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Abstract It is possible to use numerical techniques to
provide solutions to nonlinear dynamical systems that
can be considered exact up to numerical tolerances.
However, often, this does not provide the user with suf-
ficient information to fully understand the behaviour
of these systems. To address this issue, it is com-
mon practice to find an approximate solution using
an analytical method, which can be used to develop
a more thorough appreciation of how the parameters of
a system influence its response. This paper considers
three such techniques—the harmonic balance, multiple
scales, and direct normal form methods—in their abil-
ity to accurately capture the forced response of nonlin-
ear structures. Using frequency detuning as a method
of comparison, it is shown that it is possible for all three
methods to give identical solutions, should particular
conditions be used.
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1 Introduction

Modelling the dynamical behaviour of nonlinear struc-
tures remains an active area of research across the engi-
neering disciplines, and one which becomes increas-
ingly relevant as the push for more lightweight and effi-
cient structures continues. While the complexity and
variation in such structures are constantly increasing,
the development of mathematical methods for assess-
ing the equations of motion of these systems contin-
ues to be an important branch of research. As has
been addressed in the literature [1–6], there are two
main ways in which the free and harmonically forced
response of a nonlinear system can be approximated.
Numerical continuation methods [2] can be used to fol-
low the entire set of periodic responses over a region
of the parameter space. Alternatively, it is possible
to apply analytical methods to develop an approxi-
mate solution for the dynamical response. In general,
while the former can readily produce the forced and
free response curves of the system [7–9], the analyti-
cal methods are able to provide additional insight into
the nonlinear behavioural characteristics displayed by
the structure (see, for instance, [10]). In addition, the
numerical continuation technique is limited by the need
for an initial solution. In particular, structures which
exhibit behaviour such as isolas lack this initial point,
hence benefit from the use of analytical techniques in
conjunction with numerical methods, as shown in [11].
Moreover, the computational cost of response contin-
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uation can greatly increase for larger systems, which
limits this numerical strategy to low-order applications.

In this work, the accuracy of three analytical meth-
ods in capturing the behaviour of a nonlinear system is
assessed. Namely, these are the harmonic balance (HB),
the multiple scales (MS), and direct normal form (DNF)
techniques. These methods were chosen due to their
wide application in the literature and, therefore, the
results provide the user with the make a more informed
decision regarding the accuracy and applicability of
the methods. It should be noted that these techniques
do not represent the entire field of analytical meth-
ods for approximating nonlinear systems; for example,
the more mathematically rigorous spectral manifolds
approach may also be applied (see [12]) A more com-
plete review of the associated literature is presented
in [3]. However, as motivation for their comparison,
we present some prominent studies including each of
the considered techniques. The HB balance method has
been widely used to identify nonlinearities in mechani-
cal structures [13–15], as well as calculating their non-
linear normal modes [16]. Furthermore, in [17], it has
been shown that the relative simplicity of the method
permits the use of large number of harmonics, allow-
ing the accurate prediction of the behaviour of complex
structures. There are a number of ways in which the
MS method can be applied, as has been discussed in
[18]. It has been widely used in the prediction of non-
linear dynamic behaviour, such as bifurcations in the
frequency–amplitude relationship [19–22] and internal
resonances [23–25]. These resonances have also been
investigated using the DNF method [26–29], which has
been further applied to explore the significance of non-
linear normal modes in relation to forced cases [30] and
identify nonlinearity in structures [31,32].

This paper expands the recent discussion by the
authors in [3], which considered the calculation of
the free response of two nonlinear mass-spring sys-
tems using the MS and DNF techniques. The authors
applied the frequency detuning from the DNF method,
as explored in [33,34], in the MS technique to show that
it is possible for both methods to give identical solu-
tions. In the current study, this discussion is expanded in
a number of ways, though the desire to achieve accu-
rate results with minimal analytical effort remains a
priority. First, the widely applied harmonic balance
(HB) method is included in the discussion, providing a
more exhaustive assessment of analytical approxima-
tion methods. Furthermore, the three methods are now

applied to forced, damped systems, allowing the valid-
ity and applicability of the discussion to be expanded
to situations which more closely represent real-world
engineering applications. Finally, the variable nature
in which the MS method can be applied is addressed
by using the derivative expansion version [35,36], as
opposed to the two-timing variant [1,37].

This paper is structured as follows: Sect. 2 provides
an overview of the analytical techniques considered;
these methods are then applied to a Duffing oscillator
in Sect. 3; frequency detuning is used to compare the
methods in Sect. 4; graphical results are presented in
Sect. 5; and conclusions are drawn in Sect. 6.

2 Overview of techniques

In this paper, the techniques are initially presented with
reference to a nonlinear, dynamical system, in which
it is assumed that the damping, forcing, and nonlin-
ear terms produce relatively small contributions to the
system behaviour. The equations of motion of such a
system are defined by

Mẍ + (ε)Cẋ + Kx + (ε)Ŵx(x, r) = (ε)Pxr, (1)

where M, C, and K define the linear N×N mass, damp-
ing, and stiffness matrices, respectively, Ŵx is an N ×1
vector of the nonlinear terms, and the dot notation rep-
resents derivatives with respect to time, t . In addition,
rT = [rp, rm] = [e+jΩt , e−jΩt ] represents the periodic

nature of the forcing applied and Px =
[

P̂x

2 , P̂x

2

]

, where

P̂x is an N × 1 vector of scalar terms which define the
magnitude of this forcing. The bookkeeping parame-
ter, ε—used to denote the relatively small nature of the
damping, nonlinear, and forcing terms—is bracketed
to denote the fact that it is not necessarily used in the
HB method.

