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Donaldson–Thomas invariants versus

intersection cohomology of quiver moduli

By Sven Meinhardt at Sheffield and Markus Reineke at Bochum

Abstract. The main result of this paper is the statement that the Hodge theoretic

Donaldson–Thomas invariant for a quiver with zero potential and a generic stability condi-

tion agrees with the compactly supported intersection cohomology of the closure of the stable

locus inside the associated coarse moduli space of semistable quiver representations. In fact,

we prove an even stronger result relating the Donaldson–Thomas “function” to the intersection

complex. The proof of our main result relies on a relative version of the integrality conjecture

in Donaldson–Thomas theory. This will be the topic of the second part of the paper, where the

relative integrality conjecture will be proven in the motivic context.

1. Introduction

The theory of Donaldson–Thomas invariants started around 2000 with the seminal work

of R. Thomas [36]. He associated integers to moduli spaces in the absence of strictly semistable

objects. Six years later D. Joyce [12–17] and Y. Song [18] extended the theory, producing

(possibly rational) numbers even in the presence of semistable objects which is the generic

situation. Around the same time, M. Kontsevich and Y. Soibelman [23–25] independently pro-

posed a theory producing polynomials and even motives instead of simple numbers, also in the

presence of semistable objects. The technical difficulties occurring in their approach disappear

in the special situation of representations of quivers with zero potential. This case has been

intensively studied by the second author in a series of papers [31–33]. Notice that for quivers

without potential the motivic Donaldson–Thomas invariants agree with the so-called refined

Donaldson–Thomas invariants which according to the Integrality Conjecture are Laurent poly-

nomials. For simplicity we call the latter Donaldson–Thomas invariants throughout this paper.

Despite some computations of motivic or just numerical Donaldson–Thomas invariants

for quivers with or without potential (see [1, 6, 7, 29]), the true nature of motivic, refined or

numerical Donaldson–Thomas invariants still remains mysterious.

This paper is a first step to disclose the secret by showing that the Donaldson–Thomas

invariants for representations of a quiver without potential compute the compactly supported

intersection cohomology of the closure of the stable locus inside the associated coarse moduli
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144 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

space of semistable representations. While trying to prove this result, the authors observed the

importance of the integrality conjecture, which was the reason to extend the paper by a second

part containing its proof.

We will actually prove an even stronger version by defining a Donaldson–Thomas func-

tion on the coarse moduli space M
ss. Strictly speaking, this “function” is an element in a suit-

ably extended Grothendieck group of mixed Hodge modules. The cohomology with compact

support of that element is the usual Hodge theoretic Donaldson–Thomas invariant - a class in

the Grothendieck group of mixed Hodge structures. Our main result is the following (we refer

to the following sections for precise notation):

Theorem 1.1. Let Q be a quiver with a stability condition �. If � is generic, then the

Donaldson–Thomas function DT .Q; �/ is the class of the intersection complex IC
Mst.Q/ of

the closure of the stable locus M
st inside the coarse moduli space M

ss of �-semistable quiver

representations. In particular, by taking cohomology with compact support, we obtain for every

dimension vector d

DTd D
´

ICc.Mss
d

; Q/ D IC.Mss
d

; Q/_; if M
st
d

¤ ;;

0; otherwise;

in the Grothendieck ring of (polarizable) mixed Hodge structures.

As Donaldson–Thomas invariants for quiver representations can be computed with com-

puter power quite effectively, this theorem provides a quick algorithm to determine intersection

Hodge numbers. The previous algorithm to do that goes back to extensive work of F. Kirwan

around 1985 (see [19–22]) and is impracticale. Moreover, using wall-crossing formulas, we are

now able to understand the change of intersection Hodge numbers under variations of stability

conditions.

For the next corollary we mention that the moduli space of semistable quiver representa-

tions admits a proper map to the affine, connected moduli space of semisimple representations

of the same dimension vector. If the quiver is acyclic, there is only one such semisimple repre-

sentation. Thus, the moduli space M
ss
d

must be compact.

Corollary 1.2 (Positivity). If Q is acyclic and the stability condition generic, the (moti-

vic) Donaldson–Thomas invariant DTd is a palindromic polynomial in the Lefschetz motive

with positive coefficients.

Indeed, it is not hard to see that DTd is always a rational function in the square root

L1=2 of the Lefschetz motive. Due to our main result, it must actually be a polynomial in the

Lefschetz motive (up to normalization). By compactness (and normalization), ICk.Mss
d

; Q/

carries a Hodge structure of weight k, and this can only happen for even k as there are no

Lefschetz motives in odd degree. The hard Lefschetz theorem implies that DTd is a palindromic

polynomial.

The next result is a direct consequence of our main theorem, Proposition 6.11 and Corol-

lary 6.13.

Corollary 1.3 (Locality). Fix a generic stability condition and a closed point x 2 M
ss,

that is, a polystable complex representation V D
L

k2K E
mk

k
of Q with stable pairwise non-
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Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli 145

isomorphic summands Ek . If the moduli space also contains stable representations, then the

fiber at x of the intersection complex of the moduli space is given by the intersection cohomol-

ogy of a moduli space associated to the Ext1-quiver of the collection .Ek/k2K .

Finally, we will give, in Theorem 4.8, an explicit formula for the intersection Betti num-

bers of the classical spaces of matrix invariants (that is, the quotient of tuples of linear operators

by simultaneous conjugation), using the explicit formula for motivic DT invariants for loop

quivers in [33].

The paper is organized as follows. Section 2 provides some background on quivers and

their representations. The main purpose is to fix the notation. Although we will not use it,

Section 2.1 also contains a quick link to 3-Calabi–Yau categories – the natural environment of

Donaldson–Thomas theory. The most important result of Section 2 is Theorem 2.2, stating that

the so-called Hilbert–Chow morphism from the moduli space M
ss
f;d

of framed representations

to the moduli space M
ss
d

of unframed representations is what we will call virtually small.

Theorem 1.4. For a generic stability condition and a dimension vector d , the Hilbert–

Chow morphism � W M
ss
f;d

! M
ss
d

is projective and virtually small, that is, there is a finite

stratification M
ss
d

D
F

� S� with empty or dense stratum S0 D M
st
d

such that ��1.S�/ ! S�

is étale locally trivial and

dim ��1.x�/ � dim Pf �d�1 � 1

2
codim S�

for every x� 2 S� with equality only for S� D S0 6D ; with fiber ��1.x0/ Š Pf �d�1.

The proof of this important technical result is postponed to Section 5 to keep Section 2

short.

Section 3 is devoted to intersection complexes and the Schur functor formalism. As we

need a nontrivial Lefschetz “motive” L, restricting to perverse sheaves is not sufficient. Hence,

we have to consider mixed Hodge modules, but there is no reason to be worried about that. We

only need that the Grothendieck group is freely generated as a ZŒL˙1�-module by some sort of

intersection complexes. The (relative) hard Lefschetz theorem and some weight estimates for

virtually small maps will also play a role.

Taking direct sums of representations induces a commutative monoid structure on M
ss

and hence a symmetric monoidal tensor product on the category of mixed Hodge modules

on M
ss by convolution. Using some general machinery (see [8]), one can introduce Schur

(endo)functors. Among them the symmetric and alternating powers are the most famous ones,

and we finally obtain a �-ring structure on the Grothendieck group of mixed Hodge structures.

The latter is used in Section 4 to define Donaldson–Thomas functions. We will relate

Donaldson–Thomas functions to framed quiver representations my means of some sort of

DT/PT or framed/unframed correspondence proven in Section 6. Recall that Pandharipande–

Thomas invariants are “counting” certain torsion sheaves framed with a section, and similar

to our case they are related to Donaldson–Thomas invariants for certain torsion free sheaves

by means of some Hall algebra identities. See [3] for more details. Using this correspondence,

the virtual smallness of the Hilbert–Chow morphism and the (relative) hard Lefschetz theo-

rem, we finally deliver the proof of our main theorem by comparing degrees of polynomials

in ZŒL˙1=2�.
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146 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

While proving our main result in Section 4, we will observe that a certain integrality

condition is crucial. It turns out that this condition is a relative version of the famous integrality

conjecture in Donaldson–Thomas theory. Fortunately, we can give a proof in our situation of

quiver representations by reducing the problem to a result of Efimov (see [9, Theorem 1.1]). In

fact, the arguments use only the cut and paste relation allowing us to generalize the setting to

motivic functions and to arbitrary ground fields of characteristic zero. Here is the main result

of the second part of our paper, that is, of Section 6.

Theorem 1.5 (Integrality Conjecture, relative version). For a generic stability condition

and a not necessarily closed point x 2 M
ss there is a finite extension K � k.x/ of the residue

field of x giving rise to a map Qx W Spec K ! M
ss such that the “value” DT

mot. Qx/ WD Qx�
DT

mot

of the motivic Donaldson–Thomas function at Qx is in the image of the natural map

K0.Var=K/ŒL�1=2� ! K0.Var=K/ŒL�1=2; .Lr � 1/�1 W r � 1�:

Ideally, we would like to replace K with k.x/ and Qx with x, but we have good reasons to

belief that such a result cannot hold for “naive” motives.

Similar to the Hodge realization, the Donaldson–Thomas invariant DTmot
d

is a rational

function in L1=2 with integer coefficients. Moreover, the coefficients are independent of the

ground field and remain the same in any “realization” of motives. Using our main result on

intersection complexes, we get the famous integrality conjecture.

Corollary 1.6 (Integrality Conjecture, absolute version). For a generic stability condi-

tion the motivic Donaldson–Thomas invariant DTmot
d

is in the image of the natural map

K0.Var=k/ŒL�1=2� ! K0.Var=k/ŒL�1=2; .Lr � 1/�1 W r � 1�:

This result has been obtained by Efimov for representations of symmetric quivers1) and

trivial stability condition (see [9, Theorem 1.1]). A very complicated proof of the integrality

conjecture even for quivers with potential was sketched by Kontsevich and Soibelman (see

[25, Theorem 10]).

Acknowledgement. The main result of the paper was originally observed and conjec-

tured by J. Manschot while doing some computations. The first author is very grateful to him

for sharing his observations and his conjecture which was the starting point of this paper. The

authors would also like to thank V. Ginzburg, E. Letellier, M. Kontsevich and L. Migliorini for

interesting discussions on the results of this paper and Jörg Schürmann for answering patiently

all questions about mixed Hodge modules.

2. Moduli spaces of quiver representations

2.1. Quiver representations. We fix a field K which might either be our ground field k

or, as in Section 6, a not necessarily algebraic extension of the latter. Let Q D .Q0; Q1; s; t/

1) A quiver is called symmetric if the matrix a D .aij /i;j with aij denoting the number of arrows from the

vertex i to the vertex j is symmetric.
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Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli 147

be a quiver consisting of a finite set Q0 of vertices, a finite set Q1 of arrows as well as

source and target maps s; t W Q1 ! Q0. To any quiver we associate its path algebra KQ. The

underlying K-vector space is spanned by paths of arbitrary length with a path of length zero

attached to every vertex. Multiplication on KQ is given by K-linear extension of concatenating

paths. Equivalently, one could think of KQ as a K-linear category with set of objects Q0 and

HomKQ.i; j / being the K-vector space generated by all paths from i to j . Again, composition

is induced by K-linear extension of concatenation.

There is a second (dg-)algebra associated to Q, namely its Ginzburg algebra �KQ. The

underlying algebra is the path algebra KQex associated to the extended quiver

Qex D .Q0; Q1 t Q
op
1 t Q0; sex; t ex/

obtained from Q by adding to every arrow ˛ W i ! j of Q another arrow ˛� W j ! i with

opposite orientation, and a loop li W i ! i for every vertex i 2 Q0. We make �KQ into

a dg-algebra by introducing a grading such that deg.˛/ D 0; deg.˛�/ D �1, and deg.li / D �2.

The differential is uniquely determined by putting

d˛ D d˛� D 0 and dli D
X

˛Wi!j

˛�˛ �
X

˛Wj !i

˛˛�:

Again, we can think of �KQ as a dg-category with set of objects being Q0. Furthermore,

H 0.�KQ/ Š KQ can be interpreted as a dg-category with zero grading and trivial differential.

