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Design and testing of a frictionless mechanical inerter

device using living-hinges

E. D. A. John and D. J. Wagg

Department of Mechanical Engineering, University of Sheffield, S1 3JD, UK

Abstract

In this paper a novel type of frictionless mechanical inerter device is presented,

where instead of gears, motion of the flywheel is achieved using living-hinges.

The design is a type of pivoted flywheel inerter inspired in part by the Dynamic

Anti-resonant Vibration Isolator (DAVI) concept, which was first developed in the

1960s. Unlike the DAVI, it will be shown that the pivoted flywheel inerter has

the advantage of producing balanced forces. Furthermore the use of living-hinges

eliminates the need for gears or other frictional elements in the inerter mechanism.

To demonstrate the utility of the new concept, a bench-top experiment was per-

formed using a small-scale living-hinge inerter manufactured using polypropylene

hinges. By estimating the experimental system parameters, the transmissibility

results from the experiment could be compared to a mathematical model. These

results showed that the living-hinge inerter provided an isolation effect of at least

three orders of magnitude in terms of the maximum amplitude reduction from the

uncontrolled system compared to that with the inerter added. Although friction

was eliminated, the living-hinges did introduce additional damping, and this was

found to correspond to an increase in the equivalent damping ratio for the uncon-

trolled system of 1.2%. It is shown that the living-hinge inerter developed in this

paper fits all of the essential conditions required to be a practical inerter device.

Furthermore, as it operates without mechanical friction, or fluid flow, it represents

a new paradigm in experimental inerter technology.
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1. Introduction

Inerters have received a large amount of attention in recent literature follow-

ing the work of [1]. The primary interest has been to develop inerters for use in

passive vibration control devices in combination with other mechanical compo-

nents such as springs, and viscous dampers. Until now, the physical realisation of

inerters has been either as a mechanical device with some form of gearing, or as

a fluid based device. All such designs have significant amounts of inherent damp-

ing, either from friction between mechanical components, such as gears, or from

the fluid flow inside the device. This can limit the effectiveness of the inerter in

many applications. As a result, it is of significant interest to create new designs

that reduce these inherent damping effects. In this paper a novel type of friction-

less mechanical inerter device is presented, where the gearing is eliminated, and

motion is achieved using living-hinges.

The new inerter device is related to much older designs, before the term inerter

was even defined. Specifically, this new design is partly inspired by the Dynamic

Anti-resonant Vibration Isolator (DAVI) concept [2], first patented in 1967. The

anti-resonance in the DAVI was exploited in the aerospace industry for applica-

tions including isolating the fuselage of a helicopter against the vibration caused

by its rotors [3]. A more recent application of the DAVI was minimising vibration

transmission in underwater vehicles [4]. DAVIs work on exactly the same princi-

ple as an inerter, and can be shown to have an inertance in the same way as other

mechanical inerters, typically restricted to small displacement amplitudes — see

for example the detailed mathematical analysis given in [5, 6].

Beyond its direct application, the DAVI concept was also used to schemati-

cally represent the inertial effect of the first fluid inerter design. This fluid inerter

was incorporated into automotive engine mounts [7], where the DAVI lever arm

model was used to approximate the effect of a rotating annulus of fluid (called

the inertia track) inside the mount — see also [8–10]. In addition to this, ap-

plications of inerter-like devices in civil engineering evolved from modifications

to viscous dampers, that date back to the late 1990s, and eventually resulted in

tuned-viscous-mass-dampers — see the discussion in [11] and references therein.

Since the introduction of the inerter concept, it has been developed for use

in many more applications. One of the first of these was in Formula 1 racing

car suspension systems, under the name of the J-damper [12]. A wide range of

other applications have been undertaken, including vehicle suspensions & steering

systems [13–18], train suspension systems [19, 20], and civil engineering systems

— see for example [21–27] and references therein.
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Flywheel inerter devices have been considered by a number of authors, in-

cluding those with a mechanical flywheel [14, 28, 29] and devices using a fluid

flywheel effect [30–32]. Inerter devices are also referred to in some literature as

gyro-mass devices, see for example the discussion in [33] and references therein.