The system of equations in Eq. (1) expresses the
dynamics in terms of the physical coordinates of the
system. However, it is also possible to express them in
terms of the modal coordinates, by defining the coor-
dinate transform x = �q, where � is the matrix of
mode shapes, found by solving the eigenanalysis prob-
lem defined by �� = M−1K�. This transformation is
applied in this paper as it allows the comparison to be
followed more simply and relates directly to the Duff-
ing oscillator example, as discussed in Sect. 3.
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Applying the modal transformation and pre-
multiplying the resultant equation by �T gives

(�TM�)q̈ + (ε)(�TC�)q̇ + (�TK�)q

+(ε)�TŴx(�q, r) = (ε)�TPxr. (2)

Therefore, by pre-multiplying Eq. (2) by (�TM�)−1,
the modal equations of motion can be simplified as

q̈ + �q + (ε)Ŵq(q, q̇, r) = (ε)Pqr, (3)

where q is an N ×1 vector of modal contributions, � =

(�−1M−1K�) is a diagonal matrix of squared fre-
quency terms, ω2

n,i , and Pq = �−1M−1Px is the modal
projection of the forcing amplitudes. Ŵq(q, q̇, r) =

(�−1M−1C�)q̇ + �−1M−1Ŵx(�q, r) is a function
that contains the nonlinear terms, similarly to Ŵx in
Eq. (1), but is here expanded to include damping terms.

2.1 Harmonic balance method

Widely used across the literature [13–17,38,39], the
HB method begins with the assumption that the i th
displacement, qi , can be expressed in the form

qi (t) =

n
∑

k=1

Ak,i

2
e+j(kωr t+φi ) +

Āk,i

2
e−j(kωr t+φi ), (4)

where n denotes the number of harmonic terms to be
included in the trial solution, Ai and φi define the
i th amplitude and phase, respectively, and the nota-
tion •̄ represents the complex conjugate. ωr denotes the
response frequency; note that this is the true frequency
at which the system will oscillate, and this may dif-
fer from the forcing frequency, Ω . Thus, this assump-
tion states that the time-varying displacement can be
expressed as a series of harmonic terms which contain
frequency content at integer multiples of ωr,i .

The displacement expression defined in Eq. (4) can
be applied in Eq. (2) to give a system of polynomials
in terms of e+jΩt , effectively collecting the terms that
respond at each frequency. The terms of these polyno-
mial equations are then functions of Ai and φi . Since
these equations are time-dependent, the coefficients of
the harmonic terms must be balanced, as suggested by
the name of this method. In fact, this balancing of har-
monic terms is an integral step of both the MS and
DNF methods, as both require the assumption that the
coefficients of like harmonic terms must be equal.

2.2 Multiple scales technique

As previously mentioned, the derivative expansion ver-
sion of the MS is used in this paper [1,37]. This version
begins by first perturbing the time and displacement as

t = T0 + T1 + T2 · · · = t + εt + ε2t + · · · ,

q = q0(T0, T1, T2, . . .) + εq1(T0, T1, T2, . . .)

+ ε2q2(T0, T1, T2, . . .) + . . . , (5)

respectively. From the latter of these, it is possible to
define the derivatives with respect to time, t , as
d

dt
= D0 + εD1 + ε2 D2 + · · · ,

d2

dt2 = D2
0 + ε(2D0 D1) + ε2(D2

1 + 2D0 D2) + · · · ,

(6)

where Dn denotes the derivative with respect to Tn .
Implementing these definitions in Eq. (3) leads to the
equation

((D2
0 + ε(2D0 D1) + ε2(D2

1 + 2D0 D2) + · · · ) + �)

(q0 + εq1 + ε2q2 + · · · )

+ εŴq(q0 + εq1 + ε2q2 + · · · ,

(D0 + εD1 + ε2 D2 + · · · )

(q0 + εq1 + ε2q2 + · · · ), r) = εPqr, (7)

This step is explored further in [40]. To resolve the
complex Ŵq term, it is useful to apply a Taylor expan-
sion, so that the balanced exponents of Eq. (7) can be
written as

ε0 : (D2
0 + �)q0 = 0,

ε1 : (D2
0 + �)q1 = −2D0 D1q0

− Ŵq

(

q0,
d

dt
(q0), r

)

+ Pqr,

ε2 : (D2
0 + �)q2 = −2D0 D1q1 − (D2

1 + 2D0 D2)q2

−

[

∂

∂q0
Ŵq

]

q1 −

[

∂

∂q̇0
Ŵq

]

q̇1,

... (8)

where

[

∂
∂q0

Ŵq

]

denotes the vector of partial derivatives

of Ŵq with respect to each of the elements of q0.
The treatment of this ε-balance is more thoroughly

detailed in “Appendix A”, with only the key steps given
in this section. The initial step is to solve the ε0-order
equation to give
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q0,i =
Ai

2

(

e+j(ωr,i T0+φi )
)

+ c.c., (9)

where Ai and φi denote the i th displacement and phase
components, as they were in the HB method. However,
unlike the previous technique, both of these parameters
are now dependent on the faster timescales, T1, T2, . . ..

Once this solution has been established, it can be
implemented in the ε1-order equation. In doing so,
it must be noted that the homogeneous form of this
expression is identical to that used to find q0. Therefore,
those terms which respond at ωr,i —referred to as secu-

lar terms—must be set to zero. The reason for doing so
is that the homogeneous forms of the ε0- and ε1-order
expressions are the same, so these secular terms would
lead to a divergent solution in the latter; further details
are given in “Appendix A”. The solution of this expres-
sion leads to the frequency–amplitude relationship.

Then, only the non-secular terms are used to find a
solution for q1 by considering the updated expression

(D2
0 + �)q1 = −NRes

{

Ŵq

(

q0,
d

dt
(q0), r

)

}

. (10)

where NRes{•} denotes the non-resonant component
of •.

This process can then be repeated to find higher-
order displacement expressions.

2.3 Direct normal form technique

Having applied the modal transform to the equations of
motion in Eq. (3), two further transforms are applied
as part of the DNF method; these can be summarised
as [1,33]:

– Forcing transform

– The terms in the response which respond at fre-
quencies close to the forcing frequency are iso-
lated.

– Nonlinear near-identity transform

– This transform is used to remove those nonlin-
ear terms which are non-resonant.

The forcing transform takes the form q = v + [e]r,
where v is the transformed state of q and [e] is an
N ×2 matrix used to isolate the resonant forcing terms,
an explicit definition of which is given subsequently.

