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Abstract. Subglacial roughness can be determined at a va-

riety of length scales from radio-echo sounding (RES) data

either via statistical analysis of topography or inferred from

basal radar scattering. Past studies have demonstrated that

subglacial terrain exhibits self-affine (power law) roughness

scaling behaviour, but existing radar scattering models do

not take this into account. Here, using RES data from north-

ern Greenland, we introduce a self-affine statistical frame-

work that enables a consistent integration of topographic-

scale roughness with the electromagnetic theory of radar

scattering. We demonstrate that the degree of radar scatter-

ing, quantified using the waveform abruptness (pulse peaki-

ness), is topographically controlled by the Hurst (roughness

power law) exponent. Notably, specular bed reflections are

associated with a lower Hurst exponent, with diffuse scatter-

ing associated with a higher Hurst exponent. Abrupt wave-

forms (specular reflections) have previously been used as a

RES diagnostic for basal water, and to test this assumption

we compare our radar scattering map with a recent predic-

tion for the basal thermal state. We demonstrate that the ma-

jority of thawed regions (above pressure melting point) ex-

hibit a diffuse scattering signature, which is in contradiction

to the prior approach. Self-affine statistics provide a gener-

alised model for subglacial terrain and can improve our un-

derstanding of the relationship between basal properties and

ice-sheet dynamics.

1 Introduction

With the development of the newest generation of thermome-

chanical ice-sheet models, there has been a growing aware-

ness that better constraining the physical properties of the

glacier bed is essential for improving their predictive capa-

bility (e.g. Price et al., 2011; Seroussi et al., 2013; Nowicki

et al., 2013; Shannon et al., 2013; Sergienko et al., 2014; Ritz

et al., 2015; Cornford et al., 2015). Notably, the basal trac-

tion parameterisation – which encapsulates the thermal state,

basal roughness, and lithology – is potentially the largest sin-

gle geophysical uncertainty in projections of the response

of ice sheets to climate change (Ritz et al., 2015). Distinc-

tion between frozen and thawed regions of the glacier bed

is particularly important in constraining ice dynamics, since

appreciable basal motion can only occur in regions where

the glacier bed is wet (Weertman, 1957; Nye, 1970; Mac-

Gregor et al., 2016). Airborne radio-echo sounding (RES) is

the only existing remote sensing technique that can acquire

bed data with sufficient spatial coverage to enable subglacial

information to be obtained across the ice sheets (refer to

Pritchard (2014) and Bamber et al. (2013a) for recent Antarc-

tic and Greenland coverage maps). Often, however, there is

great ambiguity in RES-derived subglacial information (Mat-

suoka, 2011), or RES-derived information is suboptimal for

direct applicability in ice-sheet models (Wilkens et al., 2015).

Subsequently, data analysis methods which seek to improve

the clarity and glaciological utility of RES-derived subglacial

information are undergoing a period of rapid development

(e.g. Oswald and Gogineni, 2008; Li et al., 2010; Fujita et al.,
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2012; Wolovick et al., 2013; Schroeder et al., 2013, 2016;

Jordan et al., 2016).

RES data analysis methods for determining subglacial

physical properties can be categorised in two ways: those

which determine bulk properties (including the discrimina-

tion of basal water) and those which determine interfacial

properties (subglacial roughness). Bulk material properties

of the glacier bed can, in principle, be determined using

the basal reflectivity (Bogorodsky et al., 1983; Peters et al.,

2005; Jacobel et al., 2009; Schroeder et al., 2016). Perform-

ing basal reflectivity analysis on ice-sheet-wide scale is, how-

ever, greatly limited by uncertainty and spatial variation in

englacial radar attenuation (Matsuoka, 2011; Matsuoka et al.,

2012; MacGregor et al., 2012, 2015; Jordan et al., 2016).

In contrast to bulk properties, subglacial roughness analy-

sis methods are (nearly) independent of radar attenuation.

Subglacial roughness can be determined either via statisti-

cal analysis of topography (typically spectral analysis) (Tay-

lor et al., 2004; Siegert et al., 2005; Bingham and Siegert,

2009; Li et al., 2010; Rippin, 2013) or inferred from the

electromagnetic scattering properties of the radar pulse (Os-

wald and Gogineni, 2008; Schroeder et al., 2014; Young

et al., 2016). Spectral analysis can provide valuable insight

toward aspects past ice dynamics and landscape formation

(Siegert et al., 2005; Bingham and Siegert, 2009; Rippin

et al., 2014). However, since the technique is limited to inves-

tigating length scales greater than the horizontal resolution

(typically ∼ 30 m or greater), the relevance of the method

of informing contemporary basal sliding physics – which re-

quires metre-scale roughness information (Weertman, 1957;

Nye, 1970; Hubbard et al., 2000; Fowler, 2011) – remains

unclear. Radar scattering is sensitive to the length scale of the

electromagnetic wave (Shepard and Campbell, 1999) (∼ 1–

5 m in ice for the majority of airborne sounders) and can

potentially reveal finer-scale roughness information, includ-

ing the geometry of subglacial hydrological systems (Oswald

and Gogineni, 2008; Schroeder et al., 2013, 2015; Young

et al., 2016). High reflection specularity, such as occurs from

deep (> 10 m) subglacial lakes (Oswald and Robin, 1973;

Gorman and Siegert, 1999; Palmer et al., 2013), has been

proposed as a RES diagnostic for basal water (Oswald and

Gogineni, 2008, 2012).

Degrees of radar scattering can be mapped either using the

waveform properties of the bed echo – e.g. the waveform

abruptness (pulse-peakiness) (Oswald and Gogineni, 2008,

2012) – or by constraining the angular distribution of scat-

tered energy – e.g. the specularity content (Schroeder et al.,

2013; Young et al., 2016). Maps of both scattering param-

eters indicate defined spatial patterns but, to date, have not

been integrated with topographic-scale roughness analysis

(horizontal length scales ∼ 10 s of metres and upwards). As

such, there is a knowledge gap regarding the topographic

control upon radar scattering. Observations indicate that sub-

glacial roughness exhibits self-affine (fractal) scaling be-

haviour over length scales from ∼ 10−3 to ∼ 102 m (Hub-

bard et al., 2000; MacGregor et al., 2013). Self-affine scal-

ing corresponds to when the vertical roughness increases at a

fixed slower rate than the horizontal length scale, following

a power-law relationship that is parameterised by the Hurst

exponent (Malinverno, 1990; Shepard et al., 2001). It is ob-

served for a wide variety of natural terrain (Smith, 2014), in-

cluding the surface of Mars (Orosei et al., 2003), volcanic

lava (Morris et al., 2008), and alluvial channels (Robert,

1988). If widely present, the self-affinity of subglacial rough-

ness poses a challenge for integrating topographic roughness

with existing glacial radar scattering models (Berry, 1973;

Peters et al., 2005; MacGregor et al., 2013; Schroeder et al.,

2015). This is because these are statistically stationary mod-

els which assume that roughness is independent of horizontal

length scale, and hence an artificial scale separation between

high-frequency roughness and low-frequency topography is

present (Berry, 1973). Radar scattering models with non-

stationary, self-affine statistics naturally incorporate the mul-

tiscale dependence of roughness and are in widespread use

in other fields of radar geophysics (e.g. Shepard and Camp-

bell, 1999; Franceschetti et al., 1999; Campbell and Shepard,

2003; Oleschko et al., 2003).

