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Abstract  

 

1g,25-dihydroxyvitamin D3 signals via the Vitamin D Receptor (VDR). Higher serum 

vitamin D is associated with thinner primary melanomas and better outcome, 

although a causal mechanism was not established. As melanoma patients commonly 

avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, 

we interrogated 703 primary melanoma transcriptomes to understand the role of 

vitamin D-VDR signalling and replicated the findings in TCGA metastases. VDR 

expression was independently protective for melanoma death in both primary and 

metastatic disease. High tumor VDR expression was associated with upregulation of 

pathways mediating anti-tumor immunity and correspondingly with higher imputed 

immune cell scores and histologically detected tumor infiltrating lymphocytes (TILs). 

High VDR expressing tumors had downregulation of proliferative pathways, notably 

Wnt/d-catenin signaling. Deleterious low VDR levels resulted from promoter 

methylation and gene deletion in metastases. Vitamin D deficiency (< 25 nmol/l ~ 10 

ng/ml) shortened survival in primary melanoma in a VDR-dependent manner. In vitro 

functional validation studies showed that elevated vitamin D-VDR signaling inhibited 

Wnt/d-catenin signaling genes. Murine melanoma cells overexpressing VDR 

produced fewer pulmonary metastases than controls in tail vein metastasis assays. 

Vitamin D-VDR signaling contributes to controlling pro-

proliferative/immunosuppresive Wnt/d-catenin signaling in melanoma and this is 

associated with less metastatic disease and stronger host immune responses. We 

report this as evidence of a causal relationship between vitamin D-VDR signaling 

and melanoma survival which should be explored as a therapeutic target in primary 

resistance to checkpoint blockade.  

 

Statement of significance 

 

This study highlights that the prognostic significance of vitamin D-VDR signaling in 

melanoma is associated with inhibition of Wnt/beta-catenin mediated tumour 

proliferation as well as enhanced anti-tumor host immune response.
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Introduction 

 

1g,25-dihydroxyvitamin D3 is the ligand for the dimeric vitamin D receptor (VDR) and 

retinoid X receptor (RXR): ligand-receptor binding facilitates transcription of target 

genes containing the vitamin D response element (VDRE) (1). The physiological 

effect of the vitamin D-VDR signaling axis is often target tissue-specific (2). 

The association of low serum 25-hydroxyvitamin D2/3 levels (henceforth 

referred to as vitamin D) with higher cancer incidence has been reported (3) but the 

significance of the association has been debated (4). Extensive in vitro evidence 

however indicates an anti-proliferative role of vitamin D, with 1,25(OH)2 vitamin D3 

treatment shown to induce expression of pro-apoptotic genes and anti-proliferative 

genes in prostate (5), breast (6), colon (7) squamous cell carcinoma and leukaemia 

cells (8, 9).  

We have previously reported that higher serum vitamin D levels at recruitment 

were associated with lower AJCC stage and better melanoma specific survival 

(MSS) in the Leeds Melanoma Cohort (LMC) (10). This was subsequently verified in 

5 additional studies (11-15), which collectively indicate a significant role for vitamin 

D-VDR signaling in melanoma progression. 

The unique dataset used in this study was derived from 703 formalin-fixed 

paraffin-embedded (FFPE) primary melanomas, from the LMC, a population-based 

and extensively annotated cohort with a long follow-up (10). Tumor-derived 

transcriptomic data, clinical, histopathological and whole-genome copy number 

alteration (CNA) data were jointly analysed to assess the pan-genome effects of 

vitamin D-VDR signaling and to determine the processes most associated with this 

pathway. Importantly, these findings were replicated in TCGA metastatic melanomas 

and then functionally validated using in vitro and in vivo experiments. 
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Materials and methods 

 

The Leeds Melanoma Cohort (LMC) tumor transcriptome 

LMC tumor transcriptome processing was described previously (16)(accession no. 

EGAS00001002922). Briefly, tumor samples were taken from formalin fixed paraffin 

embedded (FFPE) primary melanomas and RNA was extracted to generate whole 

genome gene expression data (Illumina DASL HT12.4 array). Background correction 

and quantile normalisation were applied; singular value decomposition was used to 

assess the confounding factors which were subsequently adjusted out. Participants 

in the LMC gave written informed consent; the study was conducted in accordance 

to international ethical guidelines (Declaration of Helsinki) and was approved by the 

national ethics committee (MREC 1/03/57 and PIAG3-09(d)/2003). 

 

Measurement of serum vitamin D at diagnosis 

For 554 of the 703 participants with transcriptomic data, 25-hydroxyvitamin vitamin 

D2 and D3 (nmol/L) was measured as described previously (10) and adjusted for 

season (see Supplementary Methods). 

 

TCGA melanoma dataset 

TCGA metastatic melanoma data (n=365 samples) such as transcriptomic (RNA-

Seq), clinical, methylation and copy number data were downloaded from cBioPortal 

(http://www.cbioportal.org/). The same statistical tests and software/packages were 

used to analyse Leeds and TCGA data. 

