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1. Introduction 

As one of the most representative indicators to personal health and well-

being, effective and efficient Physical Activity Recognition and Measure 

(PARM) has been posing great significance on a wide range of clinical 

practice and health applications. Objective assessment of physical 

activity (PA) will provide a personalised manner for various people with 

chronic disease in terms of a series of behaviour analysis [1]. A World 

Health Organization (WHO) survey has identified physical inactivity as 

the fourth leading risk factor for global mortality causing an estimated 

3.2 million deaths [2]. Low levels of PA are detrimental to health and 

functioning of older people, and may cause many chronic diseases such 

as diabetes, obesity, cancers, etc.  

To date, a large amount of studies of PARM have been carried out in a 

variety of smart healthcare applications. The primary goal of PARM is 

to recognize the type, duration, intensity of a wide range of activities and 

quantify their associated parameters like the energy expenditure. Among 

these studies, multiple sensor data fusion approaches for PARM have 

been increasingly utilised due to its remarkable accuracy on 

classification and estimation. Typical workflow of these methods is to 

first place multiple sensors [3–5] at different locations on the human-

body, and extract distinguished features from these sensors, finally 

investigate machine learning or data fusion algorithms for training these 

features into specific several activity subjects [6–9]. For example, 

support vector machines (SVM) have been studied in fall detection [10], 

gesture classification [11], electroencephalogram artifact removal [12], 

etc. K-nearest neighbor (KNN) and Bayes technique have been 

investigated for classifying PA types from either single accelerometer  
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Due to importantly beneficial effects on physical and mental health and strong association with 
many rehabilitation programs, Physical Activity Recognition and Measure (PARM) has been widely 
recognised as a key paradigm for a variety of smart healthcare applications. Traditional methods for 
PARM relies on designing and utilising Data fusion or machine learning techniques in processing 
ambient and wearable sensing data for classifying types of physical activity and removing their 
uncertainties. Yet they mostly focus on controlled environments with the aim of increasing types of 
identifiable activity subjects, improved recognition accuracy and measure robustness. The 
emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to an 
open and dynamic uncontrolled ecosystem by connecting heterogeneous cost-effective wearable 
devices and mobile apps and various groups of users. Little is currently known about whether 
traditional Data fusion techniques can tackle new challenges of IoT environments and how to 
effectively harness and improve these technologies. In an effort to understand potential use and 
opportunities of Data fusion techniques in IoT enabled PARM applications, this paper will give a 
systematic review, critically examining PARM studies from a perspective of a novel 3D dynamic 
IoT based physical activity collection and validation model. It summarized traditional state-of-the-
art data fusion techniques from three plane domains in the 3D dynamic IoT model: devices, persons 
and timeline. The paper goes on to identify some new research trends and challenges of data fusion 
techniques in the IoT enabled PARM studies, and discusses some key enabling techniques for 
tackling them. 
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[13] or multiple types of sensors [12]. Artificial neural network (ANN) 

and decision tree model are also used for PA recognition with fusing data 

from accelerometers and GPS [14]. While these techniques have 

demonstrated good classification results in PARM application, their 

utilisation is subject to a number of constraints: 1) a prior knowledge and 

intuitive modelling of different PA activities are required to build a 

classification model. 2). Features of many complexed or translational PA 

are too weak and insensitive to be recognised. 3). They are only suitable 

to the experimental controlled environments with small variations and 

little influencing issues, but hardly copy with uncontrolled environment. 

Apart from that, recent emergence of the Internet of Things (IoT) 

enabling technology is transferring PARM studies to an open and 

dynamic uncontrolled ecosystem by connecting heterogeneous cost-

effective wearable devices and mobile apps and various groups of users. 

This trend even poses more challenges in expanding traditional data 

fusion technique into IoT ecosystem. Foerster et al. [15] demonstrated 

95.6% of accuracy for PARM in a controlled data collection experiment 

but dropped to 66% in an uncontrolled environment. Another 

investigations reported in [16][17] also found the same results. The 

crucial factor is that the free living environment contains numerous 

uncertainties, capturing one’s entire life using digital devices for health 
and wellness becomes extremely difficult [18]. The uncertain factors 

include the quantity of wearable sensors, battery and capacity 

consumptions and personalised physical characteristics.   

    To our knowledge, data fusion are effective approaches to reduce 

uncertainties, enhance reliabilities, and improve recognition accuracy 

and precision. Multi-sensor data fusion techniques have a mature 

foundation and provide satisfactory performances in many subjects of 

activities. Some surveys also have well summarized them from the 

perspective of view of techniques’ level in sensing, feature and learning 
fusion [12]. However, little work has been systematically surveyed on 

whether existing data fusion techniques can be extended to real living 

environment for lifelogging PARM applications. For instance, typical 

IoT enabled PARM applications include: 1) abnormal behaviours or 

activity identification from life-long high-volume data or activity and 

physical states changes towards independent living elder citizens. 2) 

How to offer assisted information for physicians to carry out medical 

intervention and PA recommendation. In these IoT personalized 

healthcare environments, PA data are discretely daily basis from 

globally heterogeneous third party devices. Traditional multi-sensor data 

fusion methods in PARM hardly deal with these scattered and 

heterogeneous data. Also, due to diversity and changes of personal 

lifestyles, lifelogging physical activity (LPA) data in IoT enabled 

personalized healthcare systems has remarkable uncertainties. 

In an effect to understand advanced data fusion technology in IoT 

enabled PRAM, this paper conducts a survey on recent advanced data 

fusion technology from the perspective of a novel 3D dynamic IoT based 

physical activity collection and validation model [19]. As shown in Fig. 

1, the review is taking consideration of three aspects of PA data fusion 

from devices, persons and timeline, respectively. Each plane is made of 

two fusion dimensions: Devices × Timeline, Persons × Devices and 

Timeline × Persons. The first one emphases multi-device fusion applied 

on different group of people. The second one is to utilise a single device 

to adopt different group of people for lifelogging PARM and the third 

one is to fit multi-device fusion to different group of people. 