In this study, we explore the connection between self-

affine subglacial roughness and radar scattering using re-

cent airborne Operation IceBridge (OIB) RES data from the

north-western Greenland Ice Sheet (GrIS). Firstly we re-

view the theory of self-affine roughness statistics, using ex-

amples from ice-penetrating radargrams and bed elevation

profiles to demonstrate its applicability to subglacial terrain

(Sect. 2). We then outline analysis methods that enable to-

pographic roughness and radar scattering (quantified using

the waveform abruptness) to be extracted from RES flight-

track data (Sect. 3). A self-affine radar scattering model,

adapted from planetary radar sounding (Shepard and Camp-

bell, 1999; Campbell and Shepard, 2003), is then used to pre-

dict the relationship between the Hurst exponent and wave-

form abruptness (Sect. 4). We then present maps of the RES-

derived roughness and scattering data for the northern GrIS

and compare the spatial distribution with bed topography

(Bamber et al., 2013a) and a recent prediction for the basal

thermal state (MacGregor et al., 2016) (Sect. 5.1). The radar

scattering model is then used to quantify self-affine topo-

graphic control upon radar scattering, via the Hurst expo-

nent (Sect. 5.2). The statistics of the RES-derived data in

predicted thawed and frozen regions of the glacier bed are

then analysed (Sect. 5.3), with the purpose of testing the

basal water discrimination method by Oswald and Gogineni

(2008, 2012), which assumes a specular scattering signature

is present. Finally, we discuss the wider consequences of our

study, including subglacial landscape classification, the re-

lationship between bed properties and ice-sheet dynamics,

basal thaw/water discrimination, and radar scattering theory

applied to RES (Sect. 6).

The Cryosphere, 11, 1247–1264, 2017 www.the-cryosphere.net/11/1247/2017/
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2 Self-affine subglacial roughness

2.1 Overview

Statistical methods to calculate the Hurst exponent, and thus

to quantify self-affine scaling behaviour, are well established

in the earth and planetary science literature (Malinverno,

1990; Shepard et al., 2001; Kulatilake et al., 1998; Oro-

sei et al., 2003). These space-domain methods extract the

Hurst exponent using the variogram (roughness verses pro-

file length) and deviogram (roughness versus horizontal lag).

Our motivation for use of these methods, rather than the spec-

tral (frequency-domain) methods previously applied in stud-

ies of subglacial roughness (Taylor et al., 2004; Siegert et al.,

2005; Bingham and Siegert, 2009; Li et al., 2010; Rippin,

2013), is that they better reveal self-affine scaling behaviour

(Turcotte, 1992; Shepard et al., 1995, 2001). Since the the-

ory of self-affine roughness and related space-domain meth-

ods are not widely discussed in the glaciological literature –

the only example being MacGregor et al. (2013) – we now

provide a review of the key concepts.

2.2 Interfacial roughness parameters

Topographic roughness can be measured by means of statis-

tical parameters that are, in general, a function of horizontal

length scale (Shepard et al., 2001; Smith, 2014). Two differ-

ent interfacial roughness parameters – the root mean square

(rms) height and rms deviation – are typically employed in

self-affine roughness statistics (Shepard et al., 2001). The

rms height is given by

ξ(L) =
[

1

N − 1

N
∑

i=1

(z(xi) − z̄)2

]
1
2

, (1)

where N is the number of sample points within the profile

window of length L, z(xi) is the bed elevation at point xi ,

and z̄ is the mean bed elevation of the profile. ξ represents the

standard deviation in bed elevation about a mean surface and

models the topographic roughness as a Gaussian-distributed

random variable (Orosei et al., 2003). The rms deviation is

given by

ν(1x) =
[

1

N

N
∑

i=1

[(z(xi) − z(xi + 1x)]2

]
1
2

, (2)

where 1x is the horizontal step size (lag). ν has a particular

significance in the parameterisation of radar scattering mod-

els with self-affine statistics (Shepard and Campbell, 1999;

Campbell and Shepard, 2003), and we focus upon this rough-

ness parameter when integrating topographic-scale rough-

ness with radar scattering data. The rms slope, which is pro-

portional to the rms deviation, is also widely used in self-

affine statistics, but we do not do so here.

2.3 Self-affine scaling behaviour and the role of the

Hurst exponent

Self-affine scaling is a subclass of fractal scaling behaviour

and can be parameterised using the Hurst exponent, H (Ma-

linverno, 1990; Shepard et al., 1995, 2001). H quantifies the

rate at which roughness in the vertical direction increases

relative to the horizontal length scale (and is defined for

0 ≤ H ≤ 1). For a self-affine interface the following power-

law relationships hold:

ξ(L) = ξ(L0)

(

L

L0

)H

, (3)

and

ν(1x) = ν(1x0)

(

1x

1x0

)H

, (4)

where L0 is a reference profile length and 1x0 is a refer-

ence horizontal lag (Shepard and Campbell, 1999; Shepard

et al., 2001). Three limiting cases of self-affine scaling are

typically discussed (Shepard and Campbell, 1999). Terrain

with H = 1 (where the roughness in the vertical direction in-

creases at the same rate as the horizontal length scale) is re-

ferred to as “self-similar”. Terrain with H = 0.5 (where the

roughness in the vertical direction increases with the square

root of horizontal length scale) is referred to as “Brownian”.

Terrain with H = 0 (where the roughness in the vertical di-

rection is independent of horizontal length scale) is referred

to as “stationary”. For a stationary (H = 0) interface it fol-

lows from Eqs. (3) and (4) that ξ and ν are independent of L

and 1x respectively (i.e. the roughness parameters are inde-

pendent of horizontal length scale).

We will later demonstrate that subglacial terrain ex-

hibits near-ubiquitous self-affine scaling behaviour with pro-

nounced spatial structure and variation for H . Examples of

OIB ice-penetrating radargrams (Z scopes) (Paden, 2015)

and associated bed elevation profiles for terrain with differ-

ent H are shown in Fig. 1. Clear differences are apparent

between the different terrain examples. The black (H ≈ 0.9)

terrain (Fig. 1a) and red (H ≈ 0.7) terrain (Fig. 1b) are be-

tween Brownian and self-similar scaling behaviour. This ter-

rain exhibits “persistent trends”, where neighbouring mea-

surements tend to follow a general trend of increasing or

decreasing elevation (refer to Shepard and Campbell (1999)

for a full discussion). A feature of terrain with higher H

is that it tends to appear relatively rough at larger length

scales (low frequency) and smooth at smaller length scales

(high frequency). By contrast, the green (H ≈ 0.3) terrain

(Fig. 1d) is in the sub-Brownian scaling regime and exhibits

“anti-persistent trends”, where neighbouring measurements

tend to alternate between increasing and decreasing eleva-

tion. A feature of lower H terrain such as this example is

that it tends to have similar roughness across length scales.

The blue (H ≈ 0.5) terrain (Fig. 1c) is close to an ideal Brow-

nian surface and exhibits no overall persistence (with some

www.the-cryosphere.net/11/1247/2017/ The Cryosphere, 11, 1247–1264, 2017
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Figure 1. Example radargrams (top panel) and 10 km bed elevation profiles (bottom panel) for subglacial terrain with different Hurst ex-

ponent, H : (a) H ≈ 0.9 (near self-similar), (b) H ≈ 0.7 (between Brownian and self-similar), (c) H ≈ 0.5 (Brownian), and (d) H ≈ 0.3

(sub-Brownian). The location of the profiles are shown in Fig. 3. Evident in the radargrams are the surface reflection (pink line), the bed

reflection (red line), and reflections from internal layers in ice. The bed elevation profiles are linearly detrended about zero with horizontal

resolution ∼ 30 m. The horizontal–vertical aspect ratio of the bottom panels differs between (a), (b) and (c), (d) by a factor of ∼ 10.

sections of the profile following an increasing/decreasing el-

evation trend and other sections alternating). The 10 km pro-

file windows in Fig. 1 represent the length of flight-track data

over which H is calculated (see Sect. 3.2).

2.4 Calculation of the Hurst exponent using the

variogram and deviogram

In order to calculate H , and identify the scale regime over

which glacial terrain exhibits self-affine behaviour, ξ and ν

are plotted as functions of L and 1x, respectively, on double-

logarithmic-scale plots, referred to as the variogram and de-

viogram (Kulatilake et al., 1998; Shepard et al., 2001). Vari-

ogram and deviogram plots for ξ(L) and ν(1x) for the four

terrain examples in Fig. 1 are shown in Fig. 2a and b respec-

tively. It follows from Eqs. (3) and (4) that, upon this double-

logarithmic scale, a straight line relationship is predicted for

glacial terrain that is self-affine with the gradient equal to H .