 

Statistical analyses 

Association of VDR expression with clinical variables: univariate and multivariate 

linear regression were used to test the association between VDR and AJCC stage, 

mitotic number, tumor site, age and sex.  

Association of VDR expression with MSS: univariate and multivariate Cox 

proportional hazards models were used to test the prognostic effect of VDR 

expression level after adjusting for AJCC stage (7th Edition), tumor mitotic number, 

tumor site and TILs. For this analysis VDR expression was on the continuous log2 

scale, meaning that Hazard Ratio (HR) per VDR unit corresponds to change in 

hazard when expression is doubled. 
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VDR copy number changes in the LMC tumors 
 
Copy number profiles were estimated from NGS output from sequenced DNA 

samples from a subset of LMC tumors (n=276, 39%) as described (17). Gistic2.0 

was used to identify VDR copy number estimates (see Supplementary Methods). 

 

Whole-transcriptome correlation with VDR 

Linear regression analysis and Benjamini-Hochberg multiple testing correction (False 

Discovery Rate- FDR) was used to test the correlation between the expression of 

each gene and VDR in the tumors. Genes with FDR<0.05 and |Reg Coef|>0.2 (Reg 

Coef- Regression coefficient) were plotted in a volcano plot (R function: ‘plot’) and 

used for functional enrichment analysis.  

Since VDR is expressed by keratinocytes (18), a FLG2-adjusted whole-

transcriptome correlation with VDR was additionally performed (Fillagrin family 

member 2: FLG2 being a maker of keratinocyte differentiation). This sensitivity 

analysis was conducted to account for any bias in VDR expression which might have 

originated from keratin-rich melanoma subsets, which have been previously reported 

(19-21).   

 

Functional enrichment analyses  

The ‘Gene set/mutation analysis’ feature of ReactomeFIViz (22) was used to identify 

significantly enriched pathways (Benjamini-Hochberg FDR <0.05, from 

hypergeometric test)  from a given input gene list. 

 

VDR-binding regions 

The genomic regions identified as having VDR-binding peaks across 6 tissue types 

(23) were downloaded as BED files. Additionally, genomic regions known to contain 

the VDR-binding motif were downloaded from Motifmap (as BED files). In both 

cases, genes associated with genomic regions were identified using GREAT 3.0.0 

(24): ‘Basal plus extension’ approach was used with Human GRCh37 assembly, 

whole genome as background regions and the gene regulatory domain set to +20 kb 

upstream and +400 kb distal. The genes which mapped to these regions (‘region-
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gene associations’) were exported and their overlap with VDR-correlated genes in 

the LMC (at FDR<0.05) was assessed.  

 

VDR expression across Lund and TCGA molecular phenotypes 

Nearest centroid method (21) was used to classify the LMC tumors into TCGA and 

Lund molecular melanoma phenotypes (see Supplementary Methods). Differential 

VDR expression across these subgroups was tested with the Mann-Whitney test. 

 
Imputed Immune scores 

As described by Pozniak et al (25). Briefly, 28 immune cell scores were calculated as 

mean expression of genes pertaining to an immune cell type, after deducting genes 

identified as potentially non-immune cell specific, from the initial immune gene 

signature described by Angelova et al. Correlation analysis of each immune cell 

score with VDR expression was conducted.  

 

Expression of VDR and response to checkpoint blockade 

VDR expression was compared between responders and non-responders in two 

published albeit small transcriptomic data sets: i) 38 patients treated with PD-1 

blockade (26) and ii) 40 patients treated with CTLA4 blockade (27). Both studies 

used pretreatment biopsies. Fold change was computed as ratio of mean VDR 

expression in responders to non-responders 

 

Vitamin D-VDR subgroup analysis 

X-tile (28) was used to identify patient subgroups with the most contrasted survival 

profiles (melanoma-specific) based on their tumor VDR expression in the LMC. This 

approach was trained in randomly selected 2/3 of the samples and validated in the 

remaining 1/3. The cut-points defining patient subgroups in terms of percentiles were 

applied to the TCGA metastatic melanoma dataset for replication.  

The identified VDR groups were further stratified based on participants’ serum 

vitamin D levels at recruitment (season-adjusted) in the LMC. Clinically defined 

vitamin D deficiency is generally considered to be <25 nmol/L (29), with recent 

evidence defining vitamin D deficiency able to compromise bone health as 

<30nmol/L (30). Thus, in the LMC dataset, serum vitamin D levels <25nmol/L and 

>25nmol/L were classified as ‘deficient’ and ‘sufficient’.  
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Vitamin D treatment of human melanoma cells 

SK-MEL-28 and MeWo cells (courtesy of Professor Alan Melcher, Leeds CRUK cell 

line bank) were authenticated using the PowerPlex 16 System (Promega, USA), 

cultured, treated with 1,25 (OH)2 vitamin D3 (Supplementary Methods), collected at 

different time points, RNA extracted and used to generate gene expression profiles 

(HG-U133 plus 2.0 array, Affymetrix). Genes differentially expressed in vitamin D-

treated versus control cells were identified at each time point (FDR<0.10) and were 

used for functional enrichment using Reactome FIViz.  