We undertook an extensive literature review by examining relevant 

articles from major academic databases (IEEE Xplore, ACM digital  

Figure 1. Concept of an IoT-based data fusion of PARM 

library and Science-Direct). Key search terms include the key words 

‘wearable computing’, ‘data fusion’, ‘sensor fusion’ and ‘activity 

recognition’ and a wide range of other technologies. In addition, we 
reviewed the research projects related to IoT, e-health, smart healthcare, 

etc, by searching from EU, TSB and EPSRC funded projects. Our review 

focuses on identifying the breadth and diversity of existing research in 

advanced data fusion techniques in IoT enabled PRAM, including from 

three aspects in an IoT platform: devices, persons and timeline. The 

paper goes on to identify some new research trends and challenges of 

data fusion techniques in the IoT enabled PARM studies, and discusses 

some key enabling techniques for tackling them.  

   The rest of the paper is organized as follows. Section II presents the 

survey methodology of this paper. Section III, IV and V separately 

review key enabling technologies from device-timeline, device-person, 

and person-timeline. Section VI discusses research challenges and future 

trends. Conclusion is given in Section VII. 

2. Methodology  

2.1 IoT based PA data acquisition model 

Our survey methodology is based on our work related to lifelogging data 

validation model LPAV-IoT [33], which has concerned the acquisition 

of physical activity data in an IoT environment from three aspects: 

devices, person and timeline.  

Figure.2 shows the data of PA collected from an IoT environment, PA 

data are measured as a 3D cube which are type of devices, number of 

persons and timeline. In terms of increment in any dimension results in 

an expansion of the PA data grid, the fusion techniques are categorised 

into three 2D plane (Persons × TimeLine), which refers to scenarios that 

single device is used by increasing population over time. PAR with 

sensing level fusion appears on a 2D plane (Devices × TimeLine) for 

classifying individual person’s activities with historical PA data.  And 

another 2D plane (timeline × persons) demonstrates the flexibility of 

existing sensors performance on PARM. Categories and their 

explanation are shown in the Table 1.  
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Figure 2. PA data collection and validation in IoT ecosystem [33] 

   As shown in Figure 2, The model validates the workflow of PA as a 

dynamic recursive process along the time axis. Validation rules are 

initiated by entering a set of historical raw PA data in the 3D model, and 

then is exploited to verify the existing PA. Historical raw PA data would 

expand with more users or devices over time. Also, the validation rules 

can be dynamically updated through new PA data. In addition, the 3D 

model provides a configuration for adding information of people and 

device dimensions. It adaptively supports requirements from different 

users or groups.  

    In the model, the plane of devices and timeline refers to multiple 

devices attached on different part of an individual’s body, especially 
targeting on a specific type of group such as age or heathy statues. The 

PA data are scattered along with timeline axis, so as to monitor 

lifelogging PA. It tends to be, however, impractical and uncomfortable 

to place multiple devices/sensors on an individual’s body for permanent 

monitoring.  Whilst the current requirements of power and consumption 

of the motion devices may also lead to difficulties in PARM in free living 

environment. For that purpose, the fusion procedures are normally 

achieved in sensory level. Typical approaches include Kalman filtering 

[20][21] and weight average [12]. Also, some commercial devices like 

Fitbit (a wristband) [22] or Moves (an mobile app) [23] with wrapped 

and processed datasets (i.e., steps or calories) are exploited in our 

previous work [19,24,25] for lifelogging PA monitoring under such 

uncontrolled environment.  

   The plane of persons and devices is to attaching multiple devices on 

an individual’s body in order to adapt to different group of subjects with 
different physical characteristics for a short-term PA recognition mostly 

in the lab or uncontrolled environment. The data collected through 

precise motion devices (e.g., Shimmer TM) [7,26–28]. Advanced 

machine learning algorithms are the popular approaches adopted in this 

circumstance for multiple sensors’ fusion. However, due to the diverse 
physical characteristics, different people may perform PA in different 

manners, the training model fits one type of group may not be fit another 

one, thus, two types of PAR adaptability method are proposed which are 

subject dependent and subject independent [29]. The first one is to use 

fold cross-validation over each subject’s data and averaged the results 
over all the subjects. The latter one is to train the model with the data of 

all the subjects but leave one subject out validation method. Owing to 

the controlled PA settings and less expensive labelling, the grid of fusion 

of persons and devices is capable to achieve high recognition rate in 

variety of PA types across numerous subjects.  

The plane of timeline and people represent with only one device 

continuously long-term monitor PA in a number of PA patterns 

especially in free living environment, which are optimal state but one of 

the most challenging issues at the moment. The output of one sensor, on 

the other hand, may vary at different placement of an individual’s body. 
As such, position-dependent and position-independent theories are 

proposed to address the issue.  

 

    Table 1. PARM fusion concepts, keywords and their descriptions 

Fusion 
concept 

Fusion 
keywords 

Description 

 

Device × 
Timeline 

 

Multiple 
sensors + a 

single group + 
lifelogging 

Use multiple wearable or 
ambient devices for a group of 

people with the similar physical 
characteristics (e.g., height, 

weight, age) for long-term PA 
monitoring in uncontrolled 

environment. 

 

Persons × 
Devices 

Multiple 
devices + 

multiple groups 

Use multiple wearable or 
ambient devices to adapt 

different groups of people with 
the different physical 

characteristics (e.g., height, 
weight, age) for short term PA 

recognition, mostly in 
controlled environment. 

 

Timeline × 
Persons 

A single device 
+ multiple 
groups + 

lifelogging 

Use a single wearable device to 
adapt on different groups of 

people with the different 
physical characteristics (e.g., 
height, weight, age) for long-

term PA monitoring, in 
uncontrolled environment. 