In practice, a single self-affine relationship only holds over

a limited scale regime and a “break-point” transition is often

observed (Shepard et al., 2001). We describe how we assess

the break points for glacial terrain in Sect. 3.2, along with

further details regarding the application of the variogram and

deviogram to along-track RES data. Figure 2 clearly demon-

strates the significance of the Hurst exponent and horizontal

length scale when assessing the relative roughness of dif-

ferent terrain. For example, the black (H ≈ 0.9) terrain is

rougher than the red (H ≈ 0.7) terrain at larger length scales

but is smoother at smaller length scales.

The space-domain variogram and deviogram have an ap-

proximate correspondence to the frequency-domain power

spectrum (Turcotte, 1992; Shepard et al., 1995, 2001). In

(a) Variogram for rms height

Deviogram for rms deviation
(b)

Figure 2. (a) Variogram for rms height, ξ , versus profile length

L (log–log scale). (b) Deviogram for rms deviation, ν, versus

horizontal lag, 1x (log–log scale). The plots correspond to sub-

glacial terrain profiles in Fig. 1. The Hurst exponent is estimated

from the linear gradient of the first five data points (indicated by

dashed lines). These space-domain plots are (approximate) equiv-

alents to frequency-domain roughness power spectra, and smaller

length scales correspond to higher frequencies.

The Cryosphere, 11, 1247–1264, 2017 www.the-cryosphere.net/11/1247/2017/
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frequency space, self-affine scaling occurs when the power

spectrum, S, has a relationship of the form S(k) ∝ k−β ,

where k is the spatial frequency and −β is the spectral slope.

The relationship between β and H is dimensionally depen-

dent and for along-track data is given by H = 1
2
(β −1) (Tur-

cotte, 1992). Despite this correspondence, the space-domain

methods are recommended to calculate H as they are less

noisy and less likely to bias slope estimates than the power

spectrum method (Shepard et al., 1995). The study by Hub-

bard et al. (2000) observed self-affine scaling in the rough-

ness power spectrum over length scales from ∼ 10−3 to

∼ 10 m for different sites across recently deglaciated terrain

in the immediate foreground of Tsanfleuron glacier, Switzer-

land. Their range for measured values of β corresponds to

2.27 < β < 2.48, which implies H ≈ 0.7.

3 Analysis of RES data

3.1 Ice-penetrating radar system and coverage region

The airborne RES data used in this study were collected by

the Center for Remote Sensing of Ice Sheets (CReSIS) within

the OIB project, over the months March–May in years 2011

and 2014. For all measurements the radar instrument, the

Multichannel Coherent Radar Depth Sounder (MCoRDS),

was installed upon a NASA P-3B Orion aircraft. The sounder

has a frequency range from 180 to 210 MHz, corresponding

to a centre wavelength ∼ 0.87 m in ice. After accounting for

pulse shaping and windowing, this results in a depth-range

resolution in ice of ∼ 4.3 m (Rodriguez-Morales et al., 2014;

Paden, 2015). For the flight lines considered, the along-

track resolution after synthetic aperture radar (SAR) process-

ing and multi-looking is ∼ 30 m with an along-track-sample

spacing of ∼ 15 m (Gogineni et al., 2014). The 2011 and

2014 field seasons were used since they have a higher along-

track resolution than other recent field seasons and hence en-

able a clearer connection to be made between radar scattering

and topographic-scale roughness.

The study focused on flight-track data from north-western

Greenland and encompassed measurements close to three

deep ice cores: Camp Century, NEEM, and NorthGRIP

(Fig. 3). The first reason for selection of this region is that the

data coverage for the 2011 and 2014 field seasons is of high

density relative to most other regions of the ice sheet. The

second reason is that confidence regarding the basal thermal

state is high near to the ice cores and thus enables the valid-

ity of the basal water RES analysis by Oswald and Gogineni

(2008, 2012) to be tested.

Measurements from MCoRDS are supplied as data prod-

ucts with different levels of additional processing (Paden,

2015). Level 2 data correspond to ice thickness, ice surface,

and bed elevation data and are used to calculate topographic-

scale roughness and the Hurst exponent (Sect. 3.2). Details

regarding the semi-manual picking procedure are described

Figure 3. Data coverage map for OIB flight tracks and region of

interest. The locations of the Camp Century, NEEM, and North-

GRIP ice cores are indicated, along with the terrain profile sections

in Fig. 1.

by Paden (2015), and only the highest-quality picks were

used. Level 1B data correspond to radar-echo strength pro-

files and are used to extract the waveform abruptness pa-

rameter from the bed echo (Sect. 3.3). Basal reflection val-

ues can also be extracted from Level 1B data, but we do

not do this here because we do not wish to bias our inter-

pretation due to uncertainty in radar attenuation. The pre-

processing of the combined channel Level 1B data is also

described by Paden (2015). Sequentially this involves chan-

nel compensation between each of the antenna phase centres,

pulse compression (using a 20 % Tukey window in the time

domain), coherent-averaging of the channels, SAR process-

ing with along-track frequency window, channel combina-

tion, and waveform combination.

3.2 Determination of topographic roughness and Hurst

exponent from Level 2 data

The along-track spacing (∼ 15 m) of the Level 2 data is

half the horizontal resolution (∼ 30 m), which represents the

spacing at which bed elevation measurements are considered

as independent. Therefore, to remove local correlation bias,

the Level 2 data were down-sampled, considering every sec-

ond data point (corresponding to a ∼ 30 m along-track spac-

ing). Each flight track was then divided into 10 km along-

track profile windows, as shown in the examples in Fig. 1a.

www.the-cryosphere.net/11/1247/2017/ The Cryosphere, 11, 1247–1264, 2017
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The windows overlap with a sample spacing of 1 km, with

the centre of each window defined to be the point to which

H and the roughness parameters are geolocated. This “mov-

ing window” approach was employed as it enables greater

continuity in the estimates for H . Prior to estimating H , ξ(L)

and ν(1x) were computed following Eqs. (1) and (2) respec-

tively. These calculations used the “interleaving” sampling

method described in Shepard et al. (2001), which enables all

of the data points to be sampled effectively. The windowing

method is similar to that described in Orosei et al. (2003) for

the self-affine characterisation of Martian topography, where

a non-overlapping 30 km window was assumed. The choice

of 10 km for the profile window and 1 km for the effective

resolution represents a good tradeoff between resolution and

the smoothness of the derived data fields.

In this study we are interested in calculating H at the

length scale of the Fresnel zone (∼ 100 m), since this en-

ables the most accurate parameterisation of the radar scatter-

ing model described in Sect. 4. Additionally, due to the break

point transitions that occur at larger length scales, the focus

on smaller length scales is a robust approach to calculate H

(Shepard et al., 2001). For the data we consider, the lower

bounds of the horizontal length scales are ∼ 90 m for ξ(L)

(since three elevation measurements are the minimum re-

quired to calculate ξ(L) using Eq. 1) and ∼ 30 m for ν(1x).

ν(1x) therefore better enables the estimation of H at smaller

length scales and we primarily focused on the deviogram

method (Fig. 2b). Additionally, as suggested in Fig. 2, the re-

lationships for ν(1x) are, in general, significantly smoother

than ξ(L). The upper length scales in the deviogram and var-

iogram were set to be 1x = 1 km and L = 1 km respectively,

which follows from the recommendation by Shepard et al.

(2001) that at least 10 independent sections of track are used

in the calculations. As shown in Fig. 2, the gradients (H )

were calculated using the first five data points (which, for the

deviogram, are over the range 1x ∼ 30–150 m). Self-affine

scaling behaviour often extends beyond these smaller length

scales and we estimated the break points for ξ(L) and ν(1x)

using a segmented linear regression procedure. Briefly, this

involved firstly calculating the gradient (H ) for the first five

data points. Additional data points at increasing length scales

were then added into each linear regression model, and the

gradient was recalculated. Finally, break points in the linear

relationship were identified by testing if the new gradient ex-

ceeded a specified tolerance from the original estimate.

3.3 Determination of waveform abruptness from Level

1B data

The post-processing of the Level 1B data (analysis of the

basal waveform) uses the procedure described in Jordan et al.