Applying this transform in the modal equations of
motion gives

v̈ + [e]WWr + �v + �[e]r

+ εŴv(v + [e]r, v̇ + [e]Wr, r) = Pqr, (11)

where W is a 2 × 2 diagonal matrix with entries +jΩ
and −jΩ . � and r are defined as in the previous sec-
tion. This step is used to monitor which terms are close
to resonance, which, for the kth mode, will be taken
to mean ωn,i ≈ Ω . Thus, the kth row of Pv can be
explicitly written as

Pv,k =

{

Pq,k if ωn,i ≈ Ω,

[0 0] otherwise.
(12)

It is desirable to write Eq. (11) in the form

v̈ + �v + εŴv(v, v̇, r) = εPvr, (13)

where any non-resonant forcing terms have been
removed. This can be achieved by imposing the def-
initions

Ŵv(v, v̇, r) = Ŵq(v + [e]r, v̇ + [e]Wr, r) and

Pv = Pq + �[e] − [e]WW. (14)

Applying the definition of W, the i th row in the latter
of these definitions can be expressed as

Pq,i = Pv,i + (ω2
n,i − Ω2)[e]i . (15)

Combining this expression and Eq. (12), it is possible
to explicitly define the kth row of [e] as

[e]k =

{

[0 0] if ωn,i ≈ Ω,

Pq,k/(ω
2
n,i − Ω2) otherwise.

(16)

Now, the nonlinear near-identity transform is applied,
allowing the response to be separated into its fun-
damental (u) and harmonic (h) components. This is
achieved by implementing the following expression for
v:

v = u + εh(u, u̇, r), where h(u, u̇, r) = h1(u, u̇, r)

+ εh2(u, u̇, r) + · · · . (17)

Similarly to the nonlinear and damping terms, the har-
monics have been perturbed, formalising the assump-
tion that higher-frequency harmonics will have less
influence on the behaviour of the system. Furthermore,
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it is assumed that the expression for u is sinusoidal
and will be written in exponential form, with separate
vectors for the positive and negative exponents; this is
expressed as u = up +um , where the subscripts denote
the sign of the exponent. Therefore, the i th element of
u is now written as

ui = u pi + umi =
Ai

2
e+j(ωr,i t+φi ) +

Ai

2
e−j(ωr,i t+φi ),

(18)

where Ai , φi , and ωr,i denote the amplitude, phase, and
response frequency of ui , respectively.

As in Eq. (13), the desired form for the equations
of motion in this step, with the non-resonant nonlinear
terms removed, is given by

ü + �u + εŴu(u, u̇, r) = Pur. (19)

Following the procedure defined by [1], it is possible to
implement Eq. (17) in Eq. (13), and then apply Eq. (19)
to give the simplified, ε1-order expression

(εḧ1 + ε2ḧ2 + · · · ) + (εϒh1 + ε2ϒh2 + · · · ) + εŴv

−(εŴu,1 + ε2Ŵu,2 + · · · ) + Pur − Pvr = 0. (20)

This equation applies the perturbation Ŵu(u, u̇, r) =

Ŵu,1(u, u̇, r) + εŴu,2(u, u̇, r) + · · · and notes that
ü = ϒu, where ϒ is a diagonal matrix with i th term
ω2

r,i . Furthermore, the following detuning expression
has been employed:

� = ϒ + ε� = ϒ + ε(� − ϒ), (21)

a step which is typically applied in the DNF method
and is explored further in [33,34]. The first equality
here demonstrates the fact that instead of simply detun-
ing around the natural frequency, we detune its square,
as this is the form in which it arises in the equations
of motion. The second expression makes use of the
fact that although � is not necessarily equal to ϒ, the
dynamics are considered within some close neighbour-
hood of the natural frequency, so their difference will
be small (and hence of order ε).

Balancing the ε0 terms in Eq. (20), it can be seen
that Pu = Pv. In the ε1-order balance, the Ŵu,i terms
are used to manage resonant terms, which respond at
ωr,i . These expressions typically comprise polynomi-
als in terms of up = {u pi }, um = {umi }, and r. The
procedure for deriving the fundamental and harmonic

responses from these polynomials is more thoroughly
outlined in “Appendix B”, but is briefly outlined here.

In the DNF method, and in contrast with the other
methods discussed in this paper, the matrix notation
u∗

i (up, um, r) is introduced. This expression is simply
an Ni × 1 vector including all the possible polynomial
terms which could arise in the aforementioned expan-
sion of Ŵu,i . This vector can then be pre-multiplied by a
matrix of time-independent coefficients for each entry
in u∗

i ; a more detailed explanation of this is given in
“Appendix B”.

Then, the difference between the frequency of these
entries and the response frequency is captured by the
introduction of the matrix β i , with element {k, ℓ}

defined by

βi,k,ℓ = [ω∗
i,ℓ]

2 − ω2
r,i . (22)

This is done so that it is possible to easily isolate the fun-
damental and harmonic components of the response,
which are captured by the coefficient matrices [Γu,i ]

and [h], respectively. Effectively, β i is used here to
separate the resonant and non-resonant terms of [Γv,i ].

Once this has been done, it is possible to express the
frequency–amplitude relationship as

(ω2
n,i − ω2

r,i )Ui e
−jφi + Γ +

ui = Pui , (23)

as derived in “Appendix B”.
As well as finding this relationship, it is possible to

calculate the harmonic response using Eq. (17), so that
the physical response of the general nonlinear system
is

q = u + εh(u, u̇, εr) + ε[e]r. (24)

3 Application to a Duffing oscillator

This section focuses on the application of these ana-
lytical approximation methods to the single-degree-of-
freedom (SDOF) Duffing oscillator, with equations of
motion

ẍ + 2(ε)ζωn ẋ +ω2
n x + (ε)αx3 = (ε)P cos(Ωt). (25)

Although relatively simple in nature, the Duffing oscil-
lator has been widely used in the discussion and com-
parison of analytical methods. In this study, it provides
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an example application of the discussion above that is
easily accessible to the reader; this could be expanded
to include more complex structures in future works,
though the conclusions drawn would be similar to those
in this paper. Given there is only one DOF, the system
is automatically written in modal coordinates, allowing
a cosmetic change to give

q̈ + 2(ε)ζωn q̇ +ω2
nq + (ε)αq3 = (ε)P cos(Ωt). (26)

As such, it is possible to directly follow the modal appli-
cation of the analytical techniques, as defined in Sect. 2.