 

2.2 Sensor Categories for PARM 

The first one is to mount a single sensor on a certain place of the body 

such as hip [16], [17], back [30], wrist [43], chest [43], waist or thigh 

[36]. Even the same PA from different placement may lead to various 

results.  For example, Purwar  et al [37] found that placement on the 

chest is better than the wrist in fall detection. Whereas from the 

perspective of fusion of timeline and persons, fixing at a specific position 

would limit recognised PA types and impede long-range monitoring in a 

real daily environment, so the other method is to allow the device/sensor 

to put on any part of an individual,’s body and thus improve its 

flexibility. For instance, Khan et al [38] validate an accelerometer freely 

carried in any  pocket of the body and achieved 94% accuracy in 

dynamic and static PAR rate.  

Sensing techniques are adopted for the identification of objects and 

gathering information from sensors, tags, etc. Figure 3 presents some 

typical wearable sensor categories. The development of low-cost and 

small-in-size wearable inertial sensors such as accelerometer, gyroscope 

and physiological sensors such as ECG, skin temperature sensor, also 

commercial wearable devices such as wrist band or smart phones, with 

imbedded GPS localization, Bluetooth etc., have facilitated the process 

of measuring an individual PAs.  An individual’s interaction with objects 
need to be assessed for home-based activity recognition like watching 

TV. For these purposes, low-cost, easy-to-install on-object sensors (e.g., 

environment sensors, binary sensors or RFID) can provide this data in 

an unobtrusive and private way. Environmental sensors are used for 
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measuring indoor environmental conditions such as humidity, 

temperature and energy [39,40]. Binary sensors can sense an object’s 
state with a digit of 0 or 1, representing on/off, open/close [53] . Indoor 

localization sensors include Bluetooth, Radio-Frequency Identification 

(RFID) [44,45] and outdoor localization such as GPS [46,47].  

 
Figure 3. Typical sensors categories for PARM 

2.3 Data Fusion Categories for PARM 

    In typical multi-sensor data fusion study, the categories of the data 

fusion methods have already been explored by many researchers [72-

74]. The data fusion methods could be categorized as probabilistic, 

statistic, knowledge base theory and evidence reasoning methods. As 

shown in Table.2, probabilistic methods include Bayesian analysis of 

sensor values with Bayesian networks, state-space models, maximum 

likelihood methods, possibility theory, evidential reasoning and, more 

specifically, evidence theory, KNN and least square-based estimation 

methods, e.g., Kalman filtering, optimal theory, regularization and 

uncertainty ellipsoids. Secondly, statistic methods include the cross-

covariance, covariance intersection and other robust statistics. Thirdly, 

knowledge base theory methods include intelligent aggregation 

methods, such as ANN, genetic algorithms and fuzzy logic. Finally, the 

evidence reasoning methods include Dempster-Shafer, evidence theory 

and recursive operators. Depending on the research purpose of the data 

fusion, these methods have advantages and disadvantages presented. We 

will use this category to carry out our review in this paper.  

3. Data fusion from device and timeline  

Data fusion from devices and timeline refers to multi-sensor data fusion 

technique for individual person based PARM. An amount of studies has 

been carried out for one or more subjects targeting on different Scenes. 

Some typical works are shown in Table. 3. Results have a high accuracy 

and there is a low computational load on each sensor. To distinguish 

more PA types, placing multiple sensors/devices across the participant’s 
body. There are three multimodal data fusion methods shown in the table 

3: fusion of wearable sensors consisted of consistent datasets such as 

signals, fusion of high-level device comprised with discrete datasets like 

the context-aware sensor types, last is the hybrid data fusion from the 

both sources. 

 However, battery consumption of the devices is high when increasing 

timeline operation. Also, numerous sensors attached on the human’s 
body is obtrusive and uncomfortable in daily lives, reduction of quantity 

may cause the reduction of accuracy. Whilst the training models may 

suffer from performances in natural environment due to a majority of 

uncertain factors.                                                                                                                  

       Table 2. Category of typical data fusion methods 

Methods Advantages Disadvantages 

 

Probabilistic 
methods 

Model estimation, 
allow 

unsupervised 
classification  

Require a prior 
knowledge of 
information, 

Classification depends 
on the starting point  

 

Statistical 
methods 

High accuracy,  

Robust with 
unknown cross-

covariance  

Complexity and larger 
computational burden 

 

Knowledge based 
theory methods 

Easy to 
implement, 

Inclusion of 
uncertainty and 

imprecision,  

Robust to noisy 
data 

Learning ability  

Require the intervention 
of human expertise,  

Lack of transparency of 
data,  

Difficulty in 
determining the size of 

hidden layer 

Evidence 
reasoning 
methods 

Assign a degree to 
uncertainty to 
each source  

Assigning a degree of 
evidence to all concepts  

    Fusion of consistent datasets is by placement of multiple inertial 

sensors (e.g., accelerometers, gyroscope, etc.) across the human body 

which is capable to facilitate the process of recognition performance 

through fusion of sensing level and learning level, respectively. From the 

perspective of timeline longitude, by combing accelerometers with other 

sensor types such as GPS is a significant setting to improve accuracy. In 

the sensing level, Kalman filtering [20][21], weight average, and 

component analysis are the typical approaches to process the sensor 

signals. The match scores from the different models are then fused on 

the score level to generate a final recognition decision. Score level fusion 

is the most commonly used in recognition systems [31] as the some 

feature sets from multiple models may not be compatible and it is 

therefore easier to access and combine scores created by different 

subsystems. Other works have more focused point on the learning level 

fusion through machine learning approaches Classifying PA using 

features extracted multiple sensors or a network of accelerometers have 

typically made use of the K-nearest neighbor (KNN) and naïve Bayes 

(NB) techniques [12], etc. For example, using an SVM algorithm to fuse 

data collected from various sensors is investigated by [48] in order to 

more accurately determine the PA. This is done using SVM as it can 

calculate a decision boundary to separate activities from one another. For 

multiple activities, they take a “one against one” approach to separate 
them and produce a model for each. Each model produced will be tested 

against a data point, which will then receive a vote to decide which 

activity should be associated to it. The activity with the majority of votes  
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Table 3. Typical works of data fusion from devices and timeline 

Works Persons and devices Approaches Advantages Disadvantages 
Sensor/Devices Group of 

Persons 
Analytic or 

Fusion 
approaches 

Targeted 
activities 

Result 

 
 
