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Abstract

Self-assembled nanofibers are ubiquitous in nature and serve as inspiration for the design of 

supramolecular hydrogels. A multicomponent approach offers the possibility of enhancing 

tunability and functionality of this class of materials. We report on the synergistic 

multicomponent self-assembly involving a peptide amphiphile (PA) and a 1,3:2,4-

dibenzylidene-D-sorbitol (DBS) gelator to generate hydrogels with tunable nanoscale 

morphology, improved stiffness, enhanced self-healing, and stability to enzymatic degradation. 

Using induced circular dichroism of Thioflavin T (ThT), electron microscopy, small-angle 

neutron scattering (SANS), and molecular dynamics approaches we confirm that the PA 

undergoes self-sorting while the DBS-gelator acts as an additive modifier for the PA 

nanofibers. The supramolecular interactions between the PA and DBS gelators result in 

improved bulk properties and cytocompatibility of the two-component hydrogels as compared 

to the single component systems. The tunable mechanical properties, self-healing ability, 

resistance to proteolysis, and biocompatibility of the hydrogels suggest future opportunities for 

the hydrogels as scaffolds for tissue engineering and drug delivery vehicles.
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Introduction

Multicomponent supramolecular self-assembly is ubiquitous in natural processes leading to the 

formation of highly ordered and complex architectures.1 The functionality of many 

biomacromolecules such as cytoskeleton actin and actin-binding proteins found in living 

organisms depend on the co-assembly of multiple building blocks into one-dimensional 

nanostructures.2 These supramolecular assemblies result from cooperative and synergistic non-

covalent interactions, which provide adaptive, dynamic, and responsive properties. 

Multicomponent self-assembly is currently the focus of fundamental research aimed at 

dissecting the code embedded within natural supramolecular architectures3-5 to engineer 

innovative materials based on predictive molecular interactions.6-8 Such design strategies have 

been developed using well-defined molecular building blocks including β-sheet fibrillizing 

peptides, peptide amphiphiles (PAs), engineered polypeptides, and low-molecular-weight 

species.8-10 However, many of these artificial nanostructures are homotypic, consisting of one 

class of building block and thereby limiting the level of structural and functional complexity, 

diversity, and tunability. In contrast, multicomponent self-assembly offers the possibility to 

generate a wider range of more complex structures, enhance modularity, and provide spatio-

temporal control of self-assembly.2,11 This approach has been used to harness synergistic 

properties as a result of using two different interacting molecular building blocks such as 

peptide-peptide,12-14 protein-peptide,15-17 PA-polysaccharide,18 protein-protein,19,20 and 

protein/peptide-DNA.21 The structures and properties emerging from these systems are 

opening new opportunities for the rational design of more complex and functional materials.6 

Multicomponent self-assembly is a versatile strategy to design supramolecular hydrogels with 

molecular complexity, enhanced interfacial areas between nanofibers, tunable mechanical 

properties, in situ creation of new materials, and diverse morphology.22 These properties make 

such hydrogels suitable for a wide range of applications in drug delivery,23 tissue engineering,24 

nanoreactor design, and optoelectronic materials.25 Specifically, multicomponent gels can have 

advantages compared to individual component systems. For example, multicomponent gels can 

exhibit optoelectronic properties that cannot be accessed using the single building blocks.26 

There are also examples where cellular behaviours can be improved using multicomponent 

hydrogels.27,28 It is also possible to prepare systems with unusual behaviour such as delayed 

gelation3, or two-stage rheological control.29,30 Moreover, multicomponent self-assembly 

breaks the molecular homogeneity imposed by traditional single-building block hydrogels.
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PAs represent a fascinating class of self-assembling building blocks for designing bioactive 

hydrogels.31-34 These amphiphilic molecules consist of at least one lipid chain attached to a 

peptide backbone and are able to self-assemble into high-aspect ratio cylindrical nanofibers 

defined by the hydrophobic collapse of the alkyl region and electrostatic interactions between 

the charged head groups.35 PAs have been used in supramolecular co-assembling systems with 

oppositely charged and structurally distinct molecules to develop sac-like structures,18 dynamic 

tubular materials,16 and hydrogels.17 However, combination of PAs and other gelators with 

distinct molecular structures exhibiting similar charge has not been explored. Therefore, 

supramolecular self-assembly of a well-known PA molecule with another molecule with a 

well-characterized self-assembly mechanism is of considerable interest in designing new breed 

of multicomponent hydrogels.

1,3(R):2,4(S)-Dibenzylidene-D-sorbitol (DBS) is a well-known sugar-based low-molecular-

weight gelator (LMWG) with a high capacity to self-assemble into fibrillar networks in organic 

solvents and in water.36 The effectiveness of DBS as a gelator is due to intermolecular hydrogen 

bond interactions between the sugar units combined with π-π stacking and solvophobic 

interactions between the aromatic rings, which characterize its ‘‘butterfly-like’’ wing 

structure.37 In the past century, DBS has been widely used in industrial applications as a 

cosmetic additive, in dental composites, and as a polymer nucleation/clarification agent.37 

Recently, Smith and colleagues reported the development of DBS derivatives including DBS-

COOH38 and DBS-CONHNH2
39 that are capable of self-assembly in water into self-supported 

hydrogels by pH-switching and heat-cool transitions, respectively. Using molecular dynamics 

simulations, Knani and Alperstein determined that the carboxylic acid and acylhydrazone 

groups on these molecules play an important role in modifying both their solubility and 

capacity to self-assemble into fibrillar networks in aqueous systems.40 Hydrogels based on 

DBS-COOH and DBS-CONHNH2 have potential applications in environmental clean-up,39,41 

drug encapsulation and delivery,42 electro-catalysis,43 cell culture,44 and  as nanoreactors.45 

Furthermore, these gelators have been hybridized with polymers to produce robust38,46 and 

multidomain,30,47 hydrogels, and more recently DBS-COOH/DBS-CONHNH2 co-assembled 

hydrogels48 but their combination with LMWGs of other types to design multicomponent 

hydrogels has not been investigated. 
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The combination of LMWGs from different classes remains relatively rare and offers 

considerable potential for the emergence of new functions, which can be exploited to develop 

materials with innovative properties. In this study, we report on the supramolecular design of 

multicomponent hydrogels based on a well-known PA molecule and DBS-COOH using a slow 

acidification protocol to fabricate hydrogels with emergent properties. The resulting hydrogels 

exhibit tunable stiffness, self-healing capacity, enhanced stability to enzymatic degradation, 

and tunable bioactivity. To the best of our knowledge, this is the first example of these two 

LMWGs being combined.

Materials and Methods

Preparation of hydrogels

Both PA-E332 and DBS-COOH38 were synthesized as previously reported. For single–

component hydrogels, PA-E3 and DBS-COOH solutions (10 mM) were individually prepared 

in phosphate buffer saline (pH 7.4, 200 µL) and aliquots of NaOH (aq) (0.5 M, 10 µL) were 

added to dissolve the gelators (pH = 9). The solutions were then transferred to vials containing 

glucono-δ-lactone (GdL) (4 mg), followed by thorough shaking to dissolve the GdL granules. 

The vials were left overnight for gelation to occur. The multicomponent hydrogels were 

prepared by mixing aliquot solutions of PA-E3 and DBS-COOH at various molar ratios 

expressed as percentages (100/0, 80/20, 50/50, 20/80 and 0/100) such that the final total 

concentration of the mixtures was 10 mM in each case. The solutions were then transferred to 

vials containing GdL, shaken and left overnight for gelation to occur.