This paper is structured as follows. In Section 2 the design of the new inerter

is described, including a method for estimating the inertance values of the new

device. Then in Section 3 the experimental testing procedure is presented in detail.

A comparison between the experimental results and numerically simulated results

are presented in Section 4. Finally conclusions are drawn in Section 5.

2. Design of the inerter device

The concept of an ideal inerter and inertance as a system property was intro-

duced by Smith in 2002 [1], who also defined a set of conditions which an inerter

must meet in order to be of practical use. These are:

1. The device should be capable of having a small mass, independent of the re-

quired value of inertance

2. There should be no need to attach any point of the physical device to the me-

chanical ground

3. The device should have a finite linear travel which is specifiable, and the device

should be subject to reasonable constraints on its overall dimensions

4. The device should function adequately in any spatial orientation and motion

It will be demonstrated that the living-hinge inerter described in this paper

satisfies all these conditions. The DAVI concept, patented by [2], can also be

specified such that it satisfies the above design conditions. The DAVI uses the

inertia of a mass attached to a lever to generate an anti-resonance, where the two

terminals of the device are the fulcrums (or pivot points) attached to the lever.

This is shown schematically in Figure 1 (a). In Figure 1 (b) we show the design

used in this paper, where instead of a lever arm and mass, a rotating flywheel is

used, and the lever arm effect is achieved by having two connection points, one

offset and one at the centre of the flywheel. This idea is independent of the living-

hinges, and can be implemented using pivoted attachment points as an alternative

to living-hinges to give a pivoted flywheel inerter.

However, to eliminate friction effects entirely from the design, living-hinges

were selected to provide the pivoting effect. It should be noted, that although

living-hinges eliminate friction, there is still some energy loss, during the flex-

ing process, which will be discussed further in Section 2.2. Next we consider
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the mathematical model of the pivoted flywheel inerter, before proceeding to a

detailed design of the pivoting mechanism provided by living-hinges.

2.1. Mathematical model for the pivoted flywheel inerter

A mathematical model for the DAVI system was first developed by [2], using

the assumptions of linearity and small deflections. Even so, because of the asym-

metric nature of the system (see Figure 1 (a)), the equation of motion includes

both a pure inertance term and a second inertial term related to the geometry of

the lever arm [5].

The pivoted flywheel design effectively eliminates this asymmetry, and as a

result the physics can be captured by just a pure inertance term. We note that to

fully eliminate the asymmetry, the pivots would need to be equally spaced from

the centre, however the design with one pivot offset and one close to the centre

was easier to implement from a practical perspective. Assuming the asymmetry

has been removed, the flywheel produces a couple equal to Fℓa, where F is the

force on each of the pivots. The couple can be directly related to the torque, T ,

and the angular acceleration via

T = Fℓa = Iθ̈ (1)

where I is the moment of inertia of the flywheel, θ is the angle of rotation and an

overdot represents differentiation with respect to time, t. Using trigonometry we

can define

sin(θ) =
y − x

ℓa
≈ θ ; θ̈ =

ÿ − ẍ

ℓa
(2)

for small values of θ, meaning small displacements. The justification for this

approximation is that the small angle approximation results in less than 5% error

for angular displacements of less than 10.4◦. As a result we applied the constraint

that
y − x

ℓa
< 0.18, (3)

in order to reduce errors to 5% or less.

Now the pivot force can be expressed as

F = b(ÿ − ẍ), (4)

where the inertance, b, is defined as

b =
I

ℓ2a
. (5)
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Figure 1: (a) Schematic diagram of the DAVI system patented by [2], and (b) the pivoted flywheel

inerter considered in this paper.

Now the equation of motion for the pivoted flywheel inerter system is

Mẍ+ k(x− y) + c(ẋ− ẏ) + b(ẍ− ÿ) = 0, (6)

where c is a nominal viscous damping parameter that represents the sum of all

physical damping processes in the new device. Equation 6 is exactly the same

as the inerter isolator system defined previously by others — see for example the

derivation in [34], and other references therein.