 
 

Multi-
Sensor 
Signal 
Fusion 

 
 

2 3D ACC, 1 
ventilation 
sensor 

50 
persons 

SVM [49] 
 

Postures, vacuum, 
cycle, play balls, 
work 

89.3% 
accuracy 

 

Measure PA 
types and 
associated 
data e.g., 
intensity 

Experiment 
carried out in 
controlled 
environment 

1 ECG, 1 ACC Multiple 
subjects 

SVM, GMM 
[31] 

Postures, play 
games, brisk walk, 

slow walk, run 

79.3%-
97.3% 

accuracy 

Multi-
modality 

fusion 

Less robust 
system due to 

sensitive signals 
5 biaxial ACCs 20 

subjects 
KNN [14] ambulation, 

posture, stretch, 
laundry, brush 

teeth, eat, drink, 
read, vacuum 

43%-
97% 

accuracy 

One type of 
sensor 

applied in 
context-aware 
environment  

Results and data 
from controlled 

environment  

1 3D acc, 1 3D 
gyro, 1 3D 
magnetic 

8 subjects Kinematic 
modelling 

[50] 

circular, reach, 
hand to mouth, 

flexion-extension, 
elevation 

95%-
98% 

accuracy 

Robust and 
easy setup on 
home-based 

stroke 
rehabilitation 

High cost 

 
1 3D seismic 
acc＄3 gyro 

15 older 
patients 

Statistics for 
each axis [51] 

lying-to-sit-to-
stand-to-walk 
(LSSW) test 

90%-
100% 

accuracy 

Fall detection 
for elderly 

and patients  

Limited test 
conditions  

 
 
 
 
 
 
 
 
 
 

Multi-
Sensor  

Data fusion  
 
 
 

 
Ambient 

sensors, mobile 
phone 

 
One 

person 

Relational 
transformatio

n [52] 

Read newspaper, 
eat and drink 

75.4 ± 
7.8 F-

measure 

Better 
performance 
over HMM 

on ADL 

Only two 
activities 
evaluated 

Ambient 
sensors 

One 
person 

temporal 
evidence 

theory [53] 

Toilet, shower. 
dinner, breakfast, 
sleep, drink, leave 

house 

0.68 F-
measure 

No need a 
large number 

of training 
data  

Less suitable for 
mapping of 
sensors to 
activities 

Ambient 
sensors 

One 
person 

 
Dempster–

Shafer theory 
[54] 

Get drink, 
prepare dinner, 

and prepare 
breakfast 

0.82 
Precision 

0.32 
Recall 
0.46 F-
measure 

Reduce 
uncertainties 
of multiple 

sensors 

 
Results 

obtained in 
controlled 

environment 

Ambient 
sensors 

One 
person 

Ontology [55] Activities of Daily 
Living 

94.44 
accuracy  

No need a 
large number 

of training 
data 

Rules need to be 
predefined 

 
 
 
 

Cross 
Device and 

Sensor 
Data fusion 

 
 

1 3D ACC, 1 
wearable 

camera and 
microphone 

Many 
people 

SVM [56] Run, go 
downstairs/upstair
s, take an elevator, 
walk forward, etc 

90%-
99% 

accuracy 

Can be used 
in lifelogging 

health 
monitoring 

Capacity of 
large number of 
images are not 

mentioned 
1 watch with 1 
acc, 1 gyro, 1 

iPhone 4 

43 
subjects 

Bayes [57] Belt on waist, 
thigh, shank 

79%-
95% 

accuracy 

Long-term 
monitoring 

inconvenient 
phone 

placement on 
wrist  

6 mobile 
devices and 2 
smartphone 

apps 

44 people Gold 
Standard 
Measures 

[77] 

Five health 
indicators 

 
N/A 

As a PA 
related 

function 
outcome 

No fusion 
method 

7 wearable 
devices 

60 people DPAS [78] EE and HR N/A As a PA 
related EE 
outcome 

No fusion 
method 

will be identified as the new data point that the activity is 

associated with. For many applications in machine learning, the 

use of all relevant data to extract more information from multiple 

sources can achieve a desired increase in accuracy [58]. 

Consulting multiple classifiers and combining the outputs always 

tend to provide a performance increase compared to using an 

individual classifier [59]. Data fusion of persons and devices can 

be achieved by employing available information from each model 

that complements one another. Feature level fusion is proposed 

by [31], which requires feature sets from multiple models to be 

compatible. Their aim is to fuse two feature sets in order to 

produce a new feature vector that can more accurately represent 

a physical activity. Only different axis features from 

accelerometers were used in the feature level fusion from the 

cepstral domain. This is due to cepstral features may not be 

compatible with temporal features and the calculation for 

temporal features is greater. 

Fusion of high-level devices make use of ambient sensors (e.g., 

RFID) or wearable camera at context-aware and home-care 
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elderly environment for long-term monitoring. With installing of 

numerous ambient sensors, A knowledge driven approach is the 

mostly used for continuous activity recognition. Defining profiles 

for each activity performed based upon gathered knowledge can 

greatly improve activity recognition [60]. A knowledge-based 

approach addresses the difficulty in modelling activities of daily 

living due to their diversity and flexibility by providing a unified 

model [61]. Knowledge of the environment, events and how a 

person performs an activity contribute to how results are 

modelled. The data-centric models proposed by  [61] makes 

extensive use of domain knowledge in the activity recognition life 

cycle. A knowledge-based approach addresses the challenges of 

modelling activities due to the diversity in daily living activities 

and the flexibility when performing them by providing an 

ontological model. Ontological models can model daily activities 

as generic activity structures for example: the terminology for 

daily activity ontologies and specific user activity profiles. Eight 

daily activities that are typical in the home environment were 

select for [61] experiment. For each activity, an appropriate 

sensor was attached to an object. For example, a kettle had a tilt 

sensor attached to it to detect the pouring of water. The 

performance of each activity is specified based upon domain 

knowledge. Three male participants took place in the experiment 

and repeated each activity three times. An interval of thirty 

seconds was set between two consecutive actions. Collected data 

was used for activity model learning and user profile learning. 