 
Generation of VDR-B16BL6 and control-B16BL6 cells  

B16BL6 cells (chosen owing to lowest endogenous VDR expression among B16 

strains, estimated from transcriptomic data by Dr Martin del Castillo- personal 

communication) were purchased from the M. D. Anderson Cancer Center Cell Line 

Core facility. Cells were screened for the presence of mycoplasma and mouse 

pathogens (at Charles River Laboratories, USA) before culturing. Early passage 

B16BL6 cells were cultured and transfected with murine VDR cDNA (synthesised by 

GeneArtTM) or empty backbone plasmid to generate the VDR-B16BL6 (clones V1, 

V2) and control-B16BL6 (clones C1, C2) cells respectively (Supplementary 

Methods), verified by Western blot and qRT-PCR.  

 

In vivo tail-vein metastasis assay 
 
Though subcutaneous B16 models have bene used to demonstrate the role of NK 

cells in host responses to melanoma, we adopted the tail-vein model based on 

successful demonstration by the group of a role for effector T-cells and NK cells in 

B16 pulmonary metastases studies (31) and other reports of a role for T-cells in B16 

melanoma cells (32-34). The care and use of all mice in this study were in 

accordance with the UK Animals in Science Regulation Unit’s Code of Practice for 

the Housing and Care of Animals Bred, or Used for Scientific Purposes, the Animals 

(Scientific Procedures) Act 1986 Amendment Regulations 2012, and all procedures 

were performed under a UK Home Office Project license, which was reviewed and 

approved by the Sanger Institute’s Animal Welfare and Ethical Review Body. 
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Housing and husbandry conditions were as described previously (31) and mice were 

maintained on Mouse Breeders’ Diet (Laboratory Diets, 5021-3) throughout the 

study. V1, V2, C1 and C2 cells (detailed above) were tail-vein administered to 6-10 

week old sex-matched wildtype (C57BL/6NTac) mice (104 cells in 0.1mL PBS). After 

21 days, mice were humanely sacrificed and their lungs macroscopically examined 

to determine the number of metastatic deposits in all 5 lobes (‘met count’). Lungs 

were formalin fixed, processed and embedded in paraffin wax blocks, from which 

consecutive 5om sections were cut. and used for H&E and CD3 staining. H&E 

sections were digitally scanned (Leica Aperio AT2) and total metastatic area (‘met 

area’ om2) was calculated as the total area of all metastatic deposits, across all 5 

lung lobes using Aperio Imagescope (Leica Biosystems). CD3+ lymphocytes were 

estimated as described in Supplementary Methods. 

 

Wnt/d-catenin signaling in VDR-B16BL6 and control-B16BL6 cells 
 
cDNA from V1, V2, C1 and C2 cells were analysed using a RT-PCR array of 84 

mouse Wnt/d-catenin pathway genes (see Supplementary Methods). Relative 

expression was calculated using the Delta-Delta CT method, normalized to average 

Ct of the 5 housekeeping genes provided in the array. Fold change (FC) of the VDR-

B16BL6 clones relative to control-B16BL6 clones was calculated as follows: 

FCV1(or)V2= 2^(-FFCt)V1(or)V2 where FFCtV1(or)V2= FCtV1(or)V2-FCtavg(C1 & C2). 
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Results 

VDR expression is independently protective for melanoma death in the LMC 

primary and TCGA metastatic melanomas  

VDR expression was significantly lower in tumors of higher AJCC stage, higher 

mitotic rate and tumors on the trunk and sun protected sites (compared to tumors on 

the head) (Univariate analysis, Table 1) in the 703 LMC primaries. In multivariate 

analysis, lower VDR expression was independently associated with higher mitotic 

rate (P=0.001) and tumor site (P=0.001 for tumors of trunk compared to those on 

head), with borderline significance for higher stage (P<0.06) (Table 1).  

Higher tumor VDR expression was protective for melanoma death 

independent of stage, tumor mitotic rate, tumor site and histologically reported TILs 

(HR for melanoma death=0.80, P=0.008, Table 1). Though VDR expression 

correlated significantly with other members of the NR1lL family such as LXRB, 

FXR1, FXR2 and PXR expressions (Supplementary Table 1), it remained 

significantly prognostic after adjusting for the expression of those genes (adjusted 

HR for melanoma death=0.77, P=0.001). 