Thioflavin T (ThT) fluorescence assay 

Aliquots of solutions (0.4 mM, 20 µL) of PA-E3, DBS-COOH and PA-E3/DBS-COOH 

mixtures were added to GdL (0.2 mg).  Aliquots of ThT (0.4 mM, 20 µL) were then added to 

the gelator solutions. Each sample was mixed by pipetting up and down three times, loaded 

into a 20 μL sample flow cell, sealed with paraffin wax and immediately transferred onto an 

inverted Laser Scanning Confocal Microscope (LSCM) (Leica Laser Scanning Confocal TCS 

SP2) with 63 oil immersion objective, using excitation and emission wavelengths of 458 nm 

and 468 nm, respectively. Images of the self-assembled nanofibers were acquired after 

incubating the sols for 6 h. The flow cells were kept humid in petri dishes to prevent 

evaporation. The hydrogels prepared using an identical protocol but without the ThT were used 

as control and did not exhibit any fluorescent signal.
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Circular dichroism measurement for ThT interactions

Circular dichroism (CD) was measured with a Chirascan™ circular dichroism spectrometer 

(Applied Photophysic Limited, UK) using a quartz cell with 1 mm path length and the 

following parameters: data pitch – 0.5 nm, scanning mode – continuous, scanning speed – 100 

nm/min, bandwith – 2 nm and accumulation – 5. All CD data are presented as ellipticity and 

recorded in millidegree (mdeg). Samples for CD measurements were prepared by adding GdL 

(0.4 mg/mL) to PA-E3, DBS-COOH and equimolar PA-E3/DBS-COOH solutions (200 µM). 

Then an aliquot of ThT (200 µM) was added to the gelator solutions and the mixture was loaded 

into a quartz cell. CD spectra were obtained at 2 min interval from 190 to 500 nm at speed of 

50 nm/min. 

Transmission electron microscopy (TEM) characterization 

Solutions (1 mM, 40 µL) of PA-E3, DBS-COOH and PA-E3/DBS-COOH mixtures were 

added to GdL (0.2 mg), shaken thoroughly and incubated for 10 h. Samples were then mounted 

on holey carbon-coated copper grids that were pre-plasma treated (Agar Scientific, Stansted, 

UK). The grids were immersed in ultrapure water for 30 s to remove excess and unadsorbed 

samples. The grids were then immersed in a solution of uranylacetate (2%) for 30 s and excess 

uranylacetate solution was removed using filter paper. Grids were allowed to dry in a desiccator 

for 24 h at room temperature. Images were acquired on a JEOL 1230 transmission electron 

microscope fitted with Morada CCD camera and operated at an acceleration voltage of 80 kV.

Atomic force microscopy (AFM) characterization

Solutions of PA-E3 (1 mM, 40 µL, pH 11), DBS-COOH (1 mM, 40 µL, pH 11) and PA-

E3/DBS-COOH mixtures were mixed with GdL (0.4 mg) and the mixtures were dropped onto 

freshly cleaved mica surface so that they self-assemble on the substrate. The samples were air-

dried at room temperature for 24 h. AFM characterization of nanofibers was performed on an 

Asylum Research MFP-3D atomic force microscope (Santa Barbara, CA, USA) without 

treatment. Ultrasharp silicon nitride tips (NSC15 noncontact silicon cantilevers, MikroMasch, 

Spain) were used. Typical scan settings involved the use of an applied piezo deflection voltage 

0f 0.6 – 0.7 V at a scan rate of 0.7 Hz. All images were processed using Igor Pro software.  

Small-angle neutron scattering (SANS) characterization
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The required concentration (10 mM) of PA-E3, DBS-COOH and various mixtures of PA-E3 

and DBS-COOH were prepared in D2O (400 µL).  The suspensions were dissolved by adding 

aliquots of NaOD (0.5 M, 10 µL) and the solutions were mixed with GdL (5 mg). After a 

thorough shaking until GdL granules fully dissolved, the mixtures were transferred into 1 mm 

path length UV spectrophotometer grade quartz cuvettes (Hellma). Gelation of the solutions 

was allowed to proceed overnight. Small-angle neutron scattering (SANS) measurements were 

performed on the fixed-geometry, time-of-flight LOQ diffractometer (ISIS Neutron and Muon 

Source, Oxfordshire, UK). A white beam of radiation with neutron wavelengths spanning 2.2 

to 10 Å was enabled access to Q [Q = 4πsin(θ/2)/λ] range of 0.004 to 0.4 Å−1 with a fixed-

sample detector distance of 4.1 m. The cuvettes were mounted in aluminium holders. The time 

taken for each measurement was approximately 30 min. All scattering data were normalized 

for the sample transmission, the background was corrected using a quartz cell filled with D2O 

and the linearity and efficiency of the detector response was corrected using the instrument-

specific software. Data were fitted using the appropriate models between 0.00485<Q>0.49132 

Å-1 for consistency.  The scattering length density (SLD) for D2O was set to 6.3 x 10-6 Å-2; 

SLD for scattering structures set to 2.197 x 10-6 Å-2 for DBS-COOH only and 1.31 x 10-6 Å-

2 for PA-E3 only. SLDs for mixtures of PA-E3 and DBS-COOH were based on compositional 

average – these values estimated using the NIST calculator with a (assumed) density of 1.3. 

Data for the PA-E3 hydrogel fit flexible elliptical cylinder model while a power law was used 

to fit the data for DBS-COOH hydrogels which suggests that the structures are large and 

outside the effective range of the SANS. For the PA-E3/DBS-COOH admixtures, combination 

of the flexible elliptical cylinder model with a power law was used to fully fit the data. Details 

of the parameters for all the fittings are presented in Table S1.

Rheological kinetics 

Rheological measurements were performed using a Discovery Hybrid Rheometer, Rheo-DHR3 

(TA Instruments). All data were collected at 25 °C. For each sample, immediately following 

the addition of GdL (4 mg/mL) to solutions of the gelators (10 mM, pH 9), 100 µL of the 

mixture was added to the center of the bottom plate and the upper geometry (parallel top plate 

with 20 mm diameter) was lowered to a gap of 50 µm. A time-sweep was performed where the 

storage and loss moduli were monitored for 3 hours at a constant frequency of 1 Hz and 0.5% 

strain at 25 °C. Light mineral oil was applied to the perimeter of the parallel plate to prevent 

evaporation of water over the course of the experiment.
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Characterization of nanofiber growth by TEM

Solutions (0.5 mM, 100 µL) of PA-E3, DBS-COOH and PA-E3/DBS-COOH mixtures were 

added to GdL (0.2 mg/mL) and shaken thoroughly. An aliquot (50 µL) of each sample was 

added onto a flat sheet of parafilm.  Holey carbon-coated copper grids (Agar Scientific, 

Stansted, UK) that were pre-plasma treated were carefully placed on top of each drop. The 

samples were kept in a temperature and humidity chamber to prevent evaporation. The grids 

were taken off at various time intervals, excess solution was removed using filter paper and the 

grids were then immersed in a solution of uranyl acetate (2%) for 30 s and excess uranyl acetate 

solution removed using filter paper. Grids were allowed to dry in a desiccator for 24 h at room 

temperature. Images were acquired on a JEOL 1230 transmission electron microscope fitted 

with Morada CCD camera and operated at an acceleration voltage of 80 kV.

Molecular dynamic simulations

The simulation was conducted using Material Studio 8.0 software (by Biovia). The dynamic 

atomistic simulation was performed according to the following steps:

Step 1: Building cubic cells 

Five simulation cubic boxes (about 20 Å edge) were constructed using Amorphous cell module 

for each of the following: DBS-COOH, PA-E3 and their mixtures at various ratios: 1:5, 1:1 

and 5:1 (DBS-COOH: PA-E3). 

