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Abstract Radar‐sounding surveys measuring ice thickness in Greenland have enabled an increasingly

“complete” knowledge of basal topography and glaciological processes. Where such observations are

spatially limited, bed elevation has been interpolated through mass conservation or kriging. Ordinary

kriging fails to resolve anisotropy in bed geometry, however, leaving complex topography misrepresented in

elevation models of the ice sheet bed. Here, we demonstrate the potential of new high‐resolution (≤5 m)

surface topography data (ArcticDEM) to provide enhanced insight into basal and englacial geometry and

processes. Notable surface features, quantified via residual surface elevation, are observed coincident with

documented subglacial channels, and new, smaller‐scale tributaries (<2,000 m in width) and valley‐like

structures are clearly identified. Residual surface elevation also allows the extent of basal ice units to be

mapped, which in conjunction with radar data indicate that they act as “false bottoms,” likely due to a

rheological contrast in the ice column.

Plain Language Summary Newly available high‐resolution (≤5m) surface elevationmaps of the

Greenland Ice Sheet present a useful lens for examining and exploring the subglacial landscape, as well as

the physical processes operating subglacially and englacially. Where radar data, which measure the

subsurface geometry and properties, are sparse, we show how surface expressions can be used to enable

effective interpolation between sets of bed data, allowing enhanced appreciation of ice sheet processes and

boundary conditions. We also show that a subset of surface expressions originate from englacial slip surfaces

or “false bottoms,” allowing the extrapolation of the 2‐D areal/horizontal extent of these features, not

previously possible from radar flight lines alone.

1. Introduction

Advances in understanding basal processes of the Greenland Ice Sheet (GrIS) have primarily been driven by

the need to refine projections of the ice sheet's response to climate change using numerical models. An

increase in observations of ice thickness, obtained using airborne ice‐penetrating radar (IPR), has enabled

improved representation of Greenland's bed topography and, consequently, the production of progressively

accurate and spatially “complete” (without holes) bed digital elevation models (DEMs; e.g., Bamber, Griggs,

et al., 2013; Bamber et al., 2001; Morlighem et al., 2014, 2017). IPR data, therefore, provide a necessary input

to ice sheet modeling and also allow for the assessment of more specific basal and englacial properties,

including subglacial roughness and its anisotropy (e.g., Jordan et al., 2017; Lindbäck & Pettersson, 2015;

Rippin, 2013); ice rheology, through the measurement of englacial stratigraphy (e.g., Karlsson et al., 2013;

MacGregor, Fahnestock, et al., 2015); englacial temperature from radar attenuation (e.g., MacGregor, Li,

et al., 2015); and determining the distribution of basal water from bed‐echo reflectivity (e.g., Jordan et al.,

2018; Oswald et al., 2018). Despite the influence of basal processes upon ice dynamics being theoretically

well constrained (Cuffey & Paterson, 2010; van der Veen, 2013), our understanding of spatial variation in

subsurface conditions and processes remains restricted by the paucity of IPR data; consequently,

observation‐led interrogation is required to understand the magnitude of their effects in situ.

While the number of IPR ice thickness observations has roughly tripled in the past decade, there remain

large swathes of the GrIS left unobserved (see Figure 1a in Morlighem et al., 2017). Limitations in IPR cover-

age, and spatial bias due to variation in observation density, often result in the mapping and assessment of

basal geometry and processes being reliant on spatial interpolation between flight tracks. Interpolation has
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primarily been applied to the construction of bed topographies (Bamber, Griggs, et al., 2013; Morlighem

et al., 2017), but also the tracing of englacial stratigraphy (Bons et al., 2016; MacGregor, Fahnestock,

et al., 2015), and the mapping of subglacial roughness (Rippin, 2013). Interpolated bed DEMs have enabled

the “discovery” of large‐scale landscape systems beneath the GrIS (e.g., Bamber, Siegert, et al., 2013; Cooper

et al., 2016; Livingstone et al., 2017) confirming that the identification of more nuanced interrelationships

between basal topography and the overlying ice is now possible. In this vein, process‐based assessments have

attempted to understand the relationship between ice flow and bed topography, with focus on aspects of

landscape genesis, evolution, preservation, and inheritance in Antarctica (e.g., Bingham et al., 2017; Rose

et al., 2013, 2015; Ross et al., 2014) and Greenland (Cooper et al., 2016; Livingstone et al., 2017).