Since VDR forms heterodimers with RXR and RXRi signalling has been 

reported to drive epithelial/mesenchymal transition and invasion in melanoma, we 

tested the prognostic effect of the expression of genes coding for RXR receptors. In 

the LMC, VDR did not correlate significantly with RXRi (Supplementary Table 1) and 

the prognostic significance of VDR expression was independent of the expression of 

RXRc, RXRd and RXRi (adjusted HR for melanoma death=0.75, P=0.0001) 

Immunohistochemistry of LMC primary melanomas revealed that VDR 

expression was predominantly in tumor (rather than immune) cells  (representative 

image in Supplementary Figure 1, quantified in Supplementary Table 2). 

In the TCGA metastatic melanomas (n=353), higher VDR expression was 

protective for death (Overall survival HR=0.82, P=0.03).  

 

Tumor VDR expression is associated variably with CNAs and promoter 

methylation in primary and metastatic melanomas  

In the LMC primary melanomas, VDR expression showed a weak positive correlation 

with VDR copy number, which failed to reach statistical significance (P=0.12, Figure 

1A). However, in the TCGA metastatic melanomas, VDR expression was lowest in 
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tumors with hemizygous deletion compared to those with ‘no changes/neutral’ 

(P=0.01) and was significantly higher in tumors with ‘gain’ (P=0.007) and ‘high-level 

amplifications’ (P<0.00001) (Figure 1B). VDR copy number was more frequently 

reduced in distant metastases compared to regional lymph node metastases 

(P=0.015, Figure 1C). Concomitantly, the TCGA data also showed progressively 

reduced VDR expression from primary to lymph node then distant metastases 

(Figure 1D). VDR expression was significantly and inversely correlated with VDR 

promoter methylation (P=0.0001, Figure 1E) in TCGA metastases.  

 

VDR correlates positively with genes enriched for immune-related pathways 

and negatively with proliferation-related pathways in LMC primary and TCGA 

metastases  

In the LMC, an agnostic whole-transcriptome correlation analysis identified genes 

positively (n=2025) and negatively (n=3408) correlated with VDR (Figure 2). The 

negatively correlated genes were enriched for proliferation-related pathways such as 

mitotic prometaphase, Wnt signaling, mitochondrial translation, TCA cycle, and 

cadherin signaling (Figure 2, Supplementary Table 3). By contrast, the positively 

correlated genes were enriched for immune-related pathways such as cytokine-

cytokine receptor interaction, TNF, IFNi, IL12-mediated, NFmB and chemokine 

signaling (Figure 2, Supplementary Table 4). VDR-correlated genes remained largely 

unchanged after FLG2-adjustment (Methods, Supplementary Table 5), indicating 

that confounding from epidermal sampling is unlikely.  

We assessed if the VDR-correlated genes in the LMC were known to have a 

VDR-binding site. Tuoresmaki et al. previously reported 54 non-overlapping genomic 

VDR-binding regions recurrent in 6 tissue types, based on meta-analysis of VDR 

ChIP-Seq data (23). We mapped the 54 genomic binding regions to be associated 

with 73 genes (GREAT, sMethods), of which 43 genes (58%) were among the 

significant VDR-correlated genes in the LMC. Alternatively, 60% of genes mapped to 

genomic regions containing the VDR-binding motif (identified by Motifmap, see 

Methods) also correlated significantly with VDR in the LMC.  

In the TCGA metastatic melanomas, VDR correlated negatively with genes 

enriched for: ECM organization, cadherin signaling, eukaryotic translation initiation, 

TGFd and VEGFR1 signaling; and positively with: NFmB, TNF, IFNc/d, IFNi, IL12-
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mediated, TCR and chemokine signaling in naïve CD4 T-cells pathways 

(Supplementary Tables 6 and 7). The majority overlapped with those observed in 

LMC primaries. 

 

Tumor VDR expression is associated with reported melanoma phenotypes, 

imputed immune cell scores and reduced Wnt/d-catenin signaling  

The LMC primaries were classified based on previously described melanoma 

molecular phenotypes (20, 35) (Supplementary Methods). The TCGA signature (20) 

classified the 703 LMC melanomas into Immune (n=192), Keratin (n=247) and MITF-

low (n=150) subtypes. VDR expression was significantly higher in the Keratin and 

Immune subtypes compared to the MITF-low subtype (P=1.1x10-6) (Figure 3A). The 

Lund signature (35) classified tumors into High-immune (n=173), Normal-like 

(n=198), Pigmentation (n=222) and Proliferative (n=83) subtypes. VDR expression 

was significantly higher in High-immune subtype compared to the poorer prognosis 

Proliferative (P= 7.5x10-8) and Pigmentation subtypes (P=6x10-13) (Figure 3B).  