In this comparison, the solutions will be found up to
ε1-order. The ε2-order solutions are qualitatively sim-
ilar to those shown in this section, but are more alge-
braically complicated and, therefore, are not presented.

3.1 Harmonic balance method

In this example, across all three methods, it will be
assumed that only a single harmonic term will be nec-
essary in the trial solution and that the response fre-
quency will be equal to the forcing frequency. As such,
Eq. (4) can be written as

q =
A

2
e+j(Ωt+φ) + c.c., (27)

where A and φ denote the amplitude and phase of the
mode, respectively. By implementing this displacement
expansion in Eq. (26), the fully expanded form for the
equations of motion can be expressed as

[

(ω2
n − Ω2)A + 2jζωn A +

3α

4
A3

]

e+j(Ωt+φ)

−Pe+jΩt + O(e+3j(Ωt+φ)) + c.c. = 0, (28)

It can be noted that the terms in the expansion which
respond at 3Ω are assumed to be negligible and are,
therefore, removed from the equation. This is a direct
consequence of the use of a single harmonic in the
HB trial solution. The solution of the Duffing oscillator
using the HB technique is readily found in the literature
[41], so is not expanded here. Instead, only the key
results are presented:

Forced response
[

(

ω2
n − Ω2)A +

3α

4
A3

]2

+[2ζωnΩ A]2 = P2, (29)

Free response
(

ω2
n − Ω2) +

3α

4
A2 = 0, (30)

Phase expression φ = sin−1
(2ζωnΩ A

P

)

, (31)

Displacement q = A cos(Ωt + φ). (32)

3.2 Multiple scales technique

In this section, the perturbed displacements, timescales,
and derivatives are given by

q = q0(T0, T1) + εq1(T0, T1) ,

t = T0 + T1 = t + εt ,

d

dt
= D0 + εD1,

d2

dt2 = D2
0 + ε(2D0 D1), (33)

respectively, when truncated at ε1-order. Therefore, for
the Duffing oscillator, the ε-expansion in Eq. (8), up to
the first order, is given by

ε0 : D2
0q0 + ω2

nq0 = 0,

ε1 : D2
0q1 + ω2

nq1

= −2D0 D1q0 − 2ζωn(D0q1 + D1q0)

−αq3
0 + P cos(ΩT0). (34)

Separating the secular and non-resonant terms in the
ε1-order expression in Eq. (34) leads to the two expres-
sions

2ω2
n A(T1)[D1φ(T1)]

+2jζωn[ωn A(T1) + D1 A(T1)] +
3α

4
A(T1)

3

−Pejφ(T1) = 0, (35)

(D2
0 + ω2

n)q1 +
α

4
A(T1)

3e+3j(ΩT0+φ(T1)) = 0. (36)

The first of these equations can now be used to find
the frequency–amplitude relationship, and the second
to find the displacement expression. Note that, by per-
turbing the displacement in the MS method, the implicit
assumption of negligible harmonics seen in the HB
technique has been removed. Instead, this is explicitly
imposed by the inclusion of the bookkeeping parame-
ter, ε.

For Eq. (35) to represent steady-state dynamics, it
is important to guarantee that there are no changes
in amplitude and phase with respect to T1. Doing so
is relatively straightforward for A(T1), but the phase
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term must be considered in conjunction with a detuning
parameter. Since the forcing frequency will be consid-
ered in some neighbourhood of the natural frequency, it
is common practice to define Ω = ωn +εσ , where σ is
an arbitrary detuning parameter. The inclusion of this
detuning means that ΩT0 = (ωn+εσ )t = ωnT0+σ T1.
Here, it must be noted that the use of a detuning param-
eter is inherent in this application of the MS method;
this is utilised in later sections. Now, it becomes neces-
sary to define the T1-dependent linear transformation
of the phase angle

ψ = σ T1 − φ(T1). (37)

Thus, the conditions for steady-state behaviour are

D1 A(T1) = 0,

D1ψ(T1) = 0. (38)

Solving these equations, it can be concluded A(T1) =

A is constant, and that D1φ(T1) = σ . Equation (35)
can now be rewritten in terms of its real and imaginary
components to give the system

3α

4
A3 − 2ω2

n Aσ = P cos(φ),

−2ζω2
n A = P sin(φ). (39)

As with the HB method, these expressions can be
squared and summed to eliminate the phase term,
φ. Recalling that the detuning parameter is given by
σ = 1

ε
(Ω − ωn), the final expression for the forced

response is given by

[

2ωn(ωn − Ω)A + ε
3α

4
A3

]2
+ [2εζω2

n A]2 = (εP)2,

(40)

and the free vibration is defined by

2ωn(ωn − Ω) + ε
3α

4
A2 = 0. (41)

In addition, the phase in the forced case can be
expressed as

φ = sin−1
(2εζω2

n A

P

)

. (42)

It can be further noted that the bookkeeping parameter
remains present in the final expression, demonstrating
that the relative contributions of the terms are moni-
tored through the entire process.

Furthermore, solving Eq. (36) allows the ε1-order
displacement solution to be given by

q = q0 + εq1 = A cos(Ωt + φ)

+ε
α

32ω2
n

A3 cos(3(Ωt + φ)), (43)

where it can be seen that an approximation to the third
harmonic is captured.

3.3 Direct normal form technique

In the SDOF example, the three aforementioned trans-
forms can be summarised as

q = v = u + εh. (44)

Here, the forcing transform is unity, as there is only
a single mode to consider and the forcing is assumed
to be near-resonant for this mode. However, the near-
identity transform still allows the separate considera-
tion of the fundamental and harmonic components of
the response.

