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Aleksandar Demić,a) Zoran Ikonić,b) Robert W. Kelsall,c) and Dragan Indjind)

AFFILIATIONS
School of Electronic and Electrical Engineering University of Leeds, LS2 9JT Leeds, UK

a)Electronic mail: elade@leeds.ac.uk
b)Electronic mail: Z.Ikonic@leeds.ac.uk
c)Electronic mail: R.W.Kelsall@leeds.ac.uk
d)Electronic mail: D.Indjin@leeds.ac.uk

ABSTRACT
In this work we present a generalization of the Liouvillian superoperator for periodic quantum systems that can be formulated through
partitioned Hamiltonians. We formulate a compact algebraic form of the superoperator that allows efficient numerical implementation along
with the possibility of further generalization and the inclusion of the system’s boundary effects (i.e. device contacts). We apply this formalism
to Quantum Cascade Laser structure where we compare the second nearest and the nearest on approximation, and present the laser dynamics
that is independent from the number of states considered.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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I. INTRODUCTION

The Density matrix (DM) formalism was first introduced by
J. Von Neumann1–4 and its applications span through a variety of
fields in Quantum Mechanics. The time evolution of the density
matrix is, generally, described by the master equation in Lindblad
form5–8 and one of the key aspects of this equation is that it results
in a nonlinear system of equations, if written in the matrix form.
However the system can be linearized by introducing the Liouvil-
lian superoperator and the goal of this paper is to present a math-
ematical formalism that can generalize and simplify the superop-
erator of the systems with high symmetry, in particular periodic
quantum systems, such as Quantum Cascade Lasers (QCLs) and
graphene.9

QCLs10 are powerful semiconductor sources of coherent radi-
ation in the mid-infrared (MIR)11 and Terahertz (THz) band12

with potential applications in free-space communications, medical
diagnostics, and chemical sensing.13–17 These devices use sequential
tunnelling and usually comprise a large number of semiconductor
heterostructure periods (typically GaAs/AlGaAs for THz QCLs).

The DM model has been successfully applied to QCLs18–34

and it represents a quantum model35 that can describe key aspects
of the underlying physics while retaining low numerical complex-
ity when compared to the more extensive models, such as the
Non-Equilibrium-Green Function (NEGF) approach.36–38

The most common applications of the DM model are for sys-
tems with a few states, which usually yield analytic expressions.4 The
Liouvillian superoperator enables the generalization to systems of
any size, however, treating periodic systems usually allows elimina-
tion of a large number of equations due to the system symmetry,
and to our knowledge, compact form of the Liouvillian has not been
considered in detail.

In this work we develop a generalization of the Liouvillian
for systems that can be represented by partitioned Hamiltonian,
which is commonly employed in the tight-binding models. In sec-
tion II we formulate the superoperator for symmetric (2M + 1) block
diagonal Hamiltonian and the density matrix that corresponds to
M–neighbour approximation and also discuss the common mod-
elling approaches and approximations that are usually introduced
in DM models. Section III focuses on QCL devices and introduces
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dynamical aspects to the model we presented in Ref. 33. Section V
presents concluding remarks, and in the Appendix we discuss alge-
braic derivations and present the most general formulation of the
superoperator for any system that can be partitioned.

II. THEORETICAL MODEL
A. Liouvillian superoperator

The DM formalism describes a quantum system as a statistical
ensemble of quantum states through an operator ρ̂ = ∣ψ̂⟩⟨ψ̂∣ which,
provided with the corresponding basis of wavefunctions ∣ψ̂i⟩, results
in a matrix where each element ρij represents coherence of states i
and j. The time evolution of the density matrix is then given by the
Liouville equation:

dρ
dt
= − i

h̵
[H, ρ] (1)

which represents the quantum mechanical analogue of the equa-
tion of motion in the classical systems. It can be further generalized
by adding effects that cause decoherence of the system in a form
−( dρ

dt )relax
. This depends on the problem of interest and we will

discuss these additional terms in the next section.
The formulation in Eq. (1) employs interaction of two oper-

ators, and outcome of such interaction is usually referred in the
literature as a superoperator. The actual mathematical need for the
introduction of the linear superoperator in Eq. (1) arises from the
fact that the unknown is a matrix, and that in algebraic sense Eq. (1)
is not linear. In mathematics, systems that take the form AXB = Y
are linearized as A ⊗ BTX′ = Y ′ where ⊗ represents the Kronecker
tensor product and X′ and Y ′ are vectorised forms of the original
matrices X and Y, respectively, unpacked row by row in a column
vector (for column by column unpacking, the linearization reads
AT ⊗ B). We will keep the notation with an apostrophe’ to refer to
these vectorised forms throughout this paper. In our case the com-
mutator linearizes in a form L = H ⊗ I − I ⊗HT where I is an identity
matrix of the same size as the Hamiltonian H. The linear operator L
is called Liouvillian superoperator and the linearization of Eq. (1) in
the form dρ′

dt = −
i
h̵Lρ

′ is a well known formulation of the density
matrix superoperator in the literature.3 We also note that if we had
P states in the basis of wavefunctions of the overall quantum system,
the superoperator would be a matrix of P2 × P2 size and ρ′ would be
a column vector of length P2.

In many practical cases of interest, we need to deal with Hamil-
tonians which are partitioned in the block form, and may have high
degree of symmetry, especially in cases which deal with periodic
systems, where the wavefunction basis can be taken only on one
period and not from the entire quantum system. In Appendix B we
show a simplified algebraic way of forming a superoperator if the
Hamiltonian and the corresponding density matrix are partitioned
in block form without any particular symmetry. In further consider-
ations we will focus on Hamiltonians with high level of symmetry,
often employed in tight binding39 and the nearest first or second
neighbour approximations.

Consider a periodic quantum system in which we can for-
mulate a wavefunction basis from one period and describe the

Hamiltonian of that period as H0 and its corresponding density
matrix as ρ0. Note that if the wavefunction basis has N states, H0
and ρ0 are N × N matrices. The Hamiltonian H0 can interact with
the adjacent periods (as depicted in Fig. 1) given by block Hamil-
tonians H1, H2, . . . HM (to the right) and H−1, H−2, . . . H−M
(to the left) which have the corresponding block density matri-
ces ρ±1, ρ±2, . . . ρ±M , where M is the number of neighbours
that central (H0) period has in either direction. Take a system
consisting of Q periods (Q ≥ 2M + 1). The Hamiltonian of the
entire system can then be written as (2M + 1)-diagonal block
matrix of Q × Q block size. In order to apply periodic bound-
ary conditions, Q → ∞ and Q × Q, (2M + 1) – diagonal H and
ρ need to be substituted into the Liouville equation. This yields
(4M + 1) – diagonal block matrix from the commutator term in
(1). This matrix will be equal to the derivative of the density matrix
(times ih̵) and it is clear that there will be some “extra” equations
that equal to zero block matrices in the overall density matrix. This
occurs due to the algebraic properties of banded matrices. Generally,
product of S – diagonal matrix with T – diagonal matrix is a S + T
− 1 – diagonal matrix. In our case, if both H and ρ are (2M + 1) –
diagonal, the result of their commutator will be a (4M + 1)– diagonal
matrix, and there will be 2M equations that target zero blocks in the
density matrix. We can therefore group equations that Eq. (1) yields
into two groups:

Group 1:

ih̵
dρk
dt
=

M

∑
j=0
[H(k−j)sgn(k), ρj],

k = −M, . . . , M, k ≠ 0

ih̵
dρ0

dt
=

M

∑
j=−M
[H−j, ρj], k = 0

(2)

Group 2:

0 =
M

∑
j=k−M

[Hk−j, ρj], k =M + 1, . . . , 2M

0 =
−M

∑
j=k+M

[Hk−j, ρj], k = −2M, . . . , −M − 1

(3)

Group 1 has (2M + 1) block equations, while in group 2 there
are 2M additional equations which contain the same unknown
density matrix blocks as group 1.

FIG. 1. Periodic structure described by Hamiltonian partition H0 interacts with two
neighbouring periods by the corresponding Hamiltonian partitions H±1,2.
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The equations in Eq. (3) are the consequence of the duplication
of information in the system. We assumed the form of the result-
ing density matrix in advance, and therefore forced the system to
yield (2M + 1) equations in Eq. (2). The reason why additional 2M
equations emerged is that even though we are forcing the system
to have no terms for interaction with (M + 1) − th neighbour, the
included neighbours (2M of them) still give their contribution to the
next M + M neighbours and therefore we end up with additional
2M equations. They originate from the duplication of information
from initial symmetry of the Hamiltonian and therefore can be
discarded.

The number of neighbours that need to be included in the sys-
tem depends on the underlying physics of the system. It is also pos-
sible to include more density matrix blocks then the number of par-
titions in the Hamiltonian. However this is only relevant in strongly
coupled systems and in systems where the dissipator term may
coherently couple periods that are not coupled by the corresponding
Hamiltonian block.