The most recent data sets for Greenland bed topography have employed a “mass conservation” interpolation

between flight lines in fast‐flowing regions (Morlighem et al., 2014, 2017). However, the majority of the bed

in the latest product (BedMachine v3, referred to here as BM3), primarily the slow‐flowing ice sheet interior,

was interpolated using ordinary (isotropic) kriging (Morlighem et al., 2017). In observation‐sparse areas, this

approach generates surfaces that fail to represent the “true” geometry of anisotropic basal features (i.e.,

quasi‐linear geometries): Rendered surfaces can appear artificially smooth (Williams et al., 2017) or result

in “bulls‐eye” anomalies manifesting as a series of isolated peaks and/or hollows (Dentith & Mudge,

2014). Although BM3 is provided at a posting of 150 m, the true resolution of the estimated surface is depen-

dent upon the local observation density (i.e., the level of clustering) and sampling regime (i.e., the flight line

spacing; Morlighem et al., 2017). Since parallel track spacing over the ice sheet interior is up to 75 km, it is

important, therefore, to consider the need for a spatially consistent method through which to assess basal

morphology and associated basal and englacial processes without the artifacts associated with interpolation.

The transfer of basal information from “bed‐to‐surface” has long been appreciated, with knowledge of local

ice velocity and flow parameters being used to calculate bed topography along a profile of the surface (Budd,

1970). More recently, surface and subsurface data have been used to better constrain this transfer of basal

information, with particular reference to spatial variability in basal traction (De Rydt et al., 2013;

Gudmundsson, 2003; Gudmundsson & Raymond, 2008). However, it is widely understood that local varia-

tions in flow regime and surface topography are more suitably explained by undulations in subglacial topo-

graphy (De Rydt et al., 2013). It is yet to be determined whether this modeled basal transfer (as in

Gudmundsson, 2003) can be applied generally, especially where ice thickness and speed vary considerably.

This is perhaps exemplified through the application of mass conservation interpolation being limited to

regions of fast flow (Morlighem et al., 2014, 2017). While recent efforts have been made to characterize basal

information transfer across the interior of the GrIS, where velocity is low and basal slip is spatially hetero-

genous, the success of this is limited to more large‐scale patterns, arguably by computational means

(Ignéczi et al., 2018; Ng et al., 2018). Outside theoretical frameworks, and particularly in the interior of

Antarctica, numerous observational studies have demonstrated the relationship between surface and basal

geometry (Le Brocq et al., 2008; Rémy & Minster, 1997; Rose et al., 2014; 2015; Ross et al., 2014). For exam-

ple, subglacial lakes manifest as flat surfaces in the overlying ice sheet, due to the negligible basal friction

above them (Ridley et al., 1993; Siegert & Ridley, 1998). Such research has benefited from ice sheet surface

brightness or topography, including analyses of surface curvature, to determine bed features and subglacial

landscape (Le Brocq et al., 2008; Rose et al., 2014; 2015; Ross et al., 2014).

While both ice surface observation‐ and model‐led approaches reveal important information about subsur-

face processes in areas of sparse observational data, much of the small‐scale topography of the Greenland

interior remains uncharted; this is primarily due to the relative coarseness (spatial resolution) of previously

available surface imagery (e.g., Moderate Resolution Imaging Spectroradiometer surface brightness, as used

in Ross et al., 2014, and others), and the complexities in modeling transfer of information from bed to surface

(De Rydt et al., 2013). However, with the recent release of a new high‐resolution (≤5 m) pan‐Arctic DEM

(ArcticDEM; Morin et al., 2016; https://www.pgc.umn.edu/data/arcticdem/), there is an opportunity to

improve our knowledge of spatially heterogenous basal conditions using the ice surface topography rather

than, or in conjunction with, IPR data.

Here, we explore the potential for ArcticDEM ice surface information—specifically the residual surface ele-

vation (RSE)—to provide a “lens” for subsurface processes in Greenland. From this, we present evidence for

previously undocumented complex basal topographies and characterize the influence of ice dynamics on the
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ice surface. We also provide evidence that some surface expressions are likely a result of englacially discrete,

rheological boundaries and improve themapping of “units of disrupted radiostratigraphy” (UDRs; Bell et al.,

2014; Dow et al., 2018; Leysinger Vieli et al., 2018; Wolovick et al., 2014). We compare results inferred from

surface data with BM3 and highlight the importance of topographic anisotropy and scale both in the

planning of geophysical surveys and spatial interpolation. Finally, to understand the relationship between

the surface expression and basal processes we compare with complementary data sets: basal water

(Jordan et al., 2018), geothermal heat flux (Martos et al., 2018), basal slip (MacGregor et al., 2016), and ice

velocity (Joughin et al., 2016, 2017).