VDR expression correlated positively with 25 of the 26 immune cell scores 

(Supplementary Table 8) of which the strongest correlation (Correlation 

coefficient>0.30) was with Dendritic cells, MDSCs, neutrophils, central memory CD4, 

NK, Th1, Th2 and T-cells (Figure 3C). Concordantly, VDR expression was 

significantly lower in tumors with ‘absent’ immune infiltrate compared to tumors with 

‘non-brisk’ (P=0.02) and ‘brisk’ immune infiltrate (P=0.004) (Figure 3D), according to 

histopathological scores which were available for 601 (86%) of the LMC melanomas. 

We previously reported an immunologically “cold” tumor subtype in the LMC 

(Consensus Immunome Cluster 4, CIC4) with increased d-catenin signaling, reduced 

imputed immune scores for cytotoxic, T cell and activated dendritic cells (aDC) and 

expression of genes coding for checkpoint molecules (16). VDR expression was 

lowest in that tumor subtype (Figure 3E), which was concordant with the agnostic 

correlation analysis identifying Wnt/d-catenin as the pathway most strongly 

associated with low immune signals in both LMC primary and TCGA metastatic 

melanomas.  

To compare VDR expression with response to immunotherapy, we used 

previously published therapy-response datasets (26, 36). VDR expression did not 

vary significantly between responders (n=15) and non-responders (n=13) to anti-PD-
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1 therapy (P=0.27), nor to anti-CTLA4 treatment (P=0.12) in a dataset of responders 

and (n=13) non-responders (n=22) (Supplementary Figure 2), although in the latter, 

VDR expression was 1.35 times higher in responders compared to non-responders 

(Fold Change= 1.35). 

 

Deficient levels of serum vitamin D are associated with more melanoma deaths 

within the context of VDR expression 

The 703 LMC primary melanomas were stratified into 3 groups using a survival-

based stratification approach (X-tile, see Methods). VDR expression thresholds 

which best predicted differential survival identified the following groups: 17% with the 

lowest VDR expression (low-VDR group, n=119), 17% of tumors with highest VDR 

expression (high-VDR group, n=119) and middle 66% (intermediate-VDR group, 

n=465) having the worst, best and intermediate survival respectively (P= 5.2x10-8, 

Figure 4A-B). This was replicated in the TCGA metastatic melanomas (n=353) using 

the same VDR expression percentiles (P=0.03, Figure 4C-D).  

Amongst the three VDR groups: deficient serum vitamin D levels (<25nmol/L) 

were associated with poorer prognosis compared to sufficient vitamin D levels 

(>25nmol/L) in the intermediate-VDR group (HR=1.73, P=0.02), but not in the low-

VDR (P=0.66) or high-VDR (P=0.55) groups (Figure 4E). The deleterious association 

with vitamin D deficiency was therefore apparent within the context of VDR 

expression. Intermediate-VDR group participants with deficient vitamin D were 

characterised by higher Breslow thickness (P=0.02), higher frequency of pathologist-

reported vascular invasion (P=0.01) and AJCC stage II tumors (compared to stage I: 

P=0.01), when compared to those with sufficient vitamin D. An agnostic whole-

transcriptome analysis identified no gene significantly differentially expressed (at 

FDR<0.10) between participants with deficient or sufficient vitamin D in the 

intermediate-VDR group. However, among the pathways that correlated significantly 

with VDR (Figure 2), the following were significantly underexpressed in participants 

with vitamin D sufficiency: NK cell mediated cell killing (P=0.02), IL12 (P=0.03) and 

TCR signaling on naïve CD4 and CD8 signaling (P=0.05).  
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Vitamin D treatment and increased VDR expression inhibit Wnt/d-catenin 

pathway and melanoma cell growth in vitro and in vivo 

We functionally validated our findings from the LMC primary and TCGA metastatic 

melanomas, where high VDR-expressing tumours (with active vitamin D-VDR 

signaling) had better survival and reduced expression of proliferative pathways, in 

particular the Wnt/d-catenin signaling. The human melanoma cell lines SK-MEL-28 

and MeWo treated with 1,25 (OH)2 vitamin D3 showed reduced proliferation post-

treatment (Figure 5A). At 24 and 48 hours post-treatment, VDR expression was 

significantly upregulated while Wnt signaling and ECM organization genes were 

among the top downregulated pathways in both cell lines. The pathways upregulated 

in both cell lines at both time points were: MAPK, IFNc/d, TGFd and TLR signaling 

(Figure 5B).  

In a second functional validation model, the in vivo metastatic potential of 

murine melanoma B16BL6 cells overexpressing VDR (“VDR-B16BL6 cells”) was 

compared to control cells expressing low/no VDR (“control-B16BL6 cells”) 

(Supplementary Figure 3). Mice injected with VDR-B16BL6 cells developed 

significantly lower pulmonary metastatic load (metastatic area and metastases 

count) compared to those dosed with control-B16BL6 cells (P<0.04), with 

comparable results from both clones in two independent experiments (pooled 

analyses from 2 experiments represented in Figure 5C). Differential expression of 

Wnt/d-catenin pathway genes between VDR-B16BL6 and control-B16BL6 was 

compared using a pre-formatted qRT-PCR-based array. Of the 84 Wnt/d-catenin 

genes tested, 62 genes had lower expression (fold change <1, of which 26 had fold 

change <0.5) in both VDR clones compared to control clones (Figure 5D). Twelve 

genes had increased expression (fold change>1, none with fold change>2) in both 

VDR clones.  