Let us consider a system with the second neighbour approx-
imation given by the Hamiltonian and the corresponding density
matrix:

H =

⎛
⎜⎜⎜⎜⎜
⎝

H0 H1 H2 0 0
H−1 H0 H1 H2 0
H−2 H−1 H0 H1 H2

0 H−2 H−1 H0 H1
0 0 H−2 H−1 H0

⎞
⎟⎟⎟⎟⎟
⎠

(4)

and

ρ =

⎛
⎜⎜⎜⎜⎜
⎝

ρ0 ρ1 ρ2 0 0
ρ−1 ρ0 ρ1 ρ2 0
ρ−2 ρ−1 ρ0 ρ1 ρ2
0 ρ−2 ρ−1 ρ0 ρ1
0 0 ρ−2 ρ−1 ρ0

⎞
⎟⎟⎟⎟⎟
⎠

(5)

Let us apply general expressions in Eq. (2) and neglect Eq. (3),
for M = 2 which corresponds to the Hamiltonian and the density
matrix given by Eqs. (4) and (5):

ih̵

⎛
⎜⎜⎜⎜⎜
⎝

ρ2
ρ1
ρ0
ρ−1
ρ−2

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

[H0, ρ2] + [H1, ρ1] + [H2, ρ0]
[H−1, ρ2] + [H0, ρ1] + [H1, ρ0] + [H2, ρ−1]
[H−2, ρ2] + [H−1, ρ1] + [H0, ρ0] + [H1, ρ−1] + [H2, ρ−2]
[H−2, ρ1] + [H−1, ρ0] + [H0, ρ−1] + [H1, ρ−2]
[H−2, ρ0] + [H−1, ρ−1] + [H0, ρ−2]

⎞
⎟⎟⎟⎟⎟
⎠

(6)
Formulating the system of equations in Eq. (6) can be done

intuitively: for a given block ρi, equation for that block will consist of
all combinations of the Hamiltonian and the density matrix blocks
whose indices add to i, provided that the blocks are labelled as in this
work.

The primary goal of this work is to simplify Eq. (6) (and
Eq. (2)) and provide linear superoperator that can be easily numeri-
cally implemented. Equation (6) represents a system of commutator
equations where we can define sub-Liouvillian operators which lin-
earize each commutator as Li = (Hi⊗ I− I⊗HT

i )ρ′i , i = −M, . . . M.
This then turns Eq. (6) into a linear system which can be written as
ih̵ dρ′′

dt = LQρ
′′, where LQ is a (2M + 1)– diagonal block matrix whose

block elements are Li and it has a similar form as the original block
form of the Hamiltonian. The unknowns will represent vectorised
forms of the corresponding density matrix blocks, labelled as ρ′i , and
we can pack these vectorised vectors in reverse order i = M, . . . −M
into one vector, labelled as ρ′′. It is interesting that we can form lin-
ear operator for system in Eq. (6) directly from the Hamiltonian by
using Khatri-Rao type of matrix product (definition and derivation
is given in the Appendix A) denoted by symbol ⊠.

Equation (6) linearizes as:

ih̵
dρ′′

dt
= (H ⊠ INUQ − I

N
UQ ⊠H

.T)ρ′′ (7)

where INUQ
is a block matrix partitioned in the same way as the Hamil-

tonian, where each block is an identity matrix. Note that the second
term in Eq. (7) is “dot” transpose operation which transposes only
the partitions within the Hamiltonian, not the Hamiltonian itself.
The important advantage of Eq. (7) is its mathematical simplicity
and the similarity to the general form of density matrix superopera-
tor, since the only difference is in the type of algebraic product (and
INUQ

matrix and the “dot” transpose operation). This formulation is
general for periodic quantum systems where the Hamiltonian and
the corresponding density matrix can be partitioned in block form
(it applies to Eq. (2) as well).

The main advantage of the formulation in Eq. (7) is that it
neatly applies periodic boundary conditions and linearizes the sys-
tem in the compact algebraic form. An additional difference from
the Liouvillian superoperator L = H ⊗ I − I ⊗ HT is that the super-
operator in Eq. (7) packs the unknowns of the system differently and
requires the formulation of the system with partitioned Hamilto-
nian. Generally, superopetaor for any partitioned Hamiltonian can
be formed by using Khatri-Rao product and this is further explained
in Appendix B.

The linearization in Eq. (7) uses the Hamiltonian of (2M + 1)
× (2M + 1) block size, however once Eq. (7) is solved, it is incor-
rect to use such Hamiltonian and the corresponding density matrix
for finding the expectation values of operators. The expectation
value of any operator Ô in DM formalism can be found as Tr(Ôρ̂).
Trace operation for the partitioned matrix results in a sum of
traces of each submatrix, and the product Oρ needs to be dound
as a limit value when Q → ∞ with an infinite Q × Q, (2M +
1) – diagonal density matrix and the Hamiltonian as discussed in
Ref. 33 in order to ensure the implementation of periodic boundary
conditions.

B. Dissipator
Liouville equation (1) describes only the interactions included

in the Hamiltonian, however, it is quite common to model some
interactions separately by adding phenomenological relaxation
terms that damp the equation of motion in the form−( ρτ )relax or, in a

more detailed form −γmn(ρmn−ρ(eq)mn ), m,n = 1, 2, . . . ,N, where γmn
are decay rates that damp density matrix terms ρmn to their equilib-
rium value ρ(eq)mn , where4 ρeqmn = 0,m ≠ n. Furthermore, the state pop-
ulations (described by the diagonal elements of the density matrix)
decay can be also introduced in the form ∑En>Em

ρnn
τmn
− ∑En<Em

ρmm
τnm

and it applies γmn = 1
2(

1
τm
− 1

τn
) + γcolmn, where τm and τn are total
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decay rates of populations out of levels m and n, while γcolmn are the
dephasing rates due to the processes (i.e. elastic collisions) that do
not affect the state populations, and influence only the phase, these
rates are often referred to as proper dephasing rates.4 We will refer
to all these additional terms in Liouville equation as a dissipator
D = −( ρτ )relax of the system; this term follows the symme-
try of the Hamiltonian described in the previous subsection, but
does not follow a neat algebraic formulation as Eq. (7), even
though these terms originate from various interaction Hamil-
tonians that could have been included in the total Hamilto-
nian H. This term is linear and we can transform it as D
→ D′′ρ′′, however the form of D′′ can be derived by mathemat-
ical induction and it depends on the system considered. In the
Appendix C we show how D′′ is derived for QCLs.25,26,33 Equa-
tion (1) now acquires an additional term D and Eq. (7) can be
written as:

ih̵
dρ′′

dt
= (H ⊠ INUQ − I

N
UQ ⊠H

.T − ih̵D′′)ρ′′ (8)

The reason why D is often excluded from H is because of
possible simplifications and physical interpretation of the quantum
system under consideration. The Hamiltonian of the system usu-
ally consists of several different interaction Hamiltonians that are
of interest, however some of them can be considered as perturba-
tions and their effect can then be handled by perturbation theory
(i.e using Fermi’s golden rule). For example, in laser systems, the
rates τmn can be directly expressed via Fermi’s golden rule, and
τm would simply represent state lifetimes. It is important to note
that D must not break the positivity of the density matrix since
the main requirement for a physical solution of Eq. (1) is that
ρ is a positive semi-definite matrix which ensures that all diago-
nal elements of the density matrix are positive (which must phys-
ically be satisfied). This condition will be satisfied if various scat-
tering processes are included in D in Lindblad5 form, and Fermi’s
golden rule satisfies this condition. Note that carious forms of
dissipators can be found in the literature9,30–32 that may also be
applied.

C. Dipole approximation
The density matrix formalism is capable of describing optical

macroscopic effects of the quantum system along with the effects of
external electrical perturbation.

We can assume that the Hamiltonian can be split as H = Hfree
+ V where Hfree is the Hamiltonian of the unperturbed system, and
V is the energy of interaction. The dipole approximation physically
models the system as a dipole antenna that will resonate at a specific
transition frequency, in this case the energy difference of the levels,
and assumes that the interaction energy can be written as V = −μA,
where μ = −er is the electric dipole moment operator4 and A(r, t) is
the optical electric field.