2. Calculating RSE

The ArcticDEM is a newly released collection of Earth surface DEMs produced using high‐resolution

(~0.5 m) stereopair imagery, collected by DigitalGlobe Inc. optical satellites. The DEM is supplied by the

Polar Geospatial Center in two formats: the “ArcticDEM Strip” format (2‐m resolution) and tiled

“Mosaic” format (5‐m resolution). The Mosaic format was used here owing to both its spatial regularity

(50 km × 50 km; 2,500‐km2 tiles), increased data coverage, improved absolute accuracy, and fewer artifacts.

A total of 36 tiles, covering an area of ~90,000 km2 over northwest Greenland, south of Petermann Glacier,

defines the study region (Figures 1 and S1 in the supporting information). This region was chosen due to its

relatively high, and spatially dense, coverage of IPR data (Figure 1a); additionally, studies mapping and

understanding of both englacial (e.g., Bell et al., 2014; Chu et al., 2018) and basal features/properties (e.g.,

Bamber et al., 2013; Livingstone et al., 2017) have also focused on this region. This facilitates both the com-

parison and validation of this paper's conclusions, in order to better assess the capability of high‐resolution

surface information in extracting subsurface information.

Figure 1. Bed topography and residual surface elevation (RSE) for Northwest Greenland. Study location inset, including
fast‐flowing ice (>50 ma−1 [gray]) and ice core drilling sites (CC and NEEM). (a) BM3 (Morlighem et al., 2017). Ice‐
penetrating radar survey coverage (dark gray). (b) RSE. Red and black grids show the spatial extent of individual
ArcticDEM tiles; labels LC and MC refer to subglacial channel systems, documented by Livingstone et al. (2017) and
Bamber, Siegert, et al. (2013), respectively.
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Ice sheet surface topography is influenced by underlying basal conditions (i.e., geometry) and processes (e.g.,

Gudmundsson, 2003; Rémy & Minster, 1997). Compared to the dominant signal of an ice sheet's surface

slope (which is approximately parabolic, or dome like), however, this influence yields a much smaller

change at the ice surface, both in terms of amplitude and wavelength. To help resolve the influence of basal

geometry, large‐scale surface slopes must be removed. We calculated a third‐order polynomial trend surface

for each ArcticDEM tile, using least squares regression, to detrend surface topography, leaving the RSE

(Figure 1b). The RSE preserves local surface features down to a minimum wavelength of about 1 km, which

are then interpreted as manifestations of basal topography or englacial surfaces (section 3). While the

ArcticDEM boasts a much finer scale than this, it is probable that smaller‐wavelength features are not resol-

vable due to the dampened transfer of basal information as a result of ice thickness (De Rydt et al., 2013); for

such features “direct” observation using IPR data are likely necessary. Additional second‐ and fourth‐order

polynomial surfaces were used; however, no marked improvement, in terms of interpretable “features,”was

observed. By contrast, the third‐order surface performed better over ice divides and at ice margins when

compared to fitting a second‐order polynomial.

Various feature extraction methods have been employed to obtain bed geometry from ice surface topogra-

phies, and surface brightness. This includes edge detectors (e.g., Ekholm et al., 1998) and isolating local topo-

graphic change through the calculation of profile curvature (of Moderate Resolution Imaging

Spectroradiometer imagery, e.g., Ross et al., 2014). While these methods are usually dimensionless (without

vertical information) and only reveal relative changes at the bed, spatial patterns in basal geometry can still

be interpreted. We repeated these approaches for the new ArcticDEM (Figures S2a–S2c), alongside a calcu-

lation of RSE for a more coarse surface topography (90‐m resolution) DEM (Figure S2d; Greenland Ice

Mapping Project, GIMP; Howat et al., 2014). Although a 30‐mGIMPDEM is available, the latter comparison

was undertaken to explicitly assess whether topography at a greater spatial resolution (i.e., ArcticDEM) can

provide enhanced subsurface information. RSE calculated for the 30‐m GIMP DEM provides a near‐similar

level of information provided by the ArcticDEM; however, for the purpose of this paper we rely on the new,

and higher‐resolution ArcticDEM for further analysis.