By looking at dg-functors V W KQ ! dg-VectK and W W �KQ ! dg-VectK into the cat-

egory of dg-vector spaces with finite-dimensional total cohomology, we get two dg-categories

with model structures and associated triangulated homotopy (A1-)categories Db.KQ-Rep/

and Db.�KQ-Rep/. Each has a bounded t-structure with heart KQ-Rep being the abelian

category of quiver representations, that is, of functors V W KQ ! VectK into the category of

finite-dimensional K-vector spaces. In particular,

K0.Db.KQ-Rep// Š K0.Db.�KQ-Rep// Š K0.KQ-Rep/:

There is a group homomorphism dim W K0.KQ-Rep/ ! ZQ0 associating to every represen-

tation respectively functor V the tuple .dimK Vi /i2Q0
of dimensions of the vector spaces

Vi WD V.i/. There are two pairings on ZQ0 defined by

.d; e/ WD
X

i2Q0

diei �
X

Q13 ˛Wi!j

diej ;

hd; ei WD .d; e/ � .e; d/

such that the pull-back of these pairings via the group homomorphism dim is just the Euler pair-

ing induced by Db.KQ-Rep/ respectively Db.�KQ-Rep/. The skew-symmetry of the latter

reflects the fact that Db.�KQ-Rep/ is a 3-Calabi–Yau category, that is, the triple shift functor

Œ3� is a Serre functor. This provides the link to Donaldson–Thomas theory.

2.2. Moduli spaces. The stack of Q-representations, that is, of objects in KQ-Rep,

can be described quite easily. To this end, fix a dimension vector d D .di / 2 NQ0 and note

that Gd WD
Q

i2Q0
AutK.Kdi / acts on Rd WD

Q

˛Wi!j HomK.Kdi ; Kdj / in a canonical way

by simultaneous conjugation. The stack of Q-representations of dimension d is just the quo-

tient stack Md D Rd =Gd . There are also derived (higher) stacks of objects in Db.KQ-Rep/

respectively Db.�KQ-Rep/ containing Md as a substack, but we are not going into this

direction.
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148 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

Instead, we want to study semistable representations of Q. As the radical of the Euler

pairing contains the kernel of the group homomorphism dim W K0.KQ-Rep/ ! ZQ0 , every

tuple � D .�i /i2Q0
2 ¹r exp.i��/ 2 C j r > 0; 0 < � � 1ºQ0 � CQ0 provides a numerical

Bridgeland stability condition on Db.KQ-Rep/ and on Db.�KQ-Rep/ with central charge

Z.V / D � �dim V WD
P

i2Q0
�i dimK Vi of slope �.V / WD � Re Z.V /=Im Z.V / and standard

t-structure. Hence we get an open substack M
ss
d

D Rss
d

=Gd of semistable Q-representations.

For every � 2 .�1; C1� let ƒ� � NQ0 be the monoid of dimension vectors d (including

d D 0) such that � � d D
P

i2Q0
�idi 2 C has slope �. We call � �-generic if hd; ei D 0 for

all d; e 2 ƒ�, and generic if that holds for all �. The non-generic “stability conditions” � lie

on a countable but locally finite union of walls in ¹r exp.i��/ 2 C j r > 0; 0 < � � 1ºQ0 of

real codimension one. Obviously every stability for a symmetric quiver is generic. Another

important class is given by complete bipartite quivers and the maximally symmetric stabilities

used in [34] to construct a correspondence between the cohomology of quiver moduli and the

GW invariants of [11].

As we wish to form moduli schemes, we begin with considering King stability conditions

� D .��i C
p

�1/i2Q0
for some � D .�i / 2 ZQ0 and discuss a more general case in the next

paragraph. A King stability condition gives rise to a linearization of the Gd action on Rd with

semistable points Rss
d

. Let us denote the GIT quotient by M
ss
d

D Rss
d

==Gd . The points x in M
ss
d

correspond to polystable representations V D
L

k2K Ek defined over some finite extension of

the residue field of x. The obvious morphism p W M
ss
d

! M
ss
d

maps a semistable representation

to the direct sum of its stable factors. We also have the open substack M
st
d

� M
ss
d

of stable

representations mapping to the open subvariety M
st
d

� M
ss
d

of stable representations. Note that

Md ; M
ss
d

; M
st
d

; and M
st
d

are smooth while M
ss
d

is not. Moreover, M
st
d

is either dense in M
ss
d

or

empty. We call � (�-)generic if � D .��i C
p

�1/i2Q0
is (�-)generic in the previous sense.

The construction of coarse moduli spaces can also be done for so-called geometric

Bridgeland stability conditions, i.e. for � not lying on a (different) countable union of real codi-

mension one walls. Indeed, given � and a dimension vector d , we can always perturb � slightly

to �0 with rational real and imaginary part without changing Rss
d

. This is true because Rss
d

will

only change if � crosses a finite subset (depending on d ) of these walls. Given �0 D a C b
p

�1

with a; b 2 QQ0 , we may define � WD N..a � d/b � .b � d/a/ with N � 0 such that � 2 ZQ0 .

Then � � d D 0. Moreover, � � d 0 � 0 if and only if arg Z0.d 0/ � arg Z0.d/ if and only if

arg Z.d 0/ � Z.d/ for all nonzero dimension vectors d 0 smaller than d . Hence, Rss
d

is the open

subset of semistable points in the GIT sense, and a categorical quotient M
ss
d

WD Rss
d

==Gd exists.

As the latter satisfies a universal property, it does not depend on the choice of �0 and r � 1.

From now on, we will always assume that � is geometric so that moduli spaces exist.

We use the notation M
ssimp

d
for the King stability condition � D 0. Points in M

ssimp

d
cor-

respond to semisimple representations of dimension d . For every stability condition there is

a projective morphisms M
ss
d

! M
ssimp

d
mapping any (polystable) representation to the sum of

its Jordan–Hölder factors taken in KQ-Rep.

Given two dimension vectors d; d 0, we denote by Rd;d 0 the (linear) subvariety of RdCd 0

corresponding to representations which preserve the subspace Kd � Kd ˚ Kd 0 D KdCd 0
.

Similarly, Gd;d 0 � GdCd 0 is the subgroup preserving this subspace. Then

Exactd;d 0 D Rd;d 0=Gd;d 0

is the stack of short exact sequences of representations with prescribed dimensions of the

outer terms. There are morphisms �1 � �2 � �3 W Exactd;d 0 ! Md � MdCd 0 � Md 0 map-
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Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli 149

ping a sequence to the corresponding entry. Note that �2 is the universal quiver Grassmannian

for Q, hence representable and proper. In particular,

Exactd;d 0 Š Yd;d 0=GdCd 0

for Yd;d 0 D Rd;d 0 �Gd;d 0 GdCd 0 .

Let us continue the present subsection with a simple but important observation. Given

a slope � 2 .�1; C1�, the moduli stack M
ss
� WD

F

d2ƒ�
M

ss
d

, respectively the moduli space

M
ss
� WD

F

d2ƒ�
M

ss
d

, is a commutative monoid in the category of stacks, respectively schemes,

with respect to direct sums of representations. The unit is given by the zero-dimensional rep-

resentation which is considered to be semistable with any slope. Obviously, the morphisms

p W M
ss
� ! M

ss
� and dim W M

ss
� ! ƒ� mapping every polystable representation to its dimen-

sion vector are monoid homomorphism.

Lemma 2.1. The morphism ˚ W M
ss
� � M

ss
� ! M

ss
� is finite.

Proof. As the isomorphism types and multiplicities of the stable summands of a poly-

stable object are unique, the morphism is certainly quasi-finite. It remains to show that ˚ is

proper. There is a commutative diagram

M
ss
� � M

ss
�

˚
//

��

M
ss
�

��

M
ssimp
� � M

ssimp
�

˚
// M

ssimp
�

with proper vertical maps. Hence, it suffices to show that ˚ W M
ssimp
� � M

ssimp
� ! M

ssimp
� is

proper. Consider the commutative diagram

Exactd;d 0 Š Yd;d 0=GdCd 0

�1��3

uu

�2

**

�d;d 0

��

Rd =Gd � Rd 0=Gd 0 ;

�0

55

�d ��d 0

��

RdCd 0=GdCd 0

�dCd 0

��

Spec kŒYd;d 0 �GdCd 0

Q�1� Q�3

vv

Q�2

))

Spec kŒRd �Gd � Spec kŒRd 0 �Gd 0

Q�0

66

˚
// Spec kŒRdCd 0 �GdCd 0

with Yd;d 0 Š Rd;d 0 �Gd;d 0 GdCd 0 Š Exactd;d 0 �MdCd 0 RdCd 0 . Here, �0 maps a pair .V; V 0/

of representations to its direct sum V ˚ V 0 providing a right inverse of �1 � �3. Thus, Q�0

is also a section providing a closed embedding. It remains to show that Q�2 is proper. Note

that O�2 W Yd;d 0 ! RdCd 0 , being the pull-back of �2, must be proper with Stein factorization

Yd;d 0 ! Spec kŒYd;d � ! RdCd 0 as RdCd 0 is affine. Thus, kŒRdCd 0 � ! kŒYd;d 0 � is finite,

hence integral. Applying the Reynolds operator of kŒYd;d 0 � to an integral equation for an

element a 2 kŒYd;d 0 �GdCd 0 , we obtain that kŒRdCd 0 �GdCd 0 ! kŒYd;d 0 �GdCd 0 is integral, too.

Thus Q�2 is finite, hence proper.
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150 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

For later applications we also need framed Q-representations (see [10]). We fix a framing

vector f 2 NQ0 and consider representations of a new quiver

Qf D .Q0 t ¹1º; Q1 t ¹ˇli
W 1 ! i j i 2 Q0; 1 � li � fiº/

with dimension vector d 0 obtained by extending d via d1 D 1. We also extend � appropri-

ately (see [10]) and get a King stability condition �0 for Qf . Let M
ss
f;d

be the moduli space

of �0-semistable Qf -representations of dimension vector d 0. It turns out that M
ss
f;d

D M
st
f;d

,

and thus M
ss
f;d

is smooth and pf;d W M
ss
f;d

! M
ss
f;d

a principal bundle with structure group

P.Gd � Gm/ Š Gd . There is an obvious morphism � W M
ss
f;d

! M
ss
d

obtained by restricting

a �0-(semi)stable representation of Qf to the subquiver Q which turns out to be �-semistable.

The following theorem will we crucial for proving our main result. To keep this section short,

we will postpone its proof to Section 5.

Theorem 2.2. Let � be the slope of a dimension vector d with respect to a stability

condition �. If � is �-generic, the morphism � W M
ss
f;d

! M
ss
d

is projective and virtually small,

that is, there is a finite stratification M
ss
d

D
F

� S� with empty or dense stratum S0 D M
st
d

such

that ��1.S�/ ! S� is étale locally trivial and

dim ��1.x�/ � dim Pf �d�1 � 1

2
codim S�

for every x� 2 S� with equality only for S� D S0 6D ; with fiber ��1.x0/ Š Pf �d�1.

Let us also introduce the notation M
ss
f;�

WD
F

d2ƒ�
M

ss
f;d

and M
st WD

F

0¤d2NQ0 M
st
d

.

3. Intersection complex

3.1. From perverse sheaves to mixed Hodge modules. The ground field in the next

two sections will be k D C. In this subsection we recall some standard facts about perverse

sheaves, intersection complexes and Schur functors. The interested reader will find more details

in [5] and [35]. Let X be a variety with quasiprojective connected components. We denote by

Perv.X/ respectively MHM.X/ the abelian categories of perverse sheaves respectively mixed

Hodge modules on X . There is a natural functor rat W MHM.X/ ! Perv.X/ associating to

every mixed Hodge module its underlying perverse sheaf. For a morphism f W X ! Y of

finite type we get two pairs .f �; f�/; .fŠ; f Š/ of adjoint triangulated functors

f�; fŠ W Db.Perv.X// ! Db.Perv.Y // and f �; f Š W Db.Perv.Y // ! Db.Perv.X//;

and similarly for mixed Hodge modules, satisfying Grothendieck’s axioms of the four func-

tor formalism. Moreover, the functor rat is compatible with these functors in the obvious way,

and there are duality functors relating f� with fŠ and f � with f Š. We also mention that for

each connected component X˛ of X , the categories Perv.X˛/ and MHM.X˛/ are of finite

length. Furthermore, there is an element T of MHM.C/, called the Tate object. Since MHM.C/

acts on MHM.X/, we get an exact autoequivalence on Db.MHM.X//, abusing notation also

denoted with T , given by multiplication with T . It commutes with all four functors and satisfies

rat ıT D rat. In our case, X will carry the structure of a commutative monoid with unit 0 2 X ,
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and MHM.C/ can be interpreted as the subcategory of mixed Hodge modules supported at 0.