Step 2: Molecular Dynamics simulation

Dynamic simulation was performed at 300 K. The cells were subjected to 100,000 dynamic 

steps of 1 fs each at constant moles number, pressure and temperature (NPT ensemble) to 

determine their density. This stage was followed by a constant moles number, volume and 

temperature (NVT ensemble) refinement stage of 100,000 dynamic steps and a data collection 

stage of additional 400,000 NVT steps. All MD simulations were conducted using Forcite 

module with COMPASSII force field. The electrostatic term was considered using Ewald and 

the van der Waals term using atom-based summation methods with an accuracy of 10-3 

kcal/mol. The repulsive cut-off for Van der Waals term was chosen as 12.5 Å. For NPT 

molecular dynamic simulations, Nose thermostat and Berendsen barostat were chosen.

Step 3: Analysis

The resulting dynamic trajectories were analysed using Forcite module analysis tools. The 

following properties were calculated:

(i) Cohesive Energy Density (CED) and Solubility parameter 
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Cohesive energy is the energy required to break the interactions between molecules. Generally, 

it is measured as the heat of vaporization of a liquid. The cohesive energy density (CED) 

corresponds to the cohesive energy per unit volume. The solubility parameter is the square root 

of the CED, and is a measure of the ability of materials to dissolve each other.

(ii) Enthalpy of mixing 

CED values can be used to calculate the enthalpy of mixing (per unit volume) using the 

following equation:

                                 ΔHmix = ΦaEcoha + ΦbEcohb) - Ecohab (5)

Where: Ecoh is CED of constituent a, b or the blend (ab); Φa and Φb are the volume fractions of 

the two components in the blended system.

The enthalpy of mixing is the released or taken-up heat upon mixing of two substances. 

Generally, a negative Gibbs free energy of mixing is a necessary condition for substances to form 

a miscible phase. The entropy change during mixing may be negligible when polymers are 

involved and miscibility can be determined from the enthalpy change of mixing instead of Gibbs 

free energy. An exothermic enthalpy of mixing is indicative of a miscible blend.

(iii) Radial distribution function (RDF)

Radial distribution function (also referred to as Pair correlation function) gives a measure of 

the probability that, given the presence of an atom at the origin of an arbitrary reference frame, 

there will be an atom with its center located in a spherical shell of infinitesimal thickness at a 

distance r from the reference atom. RDF may serve as a tool to estimate intermolecular 

interactions like hydrogen bonding.

Amplitude sweeps, critical strain, and self-recovery of hydrogels

A parallel plate geometry (parallel top plate with 8 mm diameter) was used with 150 µm gap 

distance to perform frequency and amplitude sweeps. PA-E3 (10 mM), DBS-COOH (10 mM0 

and various stoichiometric mixtures of PA-E3/DBS-COOH hydrogels were prepared by 

adding GdL (10 mg/mL) to the gelator solutions. The hydrogels were left to form overnight 

before the measurements. Frequency scans were performed from 1 to 10 Hz under a strain of 

0.5%. At this strain, the frequency sweeps were performed within the linear viscoelastic region, 

where the storage modulus (G) and loss modulus (G) are independent of the strain amplitude. 

Critical strain values were determined from the point where G values start to decrease with 

strain. The recovery properties of the hydrogels in response to applied shear forces were 

investigated using the following procedure; 0.1% (100 s), 100% (200 s), 0.1% (200 s), 100% 
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(200 s), (400 s) with the applied shear force, expressed in terms of strain (%) and duration (s) 

in parentheses. For the strain recovery, 10 mM of PA-E3 was mixed with 10 mM of DBS-

COOH to prepare PA-E3/DBS-COOH hydrogels. 

Proteolytic stability of the hydrogels

Hydrogels of PA-E3 (10 mM), DBS-COOH (10 mM), PA-E3 (5 mM)/DBS-COOH (5 mM) 

were prepared as previously described above. The hydrogels were immersed in PBS for 1 hour, 

then incubated at 37 ̊ C for 5 days in proteinase K solutions (5 mg/mL in PBS). Hydrogels were 

then prepared for scanning electron microscopy (SEM) by freeze-drying. SEM micrographs of 

the xerogels were acquired on Inspect F50 (FEI Comp, the Netherlands) after sputter-coating 

with gold (10 nm thick). Also, mass spectra of the mixtures of 0.1 mM PA-E3/proteinase K (5 

mg/mL), PA-E3/DBS-COOH/proteinase K (5 mg/mL) were acquired on Liquid 

Chromatography-Mass Spectrometer, comprising a 1100 Series LC and SL Ion Trap MSD 

(Agilent Technologies, UK). Weight loss measurements were performed by incubating each 

hydrogels in 500 mL of proteinase K solution (5 mg/mL) or phosphate buffer saline (PBS 1x) 

at 37 °C at various time intervals. The solutions with or without the enzyme were replaced with 

the freshly prepared solutions after each weight measurement.  Then, the weights of hydrogels 

were recorded to determine the weight loss compared to the initial weights of hydrogel. We 

computed the weight loss using equation (𝑊𝑓 − 𝑊𝑖)/𝑊𝑖 × 100, where Wi and Wf   represent 

initial and final hydrogel weights, respectively. 

Cellular behaviours on PA-E3, DBS-COOH, and PA-E3/DBS-COOH hydrogels

PA-E3, DBS-COOH, and PA-E3/DBS-COOH hydrogels were prepared as previously 

discussed above. The hydrogels were cross-linked with CaCl2 (50 mM) and washed with PBS 

until the hydrogels became neutral to pH strips (pH 7). Human adipose derived stem cells 

(hADSC, 5000 cells/mL) were cultured on the hydrogels and incubated for 4 days at 37 ˚C and 

5% CO2. Using  a Live/Dead assay kit (Life Technologies, UK), the assay was performed by 

incubating the hydrogels with calcein AM (10 mM) and ethidium homodimer-1 (1 mM) for 30 

min. Imaging was performed on an inverted confocal laser scanning microscope (CLSM, Leica, 

Germany).
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Figure 1. Molecular information and sol-gel phase transition. (a) Molecular structure of 
PA-E3 and DBS-COOH. (b) Schematic representation of supramolecular self-sorting of PA-

E3 and DBS-COOH by pH-switching. (c) Photographs of hydrogels of PA-E3, DBS-COOH 
and PA-E3/DBS-COOH mixtures. Laser scanning confocal micrographs of nanofibers of (d) 
PA-E3, (e) PA-E3/DBS-COOH (4:1), (f) PA-E3/DBS-COOH (1:1), (g) PA-E3/DBS-COOH 
(1:4), and (h) DBS-COOH. Induced circular dichroism spectra of ThT during the self-
assembly of (i) PA-E3, (j) DBS-COOH and (k) PA-E3/DBS-COOH (1:1).

Results and Discussion

Self-assembly and formation of hydrogels

The PA used in this study is the negatively charged peptide CH3-(CH2)14-CONH-

VVVAAAEEE-CONH2 (PA-E3), palmitoylated at the N-terminus (Fig. 1a). This PA is known 

to assemble into micrometre-long nanofibers by calcium ion coordination.31,49 Conversely, 

DBS-COOH (Fig. 1a) has been shown to assemble into nanofibers that are microns in length 

as a result of pH switching.38Aqueous solutions (10 mM) of gelator DBS-COOH and gelator 

PA-E3 were prepared and the aliquots of each were mixed to provide a series of solutions with 

various stoichiometric ratios of PA-E3 to DBS-COOH (100/0, 80/20, 50/50, 20/80, and 0/100 

%) such that a constant total concentration (10 mM) was maintained in all mixtures. Stable 
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hydrogels were formed by slow acidification of the basic solutions by adding GdL (10 mg/mL). 