The most common implementation of the DM formal-
ism describes Hfree as a diagonal tight binding matrix (filled
with the corresponding energy states Em) and the substitution
into the general Liouvillian yields a system of equations in the
form:4

dρmn

dt
= − iωmnρmn −

i
h̵∑ν
(Vmνρνn − ρmνVνn)

− γmnρmn, ωmn =
Em − En

h̵
, m ≠ n

dρnn
dt
= − i

h̵∑ν
(Vnνρνn − ρnνVνn)

+ ∑
Em>En

ρmm

τnm
− ∑

Em<En

ρnn
τmn

(9)

This equation is actually a closed form of the Liouvillian (L
= H ⊗ I − I ⊗ HT + D), where H = Hfree + V and it repre-
sents the most common DM formulation4 that is often combined
with Maxwell equations. The formulation we presented in Eq. (8)
is not equal to the one in Eq. (9). It is somewhat valid to claim
that Eq. (8) can be derived from Eq. (9), but it is important to
point that the Hamiltonian is different, because it includes inter-
actions between the periods and not just the tight-binding Hamil-
tonian. Additionally, the order in which both systems of equations
are written is different. In Eq. (9) the density matrix ρ is unpacked
row–wise, and the first two terms simply correspond to the alge-
braic transformation of the Kronecker product (L = H ⊗ I − I
⊗ HT) and periodic boundary conditions are not applied. In Eq. (8)
the density matrix was partitioned in blocks as in Eq. (5) and
the overall system stores the unknowns by unpacking each block
row–wise. For example, in Eq. (6) the overall density matrix first
unpacked block ρ2 into N × N column vector, then ρ1, ρ0. . ., and
then joined them into one 5N2 column vector which is referred
to as ρ′′ in Eq. (7). This somewhat cumbersome repacking in
Eq. (8) resolved the problem of deciding which equations in the
periodic system can be ignored, how to properly set the periodic
boundary conditions and, most importantly, offered the conve-
nience in physical interpretation of the system that is described
by a partitioned Hamiltonian and the corresponding density
matrix.

Furthermore, the approach we present in Eqs. (4,5) can be fur-
ther generalized, in order to include the finiteness of system consid-
ered (i.e. contacts of the laser structure), which is one of the main
advantages of the more general models.36

D. Non-rotating wave approximation
In most cases of interest the optical electric field A has a phys-

ically expected form which can greatly simplify the DM model.
Generally, A(r, t) should be obtained from Maxwell equations
coupled to the DM model via polarization, which is given as
P = ND Tr(μρ), where ND is the density of electrons in the
system. However, one of the most common approaches in han-
dling the Maxwell equations is to look for a solution in the par-
ticular harmonic form that is expected from a system. In case
of a laser (or absorber) structure, it is expected that the optical
field has a dominant term at a particular frequency. A variety of
approaches that take different forms of A(r, t) were used,26,29,33

and we will discuss some of them. A very common approach is
to assume that the interaction V is weak (its matrix elements are
much smaller then elements of Hfree). In this case Eq. (9) can be
treated by perturbation theory, and a detailed study can be found in
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literature, in particular for two-level systems.4 Another common
approach treats Eq. (9) by rotating-wave approximation (RWA),
however for compact usage in Eq. (8) we will focus on a more
general approximation from which RWA was originally derived.
Assume that the optical electric field has a general plane-wave
form:

A(r, t) =∑
k
(Ak(r, t)eiβr−iωkt + Ak(r, t)eiβr+iωkt + c.c)

A(t) =∑
k
(Ak(t)e−iωkt + Ak(t)eiωkt + c.c)

(10)

where β is the propagation constant. Without loss of generality,
we will assume that the optical field has only the time depen-
dence, as given by the second equation in Eq. (10). Both of these
expressions are used in treatment of DM and Maxwell equa-
tions, but the second form can be taken in cases where individ-
ual quantum systems are much smaller them the wavelemgth of
light.

Non-rotating wave approximation (NRWA) assumes that the
system’s response will have identical harmonic form, while RWA
discards some terms based on the underlying physics of the sys-
tem. Note that implementing the RWA is actually more complicated
because we would need to manually select which terms of the den-
sity matrix would be allowed to oscillate at +w and which at −w,
depending on the energy states that correspond to the particular
density matrix elements. NRWA does increase the numerical com-
plexity, however it significantly simplifies further formulation of the
model.

The drive terms in differential equations (8,9) have a harmonic
form due to Eq. (10), and it would appear natural to assume that
the solution will follow this structure, i.e. ρ(t) = ∑k ρ

+
k(t)eiωkt +

ρ−k (t)e−iωkt . However, this is possible in some special cases when
the underlying physics allows it. The generalization of the system
in Eq. (8) is far from trivial.

Interestingly, the generalization of the effect of Eq. (10) on DM
formulation in Eq. (8) is possible when only one frequency com-
ponent is considered, and it can be expressed by a simple algebraic
formulation.

To illustrate that, we consider H = Hdc + Hace−iωt + Haceiωt and
ρ = ρdc + ρac

−
e−iωt + ρac

+
eiωt , where each term is partitioned and has

the (2M + 1) diagonal form as in Eqs. (4,5). Therefore, each block Hj

and ρj has three harmonic terms: Hj = Hdc
j + Hac

j e
−iωt + Hac

j e
iωt and

ρk = ρdck + ρac
−

k e−iωt + ρac
+

k eiωt . Consider the equations resulting from
the commutator of Hj and ρk:

e−iωt : [Hdc
j , ρac

−
k ] + [Hac

j , ρdck ]

e0 : [Hac
j , ρac

+

k ] + [Hdc
j , ρdck ] + [Hac

j , ρac
−

k ]

eiωt : [Hac
j , ρdck ] + [Hdc

j , ρac
+

k ]

(11)

Each commutator in Eq. (11) can be linearized with the cor-
responding sub-Liouvillian, and we will only have two of them:
Ldcj = Hdc

j ⊗ I − I ⊗ HdcT
j ,Lacj = Hac

j ⊗ I − I ⊗ HacT
j and the linear

form of Eq. (11) is:

⎛
⎜⎜
⎝

Ldcj Lacj 0
La+
j Ldcj Lacj
0 Lacj Ldcj

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

ρ′ac
−

k
ρ′dck
ρ′ac

+

k

⎞
⎟⎟
⎠

≡
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

Hdc
j Hac

j 0
Hac

j Hdc
j Hac

j

0 Hac
j Hdc

j

⎞
⎟⎟
⎠
⊠
⎛
⎜
⎝

I I I
I I I
I I I

⎞
⎟
⎠
−
⎛
⎜
⎝

I I I
I I I
I I I

⎞
⎟
⎠

⊠
⎛
⎜⎜
⎝

HdcT
j HacT

j 0
HacT

j HdcT
j HacT

j

0 HacT
j HdcT

j

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

ρ′ac
−

k
ρ′dck
ρ′ac

+

k

⎞
⎟⎟
⎠

(12)

The consequence of Eq. (12) is that it affects each equation
in Eqs. (2,3), and it breaks each of them into three equations. This
causes the system size to increase three times, however the approach
we presented in Eq. (8) needs to be just slightly re-modified. In
Eq. (12) we can notice that linearization of Eq. (11) can be written
in a similar Khatri-Rao notation as used in Eq. (8). We need to apply
Eq. (12) to each equation in Eqs (2,3), however we can notice that the
structure of Eq. (12) is tridiagonal and we can transform the initial
Hamiltonian by defining an expansion rule for non-rotating wave
approximation (NRWA) in the form:

HNRWA
j →

⎛
⎜⎜
⎝

Hdc
j Hac

j 0
Hac

j Hdc
j Hac

j

0 Hac
j Hdc

j

⎞
⎟⎟
⎠

(13)

If Eq. (13) is applied to each block of our initial Hamiltonian,
the expanded Hamiltonian enlarges 3 times, but the formulation of
Eq. (8) is still correct and slightly modified by adding NRWA super-
script in each term in Eq. (8), and also adding a term which is a
consequence of the time derivative:

ih̵
dρ′′NRWA

dt
= (HNRWA ⊠ IN

NRWA

UQ − IN
NRWA

UQ ⊠HNRWA.T

− ih̵D′′NRWA + h̵ωΩNRWA)ρ′′NRWA (14)

NRWA expansion affects Eq. (8) as follows:

● HNRWA is a 3Q × 3Q Hamiltonian obtained by applying
Eq. (13) on each block where Q = 2M + 1. Depending on the
problem, some blocks may have only some of the frequency
terms and this can simplify the problem of interest.

● IN
NRWA

UQ
is enlarged 3 times and represents 3Q × 3Q matrix

filled with identity matrices only in positions where the cor-
responding Hamiltonian has non-zero blocks. For algebraic
convenience, we could also define IN

NRWA

UQ
as block matrix

with 9Q2 submatrix identity blocks of N × N size, which
has direct algebraic formulation from a unity matrix U as
IN

NRWA

UQ
= U3Q×3Q ⊗ IN×N . Note that the system in Eq. (8)

is banded, and appropriate numerical algorithms can be
applied, in contrast to the system in Eq. (9) whose sparse
properties are generally broken by the dissipator.

● ρ′′
NRWA

is a column vector of 3QN2 size, where the first
3N2 elements correspond to stacked vectorised forms of
ρ′ac−k , ρ′dck , ρ′ac+k , k = −M, . . . ,M respectively, the next 3N2
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elements correspond to the stacked (in the same order) vec-
torised forms that correspond to the next block (M − 1),
and so on until all blocks are stored (M, M − 1, . . ., 0, . . .,
−M + 1, −M).