Equation (6) leads to an undamped (c = 0) transmissibility relationship of

X

Y
=

k − bω2

k − (M + b)ω2
(7)

where X and Y are the displacement amplitudes of x and y respectively, and ω is

the frequency of the sinusoidal support motion. For this undamped system, there

are two important frequency values

ωa =

√

k

b
and ωr =

√

k

M + b
(8)

where ωa is the frequency where the anti-resonance occurs (the zero of (7)), and

ωr is the resonance frequency of the isolated system (the pole of (7)).

The damped transmissibility function becomes

X

Y
=

k − bω2 + icω

k − (M + b)ω2 + icω
;

∣

∣

∣

∣

X

Y

∣

∣

∣

∣

=

√

(1− µω̂2)2 + (2ζω̂)2

(1− (1 + µ)ω̂2)2 + (2ζω̂)2
(9)

where c is the viscous damping coefficient, µ = b/M is the inertance to mass

ratio, ω̂ = ω/ωn is the frequency ratio, ζ = c/2Mωn is the damping ratio, and
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Figure 2: Support excited transmissibility numerically calculated from Equation (9) for a range of

inertance to mass ratios and plotted in terms of transmissibility against frequency ration ω̂. For

each value of µ, damping ratio ζ = 0.1. Similar plots have been presented by others previously,

see for example [34].

ωn =
√

k/M is the undamped natural frequency of the uncontrolled system (if the

inerter is removed i.e. b = 0). We note also that due to the standard assumption

used in the transmissibility derivation, that ẍ = −ω2x and ÿ = −ω2y, we can

obtain the following relation

ẍ

ÿ
=

X

Y
;

∣

∣

∣

∣

ẍ

ÿ

∣

∣

∣

∣

=

∣

∣

∣

∣

X

Y

∣

∣

∣

∣

(10)

which will be used when comparing this model to experimentally recorded accel-

eration signals in Section 4.

Using Equation (9), Figure 2 illustrates how the transmissibility of a support

excited system varies as the inertance of the system is increased with respect to

the system’s mass. It can clearly be seen that increasing the inertance reduces the

system’s natural frequency and introduces an anti-resonance [35].

To be specific about the range over which these equations of motion are valid,

we selected a 80 mm diameter flywheel for the test model (and other dimensions

were selected accordingly, see Appendix A for details). Time-domain numerical

simulations were used to compute the forces produced for this size flywheel. It
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(a) (b)

Flywheel

Living hinge

"Leg"

Terminal plate

Figure 3: (a) Living-hinge inerter design developed from the pivoted flywheel inerter concept.

Terminal plates were tapped for M5 bolts. (b) Relative displacement of the terminal plates causes

rotation of the flywheel. Note deflection of the living-hinges.

was found that the small angle approximation results in less than 5% peak force

error for angular displacements of less than 10.4◦ which is in accordance with the

approximation given in (3).

2.2. Living-hinge design

Living-hinges (also sometimes known as integral hinges) are typically asso-

ciated with plastic design and may be defined as thin, flexible webs that con-

nect two relatively rigid adjacent sections. The living-hinge inerter used here

was achieved by replacing the pivots in the pivoted flywheel inerter with notch

type, semi-circular living-hinges, as discussed above, and shown in Figure 1. The

living-hinge inerter design is shown schematically in Figure 3, where the addition

of vertical legs are shown to transmit forces from the hinges (i.e. the effective

pivot points) to the exterior connection points of the device.