GdL undergoes a base-catalysed hydrolysis to gluconic acid as previously described. The slow 

hydrolysis allows significantly more controlled and homogeneous gels to be formed as 

compared to the use of mineral acids.50 Consequently, the gradual decrease in pH below the 

pKa of the terminal carboxylic acid (pKa ~ 4 - 5) of DBS-COOH and PA-E330,51 allows the 

slow protonation of the carboxylate groups (Fig. 1b). This protonation directs the gradual self-

assembly of both PA-E3 and DBS-COOH over a period of 4 h, leading to kinetically 

controlled formation of homogenous self-supported hydrogels (Fig. 1c).

Characterization of assembly

Hydrogels were formed for all tested materials including PA-E3, DBS-COOH, and their 

combinations. The hydrogels of PA-E3 alone were optically transparent while those of DBS-

COOH were translucent. Moreover, there was an increasing degree of translucency with 

increasing concentration of DBS-COOH in the two-component hydrogels, suggesting an 

increasing DBS-COOH nanofiber density in the materials. At the nanoscale, fluorescent 

microscopy using ThT was used to further confirm self-assembly of PA-E3, DBS-COOH, and 

their mixtures. As revealed by LSCM, nanofibers of individually assembled PA-E3 (200 µM) 

and DBS-COOH (200 µM) containing an equimolar concentration of ThT (200 µM) 

fluoresced when excited at 488 nm (Fig. 1d and 1h). Similarly, the nanofibers of PA-E3/DBS-

COOH mixtures (200 µM) also exhibited strong fluorescence (Fig. 1e-g) when excited at the 

same wavelength, which results from the integration of ThT within the hydrogel 

nanostructures. However, the fluorescence is more intense on DBS-COOH (Fig. 1h) and PA-

E3/DBS-COOH (Fig. 1e,f,g) nanofibers than on the PA-E3 nanofibers (Fig 1d). We observed 

no fluorescence from the DBS-gelator solution itself (Supplementary Figure 2). It is well 

established that ThT is a molecular rotor and its fluorescence is viscosity dependent.52,53 No 

fluorescence was observed pre-gelation, as the ThT is not incorporated into viscous 

environments. However, upon gelation, hydrophobic rigid fibers are formed and, incorporation 

of ThT into these, results in an increase in fluorescence.52 Therefore, our systems support the 

idea that the reason for the characteristic increase in the ThT fluorescence intensity following 

its incorporation into the DBS-COOH and the two-component (PA-E3/DBS-COOH) 

nanofibers than the PA-E3 alone nanofibers is due to the rigidity of the nanofibers, which 

prevents the rotation of the benzothiazole ring relative to the aminobenzene ring in the excited 

state.53 Previous studies have demonstrated that molecular gelator nanofibers are able to 

sequester cationic dyes such as methylene blue (MB) from aqueous system.41 We have also 
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demonstrated this with DBS-COOH using MB (data not shown). Therefore, we reasoned that 

DBS-COOH nanofibers sequester the cationic ThT dye in a similar fashion, which can also 

explain the observed increased fluorescence intensity.  

We also confirmed by circular dichroism (CD) spectroscopy that the achiral ThT molecule 

acquired a chiral signature following its interaction with the self-assembled PA-E3, DBS-

COOH, and PA-E3/DBS-COOH nanofibers in a differential and time-dependent manner 

(Supplementary Figure S3). Such chirality transfer is believed to result from a ‘‘sergeants-and-

soldiers’’ type of interaction54 between ThT and the self-assembled nanofibers. Upon 

incorporation into the PA-E3 nanofibers during self-assembly, ThT exhibited a negative band 

at 385 nm, which disappeared within 30 min of self-assembly while another negative band 

emerged at 470 nm as the self-assembly progressed (Fig. 1i, Supplementary Figure 3a). On the 

other hand, ThT exhibited a bisignate Compton effect with positive and negative bands at 370 

and 385 nm, respectively (Fig. 1j, Supplementary Figure 3b). Interestingly, the CD spectrum 

of ThT upon incorporation into the PA-E3/DBS-COOH nanofibers combines the distinct 

chiral signatures of both PA-E3 and DBS-COOH as well as the emergence of a new band at 

450 nm (Fig. 1k, Supplementary Figure 3c). This result suggests that ThT is able to 

discriminate between different chiral environments in the multicomponent hydrogels. Also, 

with this approach, we could infer that the two building blocks constituting our 

multicomponent hydrogels exhibited self-sorting self-assembly.

Characterization of nanostructures

Transmission electron microscopy (TEM) revealed that the PA-E3 solution (0.1 mM, pH 10) 

on its own has pre-formed micellar structures that are ~200 nm long. Such pre-gelation 

assembly of PAs into cylindrical micellar nanostructures has been previously reported to take 

place as a result of the hydrophobic collapse of the alkyl moieties in an aqueous environment.55-

57 On the other hand, while such structures were not observed in the solution of pure DBS-

COOH (Supplementary Figure S4), they were observed in the equimolar mixture of PA-E3 

and DBS-COOH. Upon gelation triggered by GdL hydrolysis, the PA-E3 solution further 

assembled into typical PA nanofibers that are microns in length and ~7 nm in diameter (Fig 

2ai, top panel), while the nanofibers of DBS-COOH (0.1 mM) on its own self-assembled into 

bundles of ribbons that are several microns in length and ~80 nm in width as previously 

reported46 (Fig 2av).  Atomic force microscopy (AFM) was used to confirm these structures 

(Fig. 2bi, middle panel) (Fig. 2bv, middle panel). Interestingly, nanofibers of the PA-E3/DBS-
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COOH hydrogels (0.1 mM) appeared to have different geometries compared to those of the 

single-component hydrogel systems and be more entangled (Fig 2aii-iv top panel). 

Furthermore, the density of this nanofiber network seemed to increase with increasing DBS-

COOH concentration. Such entanglement is possibly due to the formation of interconnected 

self-sorting networks.58 The nanofiber bundling phenomenon is more pronounced with the PA-

E3/DBS-COOH hydrogels than in the hydrogels of DBS-COOH alone (Fig. 2bii-iv, middle 

panel).  It is important to mention that the difference in appearance of the nanofiber images 

acquired with the two techniques (TEM and AFM) is probably due to different sample 

preparation procedures. In the case of AFM, the solutions were allowed to self-assemble on the 

substrates, while with TEM, images were acquired on pre-formed partial hydrogels. 

Figure 2. Nanostructure characterization. Nanostructures of nanofibers of (i) PA-E3, (ii) 

PA-E3/DBS-COOH (4:1), (iii) PA-E3/DBS-COOH (1:1), (iv) PA-E3/DBS-COOH (1:4) and 

(v) DBS-COOH at 0.1 mM concentration gelator concentration revealed by (a) TEM and (b) 

AFM. (c) SANS data for gels of (i) PA-E3, (ii) PA-E3/DBS-COOH (4:1), (iii) PA-E3/DBS-

COOH (1:1), (iv) PA-E3/DBS-COOH (1:4) and (v) DBS-COOH at 1 mM gelator 

concentration. In all cases, the fits to the data are shown as the red line through the open 

symbols.