The action of MHM.C/ on MHM.X/ is induced by the convolution product on MHM.X/

which we introduce later. The actions of T and L WD T Œ�2� on K0.MHM.X// coincide,

making it into a ZŒL˙1�-module. We denote by K0.MHM.X//ŒL�1=2� the ZŒL˙1=2�-module

obtained by adjoining a square root of L. One can also categorify this, giving rise to a square

root T1=2 of T in an enlarged abelian category of mixed Hodge motives. Then we have

L�1=2 D T�1=2Œ1�, and one should interpret the multiplication with L�1=2 as a refinement

of the shift functor Œ1� on Db.Perv.X//.

3.2. Intersection complex. Given a closed equidimensional subvariety Z � X and

a local system on a dense open subset Zo of the regular part Zreg of Z, there is canoni-

cal perverse sheaf ICZ.L/ on X , called the L-twisted intersection complex of Z, such that

ICZ.L/jZo D LŒdim Z�. If Z and L are irreducible, then ICZ.L/ is an irreducible object

of Perv.X/, and all irreducible objects are obtained in this way. For MHM.X/, there is a sim-

ilar construction, with L replaced with a (graded) polarizable, admissible variation of (mixed)

Hodge structures L with quasi-unipotent monodromy at “infinity”. We will, however, use

the slightly non-standard normalization ICZ.L/jZo D L� dim Z=2L with the convention that

rat.L/ is the unshifted local system given by L. As rat.L� dim Z=2/ D QŒdim Z�, the usual

shift in the de Rham functor is not lost but “absorbed” by the normalization factor. Note that an

irreducible variation of mixed Hodge structures is pure, and application of T�1=2 reduces the

weight by one. If Z has several connected components of different dimension, the construction

of ICZ.L/ generalizes accordingly. Applying this to the trivial variation Q of pure Hodge

structures of type .0; 0/ on Zreg, we obtain a distinguished intersection complex ICZ.Q/.

3.3. Schur functors. Let us now specialize to X D M
ss
� , although everything in this

subsection remains true for arbitrary commutative monoids .X; ˚; 0/ in the category of vari-

eties with quasiprojective connected components such that ˚ W X � X ! X is finite. Due to

the last property, the higher derived direct images Ri
L

� vanish, and we obtain a symmetric

monoidal tensor product

˝ W MHM.Mss
�/ � MHM.Mss

�/ ! MHM.Mss
�/; E ˝ F WD

M

�

.E � F /;

and similarly for Perv.Mss
�/. The unit 1 is given by ICM

ss
0
.Q/, which is a skyscraper sheaf of

rank one supported at the zero-dimensional representation 0. More details can be found in [28].

We drop the ˝-sign when dealing with the associated Grothendieck groups K0.Perv.Mss
�// and

K0.MHM.Mss
�//, respectively. Using the fact that ˚ is a small map, it is not hard to see that

ICZ.L/ ˝ ICZ0.L0/ D IC˚.Z�Z0/.L
00/ with L00 being pure of weight zero if L and L0 were

pure of weight zero.

Given E 2 MHM.Mss
�/ and n 2 N, the mixed Hodge module E

˝n carries a natural

action of the symmetric group Sn. By general arguments (see [8]), we obtain a decomposition

E
˝n D

M

�an

W� ˝ S�.E/

for certain mixed Hodge modules S�.E/, where W� denotes the irreducible representation

of Sn associated to the partition � of n. The tensor product used on the right-hand side can

be defined for every additive category, and should not be confused with the tensor product

explained above. However, after identifying vector spaces W with trivial variations of pure
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152 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

Hodge structures of type .0; 0/ over M
ss
0 , both tensor products agree. The decomposition is

functorial, giving rise to Schur functors S� W MHM.Mss
�/ ! MHM.Mss

�/ for every partition �.

The same construction also applies to Perv.Mss
�/, and rat W MHM.Mss

�/ ! Perv.Mss
�/ “com-

mutes” with Schur functors of the same type.

Example 3.1. (i) For � D .n/, the representation W� is the trivial representation of Sn

and we set S�.E/ DW Symn.E/. If EjMss
0

D 0, we get Symn.E/jMss
d

D 0 for every d 2 ƒ�

provided n � 0. In particular, Sym.E/ D
L

n Symn.E/ is well defined.

(ii) For � D .1; : : : ; 1/, the representation W� is the sign representation of Sn and we set

S�.E/ DW Altn.E/. As before Alt.E/ D
L

n Altn.E/ is well defined provided EjMss
0

D 0.

The following proposition is a standard result.

Proposition 3.2. Let E; F be in MHM.Mss
�/ or in Perv.Mss

�/ such that

EjMss
0

D F jMss
0

D 0:

Denote by P the set of all partitions of arbitrary size. Then

Sym.E ˚ F / D Sym.E/ ˝ Sym.F /; in particular(3.1)

Symn.E ˚ F / D
M

iCj Dn

Symi .E/ ˝ Symj .F /;

Sym.E ˝ F / D
M

�2P

S�.E/ ˝ S�.F /; in particular(3.2)

Symn.E ˝ F / D
M

�`n

S�.E/ ˝ S�.F /:

Equations (3.1) and (3.2) are of course also true without the additional assumptions on E

and F . The next result is also well known.

Proposition 3.3. The Schur functors S� induce well-defined operations on the Grothen-

dieck groups K0.Perv.Mss
�// and K0.MHM.Mss

�//, respectively, satisfying the analogs of (3.1)

and (3.2). In particular, both Grothendieck groups carry the structure of a (special) �-ring.

It is worth to mention the following technical detail. Although Sym.E/ D
L

n Symn.E/

by definition, this equation cannot hold on the level of Grothendieck groups as we do not have

infinite sums. To define these, we need to complete the Grothendieck groups as follows. Let

F p � K0.Perv.Mss
�// be the subgroup generated by all perverse sheaves E such that EjMss

d
D 0

if d cannot be written as a sum of p nonzero dimension vectors, i.e. jd j WD
P

i2Q0
di < p. It

is easy to these that F pF q � F pCq and S�.F p/ � F np for all � a n and all n; p; q 2 N.

Hence, the F p provide a �-ring filtration, and the corresponding completion

K0.Perv.Mss
�// D

Y

d2ƒ�

K0.Perv.Mss
d //

has a well-defined ring structure and action of S�. Moreover,
P

n Symn.E/ is well defined and

agrees with the class of Sym.E/ for E 2 F 1. The completion of K0.MHM.Mss
�// is done in

the same way.
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As T D L in K0.MHM.C// and Symn.T˙1/ D T˙n, the �-ring structure of Proposi-

tion 3.3 can be extended to K0.MHM.Mss
�//ŒL�1=2�, and even to

K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1�

D K0.MHM.Mss
�// ˝

ZŒL˙1� ZŒL�1=2; .Lr � 1/�1 W r � 1�

such that

S�.L˙1=2/ D
´

L˙n=2; if � D .1; : : : ; 1/;

0; otherwise.

Again, we shall consider the filtration F pŒL�1=2�, respectively F pŒL�1=2; .Lr �1/�1 W r � 1�,

defined accordingly and perform a completion as before. By abusing notation let us denote the

resulting �-ring with

K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1�

WD
Y

d2ƒ�

�

K0.MHM.Mss
d // ˝

ZŒL˙� ŒL�1=2; .Lr � 1/�1 W r � 1�
�

which should not be confused with
�
Y

d2ƒ�

K0.MHM.Mss
�//

�

˝
ZŒL˙1� ZŒL�1=2; .Lr � 1/�1 W r � 1�:

Remark 3.4. One reason for adjoining L˙1=2 and our convention for intersection com-

plexes is to symmetrize weight polynomials under Poincaré duality. Our choice of extending

S� is done in such a way that T1=2 is again a line element. The various completions are needed

in the next section when we pass to stacks and define Donaldson–Thomas invariants.

The following result illustrates the nice behavior of intersection complexes with respect

to Schur functors.

Proposition 3.5. Given a dimension vector d with M
st
d

6D ; and a natural number n,

let us denote by � and Q� the big diagonal in Symn
M

st
d

and .Mst
d

/n respectively. For an irre-

ducible representation W� of Sn denote by W � the variation of Hodge structure of type .0; 0/

on Symn
M

st
d

n � given by ..Mst
d

/n n Q�/ �Sn
W�. Then

(3.3) S�.ICM
ss
d

.Q// D ICZn
.W ��/

with �� being the conjugate partition of � if dim M
st
d

D 1�.d; d/ is odd and �� D � if dim M
st
d

is even. Moreover, Zn is the irreducible closed image of ˚ W .Mss
d

/n ! M
ss
nd

.

Proof. Since ˚ W .Mss
d

/n ! M
ss
nd

is a small map, it follows that

ICM
ss
d

.Q/˝n D ˚�

�

ICM
ss
d

.Q/�n
�

D ICZn
.L/

for a suitable variation of Hodge structures L on the open smooth image Zo
n of the map

.Mst
d

/n n Q� ! Zn. The latter map induces an isomorphism between the geometric points

of Symn
M

st
d

n� and of Zo
n. By Zariski’s main theorem, Zo

n Š Symn
M

st
d

n�. As the restriction
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of ˚ to .Mst
d

/n n Q� is a left principal Sn-bundle over Symn
M

st
d

n � Š Zo
n, we can trivialize

it étale locally as U � Sn with U ! Zo
n being the étale cover .Mst

d
/n n Q� ! Zo

n, showing

that the fiber of L is just L�n dim M
st
d

=2 ˝ H 0.Sn; Q/. The natural Sn-action on ICM
ss
d

.Q/˝n

is induced by the left multiplication with Sn on the second factor of U � Sn, while the right

multiplication on Sn and on U corresponds to the Galois action of this étale cover giving rise to

a nontrivial monodromy of L. The Sn-bimodule H 0.Sn; Q/ decomposes as
L

�an W� ˝ W�

with the left and the right factor corresponding to the left and the right Sn-action, respectively.

Moreover, by our convention, L�n dim M
st
d

=2 carries the dim M
st
d

-th power of the sign represen-

tation. Thus, L D
L

�an W�� ˝ W � D
L

�an W� ˝ W �� completing the proof.

Remark 3.6. The occurrence of conjugate partitions looks rather unnatural but is

related to the fact that the naive permutation action of Sn on left D-modules needs to be twisted

by the sign representation depending on the dimension. See [28, Remark 1.6 (i)], for more

details.

We can also replace M
ss
� with NQ0 � Spec C considered as a zero-dimensional monoid

in the category of complex varieties with quasiprojective connected components. All of our

constructions go through, and it is not difficult to see that

K0.MHM.NQ0 � Spec C//ŒL�1=2; .Lr � 1/�1 W r � 1�

D K0.MHM.C//ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒti W i 2 Q0��

is the ring of power series in jQ0j variables. Since dim W M
ss
� ! NQ0 � Spec C is a homo-

morphism of monoids with ˚ and C being finite, it follows that dim� and dimŠ define triangu-

lated tensor functors Db.MHM.Mss
�// ! Db.MHM.NQ0 � Spec C// commuting with Schur

functors of the same type. In particular, we get �-ring homomorphisms dim� and dimŠ from

K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1�

to

K0.MHM.C//ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒti W i 2 Q0��

commuting with the Schur operators, and similarly for perverse sheaves.

4. DT invariants and intersection complexes

4.1. Donaldson–Thomas invariants. In this subsection we will introduce a general-

ization of Donaldson–Thomas invariants using the notation of the previous sections. Let us

fix a slope � 2 .�1; C1� and consider the morphism p W M
ss
� ! M

ss
� . Our first object is2)

pŠICM
ss
�

.Q/ in K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1�. To define it properly, we should

develop a theory of mixed Hodge modules on Artin stacks along with a four functor formal-

ism. However, in our situation of smooth quotient stacks we will use a more direct approach

avoiding complicated machinery. First of all, M
ss
d

is smooth, motivating

ICM
ss
d

.Q/ D L� dim M
ss
d

=2Q D L.d;d/=2Q:

2) Note that pŠ is the derived direct image with compact support, while p� is the usual derived direct image.
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Recall that q W Rss
d

! M
ss
d

is a Gd -principal bundle for every dimension vector d . By means

of the projection formula we would expect a formula like

H �
c .Gd ; Q/ ICM

ss
d

.Q/ D qŠq
�
ICM

ss
d

.Q/ D Ldim Gd =2qŠICRss
d

.Q/ D L.d;d/=2qŠQ

in K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1�. Hence, we will define pŠICM

ss
d

.Q/ as the

product in K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1� of L.d;d/=2pŠqŠQ with the inverse of

the class
Y

i2Q0

L.di
2
/

diY

rD1

.Lr � 1/ 2 ZŒL� � K0.MHM.C//

of H �
c .Gd ; Q/. “Summing” over d 2 ƒ� gives pŠICM

ss
�

.Q/. The following lemma is a stan-

dard fact in the theory of (filtered) �-rings.