● The dissipator D′′
NRWA

usually follows the rule in Eq. (13) and
needs to comply with the order of storage of the unknown
ρ′′

NRWA
. As discussed above, the dissipator of the system

depends on the system under study, and therefore its lin-
earization and incorporation into the system cannot be
defined generally.

● Frequency terms populate the main diagonal of the system,
and this is formulated by ΩNRWA. These terms originate from
the time derivative in Eq. (14). The algebraic formulation is
ΩNRWA = (I2M+1×2M+1 ⊗ G3×3) ⊗ IN2×N2 where G is 3 × 3
diagonal matrix with entries − 1, 0, 1 on the main diagonal.
ΩNRWA can have different mathematical formulations (i.e.
IN2×N2 = IN×N ⊗ IN×N and various properties of Kronecker
product can be used).

Note that the generalization presented so far is only valid for
one frequency in Eq. (10). The expansion rule in Eq. (13) can clearly
be generalized further if we wanted to include integer multiples of
frequency ω. Generally, if we include F multiples of ω, the expansion
rule in Eq. (13) will then be (2F + 1)– diagonal (2F + 1) × (2F + 1)
matrix.

The difficulty for further generalization lies in frequency inter-
actions. For example, consider a case where we have two frequency
components in Eq. (10), ω1 and ω2. The potential terms are ω1,
ω2, ω1 − ω2, ω1 + ω2, 2ω1, 2ω2 which in NRWA expansion would
expand the system up to 12 times, however, depending on the values
of ω1 and ω2 and the state energies, some terms may be neglected
due to the underlying physics. A good example can be found in
Ref. 26, where three different frequencies were used for the study
of nonlinear effects in QCLs.

In general, any linear system of commutators can be formulated
through Khatri-Rao product, and different expansion rules would be
needed, depending on the problem of interest.

E. Boundary conditions
Boundary conditions represent the crucial part of the system

formulation. In this work we focused on periodic systems described
by the banded partitioned Hamiltonian, but the effects of device
boundaries will generally appear at all four corners of the Hamil-
tonian and therefore break its banded structure. A vast literature
is available for boundary conditions of banded matrices40,41 and
one of the main advantages of the formulation in this work is
that one can include the effects of device contacts, similarly to
NEGF methods.36 Expectation value of any operator Ô in DM for-
malism can be found as Tr(Ôρ̂). For infinite periodic systems Q
→ ∞, and the common approach is to find the limit value of
Tr(Ôρ̂) as in Ref. 33, however the result will strongly depend on
the chosen boundary conditions, which depend on the problem
considered.

III. QUANTUM CASCADE LASER
The derivation in the previous section is general for any peri-

odic system and the differences in implementation of the model

lie in the specific forms of the coupling off-diagonal Hamilto-
nian blocks and the dissipator. In Refs. 24, 26, and 33 we pre-
sented one of the simplest nearest neighbour DM implementa-
tion that is, in essence, a generalization of approach used in
Ref. 22. The simplicity of the model comes from the fact that
blocks H1 and H−1 which describe the interaction between adja-
cent periods, only have the dc term which consists of Rabi cou-
pling strengths given in Ref. 42. Note that this approximation is
ambiguous for QCL structures since formulation in Ref. 42 con-
siders tunnelling coupling rate of a two well system. This may be
circumvented by using generalized scattering approach32,34 which
also offers generalization of the dissipator beyond the Fermi-
golden rule. We will focus on the simpler model and formulate
it with Khatri-Rao notation introduced in Eq. (8) and also con-
sider the dynamic effects by coupling the model with Maxwell wave
equation.

Consider a 3 × 3 tridiagonal Hamiltonian and the correspond-
ing tridiagonal density matrix and the dissipator:

H =
⎛
⎜
⎝

H0 H1 0
H−1 H0 H1

0 H−1 H0

⎞
⎟
⎠

, Υ = eKL
⎛
⎜
⎝

I 0 0
0 0 0
0 0 −I

⎞
⎟
⎠

ρ =
⎛
⎜
⎝

ρ0 ρ1 0
ρ−1 ρ0 ρ1
0 ρ−1 ρ0

⎞
⎟
⎠

, D =
⎛
⎜
⎝

D0 D1 0
D−1 D0 D1

0 D−1 D0

⎞
⎟
⎠

(15)

where H0 is an N × N matrix involving its dc and two ac terms in
the form H0 = Hdc + Haceiwt + Hace−iwt . Hdc is the tight-binding
Hamiltonian of one QCL period, which has the main diagonal filled
with bound state energies. Matrix Υ describes the effect of the
applied bias K and it will slightly influence Eq. (14). The dissipator
blocks can all be expressed in the form ρj

τ , and this was reviewed
in Ref. 33. Interestingly the linearization of these blocks satisfies
D′1 = D′−1, more details are given in the Appendix. Hac = eZA1(t),
where Z is the dipole matrix that corresponds to the single period
basis wavefunctions and A1(t) is the optical electric field at radiation
frequency ω.

In Ref. 33 we performed steady–state analysis by taking A1
= const and ran a minimization algorithm that varied A1 until
the gain of the device was clamped to the loss due to the satura-
tion effect. In this work, we couple the DM model with Maxwell
wave equation in order to explore the dynamics of the system.
Wave equation can be implemented through travelling wave29

approach or standing wave approach which correspond to the
forms in Eq. (10), respectively. In this work we will couple the
DM model with the time-dependent-only wave equation which
is derived when Maxwell’s equation is approximated with stand-
ing waves and we will assume that only one mode in the struc-
ture is lasing. Additionally, we will apply slow-varying envelope
approximation which is common in laser considerations43 and
which turns the wave equation into the first order differential
equation.

In Eq. (15) we have introduced notation different from that in
Ref. 33, more similar to that in Ref. 26 because this notation allows
the generalization given by Eqs. (2,3). We have also added the effect
of external bias. Our main assumption is that the applied bias is
weak and that the wavefunction basis can be taken on one period
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and then translated to the neighbouring periods, while the effect
of the bias K over the period length L would only be noticeable in
the Hamiltonian blocks as the energy shift of ±eKL. Note that this
approximation allows the density matrix in Eq. (15) to have equal
diagonal blocks, even though its Hamiltonian broke that symmetry.
This will have a significant influence on the derivation of the output
parameters.

Generally, the addition of the effect of bias influences Eqs. (2,3)
by the addition of the term keKLH0ρk, however substitution in
Eq. (15) does not change significantly; the term eKLΥ⊠INUQ

should be
added in Eq. (8), its NRWA expansion is eKLΥ→ eKLΥNRWA = eKLΥ
⊗ I3N×3N which needs to be added in Eq. (14), as is further discussed
in the Appendix C. The system of equations that Liouville’s equation
yields is:

ih̵
d
dt

⎛
⎜
⎝

ρ1
ρ0
ρ−1

⎞
⎟
⎠
=
⎛
⎜
⎝

[H0, ρ1] + [H1, ρ0] + eKLρ1 − ih̵D1
[H−1, ρ1] + [H0, ρ0] + [H1, ρ−1] − ih̵D0
[H−1, ρ0] + [H0, ρ−1] − eKLρ−1 − ih̵D−1

⎞
⎟
⎠

dA1

dt
= −γ

2
A1 − i

w

2ϵ0n2 P

(16)

where γ = c
nαL represents the total loss αL multiplied by the group

velocity, n is the refractive index and P is the expectation value of
the polarization operator. The system under study is represented
by an infinite periodic matrix and the form in Eq. (16) focuses
on minimal number of equations that need to be solved, however
the expected values of the operators need to be derived through
usage of infinitely sized banded matrices, as discussed in Ref. 33.
In our case, the current density operator Ĵ = ien2D

h̵L [Ĥ, ẑ] has the
expectation value j = ien2D

h̵L Tr(Z([H1, ρ−1] + [H0, ρ0] + [H−1, ρ1]))
+ Tr(L(H1ρ−1 − ρ1H−1)), and the polarization operator P̂ = −e n2D

L ẑ
has the expectation value P = −e n2D

L Tr(Zρ+
0) where n2D is the sheet

electron density and Z is the dipole matrix that corresponds to the
central period basis.