(2016), which, in turn, is largely based upon Oswald and

Gogineni (2008). Firstly, this involved performing an along-

track average of the basal waveform, where adjacent basal

waveforms are stacked about their peak power values and

arithmetically averaged. This averaging approach is phase-

incoherent and acts to smooth power fluctuations due to elec-

tromagnetic interference (Oswald and Gogineni, 2008). The

size of the averaging window varies as a function of Fres-

nel zone radius, and subsequently each along-track averaged

waveform corresponds to approximately a separately illumi-

nated region of the glacier bed (see Jordan et al., 2016, for

details). The degree of radar scattering is quantified using the

waveform abruptness

A = Ppeak

Pagg
, (5)

where Ppeak is the peak power of the bed echo and Pagg is

the aggregated power, which is calculated by a discrete sum-

mation of the bed-echo power measurements in each depth

range bin. Pagg was introduced by Oswald and Gogineni

(2008) since, based upon energy conservation arguments, it

is argued to be more directly related to the predicted (specu-

lar) reflection coefficients than equivalent peak power val-

ues. In radar altimetry, the waveform abruptness is com-

monly called “pulse peakiness” (e.g. Peacock and Laxon,

2004; Zygmuntowska et al., 2013).

Observed values of A range from ∼ 0.03 to 0.60, and

in Sect. 4.3 we theoretically constrain the maximum value

to be ∼ 0.65. Three examples of basal waveforms, along

with their corresponding A values, are shown in Fig. 4.

Higher A values are associated with specular reflections from

smoother regions of the glacier bed (e.g. the blue waveform),

whilst lower A values are associated with diffuse reflections

from rougher regions (e.g. the green waveform) (Oswald and

Gogineni, 2008). The positions of the peak power were es-

tablished by firstly using Level 2 data picks, then applying

a local re-tracker to centre over the peak power. When cal-

culating the summation for Pagg (both fore and aft of the

peak power so as to best capture the energy contained in

the echo envelope), a signal-noise-ratio threshold was imple-

mented by testing for decay of the peak power to specified

percentage above the noise floor. Thresholds of 1, 2, and 5 %

were considered and 2 % was found to give the best cover-

age, whilst excluding obvious anomalies. Due to this quality-

filtering step there are therefore sometimes small gaps in the

along-track A data.

As RES over ice employs a nadir-facing sounder, the

scattering contribution toward the waveform abruptness is

mainly from coherent reflection (as opposed to side-looking

SAR instruments which would be mainly diffuse scatter-

ing). Whether coherent pre-processing (either coherent pre-

summing of Doppler focusing) of the raw data acts to in-

crease or decrease the value of A depends upon the exact

character and roughness of the surface. As a first example, if

the specular/nadir component of the echo is assumed to be

coherent, whilst the diffuse/off-nadir component is assumed

to be incoherent (e.g. Grima et al., 2014), then coherent pro-

cessing would cause the specular component of the signal to

increase with coherent gain but not the diffuse (incoherent)
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Bed-echo waveforms

Figure 4. Examples of bed-echo waveforms and their abruptness

(pulse peakiness). Observed values for A range from ∼ 0.03 (asso-

ciated with diffuse scattering) to ∼ 0.60 (associated with specular

reflection). For the purpose of comparative plotting, the waveforms

are normalised about their peak power values with the sample bin

of the peak power set to zero. The sample bin spacing corresponds

to a depth-range spacing of ∼ 2.81 m in ice.

signal. Therefore the measured A value would decrease with

gain. As a second example, if both the specular/nadir and

diffuse/off-nadir components of the echo are assumed to be

coherent (e.g. Schroeder et al., 2013, 2015), then for small

SAR processing angles (coherent pre-summing) the wave-

form abruptness should be largely unaffected. However, for

larger angles (exceeding the angle spanned by the specular

component of the echo in the scattering function) the A value

will decrease with coherent pre-processing.

The basal waveform (and hence the calculated values of A)

results from a superposition of along-track and cross-track

energy (Young et al., 2016). Subsequently, the anisotropy of

radar scattering (and inferences regarding the anisotropy of

subglacial roughness) is not explicitly revealed by A. Hence,

the studies of Oswald and Gogineni (2008, 2012) treat A as

an isotropic parameter, and we follow this approach here.

4 Radar scattering model for self-affine roughness

4.1 Overview

The waveform abruptness has previously been discussed

without reference to roughness statistics, and here we do this

using a self-affine radar scattering model. Radar scattering

models from natural terrain fall into two different categories:

“coherent”, which incorporates deterministic phase interfer-

ence, and “incoherent”, which incorporates random phase in-

terference (Ulaby et al., 1982; Campbell and Shepard, 2003;

Grima et al., 2014). Coherent scattering models are appli-

cable where the reflecting region is orientated nearly per-

pendicular to the incident pulse (the nadir regime) and the

reflecting region is fairly smooth at the scale of the illumi-

nating wavelength (Campbell and Shepard, 2003), which is

normally assumed to be a good approximation for the RES of

glacier beds (e.g. Peters et al., 2005; MacGregor et al., 2013;

Schroeder et al., 2015). Volume (Mie) scattering is typically

neglected from basal RES scattering analysis and would hy-

pothetically require scatterer dimensions of the order of the

radar wavelength (∼ 0.5 to 5 m dependent on the bed dielec-

tric and radar system). This neglection of volume scatter-

ing is justified given the ∼ 10−6 to 10−3 m scale of water

pore radii in typical bed materials (Nimmo, 2004). Moreover,

even in the extreme case of planetary ice regoliths (which are

colder than terrestrial ice and will therefore sustain larger het-

erogeneities), scatterer dimensions are ∼ 10−3 to 10−2 m and

volume scattering losses are small (Aglyamov et al., 2017).

Below we describe and adapt a coherent scattering model,

first developed for the nadir regime of planetary radar sound-

ing measurements, which incorporates self-affine roughness

statistics (Shepard and Campbell, 1999; Campbell and Shep-

ard, 2003). The model is parameterised using the Hurst

exponent values derived from the subglacial topography

(Sect. 3.2) and thus enables a connection to be made be-

tween the topographic roughness and radar scattering. Co-

herent scattering models can be used to model a decrease in

specularly reflected power as a function of rms roughness

(Berry, 1973; Peters et al., 2005), and this is the central as-

pect of the model which we focus upon here. Specifically,

we show that, under assumptions of energy conservation, this

power decrease can be used to theoretically predict the rela-

tionship between the Hurst exponent and waveform abrupt-

ness.

4.2 Modelling the coherent power

The physical assumptions behind the self-affine scattering

model are summarised in Shepard and Campbell (1999). The

central assumption that differentiates the model from coher-

ent stationary (H = 0) models (Berry, 1973; Peters et al.,

2005; MacGregor et al., 2013; Grima et al., 2014; Schroeder

et al., 2015) is that the rms height increases as a function

of radius, r , about any given point, following the self-affine

relationship

ξ(r) = 1√
2
νλ

( r

λ

)H

, (6)

where νλ = ν(1x = λ) is the wavelength-scale rms devi-

ation. Equation (6) assumes radial isotropy for H and ξ .

Since we are focusing upon constraining the (near-) isotropic

abruptness parameter, this is a justifiable approximation. The

statistical distribution for ξ(r) is assumed to be Gaussian,

which is similar to most H = 0 models (but with an addi-

tional radial dependence). Via νλ, the self-affine model is

explicitly formulated with respect to the horizontal scale of

rms roughness. The radio wavelength of MCoRDS in ice is

∼ 0.87 m, and hence wavelength-scale rms deviation is ap-

proximately equivalent to metre-scale rms deviation. An un-
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avoidable caveat to the parameterisation of the radar scatter-

ing model using Eq. (6) is that the H values derived from

the topography (length scale ∼ 30–150 m) are extrapolated

downwards to the wavelength scale.