To further characterize the internal structuring of the hydrogels without drying and staining 

effects that accompany imaging techniques, synchrotron small-angle neutron scattering 
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(SANS) measurements were performed on the hydrogels. SANS data for the hydrogels of PA-

E3 (10 mM) fitted best to a flexible elliptical cylinder model after the initial fixing of the 

background and setting the length to 2000 Å (an arbitrarily value greater than the resolution of 

the technique) (Fig. 2k, lower panel). Other parameters to fit the data for PA-E3 include a 

radius of 26.9 ± 0.1 Å, an axis ratio of 1.64 ± 0.02, and a Kuhn length of 134.0 ± 2.0 Å. On the 

other hand, data for the hydrogels of DBS-COOH fitted to a power law only with a power-law 

exponent of 2.72 ± 0.01, which implies that the structures are relatively large and outside the 

effective range of the SANS (Fig. 2o). In order to fully fit the SANS data for the two-

component hydrogels (10 mM), we needed to combine the flexible elliptical cylinder model 

with a power law (Fig. 2l,m,n) as previously demonstrated.59 With this approach, we obtained 

a radius of 27.5 ± 0.3 Å, an axis ratio of 1.53 ± 0.03 Å, and a Kuhn length of 111.6 ± 2.1 Å for 

the 4:1 molar ratio PA-E3/DBS-COOH hydrogel; a radius of 28.4 ± 0.7 Å, an axis ratio of 

1.36 ± 0.06, and a Kuhn length of 96.3 ± 3.2 Å for the 1:1 molar ratio PA-E3/DBS-COOH 

hydrogel; and a radius of 27.9 ± 1.1 Å, an axis ratio of 1.52 ± 0.10, and a Kuhn length of 114.4 

± 9.21 Å for the 1:4 molar ratio PA-E3/DBS-COOH hydrogel. These results indicate that the 

nanoscale flexible elliptical cylinders are similar across the data set in terms of radius, axis 

ratio, and Kuhn length. The small differences in the fitted parameters can be attributed to the 

minimal perturbation effect of DBS-COOH on the PA-E3 fibre formation during the self-

assembly process60, suggesting that PA-E3 fibre assembly still occurs in the presence of DBS-

COOH. The exponents for the power law are 2.47 ± 0.05, 2.76 ± 0.04, and 2.95 ± 0.07 for the 

hydrogels with 4:1, 1:1, and 1:4 molar ratio of PA-E3/DBS-COOH, respectively. For 

convenient comparison, the data for the fittings are summarized in Supplementary Table S1. 

These power law exponents suggest that there is an increasing nanofiber network formation 

with increasing concentration of DBS-COOH, in agreement with the LSCM (Fig 1e,f,g), TEM 

(Fig. 2b,c,d, top panel), and AFM (Fig. 2g,h,i, middle panel) images. However, it is important 

to mention that the radius of the nanofibers is such that the scattering at mid to high Q range is 

dominated by the flexible elliptical model as opposed to the power law. We confirmed this 

dominant flexible elliptical model by plotting the intensity at Q of 0.06151 against % PA-E3 

in the mixture to obtain a straight line fit as opposed to a non-linear fit expected if DBS-COOH 

is entrained within the nanofibers of PA-E3 (Supplementary Figure S5). Linking this all 

together, we propose that self-sorting dominates, leading to fibres that consist of PA-E3 only 

and others that consist of DBS-COOH only. Since the PA-E3 assembles first, it will do so in 

the presence of unassembled DBS-COOH, and hence the assembly of PA-E3 may be affected 
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by presence of the additive. The DBS-COOH then assembles to give the self-sorted system, 

which is known to play an important role in determining bulk properties of hydrogels.61

Kinetics of self-assembly

Micelles act as nuclei for faster assembly on PA containing systems

Understanding the kinetics of self-assembly is not only important for gaining insight into the 

molecular mechanism, but also for the design and modulation of properties of multicomponent 

hydrogel systems. In this study, we decided to use dynamic oscillatory rheology to monitor the 

self-assembly kinetics of PA-E3, DBS-COOH, and the equimolar PA-E3/DBS-COOH 

mixture. According to the time-sweep experiment within the linear viscoelastic region (LVR) 

of the hydrogels, PA-E3 displayed the expected rapid self-assembly (Fig. 3a) whereas DBS-

COOH exhibited a delay of about 20 min prior to self-assembly (Fig. 3b). The PA-E3 system 

exhibits a two stage increase in G’ and G’’. By analogy to other work,62 this can be associated 

with interactions between initially formed fibers and a decrease of charge in the nanofibers. 

We stress, however, that given the difficulty to deconvolute the relative effects provided by 

fiber bundling, cross-linking, and reduction of charges in the fibres, interpretation of the 

rheology data must be taken with care. Interestingly, with the inclusion of DBS-COOH, the 

equimolar mixture of PA-E3/DBS-COOH exhibited a slightly shorter delay of about 10 min 

prior to self-assembly upon the addition of GdL (Fig. 3c). This suggests that the two-

component system displayed a different self-assembly mechanism to pure DBS-COOH. It is 

well known that PA-E3 tends to form cylindrical micellar nanostructures in water due to 

desolvation of the apolar palmitoyl group63 and electrostatic repulsion between the negatively 

charged headgroups.64 These structures are expected to provide nucleation sites and thereby 

reduce the entropic cost of PA self-assembly both in the single and two-component systems. 

This hypothesis is based on a non-classical nucleation theory, in which nucleation and growth 

is much faster in a heterogeneous system comprising nuclei than the homogenous counterpart 

having no preformed nuclei.65,66 Therefore, as expected, unlike the DBS-COOH system on its 

own, both PA-E3 and the equimolar mixture of PA-E3/DBS-COOH underwent faster self-

assembly. 

The self-assembly of PA-E3, DBS-COOH, and the equimolar PA-E3/DBS-COOH mixture 

into a solid-like gel, as revealed by G, reached a plateau within 115, 92, and 63 min, 

respectively (Fig. 3a,b,c), implying that the gels were supersaturated at the plateau region.  
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Beyond the gelation point, tan δ also decreases with time for the self-assembly of PA-E3, DBS-

COOH, and PA-E3/DBS-COOH mixture and then levels off, representing the completion of 

self-assembly (Supplementary Figure S6). The observed time difference for the full assembly 

of PA-E3, DBS-COOH, and PA-E3/DBS-COOH equimolar mixtures can be attributed to 

their distinct self-assembly events. Bearing in mind that PA-E3 already assumed a pre-gelation 

nanostructure, there is a high tendency for PA-E3 to undergo an assembly whereby there is a 

gradual increase in the number and length of the nanostructures until an insoluble sample-

spanning network of nanofibers is formed.67 Given the sigmoidal rheographs of PA-E3 and 

that of the PA-E3/DBS-COOH mixture, we suggest that the self-assembly mechanism of PA-

E3 is consistent with such isodesmic assembly with three set lag phases, initial 

rearrangement/bundling of the cylindrical micelles, elongation, and supersaturation 

(Supplementary Figure S1). On the other hand, DBS-COOH alone exhibits a different 

cooperative self-assembly (nucleation-growth) mechanism via an initial formation and growth 

of nuclei, above which a critical point gelation occurs.68 The initiation of nucleation by DBS-

COOH results in a delayed emergence of the assembly for about 20 min following a prolonged 

lag phase (Supplementary Figure 1). However, once assembly is initiated, it then rapidly 

proceeds in a cooperative manner. Similar to the assemblies of PA-E3, DBS-COOH assembly 

has three sets of lag phases but with a different initial event – nucleation, elongation, and 

supersaturation. Interestingly, the PA-E3/DBS-COOH assembly shows the fastest 

establishment (~ 63 min) of an overall gel network. This system (PA-E3/DBS-COOH) 

combines the initial nuclei of the PA-E3 system, reducing the lag phase, with the cooperative 

network assembly of DBS-COOH, hence optimising both the initial nucleation step and the 

assembly of the full sample-spanning network (Supplementary Figure 1). This is a clear 

example of the dual benefits of this two-component assembly system.

The Avrami exponent, n, for the temporal changes in the structure of PA-E3, DBS-COOH and 

the equimolar mixture of PA-E3/DBS-COOH as a result of gradual pH-switching that drives 

self-assembly is 2.0, 2.2 and 2.7, respectively (Supplementary Figure S7 – S9). With these 

values, we deduced that DBS-COOH and PA-E3 self-assembled into a 2D nanostructure while 

the Avrami exponent obtained for the equimolar PA-E3/DBS-COOH mixture suggests the 

formation of a 3D nanostructure or networks. It is worth noting that these Avrami exponents 

for DBS-COOH are higher than those previously determined by NMR and CD methods.38 This 

reflects the fact that determining Avrami exponents by rheology will indicate the formation of 

a sample spanning network in two/three dimensions, whereas the other methods report directly 
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on one-dimensionally nanofiber assembly. These results indicate a greater degree of three-

dimensionality in the presence of DBS-COOH, which is in agreement with the earlier 

discussion about the ability of this gelator to enhance nanofiber aggregation and sample-

spanning nanofiber network formation. 