Lemma 4.1. There is an element DT � 2 K0.MHM.Mss
�//ŒL�1=2; .Lr �1/�1 W r � 1�

with DT �jMss
0

D 0 such that

pŠICM
ss
�

.Q/ D Sym

�
1

L1=2 � L�1=2
DT �

�

:

Definition 4.2. We call

DT 2 K0.MHM.Mss//ŒL�1=2; .Lr � 1/�1 W r � 1�

with DT jMss
�

D DT � for all � 2 .�1; C1� the Donaldson–Thomas “function” and

DTd WD dimŠ DT d D H �
c .Mss

d ; DT d / 2 K0.MHM.C//ŒL�1=2; .Lr � 1/�1 W r � 1�

the Donaldson–Thomas invariant of dimension vector d with respect to the given stability

condition �.

As dimŠ is a �-ring homomorphism and M
ss
� is non-singular, it follows that our defini-

tion of Donaldson–Thomas invariants agrees with the usual one [25]. Recall that our stability

condition � was called �-generic if hd; ei D 0 for all d; e 2 ƒ�, and generic if that holds for

all � 2 .�1; C1�. The following result will be proved as Corollary 6.7.

Proposition 4.3. For a �-generic stability condition and a framing vector f 2 NQ0

such that 2jfi for all i 2 Q0, we obtain the following formula with ƒ0
� WD ƒ� n ¹0º:

(4.1) ��ICM
ss
f;�

.Q/ D �ŠICM
ss
f;�

.Q/ D Sym

�
X

d2ƒ0
�

ŒPf �d�1�virDT d

�

in K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1�, using the shorthand

ŒPf �d�1�vir WD Lf �d=2 � L�f �d=2

L1=2 � L�1=2
:

Here � W M
ss
f;�

! M
ss
� is the morphism forgetting the framing.

The parity assumption on the framing vector is made to avoid typical “sign problems”.
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4.2. The main result. We also need the following result proven in Section 6.

Theorem 4.4. If � is �-generic and ix W Spec C ,! M� the embedding corresponding

to an arbitrary closed point x 2 M, the “value” DT .x/ WD i�
x DT of the Donaldson–Thomas

function DT is in the image of the natural map

K0.MHM.C//ŒL�1=2� ! K0.MHM.C//ŒL�1=2; .Lr � 1/�1 W r � 1�:

Remark 4.5. Recall that for every quasiprojective variety X the category of mixed

Hodge structures on X is artinian and noetherian with simple objects being the intersection

complexes for certain irreducible variations of pure Hodge structures. Moreover, every pure

Hodge structure is the Tate twist of a pure Hodge structure of weight zero or one. Hence,

K0.MHM.X// is free over ZŒL˙1� with a basis consisting of all (Grothendieck classes of)

intersection complexes ICZ.L/, with Z running through all irreducible closed subvarieties

of X and L running through equivalence classes of all irreducible, polarizable, admissible vari-

ations of pure Hodge structures L supported on Zo � Zreg with quasi-unipotent monodromy

at “infinity” and weight zero or one. Two pairs .Z; L/ and .Z0; L0/ define the same intersection

complex if Z D Z0 and LjZo\Z0o D L0jZo\Z0o .

Remark 4.6. Adjoining L1=2 has a categorification giving rise to a category of gen-

eralized mixed Hodge modules. The Grothendieck group of this enlarged category is given

by K0.MHM.X//ŒL�1=2�. In this enlarged category the classical Tate twist has a square

root increasing weights by one. This corresponds to the multiplication with �L1=2 in the

Grothendieck group.3) In particular, K0.MHM.X//ŒL�1=2� is a free ZŒL˙1=2�-module with

a basis given by ICZ.L/ as above with L being an irreducible variation of generalized pure

Hodge structures of weight zero. If the reader feels uncomfortable with this, he should keep in

mind that ICZ.L/ is just a short notation for �L�1=2
ICZ. QL/ for some variation QL of pure

Hodge structures of weight one.

By applying the aforementioned freeness to the ring extension

ZŒL˙1=2� ,! ZŒL˙1=2; .Lr � 1/�1 W r � 1�;

we conclude that the natural morphism

K0.MHM.X//ŒL�1=2� ! K0.MHM.X//ŒL�1=2; .Lr � 1/�1 W r � 1�

obtained by scalar extension is injective. In particular, the natural map in Theorem 4.4 is injec-

tive, too.

Theorem 4.7. Assume that � is �-generic. Then

DT � D IC
M

st
�

.Q/

3) By convention L1=2 is the class of the square root of the Tate object shifted by minus one in the derived

category of mixed Hodge structures.
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holds in K0.MHM.Mss
�//ŒL�1=2�. In particular, for generic �

DTd D
´

ICc.Mss
d

; Q/ D IC.Mss
d

; Q/_; if M
st
d

¤ ;;

0; otherwise

holds in K0.MHM.C//ŒL�1=2� for every dimension vectors d 2 ƒ�.

Proof. We prove the theorem by induction over jd j starting with the trivial case d D 0

for which the theorem is obviously true as M
st
0 D ;. As before, P denotes the set of all parti-

tions of arbitrary size and ƒ0
� D ƒ� n ¹0º. We fix a framing vector f 2 NQ0 such that 2jfi

for all i 2 Q0 and rewrite equation (4.1) from Proposition 4.3 equations (3.1) and (3.2):

��ICM
ss
f;d

D
X

�Wƒ0
�!P

P

j�e jeDd

Y

e2ƒ0
�

S�e ŒPf �e�1�vir � S�e DT e:

By induction over jd j D
P

i2Q0
di , we conclude using equation (3.3) that

��ICM
ss
f;d

D ŒPf �d�1�virDT d
„ ƒ‚ …

for �Dıd

C
X

�Wƒ0
�!P

P

j�e jeDd
�¤ıd

�
Y

e2ƒ0
�

S�e ŒPf �e�1�vir

�

ICZ�
.L�/

D Lfd=2 � L�fd=2

L1=2 � L�1=2
DT d C

X

�Wƒ0
�!P

P

j�e jeDd
�¤ıd

h�.L1=2/ � ICZ�
.L�/

for some palindromic Laurent polynomials

h�.L1=2/ D h�.L�1=2/

of degree at most f � d �
P

e j�ej < f � d � 1, some irreducible closed subvarieties Z� and

some variations L� of Hodge structures of weight zero.

On the other hand, we can use Remark 4.6, the fact that � is virtually small (see Theo-

rem 2.2) and the relative hard Lefschetz theorem applied to the projective morphism � to

conclude

��ICM
ss
f;d

D ŒPf �d�1�virIC
M

st
d

.Q/ C
X

.Z;L/; Z 6DMst

gZ;L.L1=2/ICZ.L/

for certain palindromic Laurent polynomials gZ;L.L1=2/ D gZ;L.L�1=2/ of degree less than

f � d � 1. Here, IC
M

st
d

.Q/ is zero if M
st
d

D ;. Combining both equations, we get

Lfd=2 � L�fd=2

L1=2 � L�1=2

�

DT d � IC
M

st
d

.Q/
�

D
X

.Z;L/; Z 6DM
st
d

fZ;L.L1=2/ICZ.L/

for certain palindromic Laurent polynomials fZ;L.L1=2/ D fZ;L.L�1=2/ of degree less than

f � d � 1. The sum on the right-hand side is taken over pairs .Z; L/ as in Remark 4.6 (up

to equivalence). We claim that both sides of the equation are zero. If not, we pick among

all pairs .Z; L/ with fZ;L 6D 0 one for which Z is of maximal dimension. Hence, we can

find a generic closed point x 2 Zo not contained in any other Z0 with fZ0;L0 6D 0. Using
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the notation ix W Spec C ! M
ss
d

, we get i�
x ICZ.L/ D L� dim Z=2Lx D L� dim Z=2

ICx.Lx/

in K0.MHM.C/ŒL�1=2� with Lx WD i�
x L being the fiber of L at x 2 Z. Moreover,

Lfd=2 � L�fd=2

L1=2 � L�1=2

�

DT .x/ � i�
x IC

M
st
d

.Q/
�

D L� dim Z=2fZ;L.L1=2/ ICx.Lx/

which is now an equation in the free ZŒL˙1=2�-module K0.MHM.C//ŒL�1=2� due to Theo-

rem 4.4. In particular, the coefficient in front of the basis vector ICx.Lx/ on the right-hand

side of the equation must be divisible in ZŒL˙1=2� by the palindromic Laurent polynomial

Lfd=2 � L�fd=2

L1=2 � L�1=2
D L

fd�1
2 C � � � C L

1�fd
2

of degree fd � 1 in L1=2 which is impossible as the degree of fZ;L is strictly smaller. Thus,

the claim is proven, and DT d D IC
M

st
d

.Q/ follows.

4.3. Application to matrix invariants. Since the motivic DT invariants of m-loop

quivers are computed explicitly in [33], our main result allows us to give an explicit formula

for the Poincaré polynomial in (compactly supported) intersection cohomology of the corre-

sponding moduli spaces, which are the classical spaces of matrix invariants.

So let Q.m/ be the quiver with a single vertex and m � 2 loops (in the case of no loop,

or of one loop, the nonempty moduli spaces reduce to affine spaces). We consider the trivial

stability and a positive integer d , and fix an d -dimensional C-vector space V . Then the moduli

space M
ss
d

.Q.m// equals the invariant theoretic quotient M
.m/

d
WD EndC.V /m== GLC.V / of m-

tuples of linear operators up to simultaneous conjugation. This is an irreducible normal affine

variety of dimension .m � 1/d2 C 1, singular except in case d D 1 or m D d D 2.

To formulate the explicit formula for the compactly supported intersection Betti numbers

of M
.m/

d
, we need some combinatorial notions from [33]. Let Ud be the set of sequences

.a1; : : : ; ad / of natural numbers summing up to .m � 1/d , on which the cyclic group Cd of

order d acts by cyclic permutation. We call a sequence a� primitive if it is different from all its

cyclic permutations, and almost primitive if it is either primitive, or m is even, d � 2 mod 4,

and the sequence equals twice a primitive sequence of length d=2. We define the degree of

the sequence as
Pd

iD1.d � i/ai and the degree of a cyclic class of sequences as the minimal

degree of sequences in this class. Let U
ap

d
=Cd be the set of cyclic classes of almost primitive

sequences. Combining our main result with the formula for DT invariants in [33], we arrive at:

Theorem 4.8. For all d � 1 and m � 2, we have

X

p

dim ICp
c .M

.m/

d
; Q/vp D v.m�1/d2C1 1 � v�2

1 � v�2d

X

C 2U
ap

d
=Cd

v�2 deg C :

5. Proof of Theorem 2.2

5.1. The stack of nilpotent quiver representations. As before, let Q be a finite quiver

and d 2 NQ0 a dimension vector for Q. Consider the action of the linear algebraic group Gd

on the vector space Rd . Let p W Rd ! Rd ==Gd be the invariant-theoretic quotient; in other
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words, Rd ==Gd is the spectrum of the ring of Gd -invariants in Rd , which, by [27], is generated

by traces along oriented cycles in Q. We consider the nullcone of the representation of Gd

on Rd , that is,

Nd WD p�1.p.0//:

By a standard application of the Hilbert criterion (see [26, Chapter 6] for a much finer

analysis of the geometry of Nd using the Hesselink stratification), we can characterize points

in Nd either as those representations such that every cycle is represented by a nilpotent oper-

ator, or as those representation admitting a composition series by the one-dimensional irredu-

cible representations Si concentrated at a single vertex i 2 Q0 (and with all loops at i repre-

sented by 0).

The main observation of this section is that, under the assumption of Q being symmetric,

there is an effective estimate for the dimension of Nd .