An expression for the radar backscatter coefficient (radar

cross section per unit area) is then derived by consider-

ing a phase variation,
4πξ(r)

λ
, integrated across the Fresnel

zone (Shepard and Campbell, 1999; Campbell and Shepard,

2003). For nadir reflection the radar backscatter coefficient is

given by

σ0 = 16π2R2
e

r̂2
max







r̂max
∫

0

exp

[

−4π2

λ2
ν2
λ r̂2H

]

r̂dr̂







2

, (7)

where r̂ = r
λ

is the wavelength-scaled radius, r̂max is the

wavelength-scaled radius of the illuminated area (the Fres-

nel zone), and Re is the reflection coefficient for the electric

field (Campbell and Shepard, 2003). The coherent power, P ,

can then be obtained by dividing Eq. (7) by 4π2r̂2
max (a geo-

metric factor which follows from the backscatter coefficient

of a flat conducting plate; Ulaby et al., 1982) to obtain

P = 4R2
e

r̂4
max







r̂max
∫

0

exp

[

−4π2

λ2
ν2
λ r̂2H

]

r̂dr̂







2

. (8)

For the case where H = 0, ξ(r) in Eq. (6) is independent of

radius. It follows that ξ2 = 1
2
ν2
λ and the exponent in Eq. (8)

is also independent of radius, which gives

P = R2
e exp

(

−16π2

λ2
ξ2

)

. (9)

Equation (9) is the same power decay formula as coherent

H = 0 models (Peters et al., 2005; MacGregor et al., 2013;

Grima et al., 2014; Schroeder et al., 2015), where it is some-

times multiplied by a first-order Bessel function (which en-

ables some of the incoherent energy contribution to be cap-

tured; MacGregor et al., 2013). Thus the stationary limit of

the self-affine model is consistent with previous glacial basal

scattering models. It is clear that the coherent power for the

self-affine model, Eq. (8), has two roughness degrees of free-

dom: H and νλ, which can be conceptually related to the

gradient and the intercept of the deviogram (Fig. 2). This

contrasts with the stationary model, Eq. (9), which has one

degree of freedom: ξ .

4.3 Predicted relationship between the Hurst exponent

and waveform abruptness

The utility of the waveform abruptness in quantifying dif-

ferent degrees of scattering rests upon the assumption that

the majority of the overall energy is contained within the

echo envelope (Oswald and Gogineni, 2008). In other words,

it is assumed that, for reflection from the same bulk ma-

terial, the aggregated/integrated power from a rough inter-

face (νλ > 0) is equivalent to the peak power from a given

smooth interface; i.e. Pagg ≈ P(νλ = 0). This energy equiv-

alence was demonstrated to hold well for the waveform pro-

cessing procedure and Greenland RES systems by Oswald

and Gogineni (2008). It follows from this energy equivalence

that the abruptness, A, can be expressed in terms of the co-

herent power, Eq. (8), as

A = Ppeak

Pagg
= C

P(νλ)

P (νλ = 0)
, (10)

where C is a proportionality constant that corresponds to the

theoretical maximum abruptness value, which occurs when

the radar pulse is specularly reflected and Pagg = Ppeak. For

a perfectly specular reflection the pulse is the shape of com-

pressed chirp (absolute value of a sinc function with the

width determined by the signal bandwidth). If the depth-

range sample spacing of the waveform (Fig. 4) were the same

as the depth-range resolution then C would be near unity.

However, C can be estimated from the ratio of the sample

spacing (∼ 2.8 m) to the range resolution (∼ 4.3 m) to give

C ∼ 0.65. Finally, substituting Eq. (8) into Eq. (10) gives

A = 4C

r̂4
max







r̂max
∫

0

exp

[

−4π2

λ2
ν2
λ r̂2H

]

r̂dr̂







2

. (11)

As is the case for P in Eqs. (8) and (11) A has two rough-

ness degrees of freedom: H and νλ. Shepard and Campbell

(1999) note that the primary dependence for P (and hence A)

is upon H , with a weaker secondary dependence upon νλ. In

order to illustrate this dependency, we consider first the rela-

tionship between A and H for fixed νλ (Fig. 5a) and secondly

the relationship between A and νλ for fixed H (Fig. 5b). Fig-

ure 5a demonstrates that higher values of νλ (the black curve)

result in negligible A for all but the lowest values of H . Inter-

mediate values of νλ (the red and blue curves) exhibit a sharp

transition from higher to lower values of A as H increases.

Low νλ (the green curve) has high A for all H . Figure 5b

demonstrates a monotonic decrease in A with νλ for each

value of H , with the decay length decreasing rapidly with

increasing H .

It is important to note that the predictions of the self-affine

radar scattering model are consistent with the specular RES

scattering signature that we would expect from electrically

deep subglacial lakes. Under the self-affine roughness frame-

work, a large geometrically flat feature such as a lake would

have a negligible value of H and νλ. This scenario occurs

for the low H limit of the green curve in Fig. 5a, where pre-

dicted values for A are ∼ 0.65 (corresponding to a perfectly

specular reflection).

The physical explanation for the strong dependence of the

coherent power upon H , and the relationships which we ob-

serve in Fig. 5, is discussed by Shepard and Campbell (1999)
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(a)

(b)

Figure 5. Parametric dependence of the self-affine radar scattering

model. (a) Abruptness, A, as a function of the Hurst exponent, H ,

for sections of constant wavelength-scale rms deviation, νλ. (b) A

as a function of νλ for sections of constant of H . The plots illustrate

primary dependence for A upon H and secondary dependence for

A upon νλ. High A is suppressed for high H except in the case of

exceptionally small νλ.

and Campbell and Shepard (2003). It relates to the fact that

significant coherent returns can only occur from annular re-

gions where ξ(r) <
(

λ
8

)

(the Rayleigh criterion). It follows

from Eq. (6) that high values of H lead to a rapid increase

in roughness with radius that rapidly exceeds this thresh-

old. Subsequently, for high H interfaces, the roughness at

the wavelength scale, νλ, must be a couple orders of mag-

nitude smaller than the Rayleigh criterion to enable signifi-

cant coherent returns (i.e. non-negligible A). The curves in

Fig. 5 assume r̂max = 100 (corresponding to a Fresnel zone

radius ∼ 115 m for the ice wavelength ∼ 0.87 m). In general,

the relationships in Fig. 5 are insensitive to this choice of ra-

dius. This is because the radii of the coherent annular regions

are typically significantly less than the Fresnel zone and thus

act as the dominant length scale for the integration limit in

Eq. (11).

5 Results

Firstly, we describe maps for the rms deviation and Hurst

exponent (topographic-scale roughness) and the waveform

abruptness (radar scattering) in the northern Greenland

(Sect. 5.1). In this analysis we compare the RES-derived

data with the Greenland bed digital elevation model (DEM)

(Bamber et al., 2013a) and the predicted basal thermal state

(MacGregor et al., 2016). Secondly, by comparing the the-

oretical predictions of the self-affine radar scattering model

with the observed relationship between the Hurst exponent

and waveform abruptness, we quantitatively assess topo-

graphic control upon radar scattering (Sect. 5.2). Thirdly,

we perform a statistical analysis of the RES-derived data

in predicted thawed and frozen regions of the glacier bed

(Sect. 5.3), which enables us to assess the validity of the

basal water discrimination algorithm in Oswald and Gogi-

neni (2008, 2012). Finally, we present uncertainty estimates

for the RES-derived data (Sect. 5.4).

5.1 Maps for self-affine roughness and radar scattering

in northern Greenland

In Fig. 6 flight-track maps for the RES-derived roughness

and scattering data are compared with the Greenland bed

DEM (Bamber et al., 2013a) and the predicted basal ther-

mal state (Fig. 11 in MacGregor et al., 2016). The flight-

track maps all demonstrate a high degree of spatial struc-

ture, with some notable correlations present (both between

each other and the DEM). There is a clear inverse relation-

ship between the rms deviation, ν (shown at two different

length scales in Fig. 6a and b), and the waveform abrupt-

ness, A (Fig. 6c), with higher abruptness (specular reflec-

tions) present in smoother regions of the ice-sheet bed and

lower abruptness (diffuse scattering) present in rougher re-

gions. For example, smoother regions (lower ν, higher A)

occur for flight tracks in the region inland from the settle-

ment of Qaanaaq and around Camp Century (including the

green profile, Fig. 1d), around the NorthGRIP ice core, and

a region ∼ 150 km ENE of the NEEM ice core. Whilst these

smoother regions are at a range of bed elevations (ranging

from ∼ 800 m NE of Qaanaaq to around sea level in the in-

terior), they are all spatially correlated with flatter bed to-

pography (Fig. 6e). Correspondingly, many rougher regions

(higher ν, lower A) are spatially correlated with more com-

plex topography – e.g. the region of the ice sheet inland from

the Melville Bugt coast (including the red profile, Fig. 1b).