In comparing the tumor immune infiltrate: though the number of CD3+ 

cells/100 mm2 met area was not statistically significantly higher in mice injected with 

VDR-B16BL6 cells (P=0.11, compared to control-B16BL6 cells), there was a trend 

for increased CD3+ immune infiltrate (Supplementary Figure 4).  

Collectively, both models provide causal evidence that elevated vitamin D-

VDR signaling in melanomas cells inhibits Wnt/d-catenin signalling and tumor 

proliferation.
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Discussion 
 

Melanoma is one of the most immunogenic malignancies:  increased lymphocytic 

infiltration in both primaries (37, 38) and metastases (39) is associated with improved 

outcomes (16, 21) and melanoma responses to immune checkpoint blockade are 

high (40, 41). However, dampened immune responses and therapeutic resistance 

attributed to oncogenic pathways such as Wnt/d-catenin signaling (16, 42) mean that 

only 58% of stage IV melanoma patients have significant benefit. Identification of 

factors that boost anti-tumor immunity is required to improve outcomes.  

Low vitamin D levels are associated with thicker, poorer-prognosis primary 

melanomas (11), and lower VDR expression is associated with melanoma 

progression (43, 44) but neither causality nor the mechanistic basis has been 

established. In this report, we demonstrate that vitamin D-VDR signaling is protective 

for melanoma death at least in part through inhibition of Wnt/d-catenin signaling, 

impacting on melanoma proliferation and anti-tumor immune response.  

We report that VDR expression was significantly lower in advanced tumors in the 

LMC primary melanomas. Importantly, high VDR expression was independently 

protective of melanoma death after adjusting for AJCC stage, mitotic rate and TILs. 

Survival benefit was replicated in the TCGA metastatic tumors, highlighting the 

significance of vitamin D-VDR signaling in both primary and metastatic melanoma 

progression. This protective effect of VDR was independent of the expression of 

other NR1L family genes, despite reports of integrated activity between nuclear 

receptors (45). In assessing factors which could control VDR expression, VDR copy 

number was not significantly associated with expression in LMC primaries. However, 

distant metastases (which have worse prognosis) had lower VDR copy number 

compared to regional lymph node metastases in the TCGA, suggesting a 

progression-associated genomic loss of VDR. Low VDR-expressing metastatic 

tumors from TCGA were also more likely to be hypermethylated, consistent with 

previous reports of the epigenetic control of VDR expression (46). Despite the 

progressive deletion of the VDR locus with tumor progression in metastatic disease, 

the data suggest that therapeutic manipulation of vitamin D-VDR signaling could 

have adjuvant therapeutic benefit in primary disease where we saw little evidence of 

VDR deletion.  
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An agnostic correlation analysis revealed that VDR expression was strongly 

positively correlated with immune-related pathways and negatively correlated with 

proliferation-associated pathways in LMC primaries and TCGA metastases. An 

additional sensitivity analyses adjusting for FLG2 expression, produced no significant 

changes in the correlated pathways, indicating that artefact from keratinocyte-rich 

tumor populations was unlikely. VDR expression was higher in ‘brisk’ immune-

infiltrated primaries compared to tumors with no immune infiltrate, which is in 

agreement with a previous report of a smaller immunohistochemical study (43) and 

is an independent validation of the transcriptomic imputation of immune infiltration.  

58% of the genes within reported genomic VDR-binding regions (identified from VDR 

ChIP-Seq data as well as VDR-binding motif) were found to correlate with tumour 

VDR expression in the LMC. This is consistent with direct transcriptional control by 

the VDR transcription factor for a proportion of differentially expressed genes. 

Validation using published prognostic melanoma molecular phenotypes (16, 35) 

revealed that VDR expression was significantly higher in high-immune subtypes 

compared to proliferative subtypes, consistent with the view that the prognostic 

significance of VDR is associated with increased immune and decreased 

proliferative signaling. We also assessed if VDR preferentially correlated with a 

particular immune cell type, which was previously uncharacterised in primary 

melanomas. However, VDR was strongly positively correlated with all imputed 

immune cell scores: we have previously reported simultaneous upregulation of 

adaptive and innate immunity in good prognosis primary melanomas (16). 

Furthermore, the pro-immune effect of vitamin D-VDR signaling was supported by 

strong positive correlation of VDR with genes involved in pathways such as 

extracellular matrix organization, TNFc, NFmB, IFNi and IL-12-mediated signaling.  