Theorem 5.1. If Q is symmetric, we have

dim Nd � dim Gd � �1

2
.d; d/ C 1

2

X

i2Q0

.i; i/di � jd j:

Proof. For a decomposition d D d1 C � � � C d s , denoted d�, we consider the closed

subvariety Rd� of Rd consisting of representations V admitting a filtration

0 D V0 � V1 � � � � � Vs D V

by subrepresentations such that Vk=Vk�1 equals the zero representation of dimension vec-

tor dk for all k D 1; : : : ; s. This subvariety being the collapsing of a homogeneous bundle over

a variety of partial flags in
L

i2Q0
Kdi , its dimension is easily estimated as

dim Rd� � dim Gd �
X

k<l

.d l ; dk/ �
X

i2Q0

X

k

.dk
i /2:

The above characterization of Nd allows us to write Nd as the union of all Rd� for decompo-

sitions d� which are thin, that is, all of whose parts are one-dimensional (one-dimensionality

is obscured by the notation to avoid multiple indexing and to make the argument more trans-

parent). Thus dim Nd � dim Gd is bounded from above by the maximum of the values

�
X

k<l

.d l ; dk/ �
X

i2Q0

X

k

.dk
i /2

over all thin decompositions. Since Q is symmetric, we can rewrite

X

k<l

.d l ; dk/ D 1

2
.d; d/ � 1

2

X

k

.dk; dk/:

All dk being one-dimensional, we can easily rewrite

X

i2Q0

X

k

.dk
i /2 D jd j;

X

k

.dk; dk/ D
X

i2Q0

.i; i/di :

All terms now being independent of the chosen thin decomposition, we arrive at the required

estimate.
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160 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

5.2. Virtual smallness of the Hilbert–Chow map. We consider the Hilbert–Chow

map � W M
ss
f;d

! M
ss
d

forgetting the framing datum; our aim is to prove a strong dimension

estimate for its fibers when the stability is �-generic (cf. Section 2.2) for � being the slope

of d .

We consider the Luna stratification of M
ss
d

: a decomposition type � for d consists of

a sequence ..d1; m1/; : : : ; .d s; ms// in ƒ� � N such that
P

k mkdk D d . Inside the moduli

space M
ss
d

parameterizing isomorphism classes of polystable representations of dimension vec-

tor d , we can consider the subset S� of representations of the form
L

k E
mk

k
for pairwise

non-isomorphic stable representations Ek of dimension vector dk and slope �. We thus have

dim S� D
X

k

dim M
st
dk .Q/ D s �

X

k

.dk; dk/:

By [10], S� is locally closed, and the map � is étale locally trivial over S� . We fix a point

x 2 S� . This stratum being nonempty, M
st
dk .Q/ is nonempty, and thus

.dk; dk/ D 1 � dim M
st
dk .Q/ � 1

for all k. The fiber ��1.x/ over a point x 2 S� can be described as follows.

Define the local quiver Q� with vertices i1; : : : ; is and ıkl � .dk; d l/ arrows from ik
to il . Define a local dimension vector d� for Q� by .d�/ik

D mk , and a local framing datum f�

by .f�/ik
D f �dk . We consider the trivial stability on Q� . Then we have a local Hilbert–Chow

map

�� W M
ssimp

f� ;d�
.Q�/ ! M

ssimp

d�
.Q�/ D Rd�

==Gd�
:

We denote the fiber over the class of the zero representation by M
nilp

f� ;d�
.Q�/. Then, by [10], we

have

��1.x/ ' M
nilp

f� ;d�
.Q�/:

By construction, we have

dim M
nilp

f� ;d�
.Q�/ D dim Nd�

� dim Gd�
C f� � d� :

Now assume � to be �-generic, thus Q� is symmetric, and Theorem 5.1 estimates the dimen-

sion of the fiber ��1.x/ as

dim ��1.x/ D dim M
nilp

f� ;d�
.Q�/

D dim Nd�
� dim Gd�

C f� � d�

� �1

2
.d� ; d�/Q�

C 1

2

X

k

.ik; ik/Q�
.d�/ik

� jd� j C f� � d� :

Using the definition of Q� , d� and f� , this simplifies to

dim ��1.x/ � �1

2
.d; d/ C 1

2
.dk; dk/mk �

X

k

mk C f � d:

On the other hand, we can rewrite the dimension formula for S� as

codim S� D �.d; d/ C
X

k

.dk; dk/ C 1 � s:

Brought to you by | University of Sheffield
Authenticated

Download Date | 9/18/19 12:52 PM



Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli 161

The inequality

dim ��1.x/ � .f � d � 1/ � 1

2
codim S�

(with equality only if 0 WD � D ..d; 1//) claimed in Theorem 2.2 can thus be rewritten as

�1

2
.d; d/ C 1

2

X

k

.dk; dk/mk �
X

k

mk C 1 � �1

2
.d; d/ C 1

2

X

k

.dk; dk/ C 1

2
.1 � s/:

This is easily simplified to

1

2

X

k

..dk; dk/ � 2/.mk � 1/ � 1

2
.s � 1/:

Since .dk; dk/ � 1, the left-hand side is nonpositive, whereas the right-hand side is nonnega-

tive. Equality holds if both sides are zero, thus s D 1, proving virtual smallness.

6. Motivic DT-theory and the integrality conjecture

We prove a stronger version of Theorem 4.4 for arbitrary ground fields k with characteris-

tic zero and not necessarily closed k-points. Since it is not clear how to deal with mixed Hodge

modules on varieties defined over arbitrary fields, we will work in the motivic world using

motivic functions instead of mixed Hodge modules. The reader not familiar with motivic func-

tions might have a look at [16], where motivic functions are called stack functions. However, we

will also recall the main definitions below. The machinery used to define Donaldson–Thomas

functions will also work in this more general context, and we prove a couple of useful formulas.

There is a �-ring homomorphism from

K0.Var=M
ss/ŒL�1=2; .Lr � 1/�1 W r � 1�

to

K0.MHM.Mss//ŒL�1=2; .Lr � 1/�1 W r � 1�;

induced by ŒX
q�! M

ss� 7! qŠQ, giving rise to corresponding results for mixed Hodge modules.

As we will discuss at the end of this section, working with motivic functions has also some

limitations.

6.1. Motivic functions. Given an arbitrary Artin stack or scheme B with connected

components being of finite type over4) K, we define the Grothendieck group K0.Var=B/

to be the free abelian group generated by isomorphism classes ŒX ! B� of representable

morphisms of finite type such that X has a locally finite stratification by quotient stacks

Xi D Xi= GLK.ni /, subject to the cut and paste relation

ŒX ! B� D ŒZ ! B� C ŒX n Z ! B�;

for every closed substack Z � X. In particular, ŒX ! B� D ŒXred ! B�.

4) In practice, K will be our ground field k or some extension of k.

Brought to you by | University of Sheffield
Authenticated

Download Date | 9/18/19 12:52 PM



162 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

Remark 6.1. Using the cut and paste relation, we arrive at the following conclusion:

if B D Spec B as an affine scheme of a finitely generated K-algebra B , then the group

K0.Var=Spec B/ can also be described as the abelian group generated by symbols ŒA� for each

finitely generated B-algebra A subject to the following two conditions.

(i) If A Š A0 as B-algebras, then ŒA� D ŒA0�.

(ii) If a1; : : : ; ar 2 A is a finite set of elements, then

ŒA� D ŒA=.a1; : : : ; ar/� C
X

;6DJ �¹1;:::;rº

.�1/jJ j�1ŒAQ

j 2J aj
�:

The fiber product over K defines a ring structure on K0.Var=K/ and a K0.Var=K/-module

structure on K0.Var=B/. Taking the product over K defines an exterior product

� W K0.Var=B/ � K0.Var=B
0/ ! K0.Var=B �K B

0/:

Let us also introduce the module

K0.Var=B/ŒL�1=2; .Lr � 1/�1 W r � 1�

WD K0.Var=B/ ˝ZŒL� ZŒL�1=2; .Lr � 1/�1 W r � 1�

with L denoting the Lefschetz motive L WD ŒA1
K

� 2 K0.Var=K/.5) We will also add the rela-

tions

ŒX= GLK.n/ ! B� D ŒX ! B�=ŒGLK.n/�

for every GLn-action on a scheme X . Here,

ŒGLK.n/� D L.n
2/

n
Y

rD1

.Lr � 1/:

In particular, due to our assumption on X for a generator ŒX ! B�, the abelian group

K0.Var=B/ŒL�1=2; .Lr �1/�1 W r � 1� is generated as a ZŒL�1=2; .Lr �1/�1 W r � 1�-module

by morphisms ŒX ! B�, with X being a scheme. Because of this and [4, Lemma 3.9] which

easily generalizes to the relative situation, we see that the proper push-forward �Š along mor-

phisms � W B ! B
0 such that �0.�/ W �0.B/ ! �0.B0/ has finite fibers is well defined by

composition �Š.ŒX ! B�/ D ŒX ! B
0�.

We can also define

�� W K0.Var=B
0/ŒL�1=2; .Lr � 1/�1 W r � 1� ! K0.Var=B/ŒL�1=2; .Lr � 1/�1 W r � 1�

for all � W B ! B
0 via ��.ŒX ! B

0�/ D ŒX�B0 B ! B� on generators. This definition makes

even sense if B and B
0 are defined over different ground fields K and K0. We will also introduce

the group

K0.Var=B/ŒL�1=2; .Lr � 1/�1 W r � 1�

D
Y

Bi 2�0.B/

�

K0.Var=Bi /ŒL
�1=2; .Lr � 1/�1 W r � 1�

�

:

5) For B D Spec K, we simplify the notation by suppressing the structure morphism to Spec K.
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The pull-back and the push-forward satisfy a base change formula for every cartesian square.

Moreover, for every quotient stack � W X ! X=G with G being a special linear algebraic

group, the formula

(6.1) �Š�
�.f / D ŒG� � f

holds for all f 2 K0.Var=B/ŒL�1=2; .Lr � 1/�1 W r � 1�, and ŒG� is invertible. Indeed, if

ŒY
u�! X=G� is a generator, then

�Š�
�ŒY ! X=G� D ŒY �X=G X ! Y ! X=G�

with P D Y �X=G X being a principal G-bundle on Y . As G is special, P ! Y is Zariski

locally trivial, and ŒP ! Y � D ŒG�ŒY ! Y � follows in K0.Var=Y /ŒL�1=2; .Lr �1/�1 W r � 1�.

Hence,

�Š�
�.ŒY ! X=G�/ D ŒP ! Y

u�! X=G� D uŠ.ŒP ! Y �/ D ŒG�ŒY ! X=G�:

The principal G-bundle GLK.n/ ! GLK.n/=G is Zariski locally trivial and

ŒGLK.n/� D ŒG�ŒGLK.n/=G�

is invertible, proving the invertibility of ŒG�.

6.2. �-ring structures. If the base B is a scheme and has an additional structure of

a commutative monoid with zero Spec K
0�! B and sum ˚ W B �K B ! B, then K0.Var=B/

can be equipped with the structure of a �-ring by putting

ŒX ! B� � ŒY ! B� WD ŒX �K Y ! B �K B
˚�! B�;

�n.ŒX ! B�/ WD ŒSymn
K

.X/ ! Symn
K

.B/
˚�! B�

with

Symn
K

.X/ D X�Kn==Sn D X �K � � � �K X
„ ƒ‚ …

n

==Sn:

On can extend the �-ring structure to K0.Var=B/ŒL�1=2; .Lr�1/�1 W r � 1� by defining �L1=2

to be a line element, that is, �n.�L1=2/ WD .�L1=2/n. Moreover, the �-ring structure extends

to K0.Var=B/ŒL�1=2; .Lr � 1/�1 W r � 1�.

Given a motivic function f 2 K0.Var=B/ŒL�1=2; .Lr �1/�1 W r � 1� such that �n.f /jBi

vanishes for all but finitely many n 2 N depending on the connected component Bi of B, the

sum

Sym.f / WD
X

n�0

�n.f /

is well defined in K0.Var=B/ŒL�1=2; .Lr � 1/�1 W r � 1� and satisfies

Sym.0/ D 1 D ŒSpec K
0�! B�

as well as

Sym.f C g/ D Sym.f / � Sym.g/:
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164 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

Formation of (direct) sums of semisimple objects in KQ-Rep and dimension vectors

in NQ0 , provides M
ss
� and NQ0 � Spec K with the structure of a commutative monoid inducing

a �-ring structure on

K0.Var=M
ss
�/ŒL�1=2; .Lr � 1/�1 W r � 1�

and on

K0.Var=NQ0 � Spec K/ŒL�1=2; .Lr � 1/�1 W r � 1�:

Notice that the latter �-ring is isomorphic to the �-ring

K0.Var=K/ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒti W i 2 Q0��

of power series. If a motivic function f on M
ss
� , respectively on NQ0 � Spec K, is supported

away from the zero representation, the infinite sum Sym.f / is well defined.