The linearization of the DM part of Eq. (16) is given by Eq. (14)
(with addition of +eKLΥNRWAρNRWA′′ term) and numerical imple-
mentation is straightforward after the Khatri-Rao formulation is
introduced. Full matrix form of all terms in Eq. (14) is given in the
Appendix C, together with discussion on the linearization of the dis-
sipator part. Note that the DM part of the system in Eq. (16) has
three N × N blocks of the density matrix, and NRWA expands the
system three times, which, after the linearization, has 9N2 differ-
ential equations. For the steady–state analysis we can set the time
derivatives in Eq. (14) to zero, and the system would be linear
and homogeneous. For the study of dynamics, the system is non-
linear, however the system is of the first order and various ordi-
nary differential equations numerical procedures are available in
numerical packages. Normalization condition of the density matrix
requires that its trace has unity value. This property only affects
the blocks that directly correspond to the basis (Trρdc0 = 1) and we
can replace one of the equations in the 9N2 system with this con-
dition in order to solve the system most efficiently or introduce
a substitute that one of the elements is one minus all the others.
Note that it is not arbitrary which equation is replaced. Only an
equation that contains diagonal elements of the block ρ0 can be
replaced.

The algorithm, runs self–self–consistent method for solving
Schroedinger-Poisson equation under equithermal subband approx-
imation33 with A1 = 1Vm−1 (very low optical interaction) which
yields the highest possible value of the optical gain. If that value is
larger then the total loss, the system then uses the steady–state wave-
function basis obtained for A1 = 1Vm−1 and couples it with the wave
equation as in Eq. (16).

Figure 2 shows the dynamic behaviour of 2THz QCL struc-
ture33 with layer structure: 5.0/14.4/1.0/11.8/1.0/14.4/2.4/14.4/
2.413.2/3.0/12.4/3.2/12.0/4.4/12.6nm, Al0.1Ga0.9As barriers are
shown in bold, and wells doped to 1.3 1016cm3 are underlined. The
initial condition for Eq. (16) was set at steady–state solution when
optical field A1 = 103Vm−1. This was done in order to account for
the spontaneous emission in the device. Eq. (16) was solved by using
Runge-Kutta-Cash-Karp solver within ODEINT numerical package
in C++.

Physically, Fig. 2 illustrates the essential property of QCL struc-
tures. The relaxation oscillations are barely present as the sys-
tem reaches the steady–state much faster then its round trip time
(≈60ps), even at the peak power. This dynamic behavior is inde-
pendent on the number of states considered, and it can sustain a
system with any number of states, in contrast to the common Max-
Bloch approaches. In this case, we included complex interactions
between twelve states per QCL period. Numerical implementation
of the model was made straightforward due to the compact form of
the superoperator, Eq. (14), and apart from the tunneling strengths,
input for the presented DM model is identical as in RE approach,33

and the main difference is in the mathematical aspect of the system
construction.

Note that further numerical simplification is possible if we sep-
arate real and imaginary parts of the equations in Eq. (16) and use
Hermitian symmetry of the system. Additionally, it may be pos-
sible to determine the Jacobian of Eq. (16), use the steady–state
point value for A1 = const as stationary point and solve the system

FIG. 2. The evolution of optical power dependence in time for two values of bias
voltage values: at the peak power (KP) and on the falling edge (KF ) of the opti-
cal power dependence. Inset shows optical gain dependence on time. Loss was
estimated to 32.45cm−1.
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through eigenvector and eigenvalue approach which may yield faster
numerical results.

IV. THE SECOND NEAREST NEIGHBOUR
INTERACTION

The nearest neighbour interaction is valid for QCL devices due
to the fact that we expect a rapid decay of wavefunctions inside the
injection barriers, which makes the interaction of the first and the

third period very weak. Here we consider a simple two–well periodic
structure whose wavefunctions extend across three periods, which
requires including higher order Hamiltonian and the corresponding
density matrix blocks, labelled as H±2 and ρ±2. The matrix form of
the Hamiltonian, density matrix and dissipator have similar form as
in Eq. (15), but they are now pentadiagonal matrices, where each
matrix has additional super- and sub-diagonal containing block
H±2, ρ±2 and D±2. The system of equations that Liouville’s equation
yields is:

ih̵
d
dt

⎛
⎜⎜⎜⎜⎜
⎝

ρ2
ρ1
ρ0
ρ−1
ρ−2

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

[H0, ρ2] + [H1, ρ1] + [H2, ρ0] + 2eKLρ2 − ih̵D2
[H−1, ρ2] + [H0, ρ1] + [H1, ρ0] + [H2, ρ−1] + eKLρ1 − ih̵D1
[H−2, ρ2] + [H−1, ρ1] + [H0, ρ0] + [H1, ρ−1] + [H2, ρ−2] − ih̵D0
[H−2, ρ1] + [H−1, ρ0] + [H0, ρ−1] + [H1, ρ−2] − eKLρ−1 − ih̵D−1
[H−1, ρ−1] + [H−2, ρ0] + [H0, ρ−2] − 2eKLρ−2 − ih̵D−2

⎞
⎟⎟⎟⎟⎟
⎠

(17)

This equation is then linearized as Eq. (14) (with the addition
of the term due to the applied electric field). As an example, consider
a GaAs/Al0.1Ga0.9As two well periodic structure that has three states,
their wavefunctions extending even into the second neighbour peri-
ods (Fig. 3), and therefore solving system in Eq. (17) is necessary.
The calculated current density dependence on the applied electric
field is shown in Fig. 4.

In Figure 4 we can notice that the second nearest neigh-
bour approximation did improve the initial result. Note how-
ever, that numerical complexity of pentadiagonal model requires
solving 15N2 equations when NRWA is employed. This struc-
ture is not a QCL device, but rather an exemplary structure
where including the second nearest neighbour interaction is nec-
essary. In Table I we focused on a range of bias values where

FIG. 3. Band diagram and wavefunction plot (one period only) for the exem-
plar structure. The layer thicknesses, starting from the leftmost barrier are
20/84/10/88 Å, Al0.1Ga0.9As barriers are shown in bold and the well doped to
1.3 × 1016cm−3 is underlined.

the model difference is most notable in Fig. 4. We calculated the
overlap integrals of central period wavefunctions across the first
neighbouring Fi = ∫F |ψi|2dz and the second neighbouring Si =
∫S|ψi|2dz period. The third wavefunction is strongly coupled in
both periods which can also be detected in Fig. 3, and in this
bias range, there is also a strong coupling of all three wave-
functions in the first neighbouring period. Outlining the neces-
sity for the second neighbour approximation is nominally not
straightforward. One of the wavefunctions may strongly couple
with the second neighbour, however it might not have a signif-
icant influence on the transport. The values in Table I give a
rough estimate of the effect. We can additionally illustrate opti-
cal field effects by investigating absorption saturation, displayed
in Fig. 5.

FIG. 4. Current density versus applied external electric field for different near-
est neighbour DM models. The nearest neighbour approximation is shown in
red and results in tridiagonal DM problem, while the second nearest neighbour
approximation is shown in blue and results in pentadiagonal DM problem.
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TABLE I. Overlap integrals of wavefunctions |i⟩ across the first (Fi ) and the second
(Si ) neighbour period for different values of applied electric bias K (in kV/cm) for a
structure in Fig. 3

K 4.5 5 5.5 6

F1 0.61 0.62 0.63 0.64
F2 0.41 0.40 0.39 0.39
F3 0.43 0.36 0.29 0.24
S1 1.16 ⋅ 10−5 1.25 ⋅ 10−5 1.35 ⋅ 10−5 1.46 ⋅ 10−5

S2 9.92 ⋅ 10−5 10.65 ⋅ 10−5 11.45 ⋅ 10−5 12.34 ⋅ 10−5

S3 0.31 0.38 0.44 0.48

FIG. 5. Absorption coefficient dependence on frequency for different values of
optical electric field, obtained within the second nearest neighbour approximation.
Inset shows the comparison between the nearest (dashed lines) and the second
nearest (solid lines) approximation where the absorption coefficients for different
values of the optical electric field are displaced for better visibility.

FIG. 6. Current density versus applied electric field obtained by a tridiagonal den-
sity matrix33 and pentadiagonal density matrix for QCL structure. Inset shows
optical power dependence on current.

In Figure 5 we can observe how absorption coefficient gets satu-
rated with the increase of optical electric field. Note that here we are
not coupling the DM model with Maxwell equation as in the previ-
ous considerations, but rather directly changing optical electric field
value within the Hamiltonian. Similarly to Fig. 4 there is a difference
in results depending on number of neighbours considered in the DM
model, shown in the inset.

Implementing the second nearest neighbour approximation for
QCL device uses identical expressions as Eq. (17) and compari-
son between the first and the second nearest neighbour approx-
imations for QCL structure considered in Ref. 33 is presented
in Fig. 6.

Figure 6 shows nearly identical results as33 and confirms the
expectation that expanding the model does not affect the results sig-
nificantly. All other results (for material gain and optical power)
presented in Ref. 33 are identical as well.

V. CONCLUSION
We presented a generalization of the Liouvillian for periodic

quantum systems that can be represented by (2M + 1)–diagonal
partitioned Hamiltonian and the corresponding density matrix.
We showed that Khatri-Rao product for the system of commu-
tator equations can be applied directly to the initial form of the
Hamiltonian, and that it can be written with a similar algebraic
notation as the commonly known Liouvillian of non-partitioned
Hamiltonian.