As shown in Eq. (18),

u = u p + um =
A

2
e+j(ωr t+φ) +

A

2
e−j(ωr t+φ). (45)

It has been demonstrated, in the previous section and
“Appendix A”, that the frequency–amplitude relation-
ship of the DNF method is defined by Eq. (23). Con-
sidering that the linear natural frequency is known, it is
only necessary to calculate the nonlinear coefficients,
Γ +

u , and vector u∗ to define the system dynamics. Both
of these are found in the expansion of Γq(q, q̇, r) =

Γv(v, v̇, r), as found in Eq. (11). This is given by

Γq(q, q̇, r) = Γu(u, u̇) = 2ζωn u̇ + αu3. (46)

By applying Eq. (45) and converting to matrix notation,
it is possible to express Eq. (46) as
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Γu(u, u̇) = [Γu]u∗

=
[

−2jζωn −2jζωn α 3α 3α α
]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u p

um

u3
p

u2
pum

u pu2
m

u3
m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(47)

Recalling the expression in Eq. (22) and the subsequent
separation of resonant and non-resonant terms, the vec-
tors β, [Γu,1], and [h1] for the Duffing oscillator are
given by

β =
[

8Ω2, 0, 0, 8Ω2
]

�⇒ [Γu,1]

=
[

− 2jζωn,−2jζωn, 0, 3α, 3α, 0
]

,

[h1] =

[

0, 0,
α

8Ω2 , 0, 0,
α

8Ω2

]

. (48)

These vectors can now be directly applied in Eq. (23).
Treating the real and imaginary parts separately and
reconciling allows the system response to be approxi-
mated. This can be summarised as follows

Forced response
[

(ω2
n − Ω2)A + ε

3α

4
A3

]2

+[2εζωnΩ A]2 = (εP)2,(49)

Free response (ω2
n − Ω2) + ε

3α

4
A2 = 0, (50)

Phase expression φ = sin−1
(2εζωnΩ A

P

)

, (51)

Displacement q = A cos(Ωt + φ)

+ ε
α

32Ω2 A3 cos(3(Ωt + φ)).

(52)

4 Comparison through frequency detuning

As previously mentioned, the discussion of the methods
thus far has been provided so that they can be more
easily compared. The system response predicted by the
three methods is summarised in Table 1.

By removing the bookkeeping parameter, it can
be seen that the expressions for the free and forced
responses in the HB and DNF method, in terms of the
amplitude of the response at fundamental frequency,
A, are identical to one another.

It has been highlighted, in [4], that the free response
of the MS is a linearization of that found in the HB
and DNF methods, as can be found via the use of a
Taylor expansion. Here, it can be seen that this remains
true in the forced case. Thus, the MS solution can be
considered as an approximation to the DNF and HB
expressions, a point which was demonstrated to lead to
divergent backbone curves in [3].

However, considering the displacement expressions
in Table 1, it can be seen that, by applying the same
number of iterations of each method, the DNF and MS
methods provide insight into the harmonic behaviour.
This will not be provided by the HB method unless
the trial solution is expanded to include a higher-order
term.

Table 1 Summary of approximate solutions and expressions for backbone curves for the undamped, unforced Duffing oscillator

Technique Free Forced

HB Ω2 = ω2
n + 3α

4 A2
[

(ω2
n − Ω2)A + 3α

4 A3
]2

+ [2ζωnΩ A]2 = P2

MS Ω = ωn + ε 3α
8ωn

A2
[

2ωn(ωn − Ω)A + ε 3α
4 A3

]2
+ [2εζω2

n A]2 = (εP)2

DNF Ω2 = ω2
n + ε 3α

4 A2
[

(ω2
n − Ω2)A + ε 3α

4 A3
]2

+ [2εζωnΩ A]2 = (εP)2

Technique Phase Displacement

HB φ = sin−1
(

2ζωnΩ A
P

)

A cos(Ωt + φ)

MS φ = sin−1
(

−
2εζω2

n A

P

)

A cos(Ωt + φ) + ε α

32ω2
n

A3 cos(3(Ωt + φ))

DNF φ = sin−1
(

2εζωnΩ A
P

)

A cos(Ωt + φ) + ε α

32Ω2 A3 cos(3(Ωt + φ))
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In this study, the DNF frequency detuning, as given
in Eq. (21), is applied in the MS method, resulting in the
two methods giving identical expressions for the free
response. In the present work, as well as considering
a more general implementation of the MS method, the
forced responses are considered, as outlined above.

4.1 General detuning comparison

As has already been shown, the use of a detuning is
common practice in the MS method. Now, in this sec-
tion, we introduce the specific detuning used in the
DNF method, presented in Eq. (21), to the MS method.
Recall that this is given by

ω2
r,i = ω2

n,i + εδ = ω2
n,i + ε(ω2

n,i − ω2
r,i ). (53)

Applying this detuning in the general ε-expansion
given in Eq. (8) leads to the updated expressions

ε0 : (D2
0 + ϒ)q0 = 0,

ε1 : (D2
0 + ϒ)q1 + 2D0 D1q0 + (� − ϒ)q0

+ Ŵq(q0, D0q0, r) = Pqr,

... (54)

Once more, the secular terms must be set to zero and the
trial solution in Eq. (9) is again implemented, giving

jωr,i

(

(D1 Ai + Ai D1φi )e
+j(ωn,i T0+φi )

+ (D1 Ai − Ai D1φi )e
−j(ωn,i T0+φi )

)

+ (ω2
n,i − ω2

r,i )

(

Ai

(

e+j(ωn,i T0+φi ) + e−j(ωn,i T0+φi )
)

+ Res{Γq,i

( Ai

2

(

e+j(ωn,i T0+φi ) + e−j(ωn,i T0+φi )
)

,

jωr,i

Ai

2

(

e+j(ωn,i T0+φi ) − e−j(ωn,i T0+φi )
)

,

e+jΩT0 + e−jΩT0
)

} = Pq,i

(

e+j(ΩT0) + e−j(ΩT0)
)

.