A notch type living-hinge was selected as the preferred type for this appli-

cation, as this permits greater control over the location of the hinge rotational

axis, compared to longer strap hinges [36]. The fact that this is at the expense of

smaller allowable deflection angles was not an issue due to the angular deflection

limits already discussed. The most commonly used material for living-hinges is

polypropylene as it is able to flex millions of times before failing, whereas other

plastics can only flex a few thousand times before failure [37, 38]. Metallic living-

hinges are also possible, however these were not considered in this current study.
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From [36], the maximum thickness, t̂(m), of a notch hinge for a given maxi-

mum deflection, θmax(radian), to avoid plastic yielding can be determined from

t̂ =

(

εy
θmax

)2
9π2r

16K2
. (11)

where, K, is the stress concentration factor is given by

K = (1 + β)
9

20 (12)

and β is a function of hinge thickness, t̂, and notch radius, r

β =
t̂

2r
(13)

σy(N/m2) is yield stress, and E(N/m2) is Young’s modulus.

Equations (11) and (12) can now be rearranged to give a description of θmax

in terms of yield strain, εy, and the geometry of the hinge as

θmax =

√

9π2

32β(1 + β)
9

10

εy. (14)

Values of Yield Stress and Young’s Modulus for the polypropylene were 35.4

MPa and 1.6 GPa, respectively, giving Yield Strain as 0.0221. Equation (14) was

solved for β numerically, and the results for a range of β values is shown in Figure

4. Using this method, the β value for a θmax/εy of 471 (where θmax = 10.4◦), was

found to be β = 0.03979. The required hinge thickness was then found using the

identity

t̂max =
wβ

β + 1
(15)

where w is the width of the material the hinge is built into i.e. w = 2r + t̂. For a

leg width of 5 mm, the hinge thickness was calculated as 0.191 mm.

Living-hinges typically have thicknesses of 0.3 - 0.5 mm ([37] pp 219–260)

and at the upper range, for larger angular displacements plastic deformation would

occur. The thickness of 0.191mm calculated here is slightly smaller than this, and

combined with small displacements we expect elastic deformation only to occur.

As a result, this value was considered acceptable for use in the living-hinge inerter

test model constructed here.
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Figure 4: Plot of θmax/εy against β calculated using Equation (14).

2.3. Final design

Additional changes made to the final design were the inclusion of an additional

pair of legs to improve the stability of the model and 5 mm thick plates at each

terminal for fitting the inerter to the test rig. As well as improving stability, the

extra pair of legs reduced the stresses that each hinge was required to transmit.

The final living-hinge inerter design is shown in Figure 3.

The legs were machined from polypropylene (including the hinges) and the

flywheel and terminal plates were laser cut from perspex. Given the measured

flywheel mass of 0.0268 kg, the inerter test model was predicted using Equation

(3) to have an inertance of 0.214 kg. The measured mass of the entire living-hinge

inerter test model was 0.036 kg. These values give a predicted inertance to mass

ratio of 5.94. This is significantly less than the inertance to mass ratios of many

previous experimental inerters. For example an inertance to mass ratio of greater

than 300 is quoted in [1] for a ball-screw mechanical inerter.

As our inerter design is radically different from any previous designs, it should

not be surprising that the inertance to mass ratios are quite different. In particular,

we have used very low density, lightweight materials, and small-scale test rigs,

with low amplitude vibrations, all of which will naturally lead to low levels of

mass and inertance. However, as with all mechanical inerter designs, increasing
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the inertance to mass ratio can be achieved by increasing the gearing of the device.

To increase the gearing of the inerter design presented here the lever arm length,

ℓa, must be decreased. This is possible in principle. for example, halving ℓa to

5 mm would increase the inertance to mass ratio to 23.8. However, as the aim

of this paper is to introduce and demonstrate the feasibility of the living-hinge

inerter, using just a single inertance to mass ratio of 5.94 was considered to be

justified.

3. Experimental procedure

The majority of inerter tests in the literature to-date have been performed by

fixing one terminal of the inerter and applying a displacement to the other. This

type of test permits tight control over the relative terminal displacement of the

inerter but does not exploit the two terminal nature of the inerter, or demonstrate

its vibration isolation abilities. For this reason, a support-excited two-terminal

test was used in this study. A support excited oscillator system with sprung mass

m =0.46 kg and spring stiffness k =15.9 kN/m was constructed, with an electro-

magnetic shaker to provide a sinusoidal input to the support attachment point.