In Appendix A we give further generalization for partitioned
approaches which can be applied to a variety of quantum systems.
Our formulation allows intuitive physical interpretation of the equa-
tions in the system and it can extend the DM model to include
the effects of the device contacts, which should make this model
competitive with more complex models, such as NEGF approach.
We illustrated how NRWA affects the periodic system and dis-
cussed key approximations that are commonly introduced in the
DM formalism.

We applied our model to an exemplary periodic structure
and QCL structure considered in our previous work, where we
illustrated that number of partitions in the density matrix and
the Hamiltonian depends on localization and span of wavefunc-
tions over neighbouring periods. We showed that, when applied
to a QCL structure, the superoperator given in Eq. (14) requires
nearly identical input and algorithm approach as rate equa-
tion models, and the only difference lies in algebra needed for
model construction. Note that the sparse-banded nature of the
equations that this model yields also enables efficient numerical
optimization.

We analyzed the absorption saturation with optical field on
periodic exemplary structure and presented dynamical response of
the bound to continuum THz QCL structure with twelve states
considered. The model can be further developed to investigate
dynamical behavior of QCLs.
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APPENDIX A: ALGEBRAIC SIMPLIFICATION FOR
PERIODIC PARTITIONED SYSTEMS

Kronecker tensor product is a well known type of product in
algebra44 and for matrices A and B, A ⊗ B creates a block matrix
where a block in ij – th place is given as aijB. Kronecker product with
the identity matrix Im×m has a very intuitive form, when performed
from the left as Im×m ⊗A, the resulting matrix is block diagonal with
A blocks on the main diagonal; when performed from the right as A
× I the resulting matrix takes every element in A and multiplies it
by identity matrix which visually looks like every element in A was
diagonally stretched. One of the great advantages of the Kronecker
product is that it enables linearization of the system. The system in
the form AXB = Y can be linearized as (A⊗ BT)X′ = Y ′ for row–wise
vectorisation of X and Y.

Khatri-Rao product45–47 is defined as a “dot” product of par-
titioned matrices, where the “dot” is the Kronecker product, how-
ever alternative definitions exist in the literature48 and we will
focus on the definition as in Refs. 49 and 50, which requires A
and B to be partitioned in the similar form. The Khatri Rao prod-
uct would then behave as originally stated. This product is useful,
as we have shown in this work, to describe linear systems given
by Kronecker products. We made significant algebraic simplifica-
tions which allow efficient numerical implementation along with
the intuitive physical interpretation of equations given in the block
form.

Let us linearize each commutator in Eq. (6) as Li =
(Hi ⊗ I − I ⊗ HT

i )ρ′i and separate the terms that multiply the
unknowns from the left and from the right into two separate
groups as:

ih̵

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

ρ′2
ρ′1
ρ′0
ρ′−1

ρ′−2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

H0 ⊗ I ρ′2 + H1 ⊗ I ρ′1 + H2 ⊗ I ρ′0
H−1 ⊗ I ρ′2 + H0 ⊗ I ρ′1 + H1 ⊗ I ρ′0 + H2 ⊗ I ρ′−1

H−2 ⊗ I ρ′2 +H−1 ⊗ I ρ′1 +H0 ⊗ I ρ′0 +H1 ⊗ I ρ′−1 + H2 ⊗ I ρ′−2

H−2 ⊗ I ρ′1 + H−1 ⊗ I ρ′0 + H0 ⊗ I ρ′−1 + H1 ⊗ I ρ′−2

H−2 ⊗ I ρ′0 + H−1 ⊗ I ρ′−1 + H0 ⊗ I ρ′−2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I ⊗HT
0 ρ′2 + I ⊗HT

1 ρ′1 + I ⊗HT
2 ρ′0

I ⊗HT
−1 ρ′2 + I ⊗HT

0 ρ′1 + I ⊗HT
1 ρ′0 + I ⊗HT

2 ρ′−1

I ⊗HT
−2 ρ′2 + I ⊗HT

−1 ρ′1 + I ⊗H0 ρ′0 + I ⊗HT
1 ρ′−1 + I ⊗H2 ρ′−2

I ⊗HT
−2 ρ′1 + I ⊗HT

−1 ρ′0 + I ⊗HT
0 ρ′−1 + I ⊗HT

1 ρ′−2

I ⊗HT
−2 ρ′0 + I ⊗HT

−1 ρ′−1 + I ⊗HT
0 ρ′−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

H0 ⊗ I H1 ⊗ I H2 ⊗ I 0 0
H−1 ⊗ I H0 ⊗ I H1 ⊗ I H2 ⊗ I 0
H−2 ⊗ I H−1 ⊗ I H0 ⊗ I H1 ⊗ I H2 ⊗ I

0 H−2 ⊗ I H−1 ⊗ I H0 ⊗ I H1 ⊗ I
0 0 H−2 ⊗ I H−1 ⊗ I H0 ⊗ I

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

ρ′2
ρ′1
ρ′0
ρ′−1

ρ′−2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I ⊗HT
0 I ⊗HT

1 I ⊗HT
2 0 0

I ⊗HT
−1 I ⊗HT

0 I ⊗HT
1 I I ⊗HT

2 0

I ⊗HT
−2 I ⊗HT

−1I I ⊗HT
0 I ⊗HT

1 I ⊗HT
2

0 I ⊗HT
−2I I ⊗HT

−1 I ⊗HT
0 I ⊗HT

1

0 0 I ⊗HT
−2 I ⊗HT

−1 I ⊗HT
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

ρ′2
ρ′1
ρ′0
ρ′−1

ρ′−2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(A1)

The first term on the right in Eq. (A1) results in a block matrix
that has the same form as the Hamiltonian in Eq. (4), where each
block goes through Kronecker ⊗ product with the identity matrix
I. Similarly, the second term results in a matrix that has a form
of block transpose (or “dot” transpose) of the Hamiltonian, where
blocks go through Kronecker tensor product with I from the left. It
is clear that we can extract the Hamiltonian and its block transpose
in Eq. (A1) and let them undergo “dot” product like operation with
a (2M + 1) diagonal matrix filled with identity matrices, where “dot”
would represent Kronecker product. This type of product is known
as Khatri-Rao product ⊠. Let us therefore define a matrix INUQ

as:

INUQ = UQ×Q ⊗ IN×N =

⎛
⎜⎜⎜⎜⎜
⎝

I I I I I
I I I I I
I I I I I
I I I I I
I I I I I

⎞
⎟⎟⎟⎟⎟
⎠
Q×Q

(A2)

where I is N × N identity matrix and UQ×Q is Q × Q unity matrix.
The INUQ

matrix is then a Q × Q block matrix filled with identity

matrices. Note that minimal value for Q is (2M + 1), but if the sys-
tem is strongly coupled, Eq. (3) cannot be discarded and the density
matrix would need more blocks.

It is clear that Eq. (7) follows directly from Eq. (A1) when
Khatri-Rao operation is used. Note that the formulation in Eq. (7)
can be performed with INUQ

matrix defined as (2M + 1) block diagonal
matrix (filled with identity sub-matrices), however the formulation
in Eq. (A2) has direct algebraic form.

APPENDIX B: GENERALIZATION OF THE BLOCK
FORMULATION

Khatri-Rao notation can be used for constructing a superop-
erator for general forms of the Hamiltonian and the density matrix
which are partitioned. Without loss of generality, we can consider
the 2 × 2 case:

H = (H11 H12
H21 H22

), ρ = ( ρ11 ρ12
ρ21 ρ22

) (B1)
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If we unpack ρ row–wise block by block, the commutator of
C = [H, ρ] takes the form:

C =

⎛
⎜⎜⎜⎜⎜
⎝

H11 0 H12 0
0 H11 0 H12

H21 0 H22 0
0 H21 0 H22

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

ρ11

ρ12

ρ21

ρ22

⎞
⎟⎟⎟⎟⎟
⎠

− ( ρ11 ρ12 ρ21 ρ22 )

×

⎛
⎜⎜⎜⎜⎜
⎝

H11 H12 0 0
H21 H22 0 0

0 0 H11 H12

0 0 H21 H22

⎞
⎟⎟⎟⎟⎟
⎠

(B2)

Note that the symmetry in Eq. (B2) resembles the Kronecker
product with the identity matrix and Liouvillian of the commutator
L = H ⊗ I − I ⊗ HT . Equation (B2) indeed folds into Liouvillian if
all Hij and ρij were scalars, however for submatrix blocks Eq. (B2)
is a slightly generalized formulation of the Kronecker product. In
Eq. (B2) we have four equations with the terms Hijρij and ρijHij and
all these terms can be linearized by a well known identity Hijρij →
(Hij ⊗ I)ρ′ij, ρijHij → (I ⊗HT

ij )ρ′ij, and by using Khatri Rao product
Eq. (B2) can be linearized as:

C =

⎛
⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

H11 0 H12 0
0 H11 0 H12

H21 0 H22 0
0 H21 0 H22

⎞
⎟⎟⎟⎟⎟
⎠

⊠

⎛
⎜⎜⎜⎜⎜
⎝

I 0 I 0
0 I 0 I
I 0 I 0
0 I 0 I

⎞
⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜
⎝

I I 0 0
I I 0 0
0 0 I I
0 0 I I

⎞
⎟⎟⎟⎟⎟
⎠

⊠

⎛
⎜⎜⎜⎜⎜
⎝

HT
11 HT

21 0 0

HT
12 HT

22 0 0

0 0 HT
11 HT

21

0 0 HT
12 HT

22

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

ρ′11

ρ′12

ρ′21

ρ′22

⎞
⎟⎟⎟⎟⎟
⎠

(B3)

This linearization can now be expressed in compact algebraic man-
ner. The first matrix in Eq. (B3) can be obtained from the initial
Hamiltonian as (U2×2 ⊗ I2×2) ⊠ H, because if we had 2 × 2 matrix
filled with 2 × 2 identity matrices, the Khatri-Rao product with H
would create the first term, and similarly the last matrix needs to
repeat transpose of H two times and this can be done as I2×2 ⊗ H.
Without loss of generality, the third and the fourth term could be
replaced by one matrix filled with identity matrices, which has triv-
ial algebraic form (IU4 = U4×4 ⊗ I), however, if it is of interest to the
reader, the third term can be formulated as (U2×2 ⊗ I2×2) ⊠ (U2×2
⊗ I) and the forth as I2×2 ⊗ (U2×2 ⊗ I). Note that there are vari-
ous algebraic formulations of these matrices, and our formulation is
not unique. It is clear that generally, for fully partitioned Hamilto-
nian H and the corresponding density matrix ρ of size QN × QN,
whose partitions have the size N × N, the commutator would be
given as:

C = (((UQ×Q ⊗ IQ×Q) ⊠H) ⊠ INUQ − I
N
UQ ⊠ (IQ×Q ⊗HT))ρ′′

INUQ = UQ×Q ⊗ IN×N
(B4)

where ρ′′ is first unpacked row–wise in the block form, and then each
block is unpacked row–wise, which at the end forms one column
vector and Liouville equation becomes linear. This formulation is
general, for a variety of problems and in this work we focused on
a special case with high symmetry. Note that we focused on square
matrices with square blocks, however this is not a strict requirement
for Eq. (B3), and further generalization with blocks of different size
is possible.

Note that C in Eq. (B4) describes the same system as Liouvil-
lian L = HQN×QN ⊗ IQN×QN − IQN×QN ⊗ HT

QN×QN would, and the
main difference is in the order in which the equations are written.
Liouvillian unpacks the unknown density matrix row by row, while
C unpacks the blocks first, and then the blocks themselves. For-
mulation of superoperator in Eq. (B4) offers an intuitive physical
interpretation, because in many cases partitions of the Hamilto-
nian have physical interpretation as well. An additional advantage
of Eq. (B4) is that it is also a sparse matrix, as is Liouvillian, and
for a periodic system it remains sparse when the dissipator is added
to the Liouville equation, which opens the possibility for numeri-
cal optimizations. If H and ρ are given as in Eqs. (4) and (5) their
commutator yields a multidiagonal matrix with high symmetry as
well, and the formulation in Eq. (B4) is not necessary because a
large portion of the equations can be discarded, and algebraic gen-
eralization needs to be derived separately, as we presented through
Eqs. (4)–(14).

APPENDIX C: PARTICULAR TERMS FOR THE QCL
MODEL

In Ref. 33 we discussed the dissipator which is present in the
most common DM implementation in Eq. (9). Adding the dis-
sipator to the Liouville equation corresponds to modelling inter-
actions in the system by perturbation theory. In QCL, modelling
various transport mechanisms is usually performed by introduc-
ing relaxation times which are obtained from Fermi golden rule.
Along with the simplicity of these terms, Fermi golden rule does
not break the positivity of the density matrix and it is always
a safe method of modelling the transport. These terms, unfor-
tunately, do not have a general algebraic formulation as the
commutator, however, for the QCL, we can represent them by
a banded matrix in a similar form as the density matrix. Let
us first clarify the physical interpretation of these terms. In a
laser system, we expect that transport occurs between various
energy levels, and this causes relaxation of the state populations.
State populations are described only by the diagonal elements
in the overall density matrix, and this relaxation is modelled as
∑En>Em

ρnn
τmn
− ∑En<Em

ρmm
τnm

4 which, for the QCL and the banded
density matrix we introduced, influences the diagonal elements.
These occur only with the blocks ρ0 and relaxation of the state
populations is:33

Drelax
0 = −ρ0ii

τi
+∑

i≠j

ρ0jj

τji
(C1)

where 1
τi
= ∑j≠i

1
τij

is the total decay rate out of i – th level, com-

monly known as state lifetime. Note that Drelax
0 only depends on

diagonal elements in ρ0. The additional effect that needs to be
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included is the dephasing. Dephasing can be interpreted from sim-
ple dipole example,43 if a wavefunction is given as a mixture of
two states described by their wavefunctions ψi = ai(t)e−iEit/h̵ψi(r)
and ψj = aj(t)e−iEjt/h̵ψj(r), the probability will have three terms,
individual occupancies = |ai(t)ψi(r)|2, |aj(t)ψj|2 and the third term
which will have sinusoidal component at frequency equal to the
energy spacing between states i and j. This term resembles the
dipole oscillation in the classical mechanics, and directly corre-
sponds to the off-diagonal elements in the density matrix. This
term decays as ai(t)aj(t)ψi(r)ψj(r), and this decay will be propor-
tional to the decay of |ai(t)aj(t)|, however these terms describe level
occupancy and they can have a phase ai(t) = ∣ai(t)∣eiϕi which
creates additional term ei(ϕj−ϕi). This phase can be randomized
by dephasing processes that do not change occupancies (ampli-
tudes of ai, aj) which is referred as the pure dephasing. Note
that the dephasing affects every off-diagonal element in the den-
sity matrix, regardless of the block it is located in, and it can be
described as:

ρij
τij
= −

ρ1ij

τ∥ij
, i ≠ j

1
τ∥ij
= 1

2τi
+

1
2τi

+
1
τii

+
1
τjj
− 2√

τIFR
ii τIFR

jj

(C2)

The first two terms in τ∥ describe the decay of state occupancies,
while the next three terms represent an approximation for pure
dephasing.33 For the notation in Eq. (9), γmn = 1

2(
1
τm
− 1

τn
) + γcolmn

where τm can be easily compared with Eq. (C2). Equations (C1) and
(C2) now target all the elements in the overall density matrix, how-
ever, we want to partition it in the form similar to the way density
matrix is partitioned. We can first formulate the dissipator blocks as
Dk = ρk

τk
, k = −M, . . . ,M where 1

τk
is a tensor. Notice the symme-

try of Eq. (C2): it is irrelevant whether states i and j are in the same
period or not, if the basis was chosen on one period. This means
that the dissipator blocks on off-diagonal of the block formulation
of the dissipator have entirely equivalent tensor forms 1

τ∥
= 1

τk
, k ≠ 0

and the central block will be missing the main diagonal of this ten-
sor 1

τ′′∥
= 1

τ∥
− diag( 1

τ∥
) (because only off-diagonal elements in ρ0

should be affected). Central blocks have another component, that
comes from Eq. (C1) and we can write 1

τ0
= 1

τ′′∥
+ 1

τ , where 1
τ rep-

resents the effect of Eq. (C1). This formulation was implemented
in Ref. 33, and then generally the dissipator block form follows the
symmetry of the block form of the density matrix, and transport can
then be symbolically described by a tensor matrix given in Eq. (5)
in Ref. 33.

We are not particularly interested in tensor forms of the dis-
sipator, but rather in their linearization that needs to be inserted
in Eq. (14). We only need to make three matrices which we will
conveniently name τ−1, τ−1

∥ and τ−1′′
∥ , and it applies τ−1′′

∥ = τ−1
∥

− diag(τ−1
∥ ) (the main diagonal is set to 0). The first matrix is an

N × N matrix filled with scattering rates that come from various
scattering mechanisms included in the model and are obtained by
Fermi golden rule on the off-diagonal positions, while the terms
−τ−1

i on the main diagonal represent the state lifetimes. The sec-
ond and the third matrix are also N × N matrices with terms given

by Eq. (C2), and the diagonal terms in the third matrix are set
to zero.

