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Abstract

A face image contains geometric cues in the form of configurational information and contours that can be used to estimate

3D face shape. While it is clear that 3D reconstruction from 2D points is highly ambiguous if no further constraints are

enforced, one might expect that the face-space constraint solves this problem. We show that this is not the case and that

geometric information is an ambiguous cue. There are two sources for this ambiguity. The first is that, within the space of

3D face shapes, there are flexibility modes that remain when some parts of the face are fixed. The second occurs only under

perspective projection and is a result of perspective transformation as camera distance varies. Two different faces, when

viewed at different distances, can give rise to the same 2D geometry. To demonstrate these ambiguities, we develop new

algorithms for fitting a 3D morphable model to 2D landmarks or contours under either orthographic or perspective projection

and show how to compute flexibility modes for both cases. We show that both fitting problems can be posed as a separable

nonlinear least squares problem and solved efficiently. We demonstrate both quantitatively and qualitatively that the ambiguity

is present in reconstructions from geometric information alone but also in reconstructions from a state-of-the-art CNN-based

method.

Keywords 3D morphable face model · Shape ambiguity · Perspective projection · Landmarks

1 Introduction

A 2D image of a face contains various cues that can be

exploited to estimate 3D shape. In this paper, we explore to

what degree 2D geometric information allows us to estimate

3D face shape. This is sometimes referred to as “con-

figurational” information and includes the relative layout

of features (usually encapsulated in terms of the position

of semantically meaningful landmark points) and contours

(caused by occluding boundaries or texture edges). The

advantage of using such cues is that they provide direct infor-

mation about the shape of the face, without having to model
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the photometric image formation process and to interpret

appearance.

Although photometric information does provide a cue to

the 3D shape of a face (Smith and Hancock 2006), it is a

fragile cue because it requires estimates of lighting, cam-

era properties and reflectance properties making it difficult

to apply to “in the wild” images. Moreover, in some con-

ditions, the shape-from-shading cue may be entirely absent.

Perfectly ambient light cancels out all shading other than

ambient occlusion which provides only a very weak shape

cue (Prados et al. 2009). For this reason, the use of geometric

information has proven very popular in 3D face reconstruc-

tion (Blanz et al. 2004; Aldrian and Smith 2013; Patel and

Smith 2009; Knothe et al. 2006; Cao et al. 2014a; Bas

et al. 2016). Landmark detection on highly uncontrolled

face images is now a mature research field with benchmarks

(Sagonas et al. 2016) providing an indication of likely accu-

racy. Landmarks are often used to initialise or constrain

the fitting of 3D morphable models (3DMMs) to images

while denser 2D geometric information such as the occluding

boundary are used in some of the state-of-the-art meth-

ods.
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Fig. 1 Perspective transformation of real faces from the CMDP dataset

(Burgos-Artizzu et al. 2014). The subject is the same in each column and

the same camera and lighting is used. The change in viewing distance

(60 cm top row, 490 cm bottom row) induces a significant change in

projected shape (Color figure online)

In this paper we show that 2D geometric information

only provides a partial constraint on 3D face shape. In other

words, face landmarks or occluding contours are an ambigu-

ous shape cue. Rather than try to explain 2D geometric data

with a single, best fitting 3D face, we seek to recover a sub-

space of possible 3D face shapes that are consistent with the

2D data. “Consistent” here means that the model explains the

data within the tolerance with which we can hope to locate

these features within a 2D image. For example, state-of-the-

art automatic face landmarking provides a mean landmark

error under 4.5% of interocular distance for only 50% of

images [according to the second conduct of the 300 Faces in

the Wild challenge (Sagonas et al. 2016)]. We show how to

compute this subspace and show that it contains very signif-

icant shape variation. The ambiguity arises for two reasons.

The first is that, within the space of possible faces (as char-

acterised by a 3DMM) there are degrees of flexibility that do

not change the 2D geometric information when projection

parameters are fixed (this applies to both orthographic and

perspective projection). The second is caused by the nonlin-

ear effect of perspective.

When a human face is viewed under perspective projec-

tion, its 2D shape varies with the distance between the camera

and subject. The effect of perspective transformation is to

distort the relative distances between facial features and can

be quite dramatic. When a face is close to the camera, it

appears taller and slimmer with the features closest to the

camera (nose and mouth) appearing relatively larger and the

ears appearing smaller and partially occluded. As distance

increases and the shape converges towards the orthographic

projection, faces appear broader and rounder with ears that

protrude further. We show some examples of this effect in

Fig. 1. Images are taken at 60 cm and 490 cm. Each face is

cropped and rescaled such that the interocular distance is the

same. The distortion caused by perspective transformation

is clearly visible. This effect leads to the second ambigu-

ity. Namely that, two different (but natural) 3D face shapes

viewed at different distances can give rise to the same 2D

geometric features.

In order to demonstrate both ambiguities, we propose

novel algorithms for fitting a 3DMM to 2D geometric infor-

mation and extracting the subspace of possible 3D shapes.

Our contribution is to observe that, under both orthographic

and perspective projection, model fitting can be posed as a

separable nonlinear least squares optimisation problem that

can be solved efficiently without requiring any problem spe-

cific optimisation method, initialisation or parameter tuning.

In addition, we use real face images to verify that the ambi-

guity is present in actual faces. We show that, on average,

2D geometry is more similar between different faces viewed

at the same distance than it is between the same face viewed

at different distances. We present quantitative and qualitative

results on synthetic 2D geometric data created by projection

of real 3D scans. We also present qualitative results on real

images from the Caltech Multi-Distance Portraits (CMDP)

dataset (Burgos-Artizzu et al. 2014).

2 RelatedWork

2.1 3D Face Shape from 2D Geometric Information

Facial landmarks, i.e. points with well defined correspon-

dence between identities, are used in a number of ways in

face processing. Most commonly, they are used for regis-

tration and normalisation, as is done in training an Active

Appearance Model (Cootes et al. 1998) or in CNN-based

face recognition frameworks (Taigman et al. 2014). For this

reason, there has been sustained interest in building feature

detectors capable of accurately labelling face landmarks in

uncontrolled images (Sagonas et al. 2016).

Motivated by the recent improvements in the robustness

and efficiency of 2D facial feature detectors, a number of

researchers have used the position of facial landmarks in

a 2D image as a cue for 3D face shape. In particular, by

fitting a 3DMM to these detected landmarks (Blanz et al.

2004; Aldrian and Smith 2013; Patel and Smith 2009; Knothe

et al. 2006). All of these methods assume an affine camera

and hence the problem reduces to a multilinear problem in

the unknown shape and camera parameters. The problem of

interpreting 3D face shape from 2D landmark positions is

related to the problem of non-rigid structure from motion

(Hartley and Vidal 2008). However, in that case, the basis set

describing the non-rigid deformations is unknown but multi-

ple views of the deforming object are available. In our case,

the basis set is known (it is “face space” - represented here

by a 3DMM) but only a single view of the face is available.

Some work has considered other 2D shape features besides

landmark points. Keller et al. (2007) fit a 3DMM to contours
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(both silhouettes and inner contours due to texture, shape

and shadowing). Bas et al. (2016) adapt the Iterated Clos-

est Point algorithm to fit to edge pixels with an additional

landmark term. They use alternating linear least squares fol-

lowed by a non-convex refinement. Although not applied

to faces, Zhou et al. (2015) propose a convex relaxation of

the shape-from-landmarks energy. Several recent works (Cao

et al. 2013, 2014a; Saito et al. 2016) use landmark fitting to

generate ground truth to train a direct image-to-shape param-

eters regressor. Again, the landmark fitting optimisation is

performed using alternating minimisation, this time under

perspective projection with a given focal length. Interest-

ingly, Cao et al. (2014a) explicitly note that varying the focal

length leads to different shapes and use binary search to find

the one that gives lowest residual error.