Lemma 6.2. Let M and N be commutative monoids in the category of schemes over

fields k and K � k, respectively, of characteristic zero. Assume that � W N ! M induces a homo-

morphism N ! M ˝k Spec K (over K) of commutative monoids over K such that the map un

in the diagram

N �Kn un
//

˚
))

N �M M �kn //

��

M �kn

˚

��

N
�

// M

is a closed embedding and an isomorphism between geometric points for every n 2 N. Then

��.fg/ D ��.f /��.g/ and ��.�n.f // D �n.��.f //

for all n 2 N and all f; g 2 K0.Var=M /ŒL�1=2; .Lr � 1/�1 W r � 1�.

Proof. We will show ��.�n.f // D �n.��.f // for a generator ŒX ! M� and leave the

rest to the reader. By definition, ��.ŒX ! M�/ D ŒY ! N � using the shorthand Y WD N �M X .

By the properties of un, the map u0
n in the diagram

Y �Kn

��

u0
n

// N �M X�kn //

��

X�kn

��

Symn
K

.Y /

**

u00
n

// N �M Symn
k

.X/

��

// Symn
k

.X/

��

N
�

// M

is also a closed embedding inducing an isomorphism between geometric points. By general

GIT-theory, N �M Symn
k

.X/ is the categorical quotient of N �M X�kn with respect to the

induced Sn-action. It can be computed Zariski locally by taking Sn-invariant functions. As

char.K/ D 0, Sn acts linearly reductive on K-vector spaces, and the map u00
n must also be a

closed embedding. Since u0 induces a bijection between geometric points, the same must hold

for u00
n and Symn.Y /red Š .N �M Symn

k
.X//red follows. Thus,

��.ŒSymn
k

.X/ ! M�/ D ŒN �M Symn
k

.X/ ! N � D ŒSymn
K

.Y / ! N �:
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6.3. Convolution product and integration map. We fix a quiver Q once again and

use the notation from Section 2. Throughout the next three subsections, all schemes and stacks

are defined over a field K which might be an extension of another fixed ground field k. Unless

otherwise stated, cartesian products are taken over Spec K. We define a “convolution” product,

the so-called Ringel–Hall product, on K0.Var=M
ss
�/ŒL�1=2; .Lr � 1/�1 W r � 1� by means of

the diagram

Exactss
�

�2

##

�1��3

xx

M
ss
� � M

ss
� M

ss
�

via

f � g WD �2 Š.�1 � �3/�.f � g/;

where Exactss
� denotes the stack of short exact sequences 0 ! V1 ! V2 ! V3 ! 0 of semi-

stable representations of slope �, and �i maps such a sequence to its i -th entry. It is well

known that the convolution product provides K0.Var=M
ss
�/ŒL�1=2; .Lr � 1/�1 W r � 1� with

a K0.Var=k/ŒL�1=2; .Lr � 1/�1 W r � 1�-algebra structure with unit given by the motivic

function ŒSpec k
0�! M

ss
��.

Lemma 6.3. The “integration” map

I ss
� W K0.Var=M

ss
�/ŒL�1=2; .Lr � 1/�1 W r � 1� ! K0.Var=M

ss
�/ŒL�1=2; .Lr � 1/�1 W r � 1�

given by

I ss
� .f / WD

X

d2ƒ�

L.d;d/=2pd Š.f jMss
d

/

is a K0.Var=k/ŒL�1=2; .Lr � 1/�1 W r � 1�-algebra homomorphism with respect to the convo-

lution product if � is �-generic.

Proof. We use the notation of the following commutative diagram:

X ss
d;d 0

O�1� O�3

vv

�

u

O�2

''
�d;d 0

��

X ss
d

� X ss
d 0

�d ��d 0

��

X ss
dCd 0

�dCd 0

��

X ss
d;d 0=Gd;d 0

�1��3
vv

�2
''

X ss
d

=Gd � X ss
d 0=Gd 0

pd �pd 0

��

X ss
dCd 0=GdCd 0

pdCd 0

��

M
ss
d

� M
ss
d 0

˚
// M

ss
dCd 0 .
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The first computation generalizes formula (6.1) to the map �1 � �3 by applying (6.1) to

the principal bundles �d;d 0 , O�1 � O�3 and �d � �d 0 with special linear structure groups

Gd;d 0 ;
M

Q13˛Wi!j

Homk.kd 0
i ; kdj / and Gd � Gd 0 :

For h 2 K0.Var=M
ss
d

� M
ss
d 0/ŒL

�1=2; .Lr � 1/�1 W r � 1� we get

.�1 � �3/Š.�1 � �3/�.h/ D 1

ŒGd;d 0 �
.�1 � �3/Š�d;d 0 Š�

�
d;d 0.�1 � �3/�.h/

D 1

ŒGd;d 0 �
.�d � �d 0/Š. O�1 � O�3/Š.. O�1 � O�3/�.�d � �d 0/�.h/

D Ldd 0�.d 0;d/

ŒGd;d 0 �
.�d � �d 0/Š.�d � �d 0/�.h/

D L�.d 0;d/h:

Thus, for

f 2 K0.Var=M
ss
d /ŒL�1=2; .Lr � 1/�1 W r � 1�

and

g 2 K0.Var=M
ss
d 0/ŒL

�1=2; .Lr � 1/�1 W r � 1�

we have

I ss
� .f � g/ D L.dCd 0;dCd 0/=2p.dCd 0/Š.f � g/

D L.d;d/=2L.d 0;d 0/=2L.d 0;d/.pdCd 0�2/Š.�1 � �3/�.f � g/

D L.d;d/=2L.d 0;d 0/=2L.d 0;d/
�

˚.pd � pd 0/.�1 � �3/
�

Š
.�1 � �3/�.f � g/

D L.d;d/=2L.d 0;d 0/=2 ˚Š .pd � pd 0/Š.f � g/

D I ss
� .f / � I ss

� .g/:

6.4. A useful identity. Fix a framing vector f 2 NQ0 and use the notation of Sec-

tion 2. Consider the motivic functions H WD ŒMss
f;�

Q��! M
ss
�� and 1X WD ŒX

id�! X� for any Artin

stack X. Then

(6.2)
�

H � 1M
ss
�

�

jMss
d

D Lfd

L � 1
1M

ss
d

:

Indeed, consider the commutative diagram

X WD Exact.Qf /jMss
f;�

�M
ss
�

�
f
1 ��

f
3

��

O�
// Exact.Q/jMss

��M
ss
�

�2
//

�1��3

��

M
ss
�

M
ss
f;�

� M
ss
�

Q��idM
ss
�

// M
ss
� � M

ss
�,

where the terms on the left-hand side correspond to Qf -representations with M
ss
� interpreted

as the space of all �0-semistable Qf -representations with dimension vector in ƒ� � ¹0º. The

reader should convince himself that the square is cartesian and that X is the moduli stack of
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all Qf -representations of dimension vector in ƒ� � ¹1º such that the restriction to the sub-

quiver Q is �-semistable. Indeed, any such representation V has a unique semistable subrepre-

sentation Vc of the same slope “generated” by V1 Š k, i.e. a subrepresentation in M
ss
f;�

, and

the quotient V=Vc will be in M
ss
�. By construction, VcjQ is the intersection of all (semistable)

subrepresentations V 0 � V jQ of slope � containing all framing vectors. The map O� restricts

the short exact sequence 0 ! Vc ! V ! V=Vc ! 0 to Q. We finally get

H � 1M
ss
�

D �2 Š.�1 � �3/�
�

Q�Š.1M
ss
f;�

/ � 1M
ss
�

�

D �2 Š.�1 � �3/�. Q� � idM
ss
�

/Š

�

1M
ss
f;�

� 1M
ss
�

�

D �2 Š O�Š.�
f
1 � �

f
3 /�.1M

ss
f;�

�M
ss
�

/

D .�2 O�/Š.1X/:

Looking at connected components, the map �2 O� is a stratification of

.X ss
d � Afd/=.Gd � Gm/

Q�d��! X ss
d =Gd

with Afd
k

parameterizing the matrix coefficients of the maps from V1 Š k to Vi Š kdi for

i 2 Q0, i.e. the coordinates of the framing vectors, and Gm corresponds to basis change in V1.

Applying equation (6.1) to the principal Gd respectively Gd � Gm-bundles

X ss
d

�d��! X ss
d =Gd ;

Q�d W X ss
d � Afd Q�d��! X ss

d � Afd=Gd � Gm;

yields

Q�d Š

�

1X ss
d

�Afd=Gd �Gm

�

D . Q�d ı Q�d /Š

�

1X ss
d

�Afd

�

=ŒGd � Gm�;

D .�d ı prX ss
d

/Š

�

1X ss
d

�Afd

�

=ŒGd � Gm�;

D Lfd

L � 1
�d Š

�

1X ss
d

�

=ŒGd �;

D Lfd

L � 1
1M

ss
d

;

and the equation for the restriction of H � 1M
ss
�

to M
ss
d

follows.

6.5. Donaldson–Thomas invariants. The following definition of Donaldson–Thomas

invariants is a simplified version of a more general and much more complicated one which

can be applied to triangulated 3-Calabi–Yau A1-categories. We can embed kQ-Rep into the

3-Calabi–Yau A1-category Db.�kQ-Rep/ introduced in Section 2.1, and the general version

reduces to the one given here.

For a smooth scheme or Artin stack X we define the motivic version of the intersection

complex IC
mot
X

by the following motivic function on X

IC
mot
X

D
X

L� dim Xi =2ŒXi ,! X�;

where the sum is over all connected components Xi of X. Here, L� dim Xi =2 is the analog of the

normalization factor for mixed Hodge modules. In particular,

IC
mot
M

ss
�

WD
X

d2ƒ�

L.d;d/=2ŒMss
d ,! M

ss
��
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168 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

as dim M
ss
d

D �.d; d/. Taking the proper push-forward along the morphisms p W M
ss
� ! M

ss
�

and dim W M
ss ! NQ0 � Spec k respectively, we can define the motivic Donaldson–Thomas

function

DT
mot 2 K0.Var=M

ss/ŒL�1=2; .Lr � 1/�1 W r � 1�

and the generating series

DTmot WD dimŠ DT
mot 2 K0.Var=k/ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒti W i 2 Q0��

of the motivic Donaldson–Thomas invariants by DT
motjMss

�
D DT

mot
� for all � 2 .�1; C1�

with DT
mot
� being the unique solution of the equation

pŠIC
mot
M

ss
�

D Sym

�
1

L1=2 � L�1=2
DT

mot
�

�

such that

DT
mot
� jMss

0
D 0:

As dimŠ is a �-ring homomorphism from the �-ring K0.Var=M
ss/ŒL�1=2; .Lr � 1/�1 W r � 1�

to K0.Var=k/ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒti W i 2 Q0��, this implies

dimŠ pŠIC
mot
M

ss
�

D Sym

�
1

L1=2 � L�1=2
dimŠ DT

mot
�

�

D Sym

�
1

L1=2 � L�1=2
DTmot jƒ�

�

:

We also use the notation DT
mot
d D DT

motjMss
d

and DTmot
d

for the coefficient of DTmot in

front of td . Let us give an alternative definition of the Donaldson–Thomas function DT
mot
�

using framed moduli spaces. Fix a �-generic stability condition �. By applying the “integration

map” I ss
� D

Q

d2ƒ�
I ss

d
to the identity (6.2) and by using Sym.Lia/ D

P

n�0 Lni Symn.a/,

we obtain

1

L � 1
Sym

�
X

0 6Dd2ƒ�

Lfd

L1=2 � L�1=2
DT

mot
d

�

D
X

d2ƒ�

Lfd

L � 1
pd Š.IC

mot
M

ss
d

/

D I ss
�

�
X

d2ƒ�

Lfd

L � 1
1M

ss
d

�

D I ss
� .H/I ss

� .1M
ss
�

/

D
�

pŠ

X

d2ƒ�

L.d;d/=2 Q�d Š.1M
ss
f;d

/

�

Sym

�
DT

mot
�

L1=2 � L�1=2

�

D
�

�Š

X

d2ƒ�

L.d;d/=2pf;d Š.1M
ss
f;d

/

�

Sym

�
DT

mot
�

L1=2 � L�1=2

�

D 1

L � 1

�

�Š

X

d2ƒ�

Lfd=2
IC

mot
M

ss
f;d

�

Sym

�
DT

mot
�

L1=2 � L�1=2

�

;
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where we applied (6.1) of Section 6.1 to the principal .Gd � Gm/-bundle X ss
f;d

! M
ss
f;d

and

to the principal P.Gd � Gm/ D Gd -bundle X ss
f;d

! M
ss
f;d

once more to compute

pf;d Š.1M
ss
f;d

/ D 1M
ss
f;d

=.L � 1/:

Using the properties of Sym and Lfd�1
L1=2�L�1=2 D L1=2ŒPfd�1�, we get what we call a DT/PT

correspondence6)

Proposition 6.4 (DT/PT correspondence). For every quiver Q and every �-generic

stability condition � we get

�Š

X

d2ƒ�

Lfd=2 � IC
mot
M

ss
f;d

D Sym

�
X

0 6Dd2ƒ�

L1=2ŒPfd�1�DT
mot
d

�

for all framing vectors f 2 NQ0 .