Let us assume that NRWA has not been applied yet, and that we
want to write linear form of the dissipator. Each block of Dk of the
dissipator is N ×N matrix, and the linearization requires us to make
an N2 × N2 matrix that would target the corresponding vectorised
form of the density matrix block ρ′k. The off-diagonal blocks Dk, k
≠ 0, linearize trivially. Matrix 1

τ∥
is vectorised row–wise and this is

then placed on the main diagonal of a N2 × N2 matrix which we will
refer to as τ−1

lin∥, and tensor formulation Dk = ρk
τk

, k ≠ 0 linearizes as
D′kρ

′
k, D′k = τ−1

lin∥.
The central block has two tensor components, the dephasing

part τ−1′′
lin∥ linearizes in the same way as τ∥, however some elements

will be missing because of the slight difference between these matri-
ces. Linearization that comes from τ−1 is not intuitive, and it was
originally derived by mathematical induction in Ref. 33. Visually
it looks like stretching of τ−1 matrix, and mathematically this can
be formulated as in Ref. 33: matrix τ−1 is written as a sum of N2

matrices of N × N size, where each matrix in the aforementioned
sum is obtained from τ−1 by setting all elements to zero except
the ij-th element (any matrix can be written in this form). This
sum needs to be written with respect to the element position and
to correspond to the row–wise packing. The next step is to place
terms of this sum in a N2 × N2 matrix row–wise, which we will
refer to as τ−1

lin . Alternative definition would be to expand every ele-
ment in τ−1 by multiplying it with a matrix of N × N size which
has unit value in ij–th place and zeros elsewhere. Mathematical
formulation can be written as τ−1

lin = τ−1 ⊗ (δijUN×N) (Kronecker
delta δij activates ij–th element in the unit matrix and Kronecker
tensor product would repeat the operation for every i and j, how-
ever this is not fully valid mathematically because δij depends on
i and j).

τ−1
∥ =
⎛
⎝
τ−1
∥11

τ−1
∥12

τ−1
∥21

τ−1
∥22

⎞
⎠
→ τ−1

lin∥ =

⎛
⎜⎜⎜⎜⎜
⎝

τ−1
∥11

0 0 0

0 τ−1
∥12

0 0

0 0 τ−1
∥21

0

0 0 0 τ−1
∥22

⎞
⎟⎟⎟⎟⎟
⎠

τ−1 =
⎛
⎝
τ−1

11 τ−1
12

τ−1
21 τ−1

22

⎞
⎠
→ τ−1

lin =

⎛
⎜⎜⎜⎜⎜
⎝

τ−1
11 0 0 τ−1

12

0 0 0 0
0 0 0 0

τ−1
21 0 0 τ−1

22

⎞
⎟⎟⎟⎟⎟
⎠

(C3)

Equation (C3) visually illustrates the linearization on the 2 × 2
example. We can now linearize central blocks of the dissipator as
D′0ρ′0, D′0 = τ−1′′

lin∥ + τ−1
lin . Note that this linearization did not con-

sider the NRWA in which every density matrix block is split into
three terms, but fortunately the inclusion of NRWA is trivial and,
in essence, follows the expansion rule in Eq. (13), the difference
being that none of the scattering times are frequency dependent and
NRWA will cause D′k to simply expand into 3 × 3 diagonal block
matrices. This can also be formulated as DNRWA′

k = I3×3 ⊗ D′k. Full
linear form of Eq. (14) that corresponds to the numerical example in
section III is:
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HNRWA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Hdc
0 Hac

0 0 H1 0 0 0 0 0
Hac

0 Hdc
0 Hac

0 0 H1 0 0 0 0
0 Hac

0 Hdc
0 0 0 H1 0 0 0

H−1 0 0 Hdc
0 Hac

0 0 H1 0 0
0 H−1 0 Hac

0 Hdc
0 Hac

0 0 H1 0
0 0 H−1 0 Hac

0 Hdc
0 0 0 H1

0 0 0 H−1 0 0 Hdc
0 Hac

0 0
0 0 0 0 H−1 0 Hac

0 Hdc
0 Hac

0
0 0 0 0 0 H−1 0 Hac

0 Hdc
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, ΥNRWA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

IN2 0 0 0 0 0 0 0 0
0 IN2 0 0 0 0 0 0 0
0 0 IN2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −IN2 0 0
0 0 0 0 0 0 0 −IN2 0
0 0 0 0 0 0 0 0 −IN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

D′′NRWA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

τ−1
lin∥ 0 0 0 0 0 0 0 0
0 τ−1

lin∥ 0 0 0 0 0 0 0
0 0 τ−1

lin∥ 0 0 0 0 0 0
0 0 0 τ−1′′

lin∥ + τ−1
lin 0 0 0 0 0

0 0 0 0 τ−1′′
lin∥ + τ−1

lin 0 0 0 0
0 0 0 0 0 τ−1′′

lin∥ + τ−1
lin 0 0 0

0 0 0 0 0 0 τ−1
lin∥ 0 0

0 0 0 0 0 0 0 τ−1
lin∥ 0

0 0 0 0 0 0 0 0 τ−1
lin∥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ΩNRWA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−IN2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 IN2 0 0 0 0 0 0
0 0 0 −IN2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 IN2 0 0 0
0 0 0 0 0 0 −IN2 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 IN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ρNRWA′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρac−
′

2

ρdc
′

2

ρac+
′

2

ρac−
′

1

ρdc
′

1

ρac+
′

1

ρac−
′

0

ρdc
′

0

ρac+
′

0

ρac−
′

−1

ρdc
′
−1

ρac+
′

−1

ρac−
′

−2

ρdc
′
−2

ρac+
′

−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(C4)

In Eq. (C4) all blocks in HNRWA are N × N in size, and once this
matrix (and its “dot” transpose) gets into Khatri-Rao product with
INU15

matrix (which is 9 × 9 block matrix filled with IN×N submatri-
ces) we would obtain 9N2 × 9N2 matrix where each block would
be a corresponding Liouvillian of every block in HNRWA with size
N2 × N2. Note that we introduced expansion rule in Eq. (13) to act
on Hamiltonian blocks, however, this expansion could have been
defined for submatrix Liouvillians as well (similarly to Eq. (12)).
Blocks H±1 do not have ac terms and this simplifies HNRWA. We
should underline again that INU9

does not need to be completely filled
with identity matrices, and that the only real requirement is that
it has IN×N blocks at the same places as HNRWA does. As we dis-
cussed, DNRWA′′ , ΩNRWA and ΥNRWA are block diagonal with very

high symmetry (ΩNRWA is nearly the identity matrix, while DNRWA′′

has equal linearization blocks in every position, except the posi-
tions that contain ρdc,ac±0 ). Note that the overall system is sparse,
and that this property can be used in numerical implementation.
For the nearest (first) neighbour approximation the system above is
reduced to 9N2 equations by deleting the first and the last three rows
and columns in each matrix in Eq. (B3) and setting H±2 to zero in
the remaining equations, which then results in the equivalent model
as in Ref. 33.

The derivation of ΩNRWA is simple in the sense that this term
is a consequence of the time derivative of ih̵ρ′′

NRWA
which has 3(2M

+ 1) submatrices in the form ρ′ac−k , ρ′dck , ρ′ac+k , k = −M, . . . ,M,
and these terms originally have exponentials e±iwt . After the
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differentiation and multiplication with ih̵, the terms with frequency
would be present only in front of ac terms, as ∓h̵wρ′ac±k . Lineariza-
tion of these terms would simply represent identity matrix IN2×N2

when this term is moved to the left hand side of Eq. (14) it would
alternate as depicted in Eq. (C4). Algebraic formulation of such
alternation is ΩNRWA = (I2M+1×2M+1 ⊗ G3×3) ⊗ IN2×N2 where G
is 3 × 3 diagonal matrix with elements − 1, 0, 1 on the main
diagonal.
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Z. Ikonić, A. G. Davies, and D. Indjin, “Origin of terminal voltage variations due to
self-mixing in terahertz frequency quantum cascade lasers,” Opt. Express 24(19),
21948–21956 (2016).
29P. Tzenov, D. Burghoff, Q. Hu, and C. Jirauschek, “Time domain modeling of
terahertz quantum cascade lasers for frequency comb generation,” Opt. Express
24(20), 23232–23247 (2016).
30O. Jonasson, F. Karimi, and I. Knezevic, “Partially coherent electron transport
in terahertz quantum cascade lasers based on a Markovian master equation for the
density matrix,” J Comput Electron 15, 1192–1205 (2016).
31O. Jonasson, S. Mei, F. Karimi, J. Kirch, D. Botez, L. Mawst, and I. Knezevic,
“Quantum transport simulation of high-power 4.6-μm quantum cascade lasers,”
Photonics 3(2), 38 (2016).
32A. Pan, B. A. Burnett, C. O. Chui, and B. S. Williams, “Density matrix model-
ing of quantum cascade lasers without an artificially localized basis: A generalized
scattering approach,” Physical Review B 96(8), 085308 (2017).
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