(55)

Comparing this with the expression for the standard MS
method (given in “Appendix A”), it can seen that, by
removing the assumption that the response frequency is
equal to the linear natural frequency, new terms arise in
the ε1-order equation. The inclusion of the term (ω2

n,i −

ω2
r,i )

(

Ai

(

e+j(ωn,i T0+φi )+e−j(ωn,i T0+φi )
))

can be thought

of as a detuning term that accounts for the influence that
those terms which are close to resonance have on the
vibration of the system.

Collecting coefficients of e±jωr,i T0 , Eq. (55) can be
written as
[

Ai (ω
2
n,i − ω2

r,i )
(

e+jφi
)

+ (D1 Ai + jωr,i Ai D1φi )e
+jφi

+Res
{

Γq,i

( Ai

2

(

e+j(ωn,i T0+φi )
)

, jωr,i
Ai

2

(

e+j(ωn,i T0+φi )
)

,

e+jΩT0
)}

− Pq,i

]

e+jωr,i T0 + c.c. = 0. (56)

Similarly to the DNF method, the terms in Eq. (56)
inside the square brackets are complex conjugates, so
both must be equal to zero to remove the secular terms.
As such, the frequency–amplitude equation can be writ-
ten as

(ω2
n,i − ω2

r,i )
(

Ai e
+jφi

)

+ (D1 Ai + jωr,i Ai D1φi )e
+jφi

+Res
{

Ŵq

( Ai

2

(

e+j(ωr,i t+φi )
)

,

jωr,i

Ai

2

(

e+j(ωr,i t+φi )
)

, e+jΩt
)}

= Pq,i . (57)

Recall that the equivalent expression in the DNF
method, Eq. (23), is written as

(ω2
n,i − ω2

r,i )Ai e
−jφi + Γ +

u,i = Pu,i .

Despite the clear differences between the forms of these
two expressions, it can actually be shown that they both
represent the same solution. Recalling from Eq. (15)
that Pq,i = Pv,i + (ω2

n,i − Ω2)[e]i and noting that, for
the resonant equation, [e]i = [0 0], it can be seen that
Pu,i = Pq,i .

Further consideration is also given to Γ +
u,i , which

denotes the resonant terms of Ŵu, including both the
damping and nonlinear terms. In the detuned multiple
scales (dMS) case, the resonant terms of Ŵq are col-
lected by the term

Res
{

Ŵq

( Ai

2

(

e+j(ωr,i t+φi )
)

,

jωr,i

Ai

2

(

e+j(ωr,i t+φi )
)

, e+jωr,i t
)}

.

However, it must be noted that there is a remaining addi-
tional term in Eq. (57), namely the term jωr,i (D1 Ai +

Ai D1φi )e+jφi . Although the inclusion of an extra term
may appear to nullify the equivalence of the two tech-
niques, it can actually be noted that this expression is
a damping term that corresponds to the higher-order
derivatives. Therefore, it simply accounts for the per-
turbation of t , which is not present in the DNF method
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and the combination of these terms is directly equiva-
lent to Γ +

u,i

The solution for q1 can be determined in a similar
way to the standard MS method, as in Eq. (10), by
solving

(� − ϒ)q1 = −NRes{Ŵq}. (58)

Recall that the corresponding ε1-order equation for the
DNF method is

ḧ1 + ϒh1 + Ŵv = nu1. (59)

It can be further noted that ḧ1 = −�h1 and that Ŵv −

nu1 = βh1 = −NRes{Ŵq}, so that the expression in
Eq. (59) can be rewritten as

(� − ϒ)h1 = −NRes{Ŵq}. (60)

It is immediately clear that the solutions of Eqs. (58)
and (60) must be identical.

4.2 Duffing oscillator detuning comparison

These new steps can now be explored for the Duffing
oscillator, beginning with the updated ε-balance, which
is expressed as

ε0 : D2
0q0 + ω2

nq0 = 0,

ε1 : D2
0q1 + ω2

nq1

= −δq0 − 2D0 D1q0 − 2ζωn(D0q1 + D1q0)

−αq3
0 + P cos(ΩT0). (61)

Note that the δ notation (the SDOF equivalent to � in
Eq. (21)) will be used until the calculation of the final
solution, so that the influence of the detuning is more
readily tracked. As above, the steady-state dynamics
are of interest, so the conditions in Eq. (38) are applied.
Separating the real and imaginary parts now leads to the
following steady-state equations

3α

4
A3 + Aδ = P cos(φ),

2ζωnΩ A = P sin(φ). (62)

Therefore, by squaring and then summing these expres-
sions, then introducing the definition of δ from Eq. (53),
the free and forced responses are now given by

[

(ω2
n − Ω2)A + ε

3α

4
A3

]2
+ [2εζωnΩ A]2 = (εP)2,

(ω2
n − Ω2) + ε

3α

4
A2 = 0, (63)

respectively. Comparing these expressions with those
in Eq. (49), it can be seen that the dMS and DNF forced
responses are now identical, as is the case with the free
response.

The harmonic part of the displacement can now be
calculated using Eq. (58), giving an expression identi-
cal to that of the DNF method, given in Eq. (52):

q = q0 + εq1 = a cos(Ωt + α)

+ε
α

32Ω2 a3 cos(3(Ωt + α)),

with Ω =

√

ω2
n + ε

3α

4
a2. (64)

5 Results

Figure 1 shows graphical representations of the responses
in Table 1; the bookkeeping parameter is simply
removed from the expressions, so the HB curve is
identical to that given by the DNF/dMS methods. The
‘Numerical’ backbone curve in Fig. 1 has been found
using numerical continuation [2]. In this figure, the
following parameter values have been used: ωn = 1,
α = 0.6, with ζ = 0.005, P = 0.0015 in the first
case and ζ = 0.0015, P = 0.005 in the second. These
two forcing cases allow the influence of this detuning
to be considered at both high and low amplitudes. In
the first case, it can be seen that the variation between
the techniques is very small. In fact, when the system is
forced at low levels, it could be argued that the choice
of method has a negligible influence on the response
prediction.