A related problem is to describe the remaining flexibility

in a statistical shape model that is partially fixed. If the posi-

tion of some points, curves or subset of the surface is known,

the goal is to characterise the space of shapes that approx-

imately fit these observations. Albrecht et al. (2008) show

how to compute the subspace of faces with the same profile.

Lüthi et al. (2009) extended this approach into a probabilistic

setting.

The vast majority of 2D face analysis methods that involve

estimation of 3D face shape or fitting of a 3D face model

assume a linear camera (such as scaled orthographic/weak

perspective or affine) (Blanz et al. 2004; Aldrian and Smith

2013; Patel and Smith 2009; Knothe et al. 2006). Such a

camera does not introduce any nonlinear perspective trans-

formation. While this assumption is justified in applications

where the subject-camera distance is likely to be large, any

situation where a face may be viewed from a small distance

must account for the effects of perspective (particularly com-

mon due to the popularity of the “selfie” format). For this

reason, in this paper we consider both orthographic and per-

spective camera models.

We emphasise that we study the ambiguities only in a

monocular setting and, for the perspective case, assuming no

geometric calibration. Multiview constraints would reduce

or remove the ambiguity. For example, Amberg et al. (2007)

describe an algorithm for fitting a 3DMM to stereo face

images. In this case, the stereo disparity cue used in their

objective function conveys depth information which helps to

resolve the ambiguity. However, note that even here, their

solution is unstable when camera parameters are unknown.

They introduce an additional heuristic constraint on the focal

length, namely they restrict it to be between 1 and 5 times

the sensor size.

2.2 DeepModel-Based Face Analysis

While the methods above rely on explicit features such as

detected landmarks, state of the art methods for 3DMM fit-

ting use deep convolutional neural networks (CNNs) that can

learn to exploit any combination of features. Typically, these

methods train a CNN to regress 3DMM parameters directly

from an input image using a variety of different forms of

supervision. Tran et al. (2017) perform supervised, discrim-

inative training by first running a multi-image fitting method

(Piotraschke and Blanz 2016) on sets of images of the same

person and then training the network to predict these param-

eters from single images. Their multi-image fitting method

is based on weighted averaging of single image fits that

are themselves initialised by landmark fitting. This initial

landmark fit is subject to the ambiguities described in this

paper, though the subsequent use of appearance-based losses

may not be. However, the latest state-of-the-art in analysis-

by-synthesis based fitting suggests that even using dense

appearance information the ambiguity may still exist. Schön-

born et al. (2017) use a sampling approach based on Markov

Chain Monte Carlo to estimate the full posterior distribu-

tion using a hybrid loss including landmarks and appearance

error. They note a very high posterior standard deviation in

estimated distance from the camera concluding that the ambi-

guity under perspective cannot be resolved.

The latest state-of-the-art in regression-based fitting Sanyal

et al. (2019) relies entirely on landmark reprojection error,

again subject to the ambiguities we describe. Tewari et al.

(2017) propose to use a model-based decoder (differentiable

renderer) such that the estimated shape, texture, pose and

illumination parameters can be rendered back into an image

and a self-supervised appearance loss computed. We draw

particular attention to the fact that this method incorporates

a landmark loss. The appearance loss only provides a useful

gradient for training when already close to a good solution,

so the landmark loss is essential to coarsely train the network.

This loss is subject to exactly the ambiguities we describe in

this paper. In addition, during training, the learning rate on the

Z translation (i.e. subject-camera distance) is set three orders

of magnitude lower than all other parameters. In other words,

the network essentially learns to reconstruct faces assuming

a fixed face distance. The idea of self-supervision has been

extended in a number of ways. Tran and Liu (2018) make the

3DMM itself learnable. Tewari et al. (2018) learn a correc-

tive space to add details not captured by the model. Genova

et al. (2018) learn to regress from face identity parameters

to 3DMM parameters such that the rendered face encodes to

similar identity parameters to the original image.

CNNs have also been used to directly estimate corre-

spondence between a 3DMM and a 2D face image, without

explicitly estimating 3DMM shape parameters or pose.

Unlike landmarks, this correspondence is dense, providing a

2D location for every visible vertex. This was first proposed

by Güler et al. (2017) who use a fully convolutional network

and pose the continuous regression task as a coarse to fine

classification task. Yu et al. (2017) take a similar approach
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but go further by using the correspondences to estimate 3D

face shape by fitting a 3DMM. Wu et al. (2018) learn this

fitting process as well. Sela et al. (2017) take a multitask

learning approach by training a CNN to predict both corre-

spondence and facial depth. In all cases, this estimated dense

correspondence provides an ambiguous shape cue, exactly

as we describe in this paper.

2.3 Faces under Perspective Projection

The effect of perspective transformation on face appearance

has been studied from both a computational and psychologi-

cal perspective previously. In psychology, Liu and Chaudhuri

(2003) and Liu and Ward (2006) show that human face

recognition performance is degraded by perspective transfor-

mation. Perona (2007) and Bryan et al. (2012) investigated a

different effect, noting that perspective distortion influences

social judgements of faces. In art history, Latto and Harper

(2007) discuss how uncertainty regarding subject-artist dis-

tance when viewing a painting results in distorted perception.

They show that perceptions of body weight from face images

are influenced by subject-camera distance.

There have been two recent attempts to address the prob-

lem of estimating subject-camera distance from monocular,

perspective views of a face (Flores et al. 2013; Burgos-

Artizzu et al. 2014). The idea is that the configuration of

projected 2D face features conveys something about the

degree of perspective transformation. Flores et al. (2013)

approach the problem using exemplar 3D face models. They

fit the models to 2D landmarks using perspective-n-point

(Lepetit et al. 2009) and use the mean of the estimated

distances as the estimated subject-camera distance. Burgos-

Artizzu et al. (2014) on the other hand work entirely in 2D.

They present a fully automated process for estimating 2D

landmark positions to which they apply a linear normalisa-

tion. Their idea is to describe 2D landmarks in terms of their

offset from mean positions, with the mean calculated either

across views at different distances of the same face, or across

multiple identities at the same distance. They can then per-

form regression to relate offsets to distance. They compare

performance to humans and show that they are relatively bad

at judging distance given only a single image.

Our results highlight the difficulty that both of these

approaches face. Namely that many interpretations of 2D

facial landmarks are possible, all with varying subject-

camera distance. We approach the problem in a different

way by showing how to solve for shape parameters when the

subject-camera distance is known. We can then show that

multiple explanations are possible. The perspective ambigu-

ity is hinted at in the literature, e.g. Booth et al. (2018) state

“we found that it is beneficial to keep the focal length con-

stant in most cases, due to its ambiguity with tz”, but never

explored in a rigorous manner.

Fried et al. (2016) explore the effect of perspective in a

synthesis application. They use a 3D head model to compute

a 2D warp to simulate the effect of changing the subject-

camera distance, allowing them to approximate appearance at

any distance given a single image. Valente and Soatto (2015)

also proposed a method to warp a 2D image to compensate

for perspective. However, their goal was to improve the per-

formance of face recognition systems that they showed are

sensitive to such transformations.

Schumacher and Blanz (2012) investigate ambiguities

from a perceptual point of view. They explore whether, after

seeing a frontal view, participants accept a 3D reconstruc-

tion as the correct profile as often as they do for the original

profile. It shows that human observers consider the recon-

structed shape equally plausible as ground truth, even if it

differs significantly from ground truth and even if choices

include the original profile of the face.

2.4 Other Ambiguities

There are other known ambiguities in the monocular estima-

tion of 3D shape. The bas relief ambiguity (Belhumeur et al.

