0063
β1 0.7001 0.0900 4.1542 0.0048
ψ1 0.0910 0.0082 4.2376 0.0044

Tuesday δ2 0.6438 0.0166 4.3200 0.0088
ω2 0.1027e−04 0.0037e−04 2.2259 0.7852e−07
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α2+ 0.1798 0.0230 4.4200 0.0012
α2− 0.2227 0.0860 4.1011 0.0046
β2 0.8098 0.0104 4.3542 0.0056
ψ2 0.0993 0.0090 4.3654 0.0048

Wednesday δ3 0.9467 0.0243 4.5312 0.0130
ω3 0.2395e−04 0.0018e−04 2.7221 0.4291e−07

α3+ 0.2918 0.0037 4.2200 0.0020
α3− 0.2868 0.0110 4.2104 0.0059
β3 0.6326 0.0810 4.5425 0.0043
ψ3 0.1241 0.0112 4.1298 0.0060

Thursday δ4 0.8521 0.0219 4.4465 0.0117
ω4 0.0917e−04 0.0010e−04 2.3329 0.2066e−07

α4+ 0.1689 0.0220 4.5420 0.0012
α4− 0.2003 0.0770 4.2507 0.0041
β4 0.7988 0.0103 4.2542 0.0055
ψ4 0.1655 0.0149 4.2145 0.0080

Friday δ5 0.4734 0.0122 4.0213 0.0065
ω5 0.1376e−04 0.0024e−04 2.0988 0.5007e−07

α5+ 0.3592 0.0460 4.2425 0.0025
α5− 0.3471 0.0134 4.2762 0.0071
β5 0.6664 0.0860 4.2114 0.0046
ψ5 0.0828 0.0075 4.2376 0.0040

Moreover, the model is able to absorb asymmetry since αv− and αv+ are quite different for all 𝑣 ∈ {1, … , 5}.
Finally, with respect to the sample autocorrelations of (𝑒𝑡), (𝑒2𝑡 ) and (∣𝑒𝑡∣) (cf. Figure 9), the residuals seem
compatible with the independence assumption.

Figure 9: Sample autocorrelations of the residuals (panel (A)), the squared residuals (panel (B)) and the absolute residu-
als (panel (C)) under Student innovations.

The Student-t 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model does worse than the Gaussian 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1) model, in terms
of model fit; the DIC value for the former is 13421.0183. Furthermore, by comparing the Table 9 and Table 11,
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we observe that the two models produced quite similar estimation results for most of the parameters (δ, αv−
and αv+, etc.,).

We repeated the same forecast analysis for the Student-t 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model, as did for the Gaus-

sian 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model. In particular, the volatility estimated by the Student-t version of the model is

shown in Figure 10. Under the Student-t assumption, we calculate the one-step ahead predictive distribution
(cf. Figure 11) of the volatility (panel (A)), the return (panel (B)) and the value at risk at levels 5% (panel (C))
and 1% (panel (D)). The posterior means of these predictive distributions together with their MCMC standard
deviations are reported in Table 12. The forecast results obtained from the Student-t 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1) model
are quite similar to those obtained from the Gaussian 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗

5 (1, 1). This is justified by the fact that the
two model specifications are quite similar.

Figure 10: Volatility induced by the Student-t 𝑃𝐴𝑃-𝐺𝐴𝑅𝐶𝐻∗
5 (1, 1) model.

Figure 11: The one-step-ahead predictive distribution of the volatility (panel (A)), the return (panel (B)) and the value at
risk at 5% (panel (C)) and 1% (panel (D)) for the Student-t case.
(A) Volatility �̂�𝑇+1. (B) return ̂𝜖𝑇+1. (C) 5% 𝑉𝑎𝑅𝑇+1. (D) 1% 𝑉𝑎𝑅𝑇+1.
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Table 12: One day-ahead prediction of the volatility, the return and the value at risk at levels 5% and 1% for the S&P500
under the Student-t assumption.