In any analytical approximation method that
includes a perturbation or series expansion, it is possi-
ble to increase the number of step iterations or terms
included so that the predicted solution will better agree
with the true response. However, as has been previously
discussed, the methods are compared here with the use
of only a small number of iterations, as to add any
more would create analytical complexity, which would
add little further insight than the numerical technique.
When the ratio of forcing to damping is increased, the
differences between the solutions at ε1-order become
much more noticeable. Both methods diverge from the
numerical results, but the key difference is the rate at
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Fig. 1 Free and forced responses at ε1-order, for the HB, DNF,
and MS methods (without the newly applied detuning), and
numerically continued (Full) solutions. The first panel displays
the results from Case 1: ζ = 0.005, P = 0.0015, the second
from Case 2: ζ = 0.0015, P = 0.005

which they do so. While the DNF/dMS methods remain
close to the numerical solution across the considered
range, the MS method begins to diverge at approxi-
mately Ω = 1.1 Hz, which represents a shift in fre-
quency of roughly 10%. When this point is reached, the
MS method begins to underestimate the displacement.
It has been shown that, by choosing the detuning found
in the DNF method, it is possible to remove the under-
prediction of the forced response; in Fig. 1, the updated
MS curve is identical to that of the DNF method.

5.1 Considerations for users

As has shown in the previous sections, by choosing a
suitable frequency detuning, it is possible to achieve

identical results when applying any of the techniques
discussed to the example system. As such, it could be
concluded that the user may choose the technique with
which they are most familiar and ensure that the accu-
racy of the solutions will not be compromised. While
there may be some truth to this assertion, the discussion
provided in this study alludes to further considerations
that could be taken.

The HB method has been demonstrated to be a
much simpler technique than the others considered;
it is arguably for this reason that it has been more
widely applied, particularly in those cases that have
seen a more algorithmic approach taken for larger sys-
tems. As a result of this simplicity, the method lacks
the bookkeeping parameter used by the MS and DNF
techniques. As has been previously discussed, this per-
turbation strategy not only measures the relative con-
tribution of each term, but actually informs the user
as to the neighbourhood of to linear natural frequency
in which they may have confidence in the accuracy
of the results. Thus, the HB should be seen as an
effective method for gaining a quick understanding
of the nonlinear behaviour, but is likely to be most
useful when the exact values of the solution are not
important.

The results presented in this paper, along with those
of [3], have demonstrated that the MS and DNF are able
to provide identical results. Given that the implemen-
tation of the two techniques requires a similar number
of steps, this leaves the user to make a decision based
on the nuances of the particular system they are con-
sidering. A key benefit of the MS has always been its
ability to model transient behaviour. Since this is not
affected by the frequency tuning, this asset still holds
true. Meanwhile, the DNF technique utilises a matrix
formulation to effectively track the resonant and non-
resonant terms, a strategy that may prove useful in more
complex structures with multiple harmonics. In sum-
mary, the results of the present work provide the user
with two accurate options, which will suit a wide array
of potential structures.

6 Conclusions

This paper presents and compares three analytical
approximation methods, both in terms of a general
nonlinear dynamical system and the Duffing oscillator,
which has been widely used in the development and
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study of such techniques. In particular, the harmonic
balance, multiple scales, and direct normal forms meth-
ods have been considered. In an initial comparison,
it has been shown that the HB and DNF give identi-
cal solutions for the Duffing oscillator, although the
inclusion of a bookkeeping parameter in the latter pro-
vides the potential for a simpler management of weak
terms in more complex structures. Additionally, the
matrix formulation of the DNF method also reveals the
harmonic components of the behaviour, whereas this
requires the introduction of a more complex trial solu-
tion in the HB method. In previous works, it has been
shown that the free vibration expression given by the
MS is a linearization of the HB/DNF solution. In this
work, it has been shown that this property also holds
true for the forced response.

To expand this comparison, the previously devel-
oped detuned multiple scales method is extended to
include forced responses. Furthermore, an alternative
form of the MS method is applied, demonstrating the
broader applicability of the comparison. By consider-
ing the widely applied derivative expansion version of
the MS method, it has been shown that, for a gen-
eral nonlinear system, the analytical solutions of the
forced, damped equations are, once more, identical in
the DNF and dMS methods. This is an important result,
as it means that, regardless of the method chosen, the
user has the potential to capture complex nonlinear
behaviour in forced structures (such as hysteresis and
internal resonance) to the same level of accuracy.

Particular attention has been given to the influ-
ence that the forcing and damping terms have on the
divergence of the MS and DNF/dMS responses. In
models with lower forcing and/or higher damping,
it has been seen that the difference between these
solutions is effectively negligible. However, as the
forcing grows, the non-detuned MS method begins
to under-predict the displacement, demonstrating that
there is a region in which the linearization is valid and
that the prediction may become inaccurate away from
this.
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Appendix A

Once the ε-expansion in Eq. (8) has been established,
the ε0-order can be solved to give

q0,i =
Ai (T1, T2, . . .)

2
(

e+j(ωr,i T0+φi (T1,T2, ...)) + e−j(ωr,i T0+φi (T1,T2, ...))
)

,

(A.1)

where Ai and φi denote the amplitude and phase of
the fundamental response of the i th mode, respectively.
This ε0-order solution can now be applied to the ε1-
order terms in Eq. (8) to give

(D2
0 + ω2

n,i )q1,i

= −jωn,i

(

(D1 Ai + Ai D1φi )e
+j(ωn,i T0+φi )

−(D1 Ai − Ai D1φi )e
−j(ωn,i T0+φi )

)

−Γq,i

( Ai

2

(

e+j(ωn,i T0+φi ) + e−j(ωn,i T0+φi )
)

,

jωn,i

Ai

2

(

e+j(ωn,i T0+φi ) − e−j(ωn,i T0+φi )
)

,

e+jΩt + e−jΩt
)

+ Pq,irp. (A.2)

Now, the secular terms—i.e., those that respond at
ωn,i —must be set to zero. The reason for this is
that the homogeneous form of Eq. (A.2) is given by
(D2