1999) arises in photometric stereo with unknown light source

directions. A continuous class of surfaces (differing by a lin-

ear transformation) can produce the same set of images when

an appropriate transformation is applied to the illumination

and albedo. For the particular case of faces, Georghiades et al.

(2001) resolve this ambiguity by exploiting the symmetries

and similarities in faces. Specifically they assume: bilateral

symmetry; that the forehead and chin should be at approxi-

mately the same depth; and that the range of facial depths is

about twice the distance between the eyes.

In the hollow face illusion (Hill and Bruce 1994), shaded

images of concave faces are interpreted as convex faces

with inverted illumination. The illusion even holds when the

hollow face is moving, with rotations being interpreted in

reverse. This is a binary version of the bas relief ambiguity

occurring when both convex and concave faces are inter-

preted as convex so as to be consistent with prior knowledge.

More generally, ambiguities in surface reconstruction

have been considered in a number of settings. Ecker et al.

(2008) consider the problem of reconstructing a smooth

surface from local information that contains a discrete ambi-

guity. The ambiguities studied here are in the local surface

orientation or gradient, a problem that occurs in photomet-

ric shape reconstruction. Salzmann et al. (2007) study the

ambiguities that arise in monocular nonrigid structure from

motion under perspective projection.

Like us, Moreno-Noguer and Fua (2013) also explore

ambiguities in shape-from-landmarks in the context of

objects represented by a linear basis (in their case, nonrigid

deformations of an object rather than the space of faces).

However, unlike in this paper, they assume that the intrinsic
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camera parameters are known. Hence, they do not model the

perspective ambiguity that we describe (in which a change in

distance is compensated by a change in focal length). Differ-

ent to our flexibility modes, instead of analytically deriving

a subspace, they use stochastic sampling to explore the set

of possible solutions. They attempt to select from within this

space using additional information provided by motion or

shading.

In an early version of this work (Smith 2016), we consid-

ered only the effect of perspective and assumed that rotation

and translation were fixed. Here we go further by also consid-

ering orthographic projection and showing how to compute

flexibility modes. Moreover, we show how model fitting can

be posed as a separable nonlinear least squares problem,

including solving for rotation and translation, and present

more comprehensive experimental results. Finally, we con-

sider not only landmarks but also show how to fit to contours

where model-image correspondence is not known.

3 Preliminaries

Our approach is based on fitting a 3DMM to 2D landmark

observations under either orthographic or perspective pro-

jection. Hence, we begin by describing the 3DMM and the

scaled orthographic and pinhole projection model. We pro-

vide the definition of symbols in Table 1.

3.1 3DMorphable Model

A 3DMM is a deformable mesh whose vertex positions,ς(α),

are determined by the shape parameters α ∈ R
S . Shape is

described by a linear subspace model learnt from data using

principal component analysis (PCA) (Blanz and Vetter 2003).

So, the shape of any object from the same class as the training

data can be approximated as:

ς(α) = Qα + ς̄ , (1)

where the vector ς(α) ∈ R
3N contains the coordinates

of the N vertices, stacked to form a long vector: ς =

[u1, v1, w1, . . . , uN , vN , wN ]T, Q ∈ R
3N×S contains the

S retained principal components and ς̄ ∈ R
3N is the

mean shape. Hence, the i th vertex is given by: vi =

[ς3i−2, ς3i−1, ς3i ]
T.

For convenience, we denote the sub-matrix corresponding

to the i th vertex as Qi ∈ R
3×S and the corresponding vertex

in the mean face shape as ς̄ i ∈ R
3, such that the i th vertex

is given by: vi = Qiα + ς̄ i .

Since the morphable model that we use has meaning-

ful units (i.e. it was constructed from scans where vertex

positions were recorded in metres) we do not need a scale

parameter to transform from model to world coordinates.

Table 1 Definition of symbols

Symbol Description Object type

N No. 3D vertices ∈ Z

S No. model dimensions ∈ Z

L No. 2D landmarks ∈ Z

Q Principal components ∈ R
3N×S

α Shape parameter vector ∈ R
S

ς̄ Mean face shape ∈ R
3N

vi i th 3D point (vertex) ∈ R
3

xi i th 2D point ∈ R
2

P Orthographic projection matrix ∈ R
2×3

R Rotation matrix ∈ SO(3)

r Axis-angle vector ∈ R
3

t Translation vector ∈ R
2 or R

3

s Scale ∈ R>0

f Focal length ∈ R>0

K Camera intrinsics ∈ R
3×3

ε Objective function ∈ R≥0

d Vector of residuals ∈ R
2L or R

3L

In Identity matrix ∈ {0, 1}n×n

1n Column vector of ones ∈ {1}n

J Jacobian matrix ∈ R
2L×4 or R

3L×4

tz Face-camera distance ∈ R>0

k Threshold value ∈ R>0

Π 2D Projection ∈ R
2L×S or R

3L×S

f Flexibility modes ∈ R
S

λi i th eigenvalue ∈ R

B Occluding boundary vertices ⊂ {1, . . . , N }

⊗ Kronecker product Operator

3.2 Scaled Orthographic Projection

The scaled orthographic, or weak perspective, projection

model assumes that variation in depth over the object is

small relative to the mean distance from camera to object.

Under this assumption, the projection of a 3D point v =

[u, v, w]T onto the 2D point x = [x, y]T is given by

x = SOP[v, R, t2d, s] ∈ R
2 which does not depend on the

distance of the point from the camera, but only on a uniform

scale s given by the ratio of the focal length of the camera

and the mean distance from camera to object:

SOP[v, R, t2d, s] = sPRv + st2d (2)

where

P =

[

1 0 0

0 1 0

]
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is a projection matrix and the pose parameters R ∈ SO(3),

t2d ∈ R
2 and s ∈ R

+ are a rotation matrix, 2D translation and

scale respectively. In order to constrain optimisation to valid

rotation matrices, we parameterise the rotation matrix by an

axis-angle vector R(r) with r ∈ R
3. The conversion from an

axis-angle representation to a rotation matrix is given by:

R(r) = cos θI + sin θ
[

r̄
]

×
+ (1 − cos θ)r̄r̄T, (3)

where θ = ‖r‖ and r̄ = r/‖r‖ and

[

a
]

×
=

⎡

⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦

is the cross product matrix.

3.3 Perspective Camera Model

The nonlinear perspective projection of the 3D point v =

[u, v, w]T onto the 2D point x = [x, y]T is given by the pin-

hole camera model x = pinhole[v, K, R, t3d] ∈ R
2 where

R ∈ SO(3) is a rotation matrix and t3d = [tx , ty, tz]
T is a 3D

translation vector which relate model and camera coordinates

(the extrinsic parameters). The matrix:

K =

⎡

⎣

f 0 cx

0 f cy

0 0 1

⎤

⎦

contains the intrinsic parameters of the camera, namely the

focal length f and the principal point (cx , cy). We assume

that the principal point is known (often the centre of the image

is an adequate estimate) and parameterise the intrinsic matrix

by its only unknown K( f ). Note that varying the focal length

amounts only to a uniform scaling of the projected points

in 2D. This corresponds exactly to the scenario in Fig. 1.

There, subject-camera distance was varied before rescaling

each image such that the interocular distance was constant,

effectively simulating a lack of calibration information. This

nonlinear projection can be written in linear terms by using

homogeneous representations ṽ = [u, v, w, 1]T and x̃ =

[x, y, 1]T:

γ x̃ = K
[

R t3d

]

ṽ, (4)

where γ is an arbitrary scaling factor.

4 Shape-from-Landmarks

In this section, we describe a novel method for fitting a

3DMM to a set of 2D landmarks. Here, “landmarks” can

be interpreted quite broadly. It simply means a point for

which both the 2D position and the corresponding vertex

in the morphable model are known. Later, we will relax this

requirement by showing how to establish these correspon-

dences for points on the occluding boundary that do not have

clear semantic meaning in the way that a typical landmark

does.