A photograph of the experimental test rig is shown in Figure 5, from which it

can be seen that the shaker and inerter test system are suspended from a cantilever

support that is clamped securely to a test bench. The advantage of suspending the

inerter system is that there is no requirement for bearings or supports that might

add unwanted friction damping to the device. The potential disadvantage is that

unwanted lateral vibrations can occur, and all tests were monitored carefully to

ensure this type of motion did not have a significant effect on the results. Further-

more, although the dominant motion was in the vertical direction, the motion of

the mass in other directions was sensitive to the overall mass distribution of the

test specimen and inerter. As a result careful attention was paid to this aspect,

to ensure that the dominant displacements remained in the vertical direction, and

that any sway motions were minimised to the point of being insignificant.

Data was gathered from the inerter test system using accelerometers at each

terminal of the springs/inerter, and a close up photograph showing these sensors

can be seen in Figure 7 (b). All accelerometers used in this study were of the

type PCB Piezotronics model 353B18. This photograph also shows the living-

hinge inerter system in the centre, between the three springs that are positioned

in a triangular arrangement around the inerter. Furthermore, it can be seen that

the flywheel has four black lines marking it into quadrants. This was to assist
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Figure 5: Photograph of the experimental set-up in the University of Sheffield Jonas Laboratory.

visualisation of the inerter motion, and the interested reader can find videos of the

inerter system in the supplemental material supplied with this paper.

Also shown in Figure 5 is the LDS PA100E signal amplifier that was used to

drive the LDS V400 electromagnetic shaker. The control of the shaker input and

data acquisition was carried out using a LabView system running on a laptop PC.

Using this experimental test system, several configurations of the inerter system

were considered.

3.1. Experimental configurations

Four rig configurations were used during the experimental testing. All config-

urations were tested across the 10–60Hz frequency range to fully characterise the

response. The configurations were:

• Configuration 1 was the shaker with an accelerometer attached directly to

its armature and to the cantilever plate above the shaker. This configura-

tion was used to characterise any interaction of the shaker with its support

structures.

• Configuration 2 included a mass attached to the shaker via a stinger and

suspension system in the no-springs, no-inerter layout shown schematically

in Figure 6 (a). This configuration allowed the interaction of the mass and

stinger to be characterised and the stinger length selection to be verified.
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(a) (b) (c)
Stinger attachment

point

Mass attachment

point

Figure 6: Suspension system layouts used during testing. (a) Configuration 2 layout. (b) Configu-

ration 3 layout with springs fitted. (c) Configuration 4 layout with springs and living-hinge inerter

fitted. Each layout had a 0.2 kg mass fitted beneath the location marked Mass attachment point.

See also the photographs in Figure 7.

Accelerometers were also fitted on the mass, directly to the shaker armature,

and to the cantilever plate, allowing any effects caused by stinger and mass

interaction to be identified.

• Configuration 3 included the springs and mass, as shown schematically in

Figure 6 (b), and the final working version in Figure 7 (a). This arrangement

allowed the response of the mass-spring system across the frequency range

to be tested without the inerter. To record the experimental data, accelerom-

eters were placed on the suspension top plate and bottom plate (as can be

seen in Figure 7), as these corresponded to the two terminals of the springs

and allowed displacement transmissibility to be calculated. This will be

called the uncontrolled system.

• Configuration 4 was the mass-spring system with the living-hinge inerter

fitted, as shown in Figure 6 (c), and the final working version in Figure 7

(b). This will be called the inerter system.

The key configurations used to give the results in this paper are Configurations

3 (uncontrolled) and 4 (inerter), which are shown respectively in Figure 7 (a)

and (b). The other parameter values of the system measured or calculated as

part of the experimental procedure are given in Table 1. Note that the apparently

high inertance to mass ratio is due to the relatively lightweight materials used in

this experiment. We now described the experimental results obtained from these

configurations.
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Figure 7: Photograph of the inerter test system, showing (a) the spring mass system without the

inerter, and (b) the spring mass system with the living-hinge inerter fixed in position.