If f 2 .2N/Q0 , we have fd=2 2 N, and the map

.ad /d2NQ0 7! .L�fd=2ad /d2NQ0

is an isomorphism of the �-ring K0.Var=M
ss
�/ŒL�1=2; .Lr � 1/�1 W r � 1� as

Symn.L�fd=2ad / D L�nfd=2 Symn.ad /

in this case. Applying this isomorphism to the DT/PT correspondence yields the alternative

form.

Corollary 6.5 (DT/PT correspondence, alternative form). For every quiver Q and every

�-generic stability condition � we get

�Š.IC
mot
M

ss
f;�

/ D Sym

�
X

06Dd2ƒ�

ŒPfd�1�virDT
mot
d

�

for all framing vectors f 2 .2N/Q0 with ŒPfd�1�vir D
R

Pfd�1 ICPfd�1 D Lfd=2�L�fd=2

L1=2�L�1=2 .

Notice that Pfd�1 is the fiber of �d over any geometric point of M
st
d

.

Corollary 6.6. If � is generic, the motivic Donaldson–Thomas function DT
mot is in the

image of the map

K0.Var=M
ss/ŒL�1=2; ŒPN ��1 W r � 1� ! K0.Var=M

ss/ŒL�1=2; .Lr � 1/�1 W r � 1�

and similarly for DTmot.

6) From our point of view, a DT/PT correspondence relates DT-invariants of some “unframed” objects to

counting invariants of some “framed” objects by means of a finite number of Hall algebra identities. As in the case

of sheaves on a Calabi–Yau 3-manifold studied by Pandharipande and Thomas, we do not require that a “framed”

object is one of our “unframed” objects equipped with a framing. Counting invariants of “framed” objects will

be called Pandharipande–Thomas invariants, and they can often be interpreted as DT-invariants of objects in an

auxiliary category. If, as in our case of quiver representations, a “framed” object is just an “unframed” object

equipped with some sort of framing, the name “framed/unframed correspondence” is also very common.
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170 Meinhardt and Reineke, DT invariants vs. intersection cohomology of quiver moduli

By applying the �-ring homomorphism from

K0.Var=M
ss
�/ŒL�1=2; .Lr � 1/�1 W r � 1�

to

K0.MHM.Mss
�//ŒL�=2; .Lr � 1/�1 W r � 1�;

mentioned at the beginning of this section, to the previous result, we obtain the corresponding

formula in K0.MHM.Mss
�//ŒL�1=2; .Lr � 1/�1 W r � 1�.

Corollary 6.7. For every quiver Q and every �-generic stability condition � we get

��.ICM
ss
f;�

/ D �Š.ICM
ss
f;�

/ D Sym

�
X

0 6Dd2ƒ�

ŒPfd�1�virDT d

�

for all framing vectors f 2 .2N/Q0 .

6.6. The integrality conjecture. The so-called Integrality Conjecture plays a funda-

mental role in Donaldson–Thomas theory. A proof for quivers with potential has been sketched

in [25] in the Hodge theoretic context. A rigorous proof for quivers without potential and non-

refined Donaldson–Thomas invariants can be found in [32]. A relative version, saying that

whenever the conjecture holds for one stability condition, it also holds for any other, has been

given in [18] (see also [32]). Our proof is different from the very complicated one given by

Kontsevich and Soibelman. In fact, we reduce the general situation of quiver representations to

a special situation for which the integrality conjecture has been proven by Efimov [9].

As we have seen in Corollary 6.6, the motivic Donaldson–Thomas invariants can be spe-

cialized to Euler characteristics producing rational numbers. The classical integrality conjec-

ture claims that these rational numbers are actually integers. We will prove a relative version of

this in the motivic context. Let us assume char.k/ D 0 for our ground field k. Unless otherwise

stated, all schemes and stacks are defined over k.

Theorem 6.8 (Integrality Conjecture, relative version). Let � be a �-generic stability

condition and x 2 M
ss
� a not necessarily closed point with residue field k.x/. Then there is

a finite separable extension K � k.x/ depending on x with induced morphism

i W Spec K ! M
ss
�

such that i�
DT

mot is in the image of the natural map

K0.Var=K/ŒL�1=2� ! K0.Var=K/ŒL�1=2; .Lr � 1/�1 W r � 1�:

Corollary 6.9. If � is �-generic and x 2 M
ss
� is a closed point with k.x/ D k.x/,

then the “value” DT
mot.x/ WD DT

motjSpec k.x/ of the Donaldson function DT
mot at x is

in the image of K0.Var=k.x//ŒL�1=2� ! K0.Var=k.x//ŒL�1=2; .Lr�1/�1 W r � 1�. The same

applies to the value DT
mot.y/ WD y�

DT
mot at any geometric point y W Spec K ! M

ss
� of M

ss
� .

Proof of Theorem 6.8. Let x 2 M
ss
d

be a point of M
ss
� with residue field k.x/ and dimen-

sion vector d . As Rss
d

! M
ss
d

is of finite type and surjective on (geometric) points, we can

certainly find a lift Nx 2 Rss
d

with residue field k. Nx/ � k.x/ being a finite extension. The point Nx
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corresponds to a semistable representation V of Q defined over k. Nx/ along with a choice of

a basis of V which is not important. By passing to a finite extension K � k. Nx/, we can assume

that every stable Jordan–Hölder factor of V remains stable under any base change. Indeed, the

dimension of V is finite and we cannot have an infinite chain of field extensions such that the

number of Jordan–Hölder factors Ek of V strictly increases. Note that K � k.x/ is separable

as char.k/ D 0. The associated polystable representation for V is
Ls

kD1 E
ak

k
with pairwise

non-isomorphic stable representations Ek of dimension vector dk D dim Ek and multiplicity

ak 2 N n ¹0º. Hence, d D
Ps

kD1 akdk , and we write E D .Ek/s
kD1

for the s-tuple of simple

objects.

Changing the multiplicities, we get a family of polystable quiver representations on

Ns � Spec K with
Ls

kD1 E
nk

k
being the fiber over n D .n1; : : : ; nk/ 2 Ns . Let

�E W Ns � Spec K ! M
ss
�

be the associated (coarse) classifying map. By construction, the point corresponding to the

sequence .nk/ D .ak/ maps to x.

Note that K0.Var=Ns � Spec K/ŒL�1=2; .Lr � 1/�1 W r � 1� can be identified with the

ring

K0.Var=K/ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒt1; : : : ; ts��

of power series in s variables. We will prove that ��E DT
mot
� lies in the image of

K0.Var=K/ŒL�1=2�ŒŒt1; : : : ; ts�� ! K0.Var=K/ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒt1; : : : ; ts��

which implies the theorem after restriction to the component indexed by .nk/ D .ak/. Let us

form the following fiber product:

ME
Q�E

//

Qp

��

M
ss
�

p

��

Ns � Spec K
�E

// M
ss
� .

The stack ME D
F

n2Ns ME;n can be seen as the stack of (semistable) representations defined

over K and having a decomposition series with factors in the collection E D .Ek/s
kD1

. We

want to apply Lemma 6.2 to N D Ns � Spec K and M D M
ss
� . By our construction and the

Krull–Schmidt theorem, un is a bijection between the points of the underlying schemes. More-

over, the local rings of N �M M �kn are K-algebras with a map to K given by �� D ��E . Thus,

their residue field is K, and un is a closed embedding inducing a bijection between geometric

points. Hence, the lemma applies. Since pŠ commutes with base change, we finally get

QpŠ

�

Q��E IC
mot
M

ss
�

�

D Sym

�
1

L1=2 � L�1=2
��E DT

mot
�

�

:

Note that Q��E IC
mot
M

ss
�

restricted to ME;n is just L.d.n/;d.n//=2ŒME;n
id�! ME;n�, where

d.n/ WD
s
X

kD1

nkdk

is the dimension vector of
Ls

kD1 E
nk

k
.
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Let us introduce the “Ext-quiver” Q� of the collection � D .dk/s
kD1

of dimension vec-

tors. Its vertex set is ¹1; : : : ; sº, and the number of arrows from k to l is given by

ıkl � .dk; d l/ D dimK Ext1
KQ-Rep.Ek; El/:

For a dimension vector n 2 Ns of Q� , we denote by Rn.Q�/ Š A

P

˛Wk!l nknl

K
the affine space

parameterizing all representations of Q� on a fixed K-vector space of dimension n. Recall that

Rn.Q�/=Gn with Gn D
Qs

kD1 GLK.nk/ is the stack of n-dimensional KQ� -representations

on any vector space of dimension vector n.

As .�; �/ is symmetric by assumption on �, the quiver Q� is symmetric, and we can

apply the following result of Efimov to the quiver Q� .

Theorem 6.10 ([9, Theorem 1.1]). Given any quiver Q with vertex set ¹1; : : : ; sº, we

define for every n 2 Ns n ¹0º the “motivic” Donaldson–Thomas invariant

DTmot.Q/n 2 ZŒL˙1=2; .Lr � 1/�1 W r � 1�

of Q with respect to the trivial stability condition � D 0 by means of

X

n2Ns

L.n;n/=2 ŒRn.Q/�

ŒGn�
tn DW Sym

�
1

L1=2 � L�1=2

X

n2Nsn¹0º

DTmot.Q/ntn

�

;

where L1=2 is a formal variable. If the quiver Q is symmetric, the invariant DTmot.Q/n is

contained in the Laurent subring ZŒL˙1=2� of ZŒL˙1=2; .Lr � 1/�1 W r � 1�.

When we apply Efimov’s theorem to Q� and specialize L to ŒA1
K

�, we use the notation

.�; �/Q�
; Rn.Q�/ and

DTmot.Q�/ WD
X

n2Nsn¹0º

DTmot.Q�/ntn

to distinguish the objects from their counterparts for Q. Theorem 6.8 is then a direct conse-

quence of the following result.

Proposition 6.11. Let DTmot.Q�/jL1=2 7!L�1=2 be the series in ZŒL˙1=2�ŒŒt1; : : : ; ts��

obtained by the indicated substitution. If � is �-generic, then

DTmot.Q�/jL1=2 7!L�1=2 D ��E DT
mot
� :

In particular, ��E DT
mot
� is an element of the subring ZŒL˙1=2�ŒŒt1; : : : ; ts�� which also embeds

into the subring

K0.Var=K/ŒL�1=2�ŒŒt1; : : : ; ts��

of K0.Var=K/ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒt1; : : : ; ts��.

Remark 6.12. The substitution L1=2 7! L�1=2 has an intrinsic meaning. For any base

B there is a duality operation on K0.Var=B/ŒL�1=2; .Lr � 1/�1 W r � 1� which can be seen

as a motivic version of (relative) Poincaré duality. See [2, Section 6] for more details on this.