3. Interpreting Surface Expressions

RSE (Figure 1b) can be interpreted similar to a relative DEM, where surface undulations are attributed

to bed undulations or, as we later demonstrate, basal‐englacial UDRs. Various geometric features,

including lineations, troughs, and peaks, are visible in the RSE (Movie S1). Interpretation of these

features is facilitated by the comparison with BM3, (Morlighem et al., 2017) and along‐track radargrams

from National Aeronautics and Space Administration's Operation IceBridge (Rodriguez‐Morales et al.,

2014; Figure 1a), as well as with complementary data sets (Figure 2), including interferometric synthetic

aperture radar‐derived surface ice velocity (Joughin et al., 2016), radar‐derived basal water (Jordan et al.,

2018), and magnetic‐derived geothermal heat flux (Martos et al., 2018). On initial comparison to BM3,

the RSE (Figure 1b) replicates fundamental landscape features. Most notably these are large, and pre-

viously documented, dendritic channel networks, such as the “mega‐canyon” flowing toward

Petermann Glacier (Bamber, Siegert, et al., 2013), and the two channels linked with Humbolt Glacier

(Livingstone et al., 2017; MC and LC, respectively; Figure 1a). Further, RSE broadly simulates the overall

trends in basal topography (acting similarly to a topographic “hillshade,” Figure 2a), and in observation‐

sparse regions it delineates previously undocumented morphological features (see sections 3.1 and 3.2

and Figure 1b). This confirms that the ice surface can be used to explore basal geometries, which are

poorly constrained by the shortcomings of isotropic interpolation between sparse/transect‐

based observations.

There are, however, notable signals and features present in the RSE that do not appear to reflect likely

basal topography; instead, these features result from ice dynamics and/or UDRs. In the first instance, a

marked “rippling” is observed in the RSE coincident with Petermann Glacier, extending southeast

(Figure 1b). While this signal appears linked to a spatial transition in the ice speed, there is no direct

relationship to magnitude (Figures 2a and S3). Evidence of streaming ice is identified by the tight spa-

cing of velocity contours, delineating pronounced shear margins (Figure 2a) and an elevated basal slip

ratio (Figure 2c; MacGregor et al., 2016). It is at shear margins, where strain rates and shear stress
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are high, and within fast‐flowing ice, that ice is likely to become decoupled from the bed (Cuffey &

Paterson, 2010). Spatial similarity between the observed RSE rippling features, shear margins as

evidenced by velocity contours, and modeled driving and basal shear stress is observed (see Figure 3

in Sergienko et al., 2014). It is, therefore, plausible that the coincident response in ice surface

topography may result from changes in ice flow parameters (i.e., decoupling) and a more efficient

transfer of large‐scale basal undulations, resulting from increased slip (De Rydt et al., 2013;

Gudmundsson, 2003).

On the other hand, south of Petermann Glacier, in a relatively flat and low‐lying area of the bed (Figure 1a),

multiple ovular features are observed in the RSE (Figure 1b). UDRs have been documented across this sector

of the GrIS in radiostratigraphy (Bell et al., 2014; Dow et al., 2018; Leysinger Vieli et al., 2018; Wolovick et al.,

2014). The established locations of most of these units correspond to the ovular/lobed features observed in

the RSE (Figure 2b). The genesis and interrelationship with local ice flow parameters of these UDRs are

discussed below.

Figure 2. Comparison of observed surface features to auxiliary geophysical data. (a) RSE with BM3 transparency (as
Figure 1a). Ice‐penetrating radar coverage as per Figure 1a and Greenland Ice Sheet drainage basins are delineated
(Zwally et al., 2012), surface velocity contours at 10‐m/a intervals (Joughin et al., 2016), and profiles A–C are presented in
Figure 3. (b) RSE with geothermal heat flux (GHF) contours at 2‐mW/m2 intervals (Martos et al., 2018), radar predictions
for basal water (Jordan et al., 2018), and locations of “basal ice units” (Bell et al., 2014). (c) RSE with basal slip ratio
transparency (MacGregor et al., 2016), values of 0.8 (dashed), 1.0 (black), and 1.2 (dotted) are delineated. RSE = residual
surface elevation; UDR = unit of disrupted radiostratigraphy.
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3.1. “Ground Truthing” RSE