Property Value Units Comment

Mass of the oscillator (M ) 0.459 kg Measured

Flywheel radius (rf ) 0.04 m Design

Flywheel depth (df ) 0.005 m Design

Lever arm length (ℓa) 0.01 m Design

Flywheel mass (mf ) 0.0268 kg Measured

Flywheel inertia (I) 2.14x10−5 kgm2 (r2fmf )/2
Device inertance (b) 0.214 kg Eqn. (3)

Inertance to mass ratio (µ) 0.467 - µ = b/M
Table 1: System parameters

13
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Figure 8: Results from Configuration 1 showing the measured acceleration values from (a) the

cantilever support measured at the tip, and (b) the shaker armature. The mean acceleration values

are shown with an error of ± one standard deviation. As can be seen from (a) the only place

where the error bars are visible is close to 50Hz indicating that only in this region was there any

significant variability in the data.

4. Experimental Results

4.1. Preliminary testing

The initial testing was carried out in Configurations 1 and 2 to assess the dy-

namic behaviour of the support structure and shaker. The test procedure was to

use a stepped sine excitation input [39, 40] across the frequency range at 1Hz in-

tervals. For each frequency value in the range, the steady state acceleration signal

was recorded and the mean and standard deviation of the results calculated. An

example is shown in Figure 8, where a representative sample of the results from

Configuration 1 are shown. It can be seen From Figure 8 (a) that the cantilever

support plate (when used in Configuration 1) has two resonances in the 10 – 60Hz

frequency range. The resonances peaks appeared at 20Hz and 51Hz, although in
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both cases the amplitudes of acceleration are below 1m/s2. Given these relatively

low amplitudes (an order of magnitude lower than the mass-spring system) it was

decided not to modify the cantilever plate or support structure. Another factor in

this decision was that any additional stiffening of the plate would have moved the

20Hz resonance closer to that of the resonance of the mass-spring oscillator sys-

tem, which would have been undesirable. The results shown in Figure 8 (b) show

that there is an approximately linear increase in acceleration amplitude recorded

at the shaker armature.

Results from preliminary testing of Configuration 2 are shown in Figure 9.

Note that now, there are four accelerometer readings. As before, the accelerations

of the cantilever support plate are recorded. These are still at a relatively low

amplitude, but note that the first resonance peak has shifted slightly down in fre-

quency to approximately 18Hz. This is caused by the extra mass now suspended

from the cantilever plate, and the second resonance also shifts down from 51Hz

to 48Hz. It can be observed that at the 18Hz resonance frequency, there appears

to be some interaction with the other signals.

The accelerometer readings from the top plate and bottom plate represent the

terminals of the springs, and for Configuration 1 they should be the same, because

the terminals are rigidly fixed together. This holds true for the frequency range

below 44Hz, but we note that above 44Hz there is some small variation between

the signals. This difference, appears most significant close to 50Hz, and a possible

influence on this is the cantilever plate resonance at 48Hz. Although the ampli-

tudes of the cantilever plate itself at this frequency are very small, there appears to

be an interaction. Specifically by observing the top-plate signal, it can be seen that

there is a clear jump in acceleration value at 48Hz. A small jump in acceleration

amplitude can also be observed in the bottom plate signal at the same point.

The last signal recorded is the acceleration of the shaker armature. Ideally, this

should be the same as the top plate signal, as they are connected by the stinger. A

selection of stinger lengths were tested, and it was found that a 30 mm stinger was

the most preferable length, in terms of minimising unwanted stinger vibrations,

when compared to other choices. Even so, a small amount of axial stinger motion

is still present in the higher frequency range, and can be observed in Figure 9

above 32Hz, as a small divergence of the top-plate and shaker armature signals.

The preliminary phase of testing was concluded, having enabled the possible

influence of the supporting structure on the main results to be characterised. The

main observations were that the cantilever plate resonance had shifted to 18Hz,

and appeared to cause some interaction with the other recorded signals. The can-

tilever plate resonance at 51Hz had shifted to 48Hz, and also appeared to cause
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Figure 9: Rig configuration 2 measured acceleration. Averaged acceleration values are shown.