Figure 3. Kinetics of self-assembly into nanofibers. Evolution of nanofibers is monitored 

during the sol-hydrogels phase transition by recording storage (G’) and loss (G’’) modulus 

values as a function of time for 10 mM of (a) PA-E3, (b) DBS-COOH and (c) equimolar 

mixture of PA-E3/DBS-COOH at 25 °C and self-assembly is initiated by the addition of GdL 

(10 mg/ml); frequency = 10 Hz, strain = 0.5%. (d) TEM images showing self-assembly of PA-

E3, DBS-COOH and PA-E3/DBS-COOH into nanofibers at various time intervals.

Remarkably, the slow self-assembly kinetics that result from using low gelator concentrations 

(0.01 mM, pH 9) and the in situ protonation resulting from GdL hydrolysis facilitated real-time 

observations of the growth of the nanofibers by TEM. As shown in Fig. 3d, at the onset of self-

assembly (t = 0), PA-E3 already exists in a pre-assembled micellar form while DBS-COOH 

exists in a free and monomeric form at time t = 0 min. There are also micellar nanostructures 

with similar dimensions in the equimolar solutions of PA-E3/DBS-COOH. Interestingly, 
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within 15 min of adding GdL, DBS-COOH self-assembled into ~200 nm long nanofibers, 

while the PA-E3 and PA-E3/DBS-COOH micelles grew into ~600 nm long nanofibers. 

Further into the incubation period (45 and 60 min), the nanofibers grew into entangled, 

interpenetrated, and long nanofiber networks in all cases. DBS-COOH and PA-E3/DBS-

COOH nanofibers are clearly more bundled than PA-E3 and DBS-COOH alone – in 

agreement with the kinetic observations from the rheological study described above. The 

hierarchical nanofiber growth further confirms the nucleation – elongation – supersaturation 

mechanism we proposed for the stepwise increase in the G values observed in Fig. 3a,b,c and 

Fig. 4, which also follows the kinetic model of step-growth of β-amyloid peptide nanofibers.69 

It is important to mention that the differences between nanofibers of PA-E3, DBS-COOH, and 

PA-E3/DBS-COOH are not sufficiently significant given the need to air-dry the samples.

Figure 4. Mechanism of self-assembly. Proposed mechanisms of self-assembly of (a) PA-E3, 

(b) DBS-COOH and (c) PA-E3/DBS-COOH when triggered with GdL in aqueous systems. 

The green fluorescent images represent ThT fluorescent micrographs of self-assembled 

nanofibers.

All-atom molecular dynamics (MD) simulations of self-assembly

It has been established that the structures, self-assembling driving forces, surface charge, and 

hydrophobicity of building blocks in a multicomponent self-assembling system are key to 

determining whether they will co-assemble or self-sort.70-72 Therefore, molecular dynamics 

simulations were performed using Material Studio 8.0 software from Biovia Software Inc (San 

Diego, California)73 in order to understand how the structural differences, driving forces, and 

hydrophilicity of DBS-COOH and PA-E3 dictate the type of internal nanostructuring in these 

Page 18 of 35

ACS Paragon Plus Environment

Chemistry of Materials

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



two-component hydrogels. According to solubility parameter calculations, the theoretical 

solubility parameters of DBS-COOH and PA-E3 are 24.36 (J/cm3)1/2 and 23.13 (J/cm3)1/2, 

respectively, which implies that DBS-COOH is slightly more polar than PA-E3. Upon mixing 

the two components, the cohesive energy density (CED) decreases as the ratio of PA-E3 

increases (Supplementary Figure S10). Moreover, the enthalpy of mixing (ΔHmix) values of 

DBS-COOH and PA-E3 were negative and became more negative with decreasing amount of 

PA-E3, indicating mixing of the two components (Supplementary Figure S11). 

Figure 5. Molecular dynamics simulation. Periodic cubic cell containing (a) 1 molecules of 

DBS-COOH (green) and 5 molecules of PA-E3, (b) 3 molecules of DBS-COOH (green) and 

3 molecules of PA-E3, (c) 5 molecules of DBS-COOH (green) and 1 molecule of PA-E3, (d) 

12 molecules of purely DBS-COOH after 500 ps dynamic simulation. Intermolecular 

interaction intensities between (e) H-carboxyl and O-carbonyl of PA-E3 as pure component 

and in the presence of DBS-COOH at various molar ratios, (f) H-amide and O-carbonyl of 

PA-E3 as pure component and in the presence of DBS-COOH at various molar ratios, (g) O-

carbonyl of DBS-COOH and H-O6 of DBS-COOH as pure component and in the presence of 

PA-E3 at various molar ratios, (h) O6 of DBS-COOH and H-O6 of DBS-COOH as pure 

component and in the presence of PA-E3 at various molar ratios, (i) O-carbonyl of DBS-

COOH and  H-carboxyl of PA-E3 at various molar ratios, (j) O-carbonyl of DBS-COOH and 

H-amide of PA-E3 at various molar ratio, (k) O6 of DBS-COOH and H-amide of PA-E3, and 

(l) O5 of DBS-COOH and H-amide of PA-E3.
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Molecules of PA-E3 and DBS-COOH were constructed and optimized using DMOL3 

quantum mechanical module. Self-assembly of PA-E3, DBS-COOH and mixtures of both 

were studies by dynamic simulation using Forcite module with COMPASS II force field. The 

results after 500 ps dynamic steps (Fig. 5b-e) indicate that introduction of some molecules of 

DBS-COOH into the simulation box of PA-E3 does not disturb the PA-E3 self-assembly, 

suggesting self-sorting of PA-E3. However, DBS-COOH molecules did not self-sort and 

instead bind to the surface of the PA-E3 molecules through multiple hydrogen bonding 

interactions. At a higher DBS-COOH/PA-E3 ratio, the bound DBS-COOH molecules within 

close proximity self-assemble, thereby facilitating interfacial interaction with the PA-E3 (Fig. 

5d). This interaction might explain the tendency of the two-component PA-E3/DBS-COOH 

system to form bundled nanofibers with improved mechanical properties.  Radial distribution 

function (RDF) was used to estimate the intermolecular (hydrogen bond) interaction distance 

between molecules of the individual components (PA-E3 and DBS-COOH) as well as their 

mixtures. It was found that the most significant intermolecular interactions that underpin PA-

E3 self-assembly are formed between H-carboxyl and O-carbonyl groups (interaction distance 

of 1.7 Å and intensity of 5 (Fig. 5e)). On the other hand, the dominant intermolecular 

interactions between DBS-COOH molecules are O-carbonyl/H-O6 and O6/H-O6 with 

interaction distances of 1.8 Å and 1.7 Å, respectively (Supplementary Table 2). Interestingly, 

when PA-E3 molecules self-assemble in the presence of DBS-COOH, the intensity of the 

interaction distance between H-carboxyl and O-carbonyl groups as well as H-mide and O-

carbonyl of PA-E3 remain constant (Fig. 5e,f), suggesting that the presence of DBS-COOH 

does not affect self-assembly of PA-E3. However, by measuring the interaction distance 

between O-carbonyl/H-O6 as well as O6/H-O6 of DBS-COOH at 1:1 (DBS-COOH:PA-E3) 

molar ratio, we observed no interaction formed between DBS-COOH molecules (Fig. 5g,h). 