̂𝜖𝑇+1̂𝜖𝑇+1̂𝜖𝑇+1 �̂�2
𝑇+1�̂�2
𝑇+1�̂�2
𝑇+1 𝛼 = 0.01 𝑉𝑎𝑅𝑇+1𝛼 = 0.01 𝑉𝑎𝑅𝑇+1𝛼 = 0.01 𝑉𝑎𝑅𝑇+1 𝛼 = 0.05 𝑉𝑎𝑅𝑇+1𝛼 = 0.05 𝑉𝑎𝑅𝑇+1𝛼 = 0.05 𝑉𝑎𝑅𝑇+1

Mean −0.0020 1.1425e−04 0.4410 0.3118
Std 1.5515e−04 1.7553e−05 0.3278e−04 0.1945e−04

6 Conclusions

We propose an easily adaptable Markov Chain Monte Carlo algorithm for a flexible periodic asymmetric power
GARCH model under various distributions for the periodic innovation sequence. This model is designed to
account for periodicity in volatility as well as for other important features of volatility, including asymmetry and
periodic power dependence. Forecast evaluation of the proposed model is conducted with volatility and Value
at Risk forecasting, while model comparison is based on the Deviance Information Criterion. Our simulation
studies showed the good performance of the proposed algorithm. We illustrated the usefulness of the model
with an application to the daily S&P500 returns. Our model had the best fit to the data and produced good
results.
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Appendix A

Proofs

Proof of Theorem 1.
(i) Sufficiency: Equation (3) may be cast in the following system of S recurrence equations

𝑌𝑛𝑆+𝑣 = 𝔸𝑛𝑆+𝑣𝑌(𝑛−1)𝑆+𝑣 + 𝔹𝑛𝑆+𝑣, 𝑛 ∈ ℤ, 𝑣 ∈ {0, … , 𝑆 − 1} , (20)

where 𝔸𝑛𝑆+𝑣 = ∏𝑆−1
𝑖=0 𝐴𝑛𝑆+𝑣−𝑖 and 𝔹𝑛𝑆+𝑣 = ∑𝑆−1

𝑗=0 ∏𝑗−1
𝑖=0 𝐴𝑛𝑆+𝑣−𝑖𝐵𝑛𝑆+𝑣−𝑗, so {(𝔸𝑛𝑆+𝑣, 𝔹𝑛𝑆+𝑣), 𝑛 ∈ ℤ} is iid for

all 𝑣 ∈ {0, … , 𝑆 − 1}. The top Lyapunov exponent 𝛾(𝑆)
𝑣 associated with (20) is given for all 𝑣 ∈ {0, … , 𝑆 − 1} by

(Bougerol and Picard, 1992)

𝛾(𝑆)
𝑣 = inf { 1

𝑛𝐸 log ∥𝔸𝑛𝑆+𝑣𝔸(𝑛−1)𝑆+𝑣 … 𝔸𝑆+𝑣∥ , 𝑛 ≥ 1}

= inf { 1
𝑛𝐸 log ∥𝐴𝑛𝑆+𝑣𝐴𝑛𝑆+𝑣−1 … 𝐴𝑣+1∥ , 𝑛 ≥ 1} ,

= lim𝑛→∞
1
𝑛 log ∥𝐴𝑛𝑆+𝑣𝐴𝑛𝑆+𝑣−1 … 𝐴𝑣+1∥ 𝑎.𝑠.