Error bars are not included as they are too small to show.

some interaction with the other recorded signals. Lastly some axial motion in the

stinger was observed in the higher frequency range.

4.2. Results from the mass-spring-inerter system

Having commissioned the test rig, and carried out the preliminary testing, the

next phase of experimental work was to test the mass-spring-inerter system. This

was carried out in two stages. First the uncontrolled mass-spring system (Config-

uration 3) was tested. Then finally, the full mass-spring-inerter system (Configu-

ration 4) was tested.

Representative data sets from each of these two test configurations are shown

in Figures 10 and 11 respectively. The results shown in these two figures give the

mean steady-state acceleration measurements recorded at each frequency interval

during the stepped sine testing. This data was acquired in the same way as for

Configurations 1 and 2, with the exception that once the data was acquired at

a 1Hz resolution, areas of particular interest were re-sampled at a resolution of

0.25Hz. This provided much greater detail particularly around the resonance and

anti-resonance features.

It can be observed from both plots that the motion of the cantilever support

is still present, but at a relatively low amplitude. The cantilever plate resonance

at 18Hz appears to have an influence on other signals, but the 48Hz influence
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Figure 10: Rig Configuration 3 for the uncontrolled system showing the measured accelerations.

Error bars are not included as they are too small to show.

appears minimal. The stinger motion is minimal in the results shown in Figures

10, although there is some motion in Figure 11, particularly between 50Hz and

60Hz.

The influence of the inerter was something that could not be captured in the

preliminary testing. It was found from high-speed footage recorded during initial

test runs for Configuration 4, that the inerter was in a slightly off-centre posi-

tion, which caused unwanted sway motions, particularly at the resonant and anti-

resonant frequencies. The rig was then modified to relocate the inerter more cen-

trally, which had the desired effect of reducing unwanted sway motions.

4.3. Transmissibility of the mass-spring-inerter system

The transmissibility of both uncontrolled (Configuration 3) and inerter (Con-

figuration 4) was found by dividing the acceleration amplitude values of the mass,

ẍ, (bottom plate in the experiment) by the acceleration amplitude values of the in-

put, ÿ (top plate in the experiment) and is shown in Figure 12. This transmissibility

plot shows much more clearly the effect of adding the inerter to the system. Note

that the experimentally recorded data is shown as open circles for the uncontrolled

mass-spring system and solid dots of the system with the inerter added. The un-

controlled system has just a single resonance at 29.25Hz. When the inerter is
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Figure 11: Rig Configuration 4 for the inerter system showing the measured accelerations. Error

bars are not included as they are too small to show.

added, this resonance reduces to approximately 25Hz, and a large anti-resonance

is created at 44Hz.

The isolation effect in terms of amplitude is very significant. In this case the

reduction of amplitude between the highest point on the uncontrolled resonance

peak to the lowest point in the anti-resonance is at least three orders of magni-

tude. Although we note that the anti-resonance is at a different frequency to the

uncontrolled resonance, it is possible by adjusting the inertance, to align these

frequencies, as shown in Figure 2.

Note that there are some small disturbances to the experimental transmissibil-

ity recordings, notably in the region of 44Hz and 53.5Hz which were determined

to be due to resonant behaviour of the cantilever support as discussed previously.

The solid lines shown in Figure 12 are from the theoretical model presented

in Section 2.1. Using Equations (9) and (10), we can compare the transmissibility

function from the experimental acceleration signals to the model. In order to make

this comparison the following measured values were used; free mass m = 0.459
kg, uncontrolled resonance ωn = 29.25Hz, inerter resonance ωr = 25Hz, and anti-

resonance ωa = 44.5Hz. Spring stiffness was not considered a measured variable

as the value of 15.87 kN/m quoted in Table 1 was based only on the manufactur-

ers specifications. Using the natural frequency values, the stiffness of the uncon-
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Figure 12: Comparison of the transmissibility of the system. The experimental data is shown as

uncontrolled (Configuration 3) with circles, and inerter (Configuration 4) with black dots. The

solid lines show the mathematical models for each case.