We assume that L 2D landmark positions xi = [xi , yi ]
T

(i = 1 . . . L) have been observed. Without loss of generality,

we assume that the i th landmark corresponds to the i th vertex

in the morphable model.

The objective is to find the shape, pose and camera param-

eters that, when projected to 2D, minimise the sum of squared

distances over all landmarks. We introduce objective func-

tions for the orthographic and perspective cases and then

show how they can be expressed as separable nonlinear least

squares problems. Figure 2 provides an overview of estimat-

ing shape from geometric information.

4.1 Orthographic Objective Function

In the orthographic case, we seek to minimise the following

objective function:

εortho(r, t2d, s,α)

= dortho(r, t2d, s,α)Tdortho(r, t2d, s,α), (5)

Fig. 2 Overview of estimating shape from geometric information.

From left to right: input image with landmarks; shape-from-landmarks

(Sect. 4) with image landmarks shown as red crosses and projected

model landmarks shown as blue circles; input image with edge pixels

shown in blue; shape-from-contours (Sect. 5) with occluding bound-

ary vertices labelled with red crosses; final reconstruction (Color figure

online)
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where the vector of residuals dortho(r, t2d, s,α) ∈ R
2L is

given by:

dortho(r, t2d, s,α)

=

⎡

⎢

⎣

x1 − SOP
[

Q1α + ς̄1, R(r), t2d, s
]

...

xL − SOP
[

QLα + ς̄ L , R(r), t2d, s
]

⎤

⎥

⎦
. (6)

These residuals are linear in the shape parameters, translation

vector and scale but nonlinear in the rotation vector. Previous

work has treated this as a multilinear optimisation problem

and used alternating coordinate descent. Instead, we observe

that the problem can be treated as linear in the shape and

translation parameters simultaneously and nonlinear in scale

and rotation.

4.2 Perspective Objective Function

In the perspective case, we seek to minimise the following

objective function:

εpersp(r, t3d, f ,α)

= dpersp(r, t3d, f ,α)Tdpersp(r, t3d, f ,α), (7)

where the vector of residuals dpersp(r, t3d, f ,α) ∈ R
2L is

given by:

dpersp(r, t3d, f ,α)

=

⎡

⎢

⎣

x1 − pinhole
[

Q1α + ς̄1, K( f ), R(r), t3d

]

...

xL − pinhole
[

QLα + ς̄ L , K( f ), R(r), t3d

]

⎤

⎥

⎦
. (8)

These residuals are nonlinear in all parameters and non-

convex due to the perspective projection. However, we can

use the direct linear transformation (DLT) (Hartley and Zis-

serman 2003) to transform the problem to a linear one. The

solution of this easier problem provides a good initialisation

for nonlinear optimisation of the true objective.

From (1) and (4) we have a linear similarity relation for

each landmark point:

[

xi

1

]

∼ K
[

R t
]

[

Qiα + ς̄ i

1

]

, (9)

where ∼ denotes equality up to a non-zero scalar multiplica-

tion. We rewrite as a collinearity condition:

[

xi

1

]

×

K
[

R t
]

[

Qiα + ς̄ i

1

]

= 0 (10)

where 0 = [0 0 0]T. This means that each landmark yields

three equations that are linear in the unknown shape param-

eters α and the translation vector t3d.

4.3 Separable Nonlinear Least Squares

We now show that both objective functions can be written in

a separable nonlinear least squares (SNLS) form, i.e. a form

that is linear in some of the parameters (including shape)

and nonlinear in the remainder. This special form of least

squares problem can be solved more efficiently than general

least squares problems and may converge when the original

problem would diverge (Golub and Pereyra 2003). SNLS

problems are solved by optimising a nonlinear least squares

problem only in the nonlinear parameters, hence the problem

dimensionality is reduced and the number of parameters that

require initial guesses reduced. For convenience, henceforth

we denote by QL ∈ R
3L×S the submatrix of Q containing

the rows corresponding to the L landmarks (i.e. the first 3L

rows of Q).

4.3.1 Orthographic

The vector of residuals (6) in the orthographic objective func-

tion (5) can be written in SNLS form as

dortho(r, t2d, s,α) = A(r, s)

[

α

t2d

]

− y(r, s) (11)

where A(r, s) ∈ R
2L×S+2 is given by

A(r, s) = s
[

(IL ⊗ [PR(r)]) QL 1L ⊗ I2

]

, (12)

and y(r, s) ∈ R
2L is given by

y(r, s) = s (IL ⊗ [PR(r)]) s − [x1, y1, . . . , yL ]T, (13)

where IL is the L × L identity matrix and 1L is the length L

vector of ones.

Note that the vector of residuals in (11) is exactly equiv-

alent to the original one in (6). The optimal solution to the

original objective function (5) in terms of the linear param-

eters is given by:

[

α∗

t∗2d

]

= A+(r, s)y(r, s) (14)

where A+(r, s) is the pseudoinverse. Substituting (14) into

(11) we get a vector of residuals that is exactly equivalent to

(6) but which depends only on the nonlinear parameters:

dortho(r, s) = A(r, s)A+(r, s)y(r, s) − y(r, s). (15)
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Substituting this into (5), we get an equivalent objective

function, εortho(r, s), again depending only on the nonlinear

parameters. This is a nonlinear least squares problem of very

low dimensionality ([r s] is only 4D). We solve this using

the trust-region-reflective algorithm for which we require

Jdortho(r, s) ∈ R
2L×4, the Jacobian of the residual function.

In Appendix A, we analytically derive Jdortho . Although com-

puting these derivatives is quite involved, in practice it is still

faster than using finite difference approximations. Once opti-

mal parameters have been obtained by minimising εortho(r, s)

then the parameters α∗ and t∗ are obtained by (14).

If we wish to impose a statistical prior on the shape param-

eters we can use Tikhonov regularisation, as in (Blanz et al.

2004), during the solution of (14).

4.3.2 Perspective

The perspective residual function (8), linearised via (10), can

be written in SNLS form as

dDLT
persp(r, t3d, f ,α) = B(r, f )

[

α

t3d

]

− z(r, f ) (16)

where B(r, f ) ∈ R
3L×S+3 is given by:

B(r, f ) = DE( f )F(r), (17)

with

D = diag

(

[

x1

1

]

×

, . . . ,

[

xL

1

]

×

)

, E( f ) = IL ⊗ K( f )

and

F(r) =
[

(IL ⊗ R(r)) QL 1L ⊗ I3

]

.

The vector z(r, f ) ∈ R
3L is given by:

z(r, f ) = −D (IL ⊗ [K( f )R(r)]) s

Exactly as in the orthographic case, we can write optimal

solutions for the linear parameters in terms of the nonlinear

parameters and solve a 4D nonlinear minimisation problem

in (r, f ). In contrast to the orthographic case, this objective

is not equivalent to minimisation of the original objective, i.e.

the sum of squared perspective reprojection distances in (7).

So, we use the SNLS solution to initialise a nonlinear least

squares optimisation of the original objective over all param-

eters, again using trust-region-reflective. In practice, we find

that the SNLS solution is already very close to the optimum

and that the subsequent nonlinear least squares optimisation

usually converges in 2-5 iterations, shown in Fig. 3b.
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Fig. 3 a Quantitative comparison between alternating linear least

squares (ALS) and separable nonlinear least squares (SNLS) on 150

subjects in the Facewarehouse dataset. The average dense surface error

is 1.01 mm for ALS and 0.73 mm for SNLS. b Convergence rates of

nonlinear least squares optimisation (Color figure online)

4.4 Perspective Ambiguities

Solving the optimisation problems above yields a least

squares estimate of the pose and shape of a face, given 2D

landmark positions. In Sect. 6, we show that for both ortho-

graphic and perspective cases, with pose fixed there remain

degrees of flexibility that allow the 3D shape to vary with-

out significantly increasing the objective value. However, for

the perspective case there is an additional degree of freedom

related to the subject-camera distance, i.e. tz . If, instead of

allowing tz to be optimised along with other parameters, we

fix it to some chosen value k, then we can obtain different

shape and pose parameters:

α∗(k) = argα min
r,t3d, f ,α

εpersp(r, t3d, f ,α), s.t. tz = k.