Furthermore, the purpose to use the probabilistic reasoning is to 

handle ambiguous and noisy information from multiple sensors 

in smart home. A typical work like [62], 77 low-cost 

environmental sensors are installed in occupants’ homes which 
are uncontrolled living environments to detect specific activities 

to medical professionals such as toileting, bathing and grooming. 

It is to encode large numbers of binary temporal relationships in 

the naive Bayesian network classifier with a feature window for 

each activity duration. Similar studies [63][64] propose 

Dempster–Shafer theory of evidence (DST)-based structure to 

incorporate the uncertainty derived from the sensor errors in a 

context-aware environment. Activity “toileting” as a typical case 
study in [64] makes use of five sensors (toilet light, bathroom hot 

tap sensor, bathroom cold tap sensor, bathroom cabinet sensor 

and flush sensor) under the condition of unavoidable and 

unpredictable sensor errors. 

      In the hybrid data fusion method, combinations of wearable 

camera, wearable sensors and ambient sensors are the key tools 

for lifelogging activity monitoring. The wearable camera is a 

form of visual lifelogger that can be worn over one’s neck. It is 
explored as an everyday activity data recorder via computer 

vision techniques. Compared with surveillance cameras, its 

personal privacy is highly improved. Y. Nam et al. [56] present 

lifelogging PA monitoring using wearable camera and 

accelerometer with optical flow for video processing.  A series of 

rules are defined based on Priority Maximum Values to identify 

PA. The work also compared the results of each sensor and sensor 

fusion toward nine PAs like taking elevator, walking forward, 

going upstairs, etc.  The fusion approach gives overall recognition 

accuracy over 92.78%. Similarly, Using an SVM algorithm to 

fuse data collected from various sensors is investigated by [49] in 

order to more accurately determine the physical activity. This is 

done using SVM as it can calculate a decision boundary to 

separate activities from one another. For multiple activities, they 

take a “one against one” approach to separate them and produce 
a model for each. Each model produced will be tested against a 

data point, which will then receive a vote to decide which activity 

should be associated to it. The activity with the majority of votes 

will be identified as the new data point that the activity is 

associated with. A system based on a network of multiple 

wireless-interconnected-medical sensors is proposed by the work 

[34]. This setup allows for the collection of medical data from 

typical daily activities. They note that the typical solution of a 

single versatile system is less flexible and takes longer to design 

and implement. Instead, the multi-sensor solution provides the 

benefit of the components being ready to use.  

4. Data fusion from persons and devices 

Differing with multi-sensor data fusion techniques, data fusion 

from persons and devices is based on a fact that an IoT enabled 

platform will be connected with heterogeneous devices and be 

used by a large group of populations. The data fusion techniques 

in this 2D plan is similar to multi-devices data fusion approaches, 

but we only concern one type of PA associated data. Meanwhile, 

due to difference of physical fitness and acceptance of wearable 

devices, persons wearing different devices will produce PA data 

with huge uncertainty. The qualitative identification of impacting 

factors and quantitative measure their impacts to IoT enabled PA 

data are key to data fusion approaches. There are work  [28,65] in 

studying intrinsic and extrinsic factors through wearable data 

analytic and comparison in multiple devices. Lastly, some 

standardized PA measure scores have been built up for 

specifically validating and benchmarking PA fitness cross 

devices and persons. Consequently, we category the work in this 

direction into three subjects: 1) Multi-devices data fusion, 2) 

Multiple devices data analytic, 3) Cross-device PA assess 

indicator.  

       Multi-devices data fusion techniques have been studied for 

decades, especially fusing in wireless sensor network or indoor 

localization. For instance, Yuan [66] et al. have proposed an 

effective Twi-Adaboost algorithm for pursing the location data 

fusion of smart watch and smart phone, which reduce the 

localization errors up to 0.387m on X axis and 0.398m on Y axis. 

This data fusion approach offers better localization accuracy than 

Generalized Regression Neural Network (GRNN) [67], Support 

Vector Regression (SVM) [68] and Linear Regression [69]. Also, 

the study [70] developed a mobile phone based open pervasive 

wearable data fusion platform WearableHuB for real-time 

personal health management. In this method, they represent a case 

that fusing wristband and glasses with a probabilistic vector 

fusion enable accuracy fall detection. But the limitation of these 

work to PARM is that their targets are not directly associated PA 

data. But we believe these multi-device data fusion approaches 

can be used in PARM cases.  

    Regarding to multiple wearable device data analytic, it 

focuses on studying a variety of wearable devices in the market 

regarding their accuracy in data acquisition. Barrett, et al. [71] has 

compared the accuracy and robustness of two wearable devices 

(Fitbit and ActiGraph) in bouts and intensity of PA. The results 

show that Fitbit is more suitable to large-scale PA assessment, 

with accuracy 62-100% over 16 PA subjects in 19 volunteers.  
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Table 4. Typical works of data fusion from persons and devices 

Works Persons and devices Approaches Advantages Disadvanta
ges Devices Group of 

Persons 
Analytic or 

Fusion 
approaches 

Targeted 
activities 

Result 

 
 
 
 

Multi-
Device 
Data 

Fusion 
 
 

 
Smart Phone, 
Smart Watch 

 
 

one 
person 

Twi-AdaBoost 
[66] 

 
User 

Location 

0.38m in X, 
0.39m in Y 

Good location 
results by fusing 

the co-occurrence 
correlation, 
Low cost. 

 
Not direct 
measure 

PA 
associated 

data. 

GRNN [67] 0.79m in X, 
1.06m in Y 

SVM [68] 5.07m in X, 
6.47m in Y 

LR [69] 6.74m in X, 
7.72m in Y 

 
Wrist band, 

Smart Glasses 

One 
Person  

Offline Extreme 
Learning 

Machine + 
Probability 
vector [70] 

Fall 
detection  

N/A can be used for 
dynamic health 

monitoring. 