To disentangle the primary causes of the surface features (Figure 1b), comparison can be made against

radar‐derived bed elevation and stratigraphy. Three illustrative profiles are shown in Figure 3. Profile A

provides a near‐perpendicular cross section of the MC (Bamber, Siegert, et al., 2013), where profiles B

and C present near‐orthogonal bisectors of a UDR. Although a marked response in RSE is apparent along

all three transects, the nature of these differ (Figures 3a–3c). RSE along profile A follows basal topography

with a corresponding negative, smoothed, facsimile of bed elevation; however, this response is notably out

of phase. This is likely a function of ice flow direction (~65° from profile; Figure S3), as well as ice rheol-

ogy, thickness, and thermal regime, all of which affect the efficiency of bed‐to‐surface transmission (De

Rydt et al., 2013; Gudmundsson, 2003). This informs us that although additional influences impinge

the bed‐to‐surface transfer, we can still extract information regarding the scale and geometry of the basal

feature using RSE. While a large positive response in RSE is observed along profiles B and C, little varia-

tion is observed in sampled bed elevation (standard deviation ≤19 m); it is unlikely, therefore, that basal

topography is the primary cause.

Figure 3. Bed elevation, RSE, and radargrams at locations A–C. Ice surface flow direction along profiles B and C is marked, where for profile A this is oblique to the
page (~65°). Profile length has been extended in (e) and (f); labeled cutlines depict the original length. (d–f) Annotated for englacial stratigraphy interpreted in text
(unannotated in Figure S4). Englacial layers that correlate with “surface ice” are shown (white lines), where the thickest line represents the first complete layer
above the unit of disrupted radiostratigraphy; dashed white line denotes the separation between Holocene ice (above) and Last Glacial Period ice (below).
Radiostratigraphy within reflective basal ice are shown in purple, and near‐bed reflectors beneath nonreflective ice are blue. The asterisk in (f) is interpreted as an
inner ellipse within a sheath fold. Bed echo (red) and ice surface returns are labeled. Red arrows x axes (e and f) mark the location at which (f) orthogonally (~90.1°)
bisects the plane of (e). There is a vertical exaggeration by a factor of 19.35 and 11.45, for (a)–(c) and (d)–(f), respectively. RSE = residual surface elevation.
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When considering returned power across theMC (profile A; Figure 3d), englacial stratigraphy generally con-

forms with basal topography. Specifically, some layer disturbance is partially visible toward the base of the

ice column, but at this depth the ice has few radio‐reflecting horizons. The dashed white line on all profiles

indicates the transition in englacial stratigraphy between the Holocene ice above and the “softer” ice of the

Last Glacial Period, below (Chu et al., 2018; Dahl‐Jensen & Gundestrup, 1987; Huybrechts, 1994). Above the

canyon (Figure 3d) this better documents the “dampening” effect in the transfer of basal information in eng-

lacial stratigraphy toward the surface (De Rydt et al., 2013), presenting a smoother transfer of the bed geo-

metry in the RSE (Figure 3a).

Radargrams from profiles B and C (Figures 3e, 3f, and S4) depict a significant UDR (Figure 3a, Bell et al.,

2014 and Figure 1, Wolovick et al., 2014), with a thickness up to one half of the ice column (~1,000 m).

When comparing the observed structure and reflectance characteristics of the UDR (Figures 3e, 3f, and

S5) against similar features described in Greenland (Wolovick et al., 2014) and Antarctica (Wrona et al.,

2017), we see several similarities. Large‐scale cylindrical folding of this unit is also present, with the axis

aligned perpendicular to flow (Figure 3e); more notably, a lobular extension from the top of the basal ice,

elongated in the direction of surface ice flow, is similar to the “finger structures” observed in Antarctica

formed through the entrainment of the softer basal unit into the overlying ice (Wrona et al., 2017). Across

flow a central “eyelet” is observed within the UDR (asterisk, Figure 3f), indicative of

extension/deformation of the unit parallel to the flow direction, characteristic of sheath folding (Wolovick

et al., 2014; Wrona et al., 2017). The radiostratigraphy broadly shows the overlying ice flow “up‐and‐over”

the UDR (Figures 3e and 3f) mostly undisturbed; this reflects the likely cause of the positive rise in RSE