Given 2D landmark observations, we therefore have a con-

tinuous (nonlinear) space of solutions α∗(k) as a function of

subject-camera distance. This is the perspective face shape

ambiguity. If the mean reprojection error with a value of k

other than the optimal one is still smaller than the tolerance

of our landmark detector, then shape recovery is ambiguous.

5 Shape-from-Contours

In order to extend the method in the previous section to also

exploit contour information, we follow Bas et al. (2016) and

use an iterated closest edge fitting strategy. We assume that

manually provided or automatically detected landmarks are

available and we initialise by fitting to these using the method

in the previous section. Next, we alternate between establish-

ing correspondences and refitting as follows:

1. Compute occluding boundary vertices for current shape

and pose estimate and project to 2D.
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2. Correspondence is found between edges detected in the

image and the projection of model vertices that lie on the

occluding boundary. This is done in a nearest neighbour

fashion with some filtering for robustness.

3. With the correspondences to hand, edge vertices can

be treated like landmarks with known correspondence

and the method from the previous section applied to

refit the model (initialising with the nonlinear parame-

ters obtained in the previous iteration and retaining the

original landmarks).

These three steps are iterated to convergence.

In detail, we begin by labelling a subset of pixels as edges,

stored in the set E = {(x, y)|(x, y) is an edge}. In practice,

we compute edges by applying the Canny edge detector with

a fixed threshold to the input image. More robust performance

would be obtained by using a problem-specific edge detector

such as boosted edge learning. This was recently done for

fitting a morphable tooth model to contours in uncontrolled

images (Wu et al. 2016).

Model contours are computed based on the pose and shape

parameters as the occluding boundary of the 3D face. The

set of occluding boundary vertices, B(α, r, t, s) (for the

orthographic case), are defined as those lying on a mesh

edge whose adjacent faces have a change of visibility. This

definition encompasses both outer (silhouette) and inner

(self-occluding) contours. In addition, we check that poten-

tial edge vertices are not occluded by another part of the mesh

(using z-buffering) and we ignore edges that lie on a mesh

boundary since they introduce artificial edges. In this paper,

we deal only with occluding contours (both inner and outer).

If texture contours were defined on the surface of the mor-

phable model, it would be straightforward to include these

in our approach.

We find the set of edge/contour pairs, N , that are mutual

nearest neighbours in a Euclidean distance sense in 2D, i.e.

(i∗, (x∗, y∗)) ∈ N if:

(x∗, y∗)

= arg min
(x,y)∈E

‖[x y]T − SOP
[

Qi∗α + ς̄ i∗ , R(r), t2d, s
]

‖2

and

i∗

= arg min
i∈B(α,r,t,s)

‖[x∗ y∗]T − SOP
[

Qiα + ς̄ i , R(r), t2d, s
]

‖2.

Using mutual nearest neighbours makes the method robust

to contours that are partially missed by the edge detector.

The perspective case is identical except that the pinhole pro-

jection model is used. The correspondence set can be further

filtered by excluding some proportion of pairs whose distance

is largest or pairs whose distance exceeds a threshold.

6 Flexibility Modes

We now assume that a least squares model fit has been

obtained using the method in Sect. 4 (and optionally Sect. 5).

This amounts to a shape, Qα + ς̄ , determined by the esti-

mated shape parameters and a pose (r, s, t2d) or (r, f , t3d)

for orthographic or perspective respectively. We now show

that there are remaining modes of flexibility in the model fit.

Keeping pose parameters fixed, we wish to find perturbations

to the shape parameters that change the projected 2D geom-

etry as little as possible (i.e. minimising the increase in the

reprojection error of landmark vertices) while changing the

3D shape as much as possible.

Our approach to computing these flexibility modes is an

extension of the method of Albrecht et al. (2008). They con-

sidered the problem of flexibility only in a 3D setting where

the model is partitioned into a disjoint fixed part and a flex-

ible part. We extend this so that the constraint on the fixed

part acts in 2D after orthographic or perspective projection

while the flexible part is the 3D shape of the whole face.

In the orthographic case, we define the 2D projection of the

principal component directions for the L landmark vertices

as:

Πortho = (IL ⊗ (PR(r))) QL , (18)

where r is the rotation vector that was estimated during

fitting. Intuitively, we seek modes that move the landmark

vertices primarily along the projection axis, which depends

only on the rotation, and therefore do not move their 2D pro-

jection much. Hence, the flexibility modes do not depend

on the scale or translation of the fit or even the landmark

positions. For the perspective case, we again use the DLT

linearisation in (10), leading to the following expression:

Πpersp = D
(

IL ⊗
(

K( f )
[

R(r) t3d

]

S
))

QL , (19)

where

S =

⎡

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤

⎥

⎥

⎦

.

Again, r, f and t3d are the rotation vector, focal length and

translation that were estimated during fitting. By using the

DLT linearisation, the intuition here is that we want the

camera rays to the landmark vertices to remain as parallel

as possible with the homogeneous vectors representing the

observed landmarks.
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Concretely, we seek flexibility modes, f ∈ R
S , such that

Qf changes as much as possible whilst the 2D projection

of the landmarks, given by Πorthof or Πperspf , changes as

little as possible. This can be formulated as a constrained

maximisation problem:

max
f∈RS

‖Qf‖2 subject to ‖Πf‖2 = c, (20)

where Π is one of the projection matrices and c ∈ R
+ con-

trols how much variation in the 2D projection is allowed (this

value is arbitrary since it does not appear in the subsequent

flexibility mode computation). Introducing a Lagrange mul-

tiplier and differentiating with respect to f yields:

QTQf = λΠTΠf . (21)

This is a generalised eigenvalue problem whose solution

is a set of flexibility modes f1, . . . , fS along with their

corresponding generalised eigenvalue λ1, . . . , λS , sorted in

descending order. Therefore, f1 is the flexibility mode that

changes the 3D shape as much as possible while minimising

the change to the projected 2D geometry. If a face was fitted

with shape parameters α then its shape is varied by adjusting

the weight w in: Q(α + wf) + ς̄ .

We can truncate the number of flexibility modes by setting

a threshold k1 on the mean Euclidean distance by which the

surface should change and testing whether the corresponding

change in mean landmark error is less than a threshold k2.

We retain only those flexibility modes where this is the case.

7 Experimental Results

We now present experimental results to demonstrate the

ambiguities that arise in estimating 3D face shape from 2D

geometry. We make use of the Basel Face Model (Paysan

et al. 2009) (BFM) which is a 3DMM comprising 53,490

vertices and which is trained on 200 faces. We use the shape

component of the model only. The model is supplied with 10

out-of-sample faces which are scans of real faces that are in

correspondence with the model. We use these for quantitative

evaluation on synthetic data. Unusually, the model does not

factor out scale, i.e. faces are only aligned via translation and

rotation. This means that the vertex positions are in absolute

units of distance. This allows us to specify camera-subject

distance in physically meaningful units. For all fittings we

use Tikhonov regularisation with a low weight. For sparse

(landmark) fitting, where overfitting is more likely, we use

S = 70 dimensions and constrain parameters to be within

k = 2 standard deviations of the mean. For dense fitting, we

use all S = 199 model dimensions and constrain parameters

to be k = 3 standard deviations of the mean.