Not sure 
about the 
accuracy 

 
 
 
 
 
 
 
 
 
 

Multiple 
Wearable 

Device 
Data 

Analytic  
 
 
 

 
ActiGraph, 

 
Fitbit  

 
19 

volunteer
s 

 
Statistical 

significance 
[71] 

Frequency 
and 

Duration of 
Bout, 
PA 

Intensity 
Level 

Fitbit 
accuracy 62-

100% 
AG accuracy 

25-64% 

Fitbit has more 
potential for 

largescale PA 
assessment study. 

Not 
consider all 

possible 
population. 

Fitbit flex, 
Polar Loop 

Two 
persons 

 
Mean, STD [75] 

Steps count 
and 

distance 

Fitbit 
accuracy +4% 
PL accuracy -

11% 

Fitbit Flex is more 
accuracy for 

Distance measure. 

Not 
consider all 

possible 
population 

Fitbit, 
Nike Fuelband, 

Nike 
Sportsband, 

Moves, 
Pedometers 

One 
person 

 
Mean, STD, 

data correlation 
[75-76] 

Steps count 
and 

distance 

Fitbit 
accuracy +1% 

for step 
recording, 
Nike Fuel 

band 
accuracy -8% 

Fitbit Flex is the 
best one for step 

recording. 
 

Move is the worst 
one for step 
recording 

 
Not 

consider all 
possible 

population 

Flex, One, 
iHealth, Vifit, 

Withings, 
Jawbone, 

Moves 

One 
person 

Mean, STD [33] Steps, 
Distance, 
Calories 

Fitbit one 
accuracy STD 

+1.5%, 
Moves 

accuracy STD 
25% 

Fitbit Flex is the 
best one for step 

recording. 
Move is the worst 

one for step 
recording 

 
Not tested 
all possible 
population 

 
 
 
 

Cross-
device PA 

assess 
indicator 

 
 

No specific 
devices 

Many 
people 

MAPS Score 
[81] 

PA 
intensity 

level 

 
N/A 

As a PA related 
function outcome 

No fusion 
method 

7 wearable 
devices 

30 people DPAS [33] PA 
intensity 

level 

 
N/A 

As a PA related 
function outcome 

No fusion 
method 

6 mobile 
devices and 2 
smartphone 

apps 

44 people Gold Standard 
Measures [77] 

Five health 
indicators 

 
N/A 

As a PA related 
function outcome 

No fusion 
method 

7 wearable 
devices 

60 people DPAS [78] EE and HR N/A As a PA related 
EE outcome 

No fusion 
method 

Similarly, Schneider [75] has compared Fitbit Flex and Polar 

Loop in measuring steps count and walking distance in a simple 

experiment. It shows that Fitbit Flex gives rough 5% up to 

accuracy than Polar loop, which is more suitable to PA measure. 

The work in [76] has examined the performance of five key 

wearable devices that record the physical activity of a user 

throughout a day in terms of accuracy, type of data provided, 

available APIs, and user experience. The results also show that 

Fitbit is the best one for step recording, with only 1% accuracy 

error. From above work, it appears that there are definitely some 

intrinsic tracking errors with different wearable devices. But to 

quantitatively identify these errors enable a simple and easy mode 

of data-fusion process. The only issue is that the impact of these 

errors might differ with different possible group of populations. 

It needs to be weighted in future fusing these PA data.  

Apart from above work sorely comparing performance of 

wearable devices on one person, some researchers have begun to 

consider evaluating cross-device PA assess indicator like energy 

expenditure (EE), distance, level of PA, etc among a large group 

of population. Xi et al. [77] has evaluated six devices (Apple 

Watch 2, Samsung Gear S3, Jawbone Up3, Fitbit Surge, Huawei 

Talk Band B3, and Xiaomi Mi Band 2) and two smartphone apps 

(Dongdong and Ledongli) in 44 healthy participants; the authors 

measured five major health indicators (HR, number of steps, 
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distance, energy expenditure, and sleep duration) under various 

activity states (resting, walking, running, cycling, and sleeping) 

against gold standard measurements. The tested wearables had 

high measurement accuracy with respect to heart rate, number of 

steps, distance, and sleep duration, but EE measurements made 

by these wearables were associated with lower measurement 

accuracy. Also, Shcherbina et al. [78] tested seven wrist worn 

devices (Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, 

Mio Alpha 2, PulseOn, and Samsung Gear S2) in estimating HR 

and EE against continuous telemetry and indirect calorimetry 

while 60 volunteers engaged in sitting, walking, running, and 

cycling. The results indicate that most wrist-worn devices 

adequately measure HR in laboratory-based activities but poorly 

estimated EE [78]. Also, in the work [81], the MAPS formula was 

created to incorporate measures of activity, time, and location to 

produce a single composite score: Movement and Activity in 

Physical Space (MAPS) score. We also extended this MAPS 

score as DAPS score [33] into our early lifelogging PA analysis 

model. These two indicators encompass both physical activity 

and environmental interaction. A higher score indicates a higher 

level of function, which is based on a combination of more 

activity and greater environment interaction. The results provide 

a foundation of convergent and known-group difference validity 

evidence along with reliability evidence for the use of MAPS and 

DAPS as a unified PA functional outcome measure across a wide 

range of different wearable devices or mobile apps.  

Thus, while there are no specific definition of data fusion 

methods in these cross-devices PA health-related indicators, they 

could be used to accurately and precisely define and detect 

pathophysiological phenomena. While a large portion of clinical 

care relies on the use of patient-specific health data (e.g., history 

and physical examination, laboratory and other test results, 

imaging tests, etc.) and human clinical decision making, much of 

this care occurs in the traditional brick-and mortar health setting, 

under a multitude of systemic constraints [79]. Given that changes 

in health status often occur gradually outside of the hospital and 

clinic [80], there is a clear role for remote monitoring of various 

patient populations to collect and process longitudinal health data 

into diagnostic, prognostic, and treatment-related insights.  