(21)

Since 𝐸 log ∣𝜂𝑣∣𝛿𝑣 < ∞ for all 0 ≤ 𝑣 ≤ 𝑆 − 1, it follows that 𝐸 log+ ∥𝔸𝑣∥ < ∞ and 𝐸 log+ ∥𝔹𝑣∥ < ∞. Therefore, by
Theorem 2.5 of Bougerol and Picard (1992), equation (20) admits a unique nonanticipative strictly stationary
and ergodic solution {𝑌𝑛𝑆+𝑣, 𝑛 ∈ ℤ} provided that 𝛾(𝑆)

𝑣 < 0. The solution is given for all 𝑣 ∈ {0, … , 𝑆 − 1} by

𝑌𝑛𝑆+𝑣 =
∞
∑
𝑗=0

𝑗−1

∏
𝑖=0

𝔸(𝑛−𝑖)𝑆+𝑣𝔹(𝑛−𝑗)𝑆+𝑣, 𝑛 ∈ ℤ, 𝑣 ∈ {0, … , 𝑆 − 1} , (22)

where the series in equality (22), which is exactly (6), converges absolutely a.s. This shows that {𝑌𝑡, 𝑡 ∈ ℤ} is
the unique causal strictly periodically stationary and periodically ergodic solution of (3). Note finally that by a
sandwitching argument, it is easy to see that for all 𝑣 ∈ {0, … , 𝑆 − 1}
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𝛾(𝑆)
𝑣 = lim𝑛→∞

1
𝑛 log ∥𝐴𝑛𝑆+𝑣𝐴𝑛𝑆+𝑣−1 … 𝐴𝑣+1∥ = lim𝑛→∞

1
𝑛 log ∥𝐴𝑛𝑆𝐴𝑛𝑆−1 … 𝐴1∥ ∶= 𝛾(𝑆).

Necessity: Assume that model (3) admits a nonanticipative strictly periodically stationary solution {𝑌𝑡, 𝑡 ∈ ℤ}.
From the non-negativity of the coefficients of At in (3) it follows that for all k > 1,

𝑌𝑣 ≥
𝑘

∑
𝑗=0

𝑗−1

∏
𝑖=0

𝐴𝑣−𝑖𝐵𝑣−𝑗, 𝑎.𝑠.,

implying that the series ∑∞
𝑗=0 ∏𝑗−1

𝑖=0 𝐴𝑣−𝑖𝐵𝑣−𝑗 converges a.s. Therefore,

𝑗−1

∏
𝑖=0

𝐴𝑣−𝑖𝐵𝑣−𝑗 → 0, 𝑎.𝑠. as 𝑗 → ∞,

from which we have to show

𝑗−1

∏
𝑖=0

𝐴𝑣−𝑖 → 0, 𝑎.𝑠. as 𝑗 → ∞. (23)

This holds whenever

lim
𝑗→∞

𝑗−1

∏
𝑖=0

𝐴𝑣−𝑖𝑒𝑚 = 0, 𝑎.𝑠. for all 1 ≤ 𝑚 ≤ 𝑟, (24)

where 𝑟 = 𝑝 + 2𝑞 − 2 and (𝑒𝑚)1≤𝑚≤𝑟 is the canonical basis of ℝr. Since At has the same “sparsity” as the matrix
At in Pan, Wang, and Tong (2008, p. 373), then (24) follows from their results using similar arguments (see also
Aknouche and Bibi (2009) for the particular P-GARCH case).

(ii) Since {𝐴𝑡, 𝑡 ∈ ℤ} is nonnegative then

𝛾𝑆 (𝐴) ≥ 𝛾𝑆 (𝛽𝛽𝛽) ∶= log 𝜌 ⎛⎜
⎝

𝑆−1
∏
𝑣=0

𝛽𝛽𝛽𝑆−𝑣
⎞⎟
⎠

. (25)

If (3) has a strictly periodically stationary solution, then 𝛾𝑆 (𝐴) < 0. In view of (25), it follows that 𝛾𝑆 (𝛽𝛽𝛽) < 0
establishing (7).   ■

Proof of Theorem 2.
(i) The proof is similar to that of Lemma 2.3 of Berkes, Horvàth, and Kokoskza (2003). First, we have to show

that if 𝛾𝑆 (𝐴) < 0 then there is δ > 0 and n0 such that

𝐸 (∥𝐴𝑛0𝑆𝐴𝑛0𝑆−1 … 𝐴1∥
𝛿) < 1. (26)

Since 𝛾𝑆 (𝐴) = inf𝑛∈ℕ∗ { 1
𝑛𝐸 (log ∥𝐴𝑛𝑆𝐴𝑛𝑆−1 … 𝐴1∥)} is strictly negative, there is a positive integer n0 such that

𝐸 (log ∥𝐴𝑛0𝑆𝐴𝑛0𝑆−1 … 𝐴1∥) < 0.