However, some rougher regions of the bed have a less obvi-

ous correlation with higher contour gradients – e.g. the flatter

regions inland from the Humboldt glacier.

Pronounced spatial variation in the Hurst exponent, H , is

evident in Fig. 6d. H also has a inverse relationship with A

and spatially correlates with the bed topography in a simi-

lar manner to ν. In other words, lower H is associated with

higher A and flatter regions of the bed – e.g. near Camp
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Figure 6. Data maps for the northern GrIS: (a) rms deviation (topographic roughness) at ∼ 30 m lag, ν(1x = 30 m); (b) rms deviation at

∼ 150 m lag, ν(1x = 150 m); (c) waveform abruptness (degree of radar scattering), A; (d) Hurst exponent, H . (e) Greenland bed DEM (black

contour lines at 200 m intervals) (Bamber et al., 2013a); (f) predicted basal thermal state mask (MacGregor et al., 2016). Higher values of A

in (c) indicate more specular reflections.

Century – whilst higher H is associated with lower A and

generally more complex bed topography – e.g. inland from

the Melville Bugt coast and inland from Ryder glacier (in-

cluding the black profile, Fig. 1a). In Sect. 5.2 a quantita-

tive assessment of this relationship is made using the radar

scattering model. The simple notion that, at the topographic

scale, rougher regions of the bed correspond to higher H can

be related back to the power-law scaling relationship in the

deviogram (Fig. 2b). The length scales for the rms deviation

maps ν(1x = 30 m) in Fig. 6a and ν(1x = 150 m) in Fig. 6b

are chosen as they are the lower and upper bounds in the de-

viogram calculation for H . It is notable that, despite the clear

spatial variation in H in Fig. 6d, the overall spatial distribu-

tions for ν(1x = 30 m) and ν(1x = 150 m) are remarkably

similar. Thus, from a purely visual inspection of ν at differ-

ent length scales, the pronounced spatial variation in H is not

immediately apparent.

The basal thermal state prediction by MacGregor et al.

(2016) (Fig. 6f) represents an up-to-date best estimate for the

GrIS at a 5 km resolution. It is based upon a trinary clas-

sification: likely thawed/above pressure melting point (red),

likely frozen/below pressure melting point (blue), and uncer-

tain (grey). The mask was determined using four indepen-

dent methods: thermomechanical modelling of basal temper-

ature, basal melting inferred from radiostratigraphy, surface

velocity, and surface texture. The mask is therefore indepen-

dent of our RES-derived data fields. There are some obvious

correlations between the basal thermal state prediction and

the RES-derived roughness and scattering data. For example,

many predicted thawed regions toward the margins – e.g. the
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region of the ice sheet inland from the Melville Bugt coast –

correspond to rougher terrain (higher H and ν) and diffuse

scattering (lower A). However, there are regions of predicted

thaw that demonstrate the opposite behaviour (lower H and

ν and higher A) – for example, the two interior regions pre-

viously identified as smooth around the NorthGRIP ice core

and the region ENE of NEEM. The scattering signature of

predicted thawed regions is therefore non-distinct and can be

either specular or diffuse. Predicted frozen regions tend to

be smoother with specular reflections (higher A), although

it is clear that spatial variation is present with some regions

exhibiting more diffuse scattering (lower A). Section 5.3 pro-

vides a more detailed statistical analysis.

There are some clear discontinuities in the flight-track

maps for ν and H in Fig. 6. These can be explained by

either roughness anisotropy or the self-affine terrain model

breaking down in certain regions (e.g. a sharp terrain discon-

tinuity such as a subglacial cliff). By contrast the map for A

is smoother, which is consistent with its interpretation as an

isotropic scattering parameter.

5.2 Statistics for topographic control upon radar

scattering and comparison with radar scattering

model

Before we consider a quantitative comparison between the

predictions of the radar scattering model and the RES-

derived data, we first summarise the statistics for the Hurst

exponent, H . The total frequency distribution for H , cor-

responding to the flight-track data in Fig. 6d, is shown in

Fig. 7a. The distribution is divided into three categories:

(i) H > 0.75 (“high” H ), (ii) 0.5 < H ≤ 0.75 (“medium

H”), and (iii) H ≤ 0.5 (“low” H ), which we later use to

compare with the radar scattering model predictions. These

categories correspond to approximately 30, 50, and 20 % of

the total data respectively. Approximately 0.1 % of the H es-

timates are > 1 and none of the H estimates are < 0, rep-

resenting near-ubiquitous self-affine scaling behaviour (0 <

H < 1). An overall negative skew for the distribution of H

is observed with a mean value of 0.65, indicating that the

majority of the subglacial terrain along the flight tracks lies

between Brownian (H = 0.5) and self-similar (H = 1) scal-

ing regimes. The spatial coverage of the radar flight tracks in

Fig. 6d is, however, more comprehensive in regions of higher

H . Thus the mean value and skew of H in Fig. 7a are likely

overestimates and underestimates of true (equal area) aver-

aged values for the region of the northern GrIS in Fig. 3.

The self-affine coherent scattering model (Sect. 4) predicts

that there are two roughness degrees of freedom that control

A: H (the primary control) and νλ (the secondary control).

At metre scale, νλ is significantly smaller than the along-

track resolution (∼ 30 m) and therefore cannot be observed

directly. Additionally, given the theoretically predicted pri-

mary dependence of A upon H , a natural starting point is

to compare with the observed relationship between A and

H (Fig. 6). Based upon the assumption that νλ varies spa-

tially, a statistically distributed inverse relationship between

H and A is predicted which corresponds to the family of pre-

dicted curves in H–A space in Fig. 5. This approach assumes

a downward extrapolation of H from the topographic scale to

the wavelength scale in the radar scattering model.

In order to test this prediction, we considered the statistics

of three separate A distributions for each H category, which

are shown for high H in Fig. 7b, medium H in Fig. 7c, and

low H in 7d. A nearest-neighbour interpolation was used to

pair each A value (∼ 100–150 m along-track spacing) with

each H value (1 km along-track spacing). The lowest mean

value, smallest variance, and strongest positive skew are ob-

served for the high-H category. This supports the general

prediction in Fig. 5 that higher A values (specular reflec-

tions) are suppressed in regions of higher H , with lower A

values (diffuse scattering) being more probable. The highest

mean value, greatest variance, and weakest positive skew are

observed for the low-H category. Again, this supports the

prediction in Fig. 5 that A is less constrained in regions of

lower H , with a tendency toward higher values (specular re-

flections). As would be expected, the A-distribution statistics

for the medium H category lie between the high-H and low-

H categories with intermediate mean values, variance, and

skewness. Finally, the observed values of A in Fig. 7 range

from ∼ 0.03 to 0.60, which is in agreement with the theoret-

ically constrained maximum value of 0.65.

5.3 Statistics in thawed and frozen regions

Here we summarise the statistics of the RES-derived rough-

ness and scattering data in predicted thawed and frozen re-

gions of the glacier bed, with an overall purpose of testing the

basal water discrimination algorithm by Oswald and Gogi-

neni (2008, 2012). Conceptually, their approach assumes that

water in thawed regions has a similar RES signature to deep

subglacial lakes which exhibit brighter and more specular re-

flections than surrounding regions (e.g. Oswald and Robin,

1973; Gorman and Siegert, 1999; Palmer et al., 2013). In

their algorithm wet regions are discriminated if (i) the rela-

tive bed reflectivity is above a threshold (using an attenuation

model where the attenuation rate has an inverse relationship

with surface elevation) and (ii) the abruptness is also above a

threshold (around 0.3). Thus, in their approach, high abrupt-

ness (specular reflections) is a necessary, but not sufficient,

criterion for identifying basal water. A further feature of their

approach is that spatial continuity for water is imposed, i.e.

only larger-scale regions (∼ 100s of km2 and upwards) are

considered.