(Figure 3b), whereby the basal unit is hypothesized to act as a “false topographic bed,” over which the upper

ice layers conform. It is, therefore, possible that by using RSEwe are able to better map or extrapolate the 2‐D

areal/horizontal extent of UDRs where directly observed in radargrams; however, in observation‐sparse

regions (away from IPR flight lines), the cause of such ovular surface expressions is likely to be more ambig-

uous, as internal surfaces and certain bed geometry (e.g., basins and topographic rises) could present simi-

larly, as such “additional” UDRs (those not previously documented) cannot be confidently mapped using

RSE. To better answer this would require the implementation of a bed‐to‐surface transfer framework (as

in Gudmundsson, 2003; De Rydt et al., 2013), which is beyond the scope of this paper.

Specifically, at the point of bisection between profiles B and C, we can use radar power anisotropy to make a

preliminary assessment of vertical changes in the horizontal dielectric anisotropy of the ice column and

related asymmetry of the ice crystal orientation fabric (COF; Fujita et al., 2006; Hargreaves, 1978). Radar

power anisotropy is influenced by both birefringent propagation (associated with horizontal COF anisotropy

that varies smoothly with ice depth) and anisotropic scattering (associated with sharp vertical transitions in

the COF; e.g., Fujita et al., 2006). Specifically, at middepths (~900–1,700 m), we observe oscillations in the

across/along‐flow power difference as a function of depth (Figure S5b). The ~10‐dB amplitude and smoothly

varying depth periodicity are seen to be consistent with power modulation dominated by birefringent radio

wave propagation through the ice column (Fujita et al., 2006; Matsuoka et al., 2012). This implies smoothly

varying horizontal asymmetry of the COF (i.e., the presence of either a vertical girdle fabric distribution or

elongated single maximum). In both more shallow and deeper ice, the power difference shows greater iso-

tropy, implying a weaker horizontal asymmetry of the COF. This is likely representative of a near‐random

fabric in shallow ice and a strengthened single maximum in deeper ice. As previously noted, the

Holocene‐Last Glacial Period transition is marked by a change in returned power (Chu et al., 2018) and is

observed at ~900 m (Figures 3d–3f and S5a), approximately coincident with the point at which we infer

the development of horizontal asymmetry in the COF.

Multiple hypotheses surrounding the inception of UDRs exist, including bottom‐up accretion through

supercooling and basal freeze‐on (Bell et al., 2014; Leysinger Vieli et al., 2018), thermomechanical changes

resulting from anisotropic ice rheology, or changes in rheology affected by “stick‐slip” mechanisms (Bons

et al., 2016; Weertman, 1976 ; Wolovick et al., 2014). The latter of these mechanisms, initiated either by velo-

city changes within the ice column or in basal thermal state, would give rise to large‐scale folding and defor-

mation like that seen here (Weertman, 1976; Wolovick et al., 2014). While it has been noted that some UDRs

in Greenland do not have a clear relationship to known basal water networks (Wolovick et al., 2014), the dis-

tribution of observed features is consistent with radar basal water predictions (Chu et al., 2018; Jordan et al.,

2018). Additionally, these are within a region of elevated geothermal heat flux (>58 mW/m2; Martos et al.,
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2018; Figure 2b), and transitional basal thermal state (Chu et al., 2018; MacGregor et al., 2016). While hydro-

logical modeling suggests minimal basal freeze‐on rates (Dow et al., 2018; MacGregor et al., 2016), the

correlation with these complementary geophysical properties, as well as evidence of multilobed sheath fold-

ing, may be symptomatic of heterogenous basal sliding or altered ice rheology, ultimately leading to the for-

mation of UDRs. This is compounded not only by an enhanced predicted basal motion over a particularly

large UDR‐feature observed in the RSE (Figure 2c; asterisk, 4; MacGregor et al., 2016) but also through

the inferred depth transitions from a near horizontally isotropic to horizontally anisotropic COF (Figure

S5). Altogether, this suggests that these UDR features may act, dynamically, as “false beds” with localized

englacial “decoupling” across the upper boundary.