On the other hand, working with a multiplicative norm and by the ipdS property of the sequence {𝐴𝑡, 𝑡 ∈ ℤ}
we have

𝐸 (∥𝐴𝑛0𝑆𝐴𝑛0𝑆−1 … 𝐴1∥) = ∥𝐸 (𝐴𝑛0𝑆𝐴𝑛0𝑆−1 … 𝐴1)∥
= ∥𝐸 (𝐴𝑆𝐴𝑆−1 … 𝐴1)

𝑛0∥
≤ ∥𝐸 (𝐴𝑆𝐴𝑆−1 … 𝐴1)∥𝑛0 < ∞.
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Let 𝑓 (𝑥) = 𝐸 (∥𝐴𝑛0𝑆𝐴𝑛0𝑆−1 … 𝐴1∥
𝑥). Since 𝑓 ′ (0) = 𝐸 (log ∥𝐴𝑛0𝑆𝐴𝑛0𝑆−1 … 𝐴1∥) < 0, 𝑓 (𝑥) decrease in a neighbor-

hood of 0 and since 𝑓 (0) = 1, it follows that there exists 0 < δ < 1 such that (26) holds. Now from (6) we have
for some 𝑣 ∈ {1, … , 𝑆}

∥𝑌𝑣∥ ≤
∞
∑
𝑘=1

∥
∥∥
∥

𝑘−1
∏
𝑗=0

𝐴𝑣−𝑗
∥
∥∥
∥

∥𝐵𝑣−𝑘∥ + ∥𝐵𝑣∥ .

Since 0 < κ < 1, then

∥𝑌𝑣∥𝜅 ≤
∞
∑
𝑘=1

∥
∥∥
∥

𝑘−1
∏
𝑗=0

𝐴𝑣−𝑗
∥
∥∥
∥

𝜅

∥𝐵𝑣−𝑘∥𝜅 + ∥𝐵𝑣∥𝜅 ,

which, by the independence of Av−j and Bv−k for j < k, implies that

𝐸 ∥𝑌𝑣∥𝜅 ≤
∞
∑
𝑘=1

𝐸 ⎛⎜⎜
⎝

∥
∥∥
∥

𝑘−1
∏
𝑗=0

𝐴𝑣−𝑗
∥
∥∥
∥

𝜅
⎞⎟⎟
⎠

𝐸 (∥𝐵𝑣−𝑘∥𝜅) + 𝐸 (∥𝐵𝑣∥𝜅)

≤ 𝐵 (𝜅)
∞
∑
𝑘=1

𝐸 ⎛⎜⎜
⎝

∥
∥∥
∥

𝑘−1
∏
𝑗=0

𝐴𝑣−𝑗
∥
∥∥
∥

𝜅
⎞⎟⎟
⎠

+ 𝐸 (∥𝐵𝑣∥𝜅) ,

where 𝐵 (𝜅) = max
0≤𝑣≤𝑆−1

𝐸 (∥𝐵𝑣−𝑘∥𝜅). In view of (26) there exist av > 0 and 0 < bv < 1 such that

𝐸 ⎛⎜⎜
⎝

∥
∥∥
∥

𝑘−1
∏
𝑗=0

𝐴𝑣−𝑗
∥
∥∥
∥

𝜅
⎞⎟⎟
⎠

≤ 𝑎𝑣𝑏𝑘
𝑣 ≤ 𝑎𝑏𝑘,

where 𝑎𝑏𝑘 = max0≤𝑣≤𝑆−1 {𝑎𝑣𝑏𝑘
𝑣}. This proves that 𝐸 ∥𝑌𝑣∥𝜅 < ∞, showing (8).