5. Data fusion from timeline and persons 

Regarding data fusion from timeline and persons, it is more like 

longitude analysis of a group population personal data over a long 

period. Thus, typical statistical analysis and fusion approaches in 

longitude data analysis are widely used and surveyed. However, 

the incompleteness and validity of PA data are important in this 

plane of persons and timeline. Recent study has pointed the 

importance of adherence to incompleteness of wearable data and 

the interpersonal difference to validity of wearable data in an IoT 

enabled ecosystem. Lastly, some recent studies have proposed 

some ideas to build up a monthly density map of PA intensity for 

fusing a long period of data in order to better predict users’ PA 
level with life pattern. Thus, we category the work in this 

direction into three subjects: 1) Adhere analysis of PA data, 2) 

Interpersonal difference analysis of PA data, 3) Density map 

fusion techniques.  

The adherence analysis of wearable PA data has been studied 

[82-83] [89-90] and focused on measure of data completeness, 

since people do not wear or carry tracking devices every day. 

Early studies of Wearing Behaviour have explicitly studied 

wearing behaviour and patterns. It indicates wide differences in 

wearing behaviour and associated with these diverse levels of 

data completeness [84]. Meyer et.al [85] also reported wide 

differences in daily adherence, 20% to 100% of days being valid. 

At the same time, some work has studied the factors affecting 

wear-time, including age, gender and environment; day of week; 

time of day. This small but growing body of work highlights that 

there are diverse levels and patterns of wearing behaviour and so 

diverse levels of data completeness. 

More recently, in [82], Tang et.al has provided guidelines for 

defining adherence, analysing their impact and reporting it along 

with the results of the tracker data analysis over different datasets. 

Their finding shows that minimum step-measures were similar to 

most datasets, the through-the-day measures had diverse impacts 

on PA data. The data fusion method needs to identify the correct 

threshold parameters for ignore some PA data in the dataset. 

Similarly, Xu et.al [83] has also utilised Fitbit devices to collect 

and observe 50 community participants’ PA data in a 4-week 

study. The overall results show that 94% people wore it for all 28 

days, and 6% people wore it for 26 days. Overall, participants 

wore their Fitbits (for at least part of the day) on almost all days 

(99.57%) of the study, although there were individual differences. 

In addition, Rudolf et. al [89] has studied the impact of different 

recruitment strategies on ActiGraph GT3X+ devices by 

regression analysis, Results show that PA data were objectively 

collected by individual, and not impacted by external 

interventions. Importantly, Albarbi et. al [88] has conducted a 

review in studying the use of wearable trackers for measuring a 

series of PA associated data for older adults. His survey includes 

12 different wearable devices and 20 studies, where the finding 

highlighted that methodological designs for PA data collection in 

IoT environment were heterogeneous, so that there is no 

standardised method for quantifying data for wearable devices in 

older adults. In other words, there are also no concluded data 

fusion approach for integrating these wearable PA data perfectly 

so far.  

The second category in this field is to investigate the impact of 

interpersonal difference on PA data. In [86], Dahmen et.al studied 

fine-grained, continuous physical activity and heart rate data 

collected from Fitbits worn by 8 participants in the health group 

and 9 participants in the rehabilitation group. They analyse the 

longitudinal physical activity data collected from both groups to 

gain insights into the detected changes over time in both an 

inpatient setting and a free-living setting. And it found that two 

groups of participants have similar variation on daily heart rates, 

but significant difference on daily steps. Similarly, Liang [87] has 

investigated interpersonal difference by two participants over 40 

nights in validating wearable sleep-tracking technologies 

including Fitbit and Neuroon. They use Bland-Altman plots of 

aggregated sleep metrics measured by Fitbit and Neuron. The 

results show that the validity of wearable device is strongly 

associated to personal lifestyle habit. Thus, above work proves 

that each individual has its own lifestyle pattern, which possibly 

affects wearable sensing PA data. Utilising statistical analysis 

method could potentially explore the weights of these data and 

further fusing them accordingly.  

Apart from statistical analysis method, 1D time serious based 
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PA analysis approaches have been studied a lot. These approaches have quantified change statistically [94], graphically [95] and 

Table 5. Typical works of data fusion from persons and timeline 

Works Persons and Timeline Approaches Advantages Disadvanta
ges Persons Timeline Analytic or 

Fusion 
approaches 

Targeted 
activities 

Result 

 
 

Adherence 
analysis of 

PA data 
 
 

 
753 users 
(Fitbit) 

 
77000 days 

 
Percentage, Mean, 

SD, CI [83] 
 

Average 
step 

count 

 
 

N/A 

Adherence 
measure is key 

to analysis 
incompleteness 

of PA Data 

 
Not direct 
measure 

No fusion 
method 

50 
community 
participants 

(Fitbit) 

 
4 weeks 

 
Percentage [82] 

 

PA data 
incomple

teness 

94% people 
wore it for all 
28 days, 6% 

people wore it 
for 26 days 

 
Adherence can 
be measured for 

better data 
fusion 

 
Not test all 
population. 
No fusion 
method 

188 
participants 
(ActiGraph 

GT3X+) 

 
2 years (2013 

and 2016) 

Mean, SD, 
Frequency and 

Percentages [90] 
 

 
 

PA data 

Adherence to 
53.5% in the 

AR group and 
63% in the PR 

group 

Adherence to 
PA is objective 
and not easily 

affected.  

Not test all 
population. 
No fusion 
method 

 
 
 

Interperso
nal 

Difference 
analysis of 

PA data 
 
 
 

 
17 

participants 
two groups  

 
18 days 

 
T-test, Sliding 
Pairs P-value, 

Baseline pairs P-
value [86] 

 
Heart 
rate,  

Steps. 