3.2. Mapping Basal Characteristics

Although the presence, and causes, of surface expressions observed in the RSE can be directly attributed to

basal topographies and associated subglacial processes using IPR data, much of the true extent of these fea-

tures cannot be realized due to sparse/absent observations. Figure 4 presents an annotated RSE, including

our interpretation for the primary origin of surface expressions. We can map with greatest confidence

quasi‐linear topographic features, such as channel systems and dendritic fluvial landscape morphologies,

though it is apparent that sites of significant basal UDRs, and velocity induced changes, plausibly indicative

of glacier‐bed decoupling, are also interpretable.

Figure 4. Summary of residual surface elevation with reference to basal and englacial processes and landforms. Subglacial
channel features are delineated (blue lines), valley‐like areas (blue shade), with possible headstream catchments
labeled (HS); DC depicts channel structure “flowing” across the ice divide. Possible units of disrupted radiostratigraphy
are outlined (green), units where a “closed” areal extent is observable, due to marked edges/boundaries, are shaded green;
whereby an asterisk marks a large unit of disrupted radiostratigraphy (documented in Leysinger Vieli et al., 2018) seen
to be coincident with increased basal slip (Figure 2c). Velocity‐driven manifestations upon surface topography are also
highlighted (orange). Alphanumeric grid labels are used in text to further describe and highlight features.
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We are able to discern prominent bed geometries in the RSE, notably the additional detail in the landscape

surrounding theMC and the northeast of the study region. Multiple, sinuous tributaries exist, as well as com-

plex channel network and dendritic valley‐like structures, suggestive of headwater catchments with several

“minor” channels visible (<2,000 m in width; e.g., HS, Figure 4). Further, we see in tile E4 (Figure 4) that the

MC appears to split into two upstream tributaries. It should be noted that where the RSE calculated for the

more coarse resolution (90 m) GIMP DEM (Figure S2d) provides prominent basal channels (i.e., the MC),

“fine” scale detail (i.e., HS, Figure 4) is not interpretable from the more “smoothed” information. While

many channels are aligned quasi‐parallel to contemporary ice flow direction, there are some channels that

are aligned perpendicular to flow and, in one example, span the present‐day ice divide (DC, Figure 4).

Complex landscapes such as these are indicative of past fluvial activity and are often interpreted as inherited

or partially preserved ancient fluvial systems, predating the inception of contemporary ice sheet. More

“major” channels (in terms of great width and relative depth), and associated channel networks, are seen

to influence contemporary ice flow and the routing of contemporary subglacial water (Bamber, Siegert,

et al., 2013; Bingham et al., 2017; Cooper et al., 2016; Jordan et al., 2018; Livingstone et al., 2017).

4. Conclusions

Here, we established the potential of the high‐resolution (5 m) ArcticDEM to elucidate basal geometry with

previously unobtainable detail. Where current geostatistically derived bed topographies rely on isotropic

methods of interpolation (i.e., ordinary kriging), RSE provides a spatially complete proxy to constrain local

(horizontal length scales ~1–10 km) morphology. This approach is particularly advantageous for anisotropic

features within the ice sheet interior. Additionally, via combination with complementary IPR data, we can

constrain dynamical basal features (e.g., subglacial drainage pathways) and englacial processes (e.g., the 2‐D

areal/horizontal extent of UDRs). Additionally, via the analysis of two bisecting radargrams, we have dis-

cussed how one such UDR has formed, as well as its dynamic relationship with the ice column. This permits

correlation with, and influences of, and upon, surface flow characteristics (e.g., sheath folding, fold elonga-

tion, and localized englacial decoupling).

In summary, we illustrate a complex subglacial and englacial system in northwest Greenland, notably

improving the delineation of anisotropic geometric features that had previously been possible, or poorly cap-

tured, using isotropic interpolation. While qualitative, knowledge regarding the presence of complex basal

topography, or indeed basal and englacial processes, may prove valuable not only in facilitating the further

understanding of bed‐to‐surface transfer, but also in working to constrain future interpolation methods, and

aiding the design of more directed geophysical campaigns. In the first instance, RSE is able to provide ver-

tical information (in meter units), absent in previous edge detection and curvature methods (Figures S2a–

S2c). Where additionally, the positive identification of quasi‐linear channels and dendritic valley networks

can provide channel centerlines for physically based, anisotropic interpolation of bed topographies (exempli-

fied in Goff et al., 2014; Herzfeld et al., 2011; Williams et al., 2017).
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