(ii) Define {𝑌𝑡, 𝑡 ∈ ℤ} by

{𝑌𝑡 = 𝐴𝑡𝑌𝑡−1 + 𝐵𝑡 𝑡 ≥ 1
𝑌𝑡 = 0 𝑡 ≤ 0,

� (27)

and let 𝑌(𝑣) (0 ≤ 𝑣 ≤ 𝑆 − 1) be a random variable having the same distribution as the term 𝑌𝑛𝑆+𝑣 of the unique
periodically stationary solution given by (22). It is clear that 𝑌𝑛𝑆+𝑣

ℒ→ 𝑌(𝑣) as n → ∞. Let m = 2. From the weak
convergence theory (Billingsley 1968), to show that 𝐸 (𝑣𝑒𝑐 (𝑌(𝑣)𝑌(𝑣)′)) is finite for all v, it is sufficient to show
that lim inf𝑛→∞ 𝐸 (𝑣𝑒𝑐 (𝑌′

𝑛𝑆+𝑣𝑌𝑛𝑆+𝑣)) < ∞ for all v. Set 𝑉𝑛𝑆+𝑣 = 𝐸 (𝑣𝑒𝑐 (𝑌′
𝑛𝑆+𝑣𝑌𝑛𝑆+𝑣)). From (27) we get the

following first-order S-periodic difference equation

𝑉𝑛𝑆+𝑣 = 𝐸 (𝐴⊗2
𝑣 ) 𝑉𝑛𝑆+𝑣−1 + [𝐸(𝐴𝑣 ⊗ 𝐵𝑣) + 𝐸(𝐵𝑣 ⊗ 𝐴𝑣)] 𝐸 (𝑌𝑛𝑆+𝑣) + 𝑣𝑒𝑐(𝐸 (𝐵𝑣𝐵′

𝑣)), (28)

where 𝐸 (𝐴⊗2
𝑡 ), 𝐸(𝐴𝑡 ⊗ 𝐵𝑡) and 𝑣𝑒𝑐(𝐸 (𝐵𝑡𝐵

′
𝑡)) are finite S-periodic matrices in t. Since, the last two terms of the

right-hand side of (27) are bounded, it follows that lim
𝑛→∞

𝑉𝑛𝑆+𝑣 exists for every 1 ≤ v ≤ S whenever (9) holds,
which completes the proof for m = 2. For general m, the proof is similar.   ■

Proof of Theorem 3.
The proof is very similar to that of Corollary 3.5 of Basrak, Davis, and Mikosch (2002).   ■

MCMC diagnostic tools

In order to assess the convergence of the proposed algorithm, we use some MCMC diagnostic tools, such as the
autocorrelation of posterior draws, the Relative Numerical Inefficiency (RNI, Geweke 1989) and the Numerical
Standard Error (NSE, Geweke 1989). The autocorrelations of parameter draws indicate how the posterior draws
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mix. The RNI measures the degree of the inefficiency due to the serial correlation of the MCMC draws. It is given
by

𝑅𝑁𝐼 = 1 + 2
𝐵

∑
ℎ=1

𝐾 ( ℎ
𝐵) ̂𝜌ℎ,

where B = 500 is the bandwidth, K(.) is the Parzen kernel (e.g. Kim, Shephard, and Chib 1998) and ̂𝜌ℎ is the
sample autocorrelation for the lag h of the parameter draws.

The NSE is the square-root of the estimated asymptotic variance of the MCMC estimator. It is given by

𝑁𝑆𝐸 =
√
√√
⎷

1
𝐿

⎛⎜
⎝

�̂�0 + 2
𝐵

∑
ℎ=1

𝐾 ( ℎ
𝐵) �̂�ℎ

⎞⎟
⎠

,

where �̂�ℎ is the sample autocovariance at lag h of the parameter draws.
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