0 + �)q1 = 0. As such, the trial solution must be
equal to the trial solution for q0. Therefore, a failure
to remove the secular terms would lead to a divergent
solution. Removing the secular terms in Eq. (A.2) leads
to the expression

jωn,i

(

(D1 A0,i + A0,i D1φi )e
+j(ωn,i T0+φi )

+(D1 A0,i − A0,i D1φi )e
−j(ωn,i T0+φi )

)

+Res
{

Γq,i

( A0,i

2

(

e+j(ωn,i T0+φi ) + e−j(ωn,i T0+φi )
)

,
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jωn,i

A0,i

2

(

e+j(ωn,i T0+φi ) − e−j(ωn,i T0+φi )
)

,

e+jΩt + e−jΩt
)

− Pq,irp

}

= 0, (A.3)

where Res{•} denotes the resonant terms of •. This
secular equation can now be solved to find expressions
for the amplitude and phase terms. This is done by
separating the real and imaginary parts of the equation,
then setting the coefficients of e±j(ωn,i T0+φi ) in each
of those to zero. The solutions for A0,i and φi can be
applied in the non-resonant equation:

(D2
0 + ω2

n,i )q1,i

= −NRes
{

Ŵq

( A0,i

2

(

e+ j (ωn,i T0+φi ) + e− j (ωn,i T0+φi )
)

,

× jωn,i
A0,i

2

(

e+ j (ωn,i T0+φi ) − e− j (ωn,i T0+φi )
)

,

×e+ jΩt + e− jΩt
)}

, (A.4)

where NRes{•} denotes the non-resonant terms of •.
This equation can then be solved to find q1. Now, the
solutions for q0 and q1 can be applied to the ε2-order
expression to find q2. The process is the same and,
therefore, not shown here, but details can be found in
[3].

Appendix B

Recall that Eq. (20) is given by

(εḧ1 + ε2ḧ2 + · · · ) + (εϒh1 + ε2ϒh2 + · · · )

+ εŴv(u + εh, u̇ + εḣ, r)

− (εŴu,1 + ε2Ŵu,2 + · · · ) + Pur − Pvr = 0. (B.1)

Here, we apply a Taylor expansion to Ŵv(u + εh, u̇ +

εḣ, r), and simplify using the notation

Ŵv,1 = Ŵv,

Ŵv,2 =
[

� − ϒ +
∂

∂u
Ŵv

]

h1 +
[ ∂

∂u̇
Ŵv

]

ḣ1.

Then, the vector u∗
i , which captures all the possible

polynomial terms which could arise in the expansion
of Ŵu, is used to introduce the following matrix formu-
lations

Ŵv,i (u, u̇, r) = [Γv,i ]u
∗
i (up, um, r),

Ŵu,i (u, u̇, r) = [Γu,i ]u
∗
i (up, um, r),

hi (u, u̇, r) = [hi ]u
∗
i (up, um, r), (B.2)

where [Γv,i ], [Γu,i ], and [hi ] are N × Ni matrices of
time-invariant coefficients for the corresponding time-
dependent terms in u∗

i . Thus, for i ≥ 1, the εi homo-
logical equation is given by

[hi ]ü
∗
i + Υ [hi ]u

∗
i + [Γv,i ]u

∗
i = [Γu,i ]u

∗
i . (B.3)

By consideration of the ui vector, it is possible to find
a solution for u. First, the ℓth element of u∗

i is written
as

u∗
i,ℓ = r

m pi,ℓ
p r

mmi,ℓ
m

N
∏

n=1

u
spi,ℓ,n
pn u

smi,ℓ,n
mn = U∗

i,ℓe j (ω∗
i,ℓt−φ∗

i,ℓ),

(B.4)

where

U∗
i,ℓ =

N
∏

n=1

(

Un

2

)(sp,i,ℓ,n+sm,i,ℓ,n)

,

φ∗
i,ℓ =

N
∑

n=1

(sm,i,ℓ,n − sp,i,ℓ,n)φn,

and

ω∗
i,ℓ = (m p,i,ℓ − mm,i,ℓ)Ω +

N
∑

n=1

(sp,i,ℓ,n − sm,i,ℓ,n)

ωr,n .

These new variables can be applied in Eq. (B.3) so that
element {k, ℓ} of [Γv,i ] can be written as

[Γv,i ]k,ℓ = [Γu,i ]k,ℓ + βi,k,ℓ[hi ]k,ℓ, (B.5)

where

βi,k,ℓ = [ω∗
i,ℓ]

2 − ω2
r,i , (B.6)

defines the N × Ni matrix β i . Therefore, if [ω∗
i,ℓ]

2 =

ω2
r,i , then βi,k,ℓ = 0. As such, β i can be considered

as a matrix that determines the resonance of the terms
defined by [Γv,i ].

Now,

[Γv,i ]k,ℓ = [Γu,i ]k,ℓ, [hi ]k,ℓ = 0, if βi,k,ℓ = 0, (B.7)

[Γv,i ]k,ℓ = 0, [hi ]k,ℓ =
[Γu,i ]k,ℓ

βi,k,ℓ
, otherwise. (B.8)
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Applying these conditions, the i th resonant equation
can be expressed as

[

(ω2
n,i − ω2

r,i )Ui e
−jφi + Γ +

ui − P+
ui

]

e+jωr,i t

+
[

(ω2
n,i − ω2

r,i )Ui e
+jφi + Γ −

ui − P−
ui

]

e−jωr,i t = 0,

(B.9)

where P+
ui and P−

ui denote elements {i, 1} and {i, 2} of
Pu, respectively. The variables Γ +

ui and Γ −
ui arise in the

decomposition

Γui = Γ +
ui e+jωr,i t + Γ −

ui e−jωr,i t . (B.10)

The terms in Eq. (B.9) which are contained in square
brackets are complex conjugates of one another and, for
this equality to hold, it is necessary for both of these to
be equal to zero. Therefore, the frequency–amplitude
relationship is given by

(ω2
n,i − ω2

r,i )Ui e
−jφi + Γ +

ui = P+
ui , (B.11)

which can be solved to find the fundamental response
of the system.
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