We make use of two quantitative error measures in our

evaluation. For data with ground truth 3D, dS is the mean

Euclidean distance between the ground truth and recon-

structed surface after aligning with Procrustes analysis. dL

is the mean distance between observed landmarks and the

corresponding projection of the reconstructed landmark ver-

tices, expressed as a percentage of the interocular distance.

7.1 SNLS Fitting

In Sect. 4.3 we introduced a novel formulation of 3DMM

fitting under orthographic and perspective projection using

SNLS. Although our goal in this paper is to investigate ambi-

guities in the 3D interpretation of 2D geometry and not to

advance the state of the art in 3DMM fitting, we neverthe-

less begin by demonstrating that our SNLS formulation is

indeed superior to alternating least squares (ALS) as used

in previous work (Bas et al. 2016; Zhu et al. 2015; Aldrian

and Smith 2013; Cao et al. 2013, 2014a; Saito et al. 2016). In

order to evaluate in a realistic setting, we require images with

corresponding ground truth 3DMM fits. For this reason, we

use the Facewarehouse dataset and model (Cao et al. 2014b).

We use leave-one-out testing, building each model on 149

subjects and testing on the remaining one and use the 74

landmarks provided with the dataset. For this evaluation we

test only the orthographic setting. Figure 3a shows the mean

Euclidean distance between dense ground truth and estimated

face surface in mm after Procrustes alignment. We do not use

any regularisation for either algorithm and therefore do not

need to choose the weight parameter. For all subjects SNLS

achieves a lower error, on average reducing it by about 30%.

As a second experiment, we provide a quantitative fitting

comparison on synthetic face images in various poses (rota-

tions of 0◦, ±15◦ and ±30◦ about the vertical axis) which are

rendered in orthographic projection from the out-of-sample

faces supplied by the BFM. We use the algorithm of Zhu et al.

(2015) with the landmarks detected by the automatic method

of Zhu and Ramanan (2012). The fitting method and the land-

mark detector are both publicly available. Table 2 reports the

mean Euclidean distance between ground truth and estimated

face surface in mm after Procrustes alignment. This shows

that our SLNS optimisation provides better overall perfor-

mance and superior results for all poses.

7.2 Perspective Ambiguity

We begin by investigating the perspective ambiguity using

synthetic data. We use the out-of-sample BFM scans to cre-

ate input data by choosing pose parameters and projecting the

faces to 2D. For sparse landmarks, we use the 70 anthropo-

metric landmarks [due to (Farkas 1994)] whose indices in the

BFM are known. These landmarks are particularly appropri-

ate as they were chosen so as to best measure the variability
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Fig. 4 a Mean landmark error (y axis) between perspective and ortho-

graphic projection, averaged over 10 BFM scans, as subject-camera

distance (x axis) is varied. b Subject-camera distance estimation by

least squares optimisation (Color figure online)

Table 2 Quantitative comparison between Zhu et al. (2015) and SNLS

on synthetic data with automatically detected landmarks

Method Rotation angle Mean

−30◦ −15◦ 0◦ 15◦ 30◦

Zhu et al. (2015) 4.63 5.09 4.19 5.22 4.92 4.81

SLNS (ours) 4.53 4.29 4.16 3.99 4.07 4.21

Each cell shows the mean euclidean vertex distance for related pose in

mm

in craniofacial shape over a population. In Fig. 4a, we show

over what range of distances perspective transformation has

a significant effect on 2D face geometry. For each face, we

project the 70 landmarks to 2D under perspective projection

and measure dL with respect to the orthographic projection

of the landmarks. As tz increases, the projection converges

towards orthography and the error tends to zero. The land-

mark error falls below 1% when the distance is around 2.5 m.

Hence, we experiment with distances ranging from selfie dis-

tance (30 cm) up to this distance.

Our first evaluation of the perspective ambiguity is based

on estimating the subject-camera distance as one of the

parameters in the least squares fitting process. We use the out-

of-sample BFM scans as target faces, vary the subject-camera

distance and project the 70 Farkas landmarks to 2D under

perspective projection. We use a frontal pose (r = [0 0 0])

and arbitrarily set the focal length to f = 1. We initialise

the optimisation with the correct focal length and rotation,

giving it the best possible chance of estimating the correct

distance. We plot estimated versus ground truth distance in

Fig. 4b. Optimal performance would see all points falling

on the diagonal red line. The distance is consistently under-

estimated and the mean percentage error in the estimate is

42%. It is clear that the 2D landmarks alone do not contain

enough information to accurately estimate subject-camera

distance as part of the model fitting process.

We now show that landmarks produced by a real 3D face

shape at one distance can be explained by 3D shapes at mul-

Table 3 Quantitative results for the perspective ambiguity on synthetic

data

Actual distance (cm) Fitting distance (cm)

30 60 120 240 Ortho

30 0.21 0.24 0.26 0.27 0.28

7.23 9.70 13.07 14.55 14.47

60 0.30 0.26 0.27 0.27 0.28

8.07 6.29 6.60 6.99 7.48

120 0.37 0.29 0.28 0.28 0.28

9.52 6.17 5.38 5.39 5.62

240 0.42 0.32 0.29 0.29 0.28

10.16 6.72 5.59 5.37 5.38

Ortho 0.47 0.35 0.31 0.30 0.29

11.02 7.43 6.01 5.54 5.29

Each cell shows the landmark error, dL in %, top and surface error, dS

in mm, bottom

tiple different distances. In Table 3 we show quantitative

results. Each row of the table corresponds to a distance at

which we place each of the BFM scans in a frontal pose

before projecting to 2D. We then fit to these landmarks with

the subject-camera distance assumed to be the value shown in

the column. The results show that we are able to explain the

data almost as well at the wrong distance as the correct one

but the 3D shape is very different, differing by over a 1 cm

on average. Note that Burgos-Artizzu et al. (2014) found that

the difference between landmarks on the same face placed

by two different humans was typically 3% of the interocu-

lar distance. Similarly, the 300 faces in the wild challenge

(Sagonas et al. 2016) found that even the best methods did

not obtain better than 5% accuracy for more than 50% of

the landmarks. Hence, the difference between target and fit-

ted landmarks is substantially smaller than the accuracy of

either human or machine placed landmarks. Importantly, this

means that the fitting energy could not be used to resolve the

ambiguity. The residual difference between target and fitted

landmarks is too small to meaningfully choose between the

two solutions.

We now show qualitative examples from the same experi-

ment. In Fig. 5 we show orthographic renderings of perspec-

tive fits to the face shown in the first column. In the first row,

the target landmarks were generated by viewing the face at

30 cm, in the second row the face was at 120 cm. In each

column we show fitting results at different distances. In the

final column we show the landmarks of the real face (cir-

cles) overlaid with the landmarks from the fitted faces (dots)

showing that highly varying 3D faces can produce almost

identical 2D landmarks.

In Figs. 6 and 7 we go further by showing the results of

fitting to sparse 2D landmarks (the Farkas feature points),

landmarks/edges and all vertices for 4 of the BFM scans (i.e.
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Fig. 5 Qualitative perspective face shape ambiguity. There is a subspace of possible 3D face shapes with varying subject-camera distance within

the landmark tolerance. Target face is at 30 cm (first row) and 120 cm (second row) (Color figure online)
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Fig. 6 Sparse and dense fitting of the synthetic images. Target at 30 cm, fitted results at 120 cm (Color figure online)

the targets are real faces). In Fig. 6, the target face is close

to the camera (tz = 30 cm) and we fit the model at a far

distance (tz = 120 cm). This configuration is reversed in

Fig. 7 (200 cm to 60 cm). Since we are only interested in the

spatial configuration of features in the image, we show both

target and fitted mesh with the texture of the real target face.