trolled system was calculated to be k = 15.5 kN/m, which is acceptably close to

the manufacture’s value. Equation (8) was rearranged to give a single equation

for inertance in terms of mass and the resonant and anti-resonant frequencies. Us-

ing the measured mass and frequency values above, the inertance of the inerter

controlled system was calculated to be b = 0.212 kg. Estimating the damping co-

efficient c was initially carried out using the half-power bandwidth method. The

values obtained were then adjusted manually to give a better fit to the experimen-

tal data leading to final values of c = 1.5 kg/s (damping ratio ζ = 0.009) for

the uncontrolled system and c = 3.5 kg/s (damping ratio ζ = 0.021) for inerter

system.

Using these parameter values, the theoretical models matched the experimen-

tal data closely and resulted in a mean error of 2.81 % for the uncontrolled system

(Configuration 3) and a mean error of 6.56 % for the inerter system (Configuration

4).

Another important factor is the estimated increase in system damping from

c = 1.5 kg/s for uncontrolled to c = 3.5 kg/s for the inerter system. As the

only change between the two configurations was the inclusion of the inerter, this

increase in damping of 2 kg/s must represent the additional damping from the

inerter. In non-dimensional terms this corresponds to an increase in damping ratio,

ζ , for the uncontrolled system of 1.2%. The primary source of this damping is the
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energy required to deform the living-hinges while the inerter operates, and to the

authors knowledge there are currently no mathematical models via which this type

of damping can be quantified. Similarly, we conclude that the living-hinges must

also cause a small increase in stiffness, which was measured to be approximately

a 1.1 kN/m increase, based on using Equation (8) for the inerter system data.

In summary, these results show that the living-hinge inerter had an inertance of

approximately b = 0.212 kg, an equivalent viscous damping of c = 2 kg/s, and an

equivalent linear stiffness of k = 1.1 kN/m over the frequency range 20 – 50Hz.

This was with a maximum relative terminal displacement of 1 mm (estimated

from the relative acceleration data using the harmonic motion assumption) and a

maximum relative terminal acceleration of 25 ms−2.

5. Conclusions

In this paper a novel type of frictionless mechanical inerter device has been

presented, where instead of gears, motion of the flywheel is achieved using living-

hinges. As a starting point, the design was considered as a pivoted flywheel inerter

inspired by the DAVI system, first developed in the 1960s. It was noted that a piv-

oted flywheel inerter had the advantage of producing balanced forces, and could

also be modelled using a simple model, that was presented in detail in Section 2.1.

Having established an overall mathematical model, the detailed design of the

living-hinges was carried out. This involved calculating the geometry of the

hinges to enable the required displacements of the flywheel to occur during opera-

tion. Following this, the experimental procedure was described, including details

of the test apparatus, and four different test configurations used.

The experimental results were presented in Section 4. Preliminary testing was

used to identify the influence of the supporting structures on the inerter test rig.

Then the uncontrolled mass-spring system, and the inerter system were tested.

These results were converted into transmissibility values, that could be compared

to the mathematical model from Section 2.1.

The results showed that the living-hinge inerter provided an isolation effect of

at least three orders of magnitude in terms of the maximum amplitude reduction.

The living-hinges did introduce additional damping, and this was found to corre-

sponds to an increase in damping ratio, ζ , for the uncontrolled system of 1.2%.

Finally, we refer back to the conditions defined by Smith in 2002 [1], and

stated in Section 2, which an inerter must meet in order to be of practical use.

The living-hinge inerter developed in this paper satisfies all of these criteria. In
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addition, it operates without mechanical friction, or fluid flow, and so represents a

new paradigm in experimental inerter technology.
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Appendix A. Living-hinge inerter model dimensions

A dimensioned drawing used for the manufacture of the living hinge inerter is

shown in Figure A.13.
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Figure A.13: Dimensioned third angle projection of the inerter model used in testing.
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