The distributions for all RES-derived data exhibit pro-

nounced statistical differences between thawed and frozen

regions (Fig. 8). The mean value for H in thawed regions

is 0.74 with a strong negative skew (Fig. 8a), whereas the

mean value for H in frozen regions is 0.54 with a weak neg-

ative skew (Fig. 8b). The mean value for ν(1x = 30 m) in
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(a)

(c)

(b)

(d)

Distribution for Hurst exponent

Figure 7. Relationship between Hurst exponent, H , and waveform abruptness, A (corresponding to flight-track data in Fig. 6). (a) Total

distribution for Hurst exponent. (b) Abruptness distribution for high H , (H > 0.75). (c) Abruptness distribution for medium H , (0.5 < H ≤
0.75). (d) Abruptness distribution for low H , (H ≤ 0.5). The observed distributions in (b), (c), and (d) confirm the theoretical prediction of

the self-affine radar scattering model that a statistically distributed inverse relationship exists between H and A.

thawed regions is 6.36 m, which is over double the mean

value of 2.80 m in frozen regions. A qualitatively similar dis-

tinction between thawed and frozen regions is also present

for ν(1x = 150 m), with a mean value of 21.7 m in thawed

regions and 7.2 m in frozen regions (not shown). The thawed

distribution for A is similar to the high-H category in Fig. 7b,

with a mean A value of 0.165 and strong positive skew.

The frozen distribution is similar to the low-H category in

Fig. 7d with a mean A value of 0.264 and a weak positive

skew. These statistics demonstrate a contradiction with the

basal water discrimination algorithm of Oswald and Gogi-

neni (2008, 2012). Lower abruptness (diffuse scattering)

is more common in thawed regions where basal water is

likely to be present. Moreover, the necessary high-abruptness

(specular reflections) condition for water is generally not sat-

isfied (particularly at the larger spatial scales that were con-

sidered by Oswald and Gogineni (2008, 2012) when map-

ping basal water).

5.4 Uncertainty and consistency of RES-derived data

In RES data analysis, cross-over distributions at flight-track

intersections can give an indication of uncertainty based

upon internal consistency (e.g. MacGregor et al., 2015; Jor-

dan et al., 2016). However, due to the anisotropy in Fig. 6d,

cross-over analysis for H(ν(1x)) cannot be applied directly.

Hence repeat estimates were made using the variogram to

calculate H(ξ(L)) (i.e. calculating H using rms height). The

map for H(ξ(L)) (not shown) has a similar spatial distri-

bution as Fig. 6d but with greater high-frequency noise ap-

parent. Differencing the estimates as H(ν(1x))–H(ξ(L))

and performing cross-over analysis gives a mean bias of

−0.026 and a standard deviation of 0.10 (10 % of the pa-

rameter range). The small mean bias is potentially explained

by the variogram estimates being at a slightly larger length

scale (L ∼ 90–210 m). Additional cross-over analysis using

different profile window sizes (e.g. 15 km) confirms that 0.10

serves a reasonable estimate for the uncertainty of H . Since

A is assumed to be isotropic, the uncertainty can be esti-

mated via cross-over analysis of flight-track intersections.

This gives a cross-over standard of ∼ 0.05 (again ∼ 10 % the

parameter range).

As part of the analysis we also considered estimation of the

breakpoint transitions for H(ξ(L)) and H(ν(1x)) using the

segmented linear regression procedure described Sect. 3.2.

The exact values of the breakpoints depend upon how strict

the stopping criterion is, so here we just discuss some gen-

eral trends. Firstly, the self-affine scaling relationships often

extend over a much greater length scale than the upper length

scale used in the calculation of H (often over 500 m as occurs

in Fig. 2). Secondly, the breakpoints for H(ν(1x)) gener-

ally occur at greater length scales than for H(ξ(L)). Thirdly,

the break points for both H(ν(1x)) and H(ξ(L)) tend to be

greater toward the ice-sheet margins where H is higher.

6 Discussion

Our results demonstrate that self-affine scaling behaviour is

a near-ubiquitous property of the subglacial topography of
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(a)

(c)

(b)

(d)

(e) (f)

Hurst exponent distribution: thawed Hurst exponent distribution: frozen

Abruptness distribution: frozen

rms deviation distribution: frozen

Abruptness distribution: thawed

rms deviation distribution: thawed

Figure 8. Distributions from basal RES analysis in thawed and frozen regions of the northern GrIS (corresponding to flight-track data in

Fig. 6): (a) Hurst exponent, H , in thawed regions; (b) H in frozen regions; (c) rms deviation, ν(1x = 30 m), in thawed regions; (d) ν(1x =
30 m) in frozen regions; (e) abruptness, A, in thawed regions; (f) A in frozen regions. The data subsets correspond to the red (thawed) and

blue (frozen) regions of the map in Fig. 6f.

northern Greenland. Moreover, there is both spatial structure

and variability in the Hurst exponent, which can range from

being near-self similar (H ≈ 1) to sub-Brownian (H < 0.5).

The Hurst exponent is valuable as it provides a way to in-

tegrate maps of topographic-scale roughness metrics (e.g.

rms height and rms deviation) and maps of radar scattering

parameters (e.g. the waveform abruptness), which provide

finer-scale roughness information. Notably, theoretical pre-

dictions and observations both demonstrate that higher val-

ues of the abruptness (specular reflections) are suppressed

in rougher regions of the bed with a higher Hurst exponent.

Additionally, extended continuous regions of higher abrupt-

ness are generally limited to occur in smoother regions with a

lower Hurst exponent. This finding implies that maps of radar

scattering information – including the waveform abruptness

parameter in this study and in Oswald and Gogineni (2008,

2012) and the specularity content in Schroeder et al. (2013)

and Young et al. (2016) – will benefit from analysis that in-

corporates self-affine topographic control.

The Hurst exponent provides information about the rela-

tionship that exists between vertical roughness and the hor-

izontal length scale. Whilst it is related to the slope of the

roughness power spectrum, past spectral analysis of glacio-

logical terrain tends to obscure this information (since an in-

tegrated “total roughness” metric is typically used) (Taylor

et al., 2004; Siegert et al., 2005; Bingham and Siegert, 2009;

Li et al., 2010; Rippin, 2013). Subsequently, the Hurst ex-

ponent represents new subglacial roughness information that

could potentially be utilised much more widely than our cur-

rent application in constraining radar scattering. For exam-

ple, planetary scientists have previous employed the Hurst

exponent in a geostatistical classification of Martian terrain

(Orosei et al., 2003). Interestingly, the spatial distribution of

the Hurst exponent for the Martian surface has a similar level

of spatial variation and coherence to what we observe for

glacial terrain. Additionally, the distribution of H for Martian

terrain is skewed toward higher, self-similar values with near-

continuous regions of lower H limited to mid-latitude plains.

For Greenland, this self-affine statistical landscape classifi-

cation could be integrated with existing knowledge of geol-

ogy (e.g. Henriksen, 2008) and larger-scale landscape fea-

tures including subglacial drainage networks (Cooper et al.,

2016; Chu et al., 2016; Livingstone et al., 2017) and palae-

ofluvial canyons (such the “mega canyon” feature observed
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1260 T. M. Jordan et al.: Self-affine subglacial roughness

in Fig. 6e, which has Petermann glacier as its modern-day

terminus) (Bamber et al., 2013b).

The Hurst exponent has previously been shown to play

a dynamical role in the flow resistance of alluvial channels

(Robert, 1988). Whilst basal sliding is clearly a different

physical phenomena – modulated by enhanced plastic flow

and regelation (Weertman, 1957; Nye, 1970; Hubbard et al.,

2000; Fowler, 2011) – it is possible that the Hurst exponent

may provide a useful radar-derived parameter for our under-

standing of geometric control upon this process. In Sect. 5.1

and 5.3 we observed that toward the ice-sheet margins, such

as inland from the Melville Bugt coast, predicted thawed re-

gions are characterised by higher (often near self-similar)

values of H . One could therefore speculate that the persis-

tent behaviour associated with high-H interfaces (neighbour-

ing points follow a similar elevation trend; Sect. 2.3) could

act to promote basal sliding. However, as is widely acknowl-

edged, attributing a direct link between subglacial roughness

and contemporary ice dynamics is a complex topic (Siegert

et al., 2005; Bingham and Siegert, 2009; Rippin et al., 2014).