The target perspective projection to which we fit is shown in

the first and fifth columns. The fitting result under perspec-

tive projection is shown in the second to fourth columns and

sixth to eight columns. To enable comparison between the

target and fitted faces, we render them under orthographic

projection in rows two and four respectively. The landmarks

from the target (plotted as blue circles) and fitted (shown as

red dots) face are shown under perspective projection in the

column nine. We illustrate edge correspondence (model con-

tours) between faces in the tenth column. In the last column,

we average the target and fitted face texture from the dense

fitting result, showing that there is no visible difference in

the 2D geometry of these two images.

The implication of these results is that, in a sample of

real faces, we might expect that two different identities with

different face shapes could give rise to approximately the

same 2D landmarks when viewed from different distances.

We show in Fig. 8 that this is indeed the case. The Caltech

Multi-Distance Portraits dataset (Burgos-Artizzu et al. 2014)

contains images of 53 subjects viewed at 7 different distances.

55 landmarks are placed manually on each face image. We

search for pairs of faces whose landmarks (when viewed at

different distances) are close in a Procrustes sense. Despite

the small sample size, we find a pair of faces whose mean

landmark error is 2.48% [i.e. they are within the expected

accuracy of a landmark detector (Sagonas et al. 2016)] when

they are viewed at 61 cm and 488 cm respectively (second and

fourth image in the figure). In the third image, we blend these
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Fig. 7 Sparse and dense fitting of the synthetic images. Target at 200 cm, fitted results at 60 cm (Color figure online)

488cm 61cm Blend 488cm 61cm

Fig. 8 Perspective ambiguity in real faces. Two faces are shown at

two different distances. The blend in the middle shows that their 2D

geometry is similar when viewed at very different distances (Color

figure online)

two images to show that their 2D features indeed align well.

To highlight that their face shape is in fact quite different, we

show their appearance with distances reversed in columns

one and five (allowing direct comparison between columns

one and four or two and five). E.g. compare column one with

column four. The face in column one has larger ears and inner

features that are more concentrated towards to the centre of

the face compared to the face in column four.

The CMDP data can also be used to demonstrate a sur-

prising conclusion. For all 53 subjects, we compute the mean

landmark error between the same identity at 61 cm and

488 cm which is 3.11%. Next, for each identity we find the

identity at the same distance with the smallest landmark error.

Averaged over all identities, this gives a value of 2.86% for

61 cm and 2.83% for 488 cm. We therefore conclude that 2D

geometry between different identities at the same distance is

more similar than between the same identity at different dis-

tances. If the number of identities was increased, the size of

this effect would likely increase since the chance of finding

closely matching different identity pairs would increase.

7.3 Beyond Geometric Cues

The fitting methods we propose in this paper use only explicit

geometric cues, i.e. landmarks and contours. State-of-the-art

CNN-based methods can exploit any 3D shape cues such

as shading, texture, shadows or context from external face

features such as hair or clothes or even from background

objects. One might suppose that these additional cues resolve

the ambiguity we describe. However, we now show that this

is not the case. We used the pre-trained network of Tran

et al. (2017) which is publicly available. This network is

trained discriminatively to regress the same 3DMM parame-

ters from different images of the same person. If the training

set contained distance variation, then it would be hoped that

the network would learn invariance to perspective ambigui-

ties. We ran the network on images of 53 subjects viewed

at closest and farthest distances from the CMDP dataset

(Burgos-Artizzu et al. 2014). We begin by evaluating the

invariance of the shape reconstructions to changes in distance

by measuring the mean Euclidean distance after Procrustes

alignment between all pairs of 3D reconstructions. This is

a standard metric for comparing 3D face reconstructions,

e.g. Sanyal et al. (2019); Feng et al. (2018). These compar-

isons provides a 106×106 distance matrix. One would expect

that the shape difference of the same subject viewed at two

different distances would be the lowest. However, for the

majority of identities, this is not the case. In Fig. 9a we show

the distance matrix (same identity in consecutive positions)

and in Fig. 9b we binarise this by choosing the best matching

shape for each row. Perfect performance would yield 2 × 2

blocks along the diagonal. We show two examples from this

experiment in Fig. 10. These results show that Tran et al.
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Fig. 9 a Heat map and b binarised distance matrix visualising similarity

between subjects viewed at two different (closest and farthest) distances.

We measured the distances between 3D surfaces acquired by running

pre-trained Tran et al. (2017) on real images from the CMDP dataset.

One would expect 2 × 2 blocks of white on the diagonal if the network

is performing perfectly (Color figure online)

Fig. 10 Tran et al. (2017) regresses face shapes that are more different

for for the same face viewed at different distances (2nd Row: 2.62 mm,

4th Row: 2.5 mm) than for different identities at the same distance (2nd

Row: 1.79 mm, 4th Row: 1.26 mm) (Color figure online)

(2017) has not learnt invariance to perspective transforma-

tion in terms of the metric difference between the shapes

themselves.

Another hypothesis is that the shape parameters them-

selves estimated by Tran et al. (2017) may be discriminative

across distance for the purposes of recognition. We compute

the normalised dot product distance for each shape vector

at one distance against all shape vectors at the other dis-

tance. This allows us to compare the discriminativeness of

the parameters under perspective transformation. We com-

pare against our perspective fitting with either unknown or
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Fig. 11 ROC curves of Tran et al. (2017) and our method in the distance

known and unknown settings on the CMDP dataset (Color figure online)

known subject-camera distance and show ROC curves for all

three methods in Fig. 11. The area under curve (AUC) values

for Tran et al. (2017) and our method with known distances

and unknown distances are 0.866, 0.892 and 0.690, respec-

tively. Using only geometric information and with unknown

distance, it is clear that the estimated shape and hence param-

eters are ambiguous and perform poorly for recognition. Tran

et al. (2017) has clearly learnt some invariance to distance

but performance is still far from perfect on what is a fairly

trivial dataset in the context of face recognition. With dis-

tance known (and hence the ambiguity avoided), even using

only very sparse geometric information we obtain the best

performance.

7.4 Flexibility Modes

We now explore the flexibility that remains when a model

has been fitted to 2D geometric information. There is a sur-

prising amount of remaining flexibility. Using the 70 Farkas

landmark points under orthographic projection in a frontal

pose, the BFM has around 50 flexibility modes that change

the 3D shape by k1 = 2 mm while inducing a mean change

in landmark position of less than k2 = 2 pixels. Restrict-

ing consideration to those flexibility modes where the shape

parameter vector remains “plausible” [i.e. stays within 3 stan-

dard deviations of the expected Mahalanobis length (Patel

and Smith 2016)], the number reduces to 7. This still means

that knowing the exact 2D location of 70 landmark points

only reduces the space of possible 3D face shapes to a 7D

subspace of the morphable model.

In Figs. 12 and 13 we show qualitative examples of the

flexibility modes. We fit to a real image under both ortho-

graphic and perspective projection. We then compute the

first flexibility mode and vary the shape in both directions

such that the mean surface distance is 10 mm. Despite the
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Fig. 12 Orthographic fitting with flexibility modes. 1st Row: landmark and edge fitting. 2nd/3rd Row: the first plus and minus flexibility components.

Landmark distance is 1.14% and surface distance is 10 mm (Color figure online)

Fig. 13 Perspective fitting with flexibility modes. 1st Row: landmark and edge fitting. 2nd/3rd Row: the first plus and minus flexibility components.

Landmark distance is 1.79% and surface distance is 10 mm (Color figure online)
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large change in the surface, the landmarks only vary by

1.14% for orthographic and 1.79% for perspective fitting.

The correspondence when the texture is sampled onto the

mesh remains similar. In other words, three very different

surfaces provide plausible 3D explanations of the 2D data.