Thus, indicating that DBS-COOH molecules preferentially interact with the self-assembled 

PA-E3 structure at this molar ratio. When the molar ratio of DBS-COOH increases to 5:1 

(DBS-COOH:PA-E3), a significant interaction is formed between DBS-COOH molecules 

(Fig. 5g,h). In all cases, intermolecular hydrogen bond (H-bond) interactions are formed 

between PA-E3 and DBS-COOH by several groups but the most significant interaction is 

formed between O-carbonyl of DBS-COOH and H-carboxyl of PA-E3 with an interaction 

distance of 1.7 Å (Supplementary Table S2). The interactions that the H-Amide of PA-E3 form 

with various groups of DBS-COOH are less significant and in all cases the interaction intensity 

decreases with the decrease of PA-E3 concentration (Fig. 5i,j,k,l). DBS-COOH does not affect 

the interactions between PA-E3 as revealed by RDF results, suggesting that PA-E3 undergoes 
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self-sorting. However, the presence of PA-E3 causes DBS-COOH to alter its self-assembly 

fashion, which might corroborate our findings with SANS and dynamic time sweep rheology. 

In summary, the interactions mediating the self-assembly can be discussed on the basis of the 

energetics of molecular interactions. The interactions that formed the self-assembled structures 

between PA-E3 and DBS-COOH will be a balance between all possible energies. The PA-E3 

self-assembly is driven by the hydrophobic collapse of the hydrocarbon tail while the polar 

heads are displayed on the periphery of the nanofibers. Therefore, the energy associated with 

the assembly of PA-E3 is too large for DBS-COOH to fully disrupt, but then DBS-COOH 

can form some adventitious interactions with parts (polar head group) of PA-E3 that are not 

responsible for self-assembly in order to provide some favourable energetics. In this way, small 

amounts of DBS-COOH interact with the assembling PA-E3 but without disrupting it. As the 

concentration of DBS increases, self-self interactions become more important for DBS-COOH 

because there are more potential DBS-COOH binding partners, resulting in interactions 

between DBS-COOH molecules becoming more energetically significant.

Viscoelastic and self-recovery properties of hydrogels 

Given the increasing hydrogel translucency that is observed with growing concentration of 

DBS-COOH in the PA-E3/DBS-COOH hydrogels (Fig. 1b) as a result of higher nanofiber 

density, we used dynamic oscillatory rheometry to quantify its effect on the bulk properties 

(stiffness) of the hydrogels. Based on amplitude-sweep measurements, hydrogels for PA-E3 

(10 mM) and DBS-COOH (10 mM) exhibited storage moduli (G) of ~9.5 kPa and ~27 kPa, 

respectively (Fig. 6a).  Interestingly, G values increased linearly with increasing percentage of 

DBS-COOH in the PA-E3/DBS-COOH hydrogels (Fig. 6a and Supplementary Figure S12), 

indicating a synergistic effect. Also, from the amplitude-sweep measurements, the critical 

strain (i.e. the strain at which the hydrogels breaks) for DBS-COOH and PA-E3 were 0.8 

(Supplementary Figures S13) and 2.7% (Supplementary Figures S14), respectively. The 

critical strain values for the two-component hydrogels range between 1 and 2% 

(Supplementary Figures S15-18) and slightly decrease as the amount of PA-E3 in the hydrogels 

decreases, suggesting that PA-E3 is able to promote formation of resilient hydrogels. Previous 

studies have shown that π-π stacking between DBS gelators confers enhanced rigidity on their 

self-assembled structures.40 This rigid structure formation suggests a reason for higher G 

values (also lower values of tan δ) of DBS-COOH hydrogels and the PA-E3/DBS-COOH 
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than the non-aromatic PA-E3 hydrogels (Supplementary Figure S13). It is important to note 

that the total concentration of the gelators remain fixed (10 mM) in all multicomponent 

hydrogels, so differences cannot be assigned to total gelator loading. 

Figure 6. Mechanics and self-healable properties. (a) Plots of G’ against percentage of DBS-

COOH in the hydrogels. (b), (c) and (d) show the self-recovery of PA-E3, DBS-COOH and 

equimolar concentration of PA-E3 and DBS-COOH, respectively. In all cases, the hydrogels 

were subjected to a constant frequency of 10 Hz and strain of 0.1% (100 s), 100% (100 s), 0.1% 

(200 s), 100% (100 s), 0.1% (200 s), 100% (100 s) and 0.1% (400 s).

Self-assembly through non-covalent bonds such as π-π stacking, hydrogen bonding, and host-

guest interactions holds great potential for constructing self-healable hydrogels due to their 

intrinsic reversibility.74-76 For example, Stevens and co-workers have harnessed the ability of 

non-covalent β-sheet cross-links to fabricate self-healable hybrid hydrogels owing to their 

ability to reassemble and recover fully after being strained to failure.77 Giving the structural 

dissimilarity between the aromatic sugar gelator (DBS-COOH) and the β-sheet forming PA 

gelator (PA-E3), we wanted to dissect the impact of the interplay of the π-π stacking and 

hydrogen bonding that DBS-COOH provides and the non-covalent β-sheet cross-links that 

PA-E3 offers to the self-healing ability of the PA-E3/DBS-COOH hydrogel.
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To test this hypothesis, the thixotropic properties of the hydrogels after high shear loads were 

measured in dynamic time sweep experiment under strain amplitudes within (0.1%) and 

beyond (100%) the linear viscoelastic region (LVR) of the hydrogels (Supplementary Figure 

S12 for the LVR). Under high shear load, the hydrogels undergo internal breakage as indicated 

by the significant decrease and inversion of G and G values. This signifies that the liquid-like 

behaviour of the hydrogels dominates under high strain amplitude, which indicates that the 

hydrogels have been broken. After 3 cycles of strain amplitude, hydrogels of PA-E3 displayed 

full (100%) recovery (Fig. 6b) while DBS-COOH hydrogels only recovered 62% (Fig. 6c) and 

hydrogels with a 1:1 molar ratio of PA-E3/DBS-COOH exhibited 98% recovery (Fig. 6d). 

The two-component gel, therefore, exhibited enhanced stiffness relative to individual building 

blocks as a result of the DBS-COOH aromatic structure while maintaining a high level of 

recovery compared to DBS-COOH hydrogels due to the PA-E3 non-covalent β-sheet cross-

links. This result demonstrates how the two distinct gelators cooperate in the multicomponent 

hydrogels. Also, these data reveal how interactions of self-assembling building blocks at the 

nanoscale and the spatio-temporal arrangement of the nanofibers can translate into materials 

bulk properties at the macroscale level.78,79 

Proteolytic stability and effects on cell morphology 

To further demonstrate the synergistic material properties that can emerge from the 

multicomponent PA-E3/DBS-COOH hydrogels, we assessed the material’s resistance to 

proteolysis. PAs have been widely used in vivo as therapeutic agents in regenerative medicine. 

However, the peptide bonds with L-chirality are known to quickly degrade after systemic 

delivery.80 Instability of alkylated L-peptides to proteolysis has also been reported.81 Therefore, 

D-enantiomers with a better resistance to proteolysis have previously been used as a substitute 

or a protective corona for the L-enantiomers by co-assembly.82-84 Covalent attachment of 

polymers to the peptides surface is another approach that has previously been explored.80 For 

example, Stupp and co-workers employed a supramolecular co-assembly strategy to develop 

proteolytically stable PA nanofibers consisting of an anti-tumour PA in combination with its 

PEGylated analogue.85 The use of a non-peptidic low-molecular weight gelator as a protective 

corona for L-peptides against premature proteolysis is another approach that has not been 

explored in the field of biomaterials development. Our self-assembled system bearing well-

defined structures of a lipidated L-peptide and acetalized D-sugar would provide an alternative 

approach to extend the functionality of PAs. 
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Figure 7. Biological functionalities. Stability of nanofibers of (a) DBS-COOH, (b) PA-E3 

and (c) 1:1 molar ratio of DBS-COOH and PA-E3 submerged in PBS solution. (d) DBS-

COOH, (e) PA-E3 and (f) 1:1 molar ratio of DBS-COOH and PA-E3 after incubation with 

proteinase K for 5 days, as revealed by SEM. (g) Degradation profile of PA-E3, DBS-COOH 

and PA-E3/DBS-COOH hydrogels after incubation with proteinase K at 37 °C for 22 days. 