Proof. As the substitution L1=2 7! L�1=2 is compatible with the �-ring structure of

ZŒL˙1=2; .Lr � 1/�1 W r � 1�ŒŒt1; : : : ; ts��, which contains ZŒL˙1=2�ŒŒt1; : : : ; ts�� as a �-sub-
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ring, it suffices to show the identity
�
X

n2Ns

L
.n;n/Q�

=2 ŒRn.Q�/�

ŒGn�
tn

�ˇ
ˇ
ˇ
ˇ
L1=2!L�1=2

(6.3)

�
�
X

m2Ns

L.d.m/;d.m//=2ŒME;m�tm

�

D 1

in K0.Var=K/ŒL�1=2; .Lr � 1/�1 W r � 1�ŒŒt1; : : : ; ts��. Indeed, the factor on the left-hand side

is by definition

Sym

�
DTmot.Q�/

L1=2 � L�1=2

�ˇ
ˇ
ˇ
ˇ
L1=2 7!L�1=2

D Sym

�

�
DTmot.Q�/jL1=2 7!L�1=2

L1=2 � L�1=2

�

:

On the other hand, the factor on the right-hand side is nothing else than

QpŠ.Q��E ICM
ss
�

/ D Sym

�
��E DT

mot
�

L1=2 � L�1=2

�

:

Consider the following two motivic functions on M
ss
�;K

WD M
ss
� �k Spec K.

f WD
X

n2Ns

.�1/jnjL
Ps

kD1 .nk
2

/ŒSpec K=Gn ! M
ss
�;K� and g WD ŒME ! M

ss
�;K�;

where for n 2 Ns the quotient stack Spec K=Gn maps to the object
Ls

kD1 E
nk

k
of dimension

vector d.n/ and its automorphism group. In particular, the morphisms used to define f and g

correspond to closed substacks of M
ss
�;K

. We compute the convolution product f � g by means

of the diagram

Zd.n/;d.m/
�

�

//

��

Exactd.n/;d.m/;K

�1��3

��

�2
// M

ss
d.n/Cd.m/;K

Spec K=Gn �K ME;d.m/
�

�

// M
ss
d.n/;K

�K M
ss
d.m/;K

;

with the square being cartesian and Exactd.n/;d.m/;K denoting the stack of short exact

sequences in KQ-Rep with prescribed dimensions for the first and third object in the

sequence. The morphisms �1; �2 and �3 map a sequence to the corresponding entries. Since

�2 is representable, it follows that Zd.n/;d.m/ ! M
ss
d.n/Cd.m/;K

is representable, too. In fact,

Zd.n/;d.m/ maps to the substack of ME parameterizing representations F that are extensions

of a representation with dimension vector d.m/ and Jordan–Hölder factors among the .Ek/s
kD1

by the polystable representation
Ls

kD1 E
nk

k
. In particular, the Jordan–Hölder factors of F are

also among the .Ek/s
kD1

, and
Ls

kD1 E
nk

k
must embed into the socle

Ls
kD1 E

Nk

k
of F for

certain integers Nk depending on F . The space of such embeddings, that is, the fiber of the

map

Zd.n/;d.m/ ! M
ss
d.n/Cd.m/;K

over F , is given by the product of finite Grassmannians
Qs

kD1 Gr
Nk
nk

over K. Hence, the con-

volution product f � g restricted to F 2 M
ss
d.n/Cd.m/;K

is

.f � g/jSpec K.F / D
X

0�nk�Nk

s
Y

kD1

.�1/nk L.nk
2

/

"

Nk

nk

#

;
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in K0.Var=K.F // since the L-binomial coefficient Œ Nk
nk

� are the motives of the Grassmann-

ians Gr
Nk
nk

. This identity does not only hold pointwise. For any dimension vector l 2 Ns let

RE
d.l/

� Rd.l/;K WD Rd.l/ �k Spec K denote the atlas of ME;l . It is a closed subset of Rd.l/;K

containing only finitely many closed orbits for the group Gd.l/;K D Gd.l/ �k Spec K. The

socle of the universal (trivialized) family F on RE
d.l/

is the image of the monomorphism

s
M

kD1

Ek ˝K Hom.Ek; F / ! F :

The family Hom.Ek; F / of linear spaces is a vector bundle when restricted to a stratification

of RE
d.l/

. The Gd.l/;K-invariant strata SN indexed by N 2 Ns contain the points M 2 RE
d.l/

with dimK Hom.Ek; F /jM D Nk for all 1 � k � s. For nCm D l , let is form the fiber product

Zd.n/;d.m/;N

��

�
// SN

��

Zd.n/;d.m/
// M

ss
d.l/;K

:

The map � is just the product of the relative Grassmannians of the vector bundles Hom.Ek; F /

on SN . It is a Zariski locally trivial
Qs

kD1 Gr
Nk
nk

-fibration. The vertical maps are principal

Gd.l/;K-bundles over their image Zd.n/;d.m/;N =Gd.l/;K and SN =Gd.l/;K, respectively. The

images are locally closed substacks of Zd.n/;d.m/ and M
ss
d.l/;K

respectively. Summing up over

all m; n; N 2 Ns with fixed n C m D l and using equation (6.1), we get

.f � g/jMss
d.l/;K

D
X

N 2Ns

 
X

0�nk�Nk

s
Y

kD1

.�1/nk L.nk
2

/

"

Nk

nk

#!

ŒSN =Gd.l/;K ,! M
ss
d.l/;K�

as we want. Note that the outer sum is finite as SN 6D ; for only finitely many N . A standard

identity for L-binomial coefficients shows that the term in the big brackets vanishes as soon

as N 6D 0. The case N D 0 can only give a nonzero contribution if l D d.l/ D 0 as every

nontrivial representation has a nontrivial socle. One shows easily .f � g/jMss
0;K

D 1, and the

formula f �g D 1 is proven. Using Lemma 6.3, we get the identity 1 D I.f �g/ D I.f /�I.g/

of motivic functions on M
ss
� �k Spec K which are actually supported on the closed subscheme

Ns � Spec K ,! M
ss
� �k Spec K via the embedding induced by �E . Using

ŒRn.Q�/� D L
�.n;n/Q�

C
Ps

kD1 n2
k D L�.d.n/;d.n//C

Ps
kD1 n2

k ;

a simple computation shows that I.f / is the first factor in equation (6.3) while the second is

obviously I.g/.

Corollary 6.13. Let V D
Ls

kD1 E
mk

k
be a polystable KQ-representation correspond-

ing to a K-point y W Spec K ! M
ss
� . Assume that the stable representations Ek remain stable

under base change. As before, Q� denotes the Ext1-quiver of the collection .Ek/s
kD1

of stable

objects. Let DTmot.Q�/
nilp
m WD DT

mot.Q�/.0m/ be the “value” of DT
mot.Q�/ (with respect to

the trivial stability condition) at the “origin” in M.Q�/m corresponding to the zero-represen-

tation 0m of dimension m D .mk/s
kD1

. If � is �-generic, then

DT
mot.y/ WD y�

DT
mot D DTmot.Q�/

nilp
m

for the value of DT
mot at y W Spec K ! M

ss
� .
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Proof. The zero-representation 0m of dimension m is the semisimple Q� -representation
Ls

kD1 S
mk

k
, where Sk denotes the one-dimensional zero-representation of KQ� at vertex k.

We simply apply Proposition 6.11 to the category KQ� -Rep and the collection .Sk/s
kD1

. One

should also take into account that the local Ext1-quiver of this collection is Q� again. Thus,

DT
mot.Q�/.0m/ D DTmot.Q�/jL1=2 7!L�1=2 D y�

DT
mot:

Corollary 6.14. If � is �-generic, there is a stratification of M
ss
� into connected strata

S� and there are étale covers j� W QS� ! S� of the strata such that DT
motj QS�

WD j �
� DT

mot is

in the image of the map

K0.Var= QS�/ŒL�1=2� ! K0.Var= QS�/ŒL�1=2; .Lr � 1/�1 W r � 1�:

Proof. It is enough to construct such a stratification on each scheme M
ss
d

with d 2 ƒ�.

In order to prove the corollary, it suffices to construct an étale neighborhood of the generic point

x of M
ss
d

and to show the absence of denominators on this neighborhood. If that has been done,

we can restrict ourselves to the closed complement Z of the open image of this neighborhood

and proceed with the generic points of the irreducible components of Z. Continuing this way,

we get lots of étale neighborhoods QS� inside closed subvarieties, and S� will denote their

locally closed image in M
ss
� .

To show the absence of denominators on an étale neighborhood of the generic point x of

an irreducible subscheme inside M
ss
d

, we can use the alternative definition of K0.Var=Spec B/

given in Remark 6.1. Write Spec A for a Zariski neighborhood of x and choose a finite sep-

arable extension K � k.x/ as in Theorem 6.8. Denote by B the normalization of A � k.x/

inside K. Of course, K D Quot.B/ is the quotient field of B . Replacing Spec A with an affine

open subscheme, we can assume that Spec B ! Spec A is an étale cover, i.e. Spec B an étale

neighborhood of the generic point x. To prove the absence of denominators on Spec B , or

an open affine subscheme of Spec B , we have to show the following for arbitrary r � 1 and

arbitrary f 2 K0.Var=Spec B/: If there is an element g 2 K0.Var= Quot.B// given by linear

combinations of finitely generated Quot.B/-algebras such that

f ˝B Quot.B/ D g.Lr � 1/ D g ˝Quot.B/ Quot.B/Œx1; : : : ; xr � � g;

then one can find elements b 2 B and Qg 2 K0.Var=Spec Bb/ given by linear combinations of

finitely generated Bb-algebras such that

f ˝B Bb D Qg.Lr � 1/ D Qg ˝Bb0 Bb0 Œx1; : : : ; xr � � Qg:

In such a situation, we may replace the open neighborhood of x with Spec Bb and cancel

a denominator of the form Lr � 1.

As any finite set of finitely generated Quot.B/ algebras is already defined over Bb0 for

some b0, we can certainly “lift” g to some g0. It remains to show that

f ˝B Bb D g0 ˝Bb0 Bb0 Œx1; : : : ; xr � � g0:

Over Quot.B/ this is true due to the existence of a finite chain of relations presented in

Remark 6.1. But each of these relations does also lift to a relation over Bb for some sufficiently

“large” b 2 B � Bb0 . Then Qg WD g0 ˝Bb0 Bb does what we want.
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The following result is also a consequence of Theorem 4.7, but the previous corollary

allows a more direct proof without any knowledge about mixed Hodge modules.

Corollary 6.15 (Integrality Conjecture, classical version). If � is �-generic, the motivic

Donaldson–Thomas function DT
mot
� has a realization in integer-valued constructible functions

on M
ss
� . In particular, the Euler characteristic of DTmot

d
is an integer for all d 2 ƒ�.

We can even refine the last statement of the corollary to motives.

Corollary 6.16 (Integrality Conjecture, absolute version). For a �-generic stability

condition � and arbitrary dimension vector d 2 ƒ�, the Donaldson–Thomas invariant DTmot
d

is in the image of the natural map

K0.Var=k/ŒL�1=2� ! K0.Var=k/ŒL�1=2; .Lr � 1/�1 W r � 1�:

Proof. Unfortunately, the previous statement holds only for an “étale stratification”.

If it were true for a Zariski stratification, i.e. one has QS� D S� , then we could just integrate

the Donaldson–Thomas function over M
ss
d

. As we do not have such a result, we need to argue

in a different way. By applying Lemma 6.3 and dimŠ to the formula of [30, Theorem 5.1],

one shows easily that DTmot
d

is an element of the subring ZŒL˙1=2�Œ.Lr � 1/�1 W r � 1� of

K0.Var=k/ŒL�1=2; .Lr �1/�1 W r � 1� with coefficients being independent of the ground field.

In particular, DTmot
d

can be identified with the weight “polynomial” of its Hodge realization

ICc.Mst
d

; Q/ due to Theorem 4.7. So, DTmot
d

is indeed in ZŒL˙1=2� � K0.Var=k/ŒL�1=2�.

As we have seen, it would be nice to improve Theorem 6.8 in such a way that integral-

ity holds already for DT
mot.x/ D DT

motjSpec k.x/ at any point x 2 M
ss
� . In this case, we can

even prove integrality of DT
mot
� following the arguments of Corollary 6.14 which of course

implies the result for points. However, we are rather skeptical that such an improvement exists

in the (naive) motivic world, due to the following argument. The map Rst
d

! M
st
d

is in gen-

eral just an étale locally trivial principal P Gd D Gd =Gm-bundle, and P Gd is not special

if gcd.di W i 2 Q0/ 6D 1. Hence, its fiber F at the generic point x 2 M
st
d

is a twisted form

of P Gd . If relative integrality holds in the stronger form, we get a motive

M WD L
1�.d;d/

2 DT
mot.x/ 2 K0.Var=k.x//ŒL�1=2�

with

ŒF � D ŒP Gd �M :

After base change M becomes 1 which does, however, not imply M D 1. Similarly, working

with the Hilbert–Chow morphism, we get

ŒQ� D ŒPfd�1�M

for all (even) f 2 NQ0 , where Q is a twisted form of Pfd�1. In general, (naive) motives of

twisted forms behave very differently. Over finite fields, the numbers of Fp-rational points,

which is a motivic invariant, do not coincide.

Due to the relative hard Lefschetz theorem, the Hodge realization cannot distinguish

between étale locally trivial Pfd�1-fibrations and the trivial one. This was definitely used to

prove the integrality of DT �.
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