Therefore, as with other measures or basal roughness, the

spatial variation in the Hurst exponent is likely to also origi-

nate from different glaciological processes at a variety of spa-

tial scales, including erosion and deposition. Additionally,

we recommend that future works which investigate the con-

nection between the Hurst exponent and glaciological pro-

cesses should be discussed with reference to anisotropy and

flow direction.

The statistical analysis of the waveform abruptness in pre-

dicted frozen and thawed regions (Sect. 5.3) demonstrates

that, overall, very different RES scattering signatures are

present than assumed by Oswald and Gogineni (2008, 2012).

Firstly, the majority of the predicted thawed regions have

lower abruptness (diffuse scattering). In their algorithm, this

would correspond to false-negative detection of basal water

(since the necessary high abruptness condition is not satis-

fied). Secondly, high abruptness is often present in predicted

frozen regions, many of which are interpreted as wet by Os-

wald and Gogineni (2008, 2012) (e.g. some of the region

of higher abruptness near to the Camp Century ice core,

which at high bed elevation is likely to correspond to harder

bedrock). It is, however, important to note that some of the

smoother regions discriminated as wet by Oswald and Gogi-

neni (2008, 2012) are consistent with basal thermal state pre-

diction by MacGregor et al. (2016) (e.g. near NorthGRIP).

Radar bed reflectivity was also used by Oswald and Gogi-

neni (2008, 2012) in their discrimination of thawed beds.

However, since these original studies, the role that uncer-

tainty in radar attenuation plays in biasing the spatial dis-

tribution of radar bed reflectivity has become much better

understood (Matsuoka, 2011; MacGregor et al., 2012; Jor-

dan et al., 2016). For example, if an attenuation model has

a constant systematic bias in attenuation rate, then there will

be an ice-thickness-correlated bias in estimated bed reflec-

tivity (Jordan et al., 2016). Thus, spatially correlated bias in

the attenuation model is one explanation for why elevated

reflectivity was observed in some predicted frozen regions.

Additionally, geological transitions, between less-reflective

sediment and more-reflective bedrock (see Bogorodsky et al.

(1983) and Peters et al. (2005) for reflectivity values) could

also play a role in complicating the analysis.

Subglacial hydrological systems are understood to pro-

duce more complex and variable scattering signatures than

the specular lake-like reflection assumed by Oswald and

Gogineni (2008, 2012). For example, concentrated hydro-

logical channels act as an anisotropic rough surface capable

of orientation-dependent scattering (Schroeder et al., 2013;

Young et al., 2016). Additionally, due to scattering from

the lake bottom and related interference effects, shallower

(depth < 10 m) subglacial lakes can produce diffuse scat-

tering (Gorman and Siegert, 1999). Whilst the majority of

the thawed regions have lower abruptness, there are some

smaller, localised patches of higher abruptness present in

Fig. 6c. These regions are consistent with the presence of

deep lake-like water (in the sense that specular reflections are

observed in a region predicted to be above pressure melting

point). However, because the frozen abruptness distribution

in Fig. 8f indicates that basal water is not required to pro-

duce highly specular reflections, it is not possible to confirm

this without additional analysis. This is because the frozen

abruptness distribution in Fig. 8f indicates that basal water is

not required to produce highly specular reflections, and thus

smooth regions of bedrock may be responsible for the high

abruptness. The presence of at least some localised patches

of high abruptness in thawed regions is consistent with the re-

cent discovery of two small subglacial lakes in north-western

Greenland of ∼ 8 and ∼ 10 km2 in extent (Palmer et al.,

2013). More generally, however, the relative rarity of high

abruptness in thawed regions is in agreement with hydro-

logical potential analysis (Livingstone et al., 2013), which

predicts that deep subglacial lakes are both rare and small

in the north-west of the GrIS. Instead, channelised drainage

networks – such as the system recently identified beneath

Humboldt glacier (Livingstone et al., 2017) – are likely to

be common in thawed regions (and are consistent with the

generally diffuse scattering signature that we observe).

The anisotropy of the Hurst exponent was not considered

in the radar scattering model, which was justifiable because

we were interested in understanding how the Hurst exponent

relates to the (near-) isotropic waveform abruptness. How-

ever, in certain regions of the ice sheets, basal radar scatter-

ing is known to be highly anisotropic, as revealed by maps

of the specularity content for Thwaites glacier (Schroeder

et al., 2013) and Byrd glacier (Young et al., 2016). Thus a

clear direction of future research would be to modify the

self-affine radar scattering model (Sect. 4) to take into ac-

count anisotropy in H and then to compare this model with

maps for the specularity content. The pronounced spatial

heterogeneity for H implies that estimation of roughness

statistics from H = 0 radar scattering models (Eq. 9; Berry,
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1973; Ulaby et al., 1982; Peters et al., 2005; Grima et al.,

2014) may give erroneous results, particularly when compar-

ing the overall spatial distribution between regions with dif-

ferent H values. Additionally, the radar scattering model is

formulated with respect to wavelength-scale (approximately

metre-scale) roughness and thus provides a way to estimate

metre-scale roughness (i.e. given A and H obtain an esti-

mate for νλ in accordance with the curves in Fig. 5). This

could have important glaciological consequences, since the

physical processes which influence basal sliding operate at

the metre scale (Weertman, 1957; Nye, 1970; Hubbard et al.,

2000; Fowler, 2011).

Finally, geostatistically based interpolation methods

which employ aspects of self-affine statistics (Goff and Jor-

dan, 1988) have found recent application in generating syn-

thetic subglacial topography (Goff et al., 2014). The self-

affine characterisation of subglacial topography described

here informs such techniques and, in turn, could be used to

inform the ice-sheet-wide interpolation of future Greenland

(Bamber et al., 2013a; Morlighem et al., 2014) and Antarctic

(Fretwell et al., 2013) subglacial digital elevation models.

7 Summary and conclusions

In this study we used recent OIB RES data to demonstrate

that subglacial roughness in northern Greenland exhibits

self-affine scaling behaviour, with pronounced spatial vari-

ation in the Hurst (roughness power law) exponent. We mod-

ified a planetary radar scattering model to predict how the

Hurst exponent exerts control upon the degree of scattering,

which we parameterised using the waveform abruptness. We

then demonstrated an agreement between the predictions of

the radar scattering model and the statistically distributed

inverse relationship that is observed between the Hurst ex-

ponent and waveform abruptness. This enables us to con-

clude that self-affine statistics provide a valuable framework

in understanding the topographic control which influences

ice-penetrating radar scattering from glacier beds. Self-affine

statistics also provide a generalised model for subglacial ter-

rain and in the future could be used to further explore the

relationship between bed properties, ice-sheet dynamics, and

landscape formation.

An additional glaciological motivation behind our study

was to establish whether the waveform abruptness could be

used to aid in the discrimination of basal water (and to test

the prior assumption that subglacial hydrological systems in

Greenland produce abrupt bed echoes; Oswald and Gogineni,

2008, 2012). To do this we compared our RES-derived data

fields with a recent basal thermal state prediction for northern

Greenland (MacGregor et al., 2016). The analysis demon-

strated that thawed regions of the glacier bed have statisti-

cally lower values of the waveform abruptness than frozen

regions (more diffuse scattering). The simple explanation is

that many thawed regions are relatively rough with a higher

Hurst exponent, whilst many frozen regions are relatively

smooth with a lower Hurst exponent. This finding should not

be viewed as a new RES diagnostic for basal water (since

deep subglacial lakes do have the specular signature pro-

posed by Oswald and Gogineni, 2008, 2012). However, it

indicates that the diagnostic in Oswald and Gogineni (2008,

2012) is likely to yield both false negatives (failing to iden-

tify water in rougher regions and where hydrological systems

have more complex scattering signatures) and false positives

(identifying some smoother frozen regions as wet).
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