In comparing pre-treatment gene expression between responders and non 

responders to immunotherapy, VDR expression was higher in responders to anti-

CTLA4 (FC=1.35), albeit not statistically significant (P=0.12) in this very small data 

set. Though data from these immunotherapy studies did not support VDR expression 

as a biomarker of response, we posit that the data sets available to explore VDR as 

a biomarker were insufficient to properly explore this possibility. 

Wnt/d-catenin signaling was among the top negatively-correlated pathways with 

VDR in the LMC and TCGA melanomas, concordant with reports of vitamin D-VDR-
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mediated inhibition of Wnt/d-catenin signaling in colon cancer (47). We further 

explored this relationship and report that VDR expression was lowest in previosuly 

reported subset of tumors characterized by high-Wnt/d-catenin expression, reduced 

immune infiltrate and high mortality (16). Collectively, our findings support the 

hypothesis that, as in colon cancer, some of the effects of vitamin D-VDR siganling 

in melanoma are mediated by inhibition of Wnt/d-catenin signaling.  

Vitamin D deficiency (<25nmol/L, ~10ng/ml) was associated with worse 

prognosis only in participants with intermediate-VDR expression (albeit the majority). 

Though an agnostic analysis identified no significant transcriptomic differences 

associated with vitamin D in this subgroup, there was some evidence for 

paradoxically reduced expression of immune-associated pathways with higher 

vitamin D levels in a candidate gene expression analysis. The reported associations 

between vitamin D and the immune system are numerous and complex. The findings 

of this study are therefore not inconsistent with the view that vitamin D deficiency 

should be avoided but that high levels would not necessarily be beneficial to all 

patients. 

The lack of a protective effect of higher vitamin D levels in participants with low-

VDR tumors was not unexpected as low receptor expression could preclude effective 

signaling despite ligand sufficiency. A lack of benefit in the high-VDR tumors was 

more surprising and we postulate that this could reflect receptor saturation as 

reported in other NHR family receptors (48) or a ligand-independent effect of VDR, 

which has been described in other cancers (49, 50).  

In functional validation, the observed vitamin D-treatment induced reduction in 

cell proliferation is concordant with previous reports (51). However, the pan-

trasncriptome-based findings that vitamin D treatment of human melanoma cell lines 

promotes VDR expression and inhibition of pro-tumor pathways including the Wnt/d-

catenin pathway, is novel. Furthermore, elevated VDR expression in murine 

melanoma cells decreased their in vivo metastatic potential the expression of key 

Wnt/d-catenin genes, some of which (Dkk1 and Sfrp2) have previously been shown 

to be inhibited by VDR (52), but not in melanomas. Interestingly, the ‘classic’ non-

canonical Wnt ligands Wnt5a, Wnt5b, Wnt10a, Wnt7 and Wnt11 were also 

downregulated by VDR. This finding is of significance because Wnt5a (and some 

other non-canonical Wnt ligands) affect cell motility and invasion and is implicated in 
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worse melanoma prognosis (53). Thus, the findings functionally validate the 

trasncriptome-derived evidence for the inverse association between VDR and Wnt/d-

catenin signalling.  

We report a trend towards increased T cell infiltration of lung metastases 

produced by VDR-expressing B16BL6 melanoma cells, although this did not reach 

statistical significance. Rejection of B16 derivative melanoma cell lines in vivo 

requires both NK and T-cells, and in the pulmonary metastasis model, NK cell 

derived IFN-gamma is important but T-cells also exert important anti-tumour activity 

(32-34, 54-57). The lack of statistically significant reduction in T cell numbers does 

not exclude the possibility that T-cells are more active and/or that NK cell recruitment 

and activity is also modified. To this effect, further analyses of T cell and NK 

recruitment and activity following VDR manipulation is warranted using both the 

subcutaneous and metastatic B16 models.  

 This study reports that vitamin D-VDR signaling bestows a prognostic benefit 

for melanoma patients by inhibiting Wnt/d-catenin signaling and increasing immune 

cell infiltration. These findings also suggest that activating vitamin D-VDR signaling 

has the potential to enhance anti-tumor immunity in an adjuvant setting. Notably, our 

findings suggest that vitamin D deficiency (<25nmol/L) is deleterious for melanoma 

survival rather than that high levels are protective. As melanoma is causally related 

to intense sun burn (58), sun avoidance is frequently recommended to patients in 

follow up. Our data suggest a causal relationship between reduced vitamin D-VDR 

signaling and therefore, as sun exposure is the dominant vitamin D source in most 

populations, simultaneous avoidance of vitamin D deficiency is important health 

advice. 
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Table 1: Association of tumor VDR expression with clinicopathological 

variables and MSS in the 703 LMC participants. BBaseline group used for 

comparison with relevant groups. *Multivariate survival analysis was adjusted for 

AJCC stage, mitotic rate, tumor site and tumor immune infiltrate. MSS: Melanoma 

Specific Survival. Regression Coefficient and P-value from linear regression.  