8 Conclusions

In this paper we have studied ambiguities that arise when

3D face shape is estimated from monocular 2D geometric

information. We have shown that 2D geometry (either sparse

landmarks, semi-dense contours or dense vertex informa-

tion) can be explained by a space of possible faces which

vary significantly in 3D shape. We consider it surprising

that the natural variability in face shape should include vari-

ations consistent with perspective transformation and that

there are degrees of flexibility in face shape that have only

a small effect on 2D geometry when pose is fixed. There

are a number of interesting implications of these ambigui-

ties.

In forensic image analysis, metric distances between fea-

tures have been used as a way of comparing the identity of two

face photographs. For example, Porter and Doran (2000) nor-

malise face images by the interocular distance before using

measurements such as the width of the face, nose and mouth

to compare identities. We have shown that, after such normal-

isation, all distances between anthropometric features can be

equal (up to the accuracy of landmarking) for two very dif-

ferent faces. This casts doubt on the use of such techniques

in forensic image analysis and perhaps partially explains

the studies that have demonstrated the weakness of these

approaches (Kleinberg et al. 2007).

Clearly, any attempt to reconstruct 3D face shape using

2D geometric information alone [such as in (Blanz et al.

2004; Aldrian and Smith 2013; Patel and Smith 2009;

Knothe et al. 2006; Bas et al. 2016)] will be subject to

the ambiguity. Hence, the range of possible solutions is

large and the likely accuracy low. If estimated 3D face

shape is to be used for recognition, then the dissimilar-

ity measure must account for the ambiguities we have

described. On the other hand, CNN-based methods that learn

to exploit any combination of features cannot necessarily

overcome this uncertainty, as our results show. We believe

that discriminative methods will require richer training data

(either synthetic or real) containing significant variation in

subject-camera distance, including small distances. Typ-

ically, there has been a reliance on web-crawled image

databases, mainly of celebrities. These do not usually con-

tain images at selfie distance and so new databases may be

required.

For some face analysis problems, the purpose of fitting a

statistical shape model is simply to establish correspondence.

For example, it may be that face texture will be processed on

the surface of the mesh, or that correspondence is required in

order to compare different face textures for recognition. In

such cases, these ambiguities are not important. Any solution

that fits the dense 2D shape features (i.e. any from within the

space of solutions described by the ambiguity) will suffice to

correctly establish correspondence.

There are many ways in which the work can be extended.

First, our model fitting approach could be cast in proba-

bilistic terms. By seeking the least squares solution, we are

obtaining the maximum likelihood explanation of the data

under an assumption of Gaussian noise on the 2D land-

marks. Our flexibility modes capture the likely parts of the

posterior distribution but a fully probabilistic setting would

allow the posterior to be explicitly modelled and uncertainty

quantified. Second, it would be interesting to investigate

whether additional cues resolve the ambiguities. For exam-

ple, an interesting follow-up to the work of Amberg et al.

(2007) would be to investigate whether there is an ambi-

guity in uncalibrated stereo face images. Alternatively, we

could investigate whether photometric cues (shading, shad-

owing and specularities) or statistical texture cues help to

resolve the ambiguity. In the case of shading, it is not

clear that this will be the case. Assuming illumination is

unknown, it is possible that a transformation of the light-

ing environment could lead to shading which is consistent

with (or at least close to) that of the target face (Smith

2016).

Reproducible Research

A Matlab implementation of the fitting algorithms, the scripts

necessary to recreate the results in this paper and videos

visualising the ambiguities is available at: http://www-users.

cs.york.ac.uk/wsmith/faceambiguity. For the purposes of creating

the images in this paper, we developed a full featured off-

screen renderer in Matlab. We make this publicly available

at: https://github.com/waps101/MatlabRenderer.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix A SNLS Derivatives

Here we provide all of the derivatives required to optimise

the SNLS objective functions. Specifically, we show how to

compute the Jacobian matrices of the residual functions for
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the orthographic (11) and perspective case linearised via the

DLT (16).

Matrix Derivative Identities

he following identities are used in our derivations.

The derivatives of the axis-angle to rotation matrix func-

tion in (3) are given by Gallego and Yezzi (2015):

∂R

∂ri

=

{

[ei ]× if r = 0
ri [r]×+[r×(I−R(r))ei ]×

‖r‖2 R(r) otherwise

where ei is the i th vector of the standard basis in R
3.

The scalar derivative of the Kronecker product is:

∂(X ⊗ Y)

∂x
=

∂X

∂x
⊗ Y + X ⊗

∂Y

∂x
.

For the special case involving the identity matrix, i.e. where

X = I, this simplifies to:

∂(I ⊗ Y)

∂x
= I ⊗

∂Y

∂x
.

The scalar derivative of the pseudoinverse A+(x) of A at

x is given by:

∂A+

∂x
= − A+ ∂A

∂x
A+ + A+A+T ∂AT

∂x
(I − AA+)

+ (I − A+A)
∂AT

∂x
A+TA+

Orthographic Case

The derivatives of the matrix A(r, s) are given by:

∂A

∂s
=

[

(IL ⊗ PR(r)) QL 1L ⊗ I2

]

,

∂A

∂ri

=

[

s
(

IL ⊗ P ∂R
∂ri

)

QL 02L×2

]

.

The derivatives of the vector y(r, s) are given by:

∂y

∂s
= (IL ⊗ PR(r)) s̄

∂y

∂ri

= s

[(

IL ⊗ P
∂R

∂ri

)

s̄

]

.

From the components above we can compute the deriva-

tives of the residual function:

∂dortho

∂s
=

(

A(r, s)
∂A+

∂s
+

∂A

∂s
A+(r, s)

)

y(r, s)

+ A(r, s)A+(r, s)
∂y

∂s
−

∂y

∂s
,

∂dortho

∂ri

=

(

A(r, s)
∂A+

∂ri

+
∂A

∂ri

A+(r, s)

)

y(r, s)

+ A(r, s)A+(r, s)
∂y

∂ri

−
∂y

∂ri

.

Finally, the Jacobian, Jdortho(r, s), is obtained by stacking

these four vectors into a 2L × 4 matrix:

Jdortho(r, s) =

[

∂dortho
∂r1

∂dortho
∂r2

∂dortho
∂r3

∂dortho
∂s

]

.

Perspective Case

The derivatives of the matrix B(r, f ) are given by:

∂B

∂ f
= D

∂E

∂ f
F(r) and

∂B

∂ri

= DE( f )
∂F

∂ri

,

where

∂E

∂ f
= IL ⊗

∂K

∂ f
and

∂F

∂ri

=

[(

IL ⊗ ∂R
∂ri

)

QL 03L×3

]

,

and

∂K

∂ f
=

⎡

⎣

1 0 0

0 1 0

0 0 0

⎤

⎦ .

The derivatives of the vector z(r, f ) are given by:

∂z

∂ f
= −D

(

IL ⊗

[

∂K

∂ f
R(r)

])

s,

∂z

∂ri

= −D

(

IL ⊗

[

K( f )
∂R

∂ri

])

s.

From the components above we can compute the derivatives

of the residual function:

∂dDLT
persp

∂ f
=

(

B(r, f )
∂B+

∂ f
+

∂B

∂ f
B+(r, f )

)

z(r, f )

+ B(r, f )B+(r, f )
∂z

∂ f
−

∂z

∂ f
,

∂dDLT
persp

∂ri

=

(

B(r, f )
∂B+

∂ri

+
∂B

∂ri

B+(r, f )

)

z(r, f )

+ B(r, f )B+(r, f )
∂z

∂ri

−
∂z

∂ri

.
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Finally, the Jacobian, JdDLT
persp

(r, f ), is obtained by stacking

these four vectors into a 3L × 4 matrix:

JdDLT
persp

(r, f ) =

[

∂dDLT
persp

∂r1

∂dDLT
persp

∂r2

∂dDLT
persp

∂r3

∂dDLT
persp

∂ f

]

.
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