PA-E3 hydrogels were also incubated in PBS under similar conditions.  LSCM images of 

human adipose-derived stem cells seeded on hydrogels of (h) PA-E3, (i) PA-E3/DBS-COOH 

(4:1), (j) PA-E3/DBS-COOH (1:1), (k) PA-E3/DBS-COOH (1:4), (l) DBS-COOH, and (m) 

cells pated on TCP for 4 days. Scale bar: 300 µm.

To investigate proteolytic stability, PA-E3/DBS-COOH and control hydrogels were interacted 

with aqueous solution of proteinase K (50 mg/mL). Digestions were assessed using scanning 

electron microscopy (SEM) to characterize the morphology of PA-E3, DBS-COOH and PA-

E3/DBS-COOH hydrogels. Unlike the nanostructure of PA-E3 hydrogels submerged in PBS 

(Fig. 7a), Fig. 7d shows that the PA-E3 hydrogel nanostructures were digested and transformed 

into aggregates of nanoparticles after incubating with proteinase K for 5 days. This structural 

transformation is reminiscent of a report by Hamley and co-workers using chymotrypsin to 
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induce nanofiber-nanoparticle transformation in a PA solution.81 As expected, DBS-COOH 

hydrogel nanostructures (Fig. 7b) remained intact after treatment with proteinase K (Fig. 7e), 

suggesting that DBS-COOH lacks the specific motifs for enzymatic cleavage. Indeed, 

equimolar mixtures of PA-E3/DBS-COOH hydrogels were resistant to enzymatic digestions 

as the nanostructures remained intact (Fig. 7f) when compared with nanostructure of the 

hydrogels that were not treated with proteinase K (Fig. 7c), suggesting that DBS-COOH acted 

as a protective corona around PA-E3 nanofibers in the two-component hydrogels, making it 

impossible for the enzyme to access peptide bonds in PA-E3. To further elucidate the 

enzymatic degradation of the PA-E3 by proteinase K, liquid chromatography-mass 

spectrometry (LC-MS) was employed. As shown in Supplementary Figure S19a,aii, an LC-

MS spectrum for the PA-E3/proteinase K mixture reveals multiple peaks with m/z values of 

1177.80 Da, 1155.70 Da, 1078.70 Da, 847.5 Da, 846.5 Da, 817.7 Da, 520.2 Da and 418.3 Da. 

The sharp peaks with m/z values 1177.80 Da and 1155.70 Da correspond to [M+Na] + and 

[M+H] +, respectively, where M is the calculated mass of PA-E3. The remaining peaks are the 

masses of the PA-E3 fragments following proteolysis. Also, the ultraviolet-visible (UV) 

chromatogram displayed two broad bands after digestion (Supplementary Figure S19c). 

Interestingly, only two peaks with m/z values 1177.80 Da and 1155.70 Da which correspond 

to [M+Na] + and [M+H] +, respectively were observed on the spectrum of PA-E3/DBS-

COOH/proteinase K mixture (Supplementary Figure S19b), suggesting that DBS-COOH 

indeed acted as a protective corona for PA-E3 in the multicomponent hydrogels, limiting the 

proteolysis of PA-E3. Impacts of this morphological transformation on the macroscopic 

hydrogels were also assessed by a weight loss measurement approach. After incubating the 

DBS-COOH and DBS-COOH/PA-E3 hydrogels in enzyme solution as well as PA-E3 

hydrogels in PBS for 22 day, the weight ratio remained constant. In contrast, the weight ratio 

of PA-E3 hydrogels in enzyme solution drastically reduced within 22 days of incubation (Fig. 

7g). These results further support our argument that the macroscopic properties of 

multicomponent hydrogels is dependent of the nanoscale composition.

In order to investigate the response of cells to the multicomponent hydrogels, we cultured 

human adipose derived stem cells (ADSCs) on the hydrogels prepared with various 

stoichiometric ratios of PA-E3 and DBS-COOH. After 4 days of incubation, the cells were 

stained with live/dead dyes. Cells stained with the green dye (calcein AM) were alive while 

those stained with the red dye (ethidium homodimer) were dead. As shown in Fig. 7h, the cells 

on the PA-E3 hydrogels assumed a round morphology after 4 days in culture. In contrast, 
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hydrogels of DBS-COOH were fully covered with live cells. Also, the cells exhibited an 

elongated morphology (cell spreading) (Fig. 7l) similar to cells cultured on tissue culture plastic 

(TCP) (Fig.7m). For the multicomponent hydrogels with 4:1 and 1:1 ratios of PA-E3/DBS-

COOH, there was a mixture of both round and elongated cells. However, the cells seeded on 

hydrogels with 1:4 ratio of PA-E3 and DBS-COOH formed a network of elongated 

morphology (Fig. 7k). Evidently, cells were more viable on DBS-COOH hydrogels than PA-

E3 hydrogels. The multicomponent hydrogels are intermediate between the two – clearly DBS-

COOH can impart some of cell compatibility to these hybrid materials. The tunable 

morphology of the cells also show how molecular composition and mechanical properties of 

supramolecular hydrogels can potentially be used to influence cell growth, and potentially in 

future, decide cell phenotypes. We hope to characterize cell differentiation in detail in the 

future.

Conclusion

We report on the synergistic properties arising from the self-sorting of a PA and a DBS-based 

gelator by slow acidification. Compared to the individual components, the resulting 

multicomponent hydrogels exhibited a series of properties including tunable nanoscale 

morphology, improved stiffness (endowed by DBS gelator), enhanced self-healing (endowed 

by the PA), stability to enzymatic degradation (provided by the DBS gelator), and cell 

compatibility (provided by the DBS gelator). Induced circular dichroism of ThT, SANS and 

molecular dynamics simulations demonstrated self-sorting with the DBS-COOH initially 

acting as an additive adsorbed on the surface of the PA-E3 nanofibers through multiple 

hydrogen bonding interactions. The adsorbed sugar molecules within close proximity then 

interact with each other, thereby facilitating interfacial interactions between nanofibers. We 

reason that these interfacial interactions impart the nanofiber network with enhanced stiffness 

as well as resistance to enzymatic degradation. With regards to the assembly mechanism, the 

PA-E3 exhibits different assembly kinetics than DBS-COOH, with the PA-E3 benefitting 

from the presence of multiple cylindrical micellar nuclei, avoiding the lag-phase inherent in 

the DBS-COOH. However, the assembly of the DBS gelator is more cooperative and rapid 

once nucleation has occurred. Interestingly, the multicomponent system benefits from both 

advantages of the PA and DBS systems, and is the fastest to establish a full-sample-spanning 

gel network. Finally, human adipose-derived stem cells could be cultured on the DBS gelator 

and the two-component hydrogels with sufficiently high concentration of DBS-COOH, 
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opening new opportunities for developing complex hydrogels for regenerative medicine. In 

summary, we have developed and characterized a PA-E3/DBS-COOH hybrid system that 

expands the scope and capacity of both PA-E3 and DBS-COOH with each of the two LMWG 

systems endowing the resulting hybrid gel with its own unique capabilities. 
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