 
 
 
 
 
 

Univariate Multivariate

Correlation of tumour VDR

expression with

Regression

Coefficient

Std. 

Error

P-value Regression 

Coefficient

Std. 

Error

P-value

Age (per year) -0.005 0.002 0.04 -0.003 0.002 0.14

Sex

FemalesB

Males -0.18 0.06 0.003 -0.09 0.06 0.16

AJCC Stage

Stage IB

Stage II -0.17 0.07 0.012 -0.12 0.07 0.08

Stage III -0.25 0.09 0.009 -0.18 0.09 0.06

Mitotic rate

<1 mitoses/mm2 tumorB

>=1mitoses/mm2 tumor -0.23 0.06 0.0004 -0.20 0.06 0.001

Tumor site 

HeadB

Limbs -0.04 0.10 0.63 -0.11 0.10 0.28

Trunk -0.35 0.10 0.001 -0.36 0.10 0.001

Rare (sun protected sites) -0.44 0.12 0.001 -0.38 0.13 0.003

Table 1

Univariate Multivariate*

Hazard Ratio Std

Error

P-value Hazard Ratio Std

Error

P-value

Effect of tumour VDR expression on 

MSS (per unit expression)

0.75 0.05 0.0001 0.80 0.06 0.008
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Figure legends 

 

Figure 1. Association of VDR expression with copy number and methylation  

A) Correlation of VDR expression with copy number in 276 LMC primaries B) VDR 

expression across categorical copy number estimates from TCGA melanoma 

metastases: -1 (hemizygous deletion), 0 (no change), 1(gain) and 2 (high-level 

amplification) C) VDR median copy number in regional lymph node and distant 

metastases in the TCGA melanomas D) VDR expression in distant, regional lymph 

node metastases and primary tumours in the TCGA dataset E) VDR expression and 

promoter methylation in TCGA metastases.  

 

Figure 2. Whole-transcriptome correlations with VDR expression Volcano plot of 

genes correlated significantly (FDR<0.05) positively (regression coefficient>0.2, 

green dots) and negatively (regression coeffficent <-0.2, red dots) with VDR 

expression in the LMC data; top 25 pathways enriched for each gene list are listed in 

adjoining tables (left for negative, right for positive correlates). FDR: Benjamini-

Hochberg False Discovery Rate. 

 

Figure 3. Association of VDR expression with measures of immune response 

A-B) Comparison of VDR expression between LMC samples classified into Lund and 

TCGA prognostic molecular phenotypes C) Correlation of VDR expression with 

imputed immune cell scores whose correlation coefficient>0.3 D) VDR expression 

across pathologist-graded TILs in the whole tumor FFPE section (P-values from the 

Student t-test) E) Heatmap depicting expression of VDR expression (top bar), 

cytotoxic, T cell and aDC scores, expression of genes coding for checkpoint 

molecules, and expression of Wnt/く-catenin siganling genes across the 6 consensus 

immunome clusters (CICs) reported previously (16).  

 

Figure 4. Vitamin D and VDR subgroup analysis in the Leeds Melanoma Cohort 

dataset  A) prognosis-based stratification of 703 LMC tumors into low-, intermediate- 

and high-VDR tumor groups identified using X-tile B) Kaplan-Meier curves showing 

the differential melanoma-specific survival in those groups C-D) Replication of the 3 

VDR-groups and their association with overall survival in TCGA metastases. E) 

Melanoma-specific survival of 6 vitamin D-VDR subgroups produced by stratification 

of 3 VDR groups by low (<25nmoles/L) or high (>25nmoles/L) serum vitamin D levels 

for winter season. All P-values from the Cox model. 
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Figure 5. Functional validation using in vitro and in vivo models  A) Relative 

proliferation of vitamin D-treated human melanoma cell lines SK-MEL-28 and MeWo: 

24, 48, 72 and 144 hours after treatment, compared to ethanol-treated cells (control). 

B) Pathways enriched in genes upregulated (green bars) or down-regulated (red 

bars) in response to vitamin D treatment of SK-MEL-2828 and MeWo cell lines at 24 

and 48 hours post-treatment C) Pulmonary metastatic loads in control-B16BL6 

(clones C1 and C2) and VDR-B16BL6 (clones V1 and V2) obtained from the tail vein 

metastasis assay. Met count: macroscopic counts of metastases, met area: total 

microscopic metastatic area (om2) in mice lung sections, N-number of mice/group. 

Inset: represenative H&E scanned images of metastases-harboring pulmonary lobes 

D) qRT-PCR array-derived expression of Wnt/く-catenin pathway genes in VDR-

B16BL6 cells (V1 and V2) (FC=fold change relative to control-B16BL6 cells). 

Highlighted in red: genes with a FC<0.5 for both VDR-B16BL6 clones V1 and V2. 
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