 
 

N/A 

Different 
groups of 

participants 
have significant 

difference on 
daily steps 

 
Not test all 
population. 
No fusion 
method 

 
2 

participants 

 
 

40 nights 

 
Bland-Altman 

plots  
[87] 

 
Sleep 

tracking 

 
 

N/A 

Validity of 
wearable device 

is strongly 
associated to 

personal 
lifestyle habit 

 
Not test all 
population 
No fusion 
method 

 
 
 
 
 
 

Density 
Map 

Fusion 
 
 

42 Infrared 
motion 
sensors 

2-3 months  Color Level 
Density map + 

Fuzzy rules 
[45] [91-92] 

 
 
 

PA 
intensity 

level 

 
 
 

N/A 

 
 

Better accuracy 
than single 

month measure 

 
 
 

No fusion 
method Color Level 

Density Map + 
Linguistic 
Protoform 

Summaries [93] 
 
 

12 people 

 
 

8 months 

 
Grey Level 

Density Map + 
Dempster-Shafer 

Theory 
[88] 

 
PA 

intensity 
level 

 
N/A 

 
Better accuracy 

than single 
month measure 

Need more 
data to 

verify the 
method 

 
Time Series  
PA change 
detection  

 
11 people 

Fitbit  

 
 
 

1 week  

Unconstrained 
Least-Squares 

Importance Fitting 
[94]  

Textured 
dissimilarity [95] 
Sw-PCAR [96] 

Virtual classifier 
[97] 

Number 
of bouts, 

Bout 
minutes,  

Daily 
Steps 

 
 

N/A 

 
Contextual 
features are 

easily detected 

 
Need 

continuous 
PA data 

algorithmically [96-97]. Merilahti et al. [94] extracted features 

derived from actigraphy data collected for at least one year. Each 

feature was individually correlated with a component of the 

Resident Assessment Instrument for insights into how 

longitudinal changes in actigraphy and functioning are 

associated. Wang et al. [95] introduced another activity-based 

change detection approach in which passive infrared motion 

sensors were installed in apartments and utilized to estimate 

physical activity in the home and time away from home. The data 

were converted into co-occurrence matrices for computation of 

image-based texture features. Relative Unconstrained Least-

Squares Importance Fitting (RuLSIF) [96] is one such approach 

used to measure the difference between two samples of data 

surrounding a candidate change point. Hido et al. [97] formalized 

this problem as change analysis, a method of examination beyond 

change detection to explain the nature of discrepancy. Hido’s 
solution to change analysis utilizes supervised machine learning 

algorithms, specifically virtual binary classifiers (VCs), to 

identify and describe changes in unsupervised data.  

 Some recently pilot studies [45][88] have proposed an idea to 

transfer 1D time series-based PA data into 2D day-hour based 

monthly density map for analysis and fusion. In [45], Wang et.al 
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present a methodology for analysing PA data captured by home 

based passive infrared motion sensor. Though building up a PA 

intensity level-based density map, they measure dissimilarity and 

detect changes in PA pattern between two monthly maps via 

texture features. The results show that activity density maps can 

be used in an aging in place senior housing community to aid 

clinicians in early illness detection, particularly track general 

activity level and daily patterns over time, showing changes in 

physical, cognitive, and mental health. Also, we [88] have used a 

similar idea by constructing a PA intensity based grew level 

density map using Fitbit device by 12 people. After measuring the 

dissimilarity of each two monthly maps, we have proposed an 

evidence theory-based Bayes probabilistic model to fuse multiple 

monthly maps in order to identify a validated human PA intensity 

pattern. The results indicate that our density map-based data 

fusion approaches effectively improve the accuracy of predicting 

PA intensity of individual person.   

6.  Discussion and Future directions 

6.1 Quantifying uncertainty of PA data in an IoT 
ecosystem  

As we demonstrated in section 2, PA data collected in an IoT 

ecosystem is dynamically increased from three dimensions. Thus, 

it will be affected by a lot of influencing factors, which has not 

been properly defined and quantified. In most IoT environments, 

it will be equipped with a majority of ambient sensors for ADLs 

detections, and data captured from the heterogeneous sensors may 

contain a variety of uncertainties including hardware errors, 

battery exhausted or transmission issues. Some intrinsic 

uncertainties are unavoidable and uncontrolled.  

Moreover, there are also unpredictable errors from using 

popular PA tracking devices such as mobile phone and smart 

watch. For example, irregular uncertainties may come from 

malfunctions or faults, breakdown of a third-party server. And 

regular uncertainties often occur like battery life, differentiation 

of personal physical characteristics and changes of environment. 

As the possibility of each sensor’s uncertainty can be obtained 
from the manufacture’s testing statistics, probabilistic fusion 
approaches are generally able to address the issue. Nevertheless, 

PA recognition results offered by third party devices are widely 

divergent so that making its information turn to be scattered, 

erroneous and limited for healthcare uses.  

Thus, one important direction of future data fusion technique 

in IoT enabled PARM study is to identify the potential factors 

leading to uncertainties of PA data, and potentially quantitatively 

measure their impacts. For instance, as we reviewed in previse 

sections, adherence to wearable devices and acceptance to 

technologies are both causes leading to potential uncertainties in 

PA data. How to handle with uncertainties and more effectively 

harnessing these PA data would be greatly importance.  

6.2 Human-in-the-Loop 

Another key issue we surveyed before is that human factors play 

important role in collecting and analyzing PA data in an IoT 

environment. Traditional data fusion approaches usually do not 

consider the human factors too much, where is more suitable to a 

human-out-the-loop system. In the IoT environment, human life 

patterns greatly affect the uncertainty of observed PA data. Thus, 

we need to consider future data fusion methods as a human-in-

the-loop mode.  

More specifically, Human-in-the-Loop refers to that the fusing 

rules are supposed to be adaptively altered regarding the 

properties of its human factor, like age, gender, group or 

interaction, etc. For instance, in our work [33], it gives a 

performance comparison of individual and group population (14 

persons with similar professions and backgrounds) on removing 

IUs. We estimate the change of daily steps Ts and DAPS with 

different periods (from 1 month to 12 months) with a confidence 

interval of 95%. The results indicate that the rules of LPAV-IoT 

model will be altered in terms of different setting of human 

factors. However, this experiment only deals with a nature 

increment of life-logging PA on timeline and population 

dimensions. It is not a strict performance evaluation of human-in-

the-loop in the proposed model by considering a human 

interaction with model. The involvement of collecting user 

feedbacks as a step of the validation algorithm is not hard to be 

implemented in the model but requires a long period of time on 

redesigning experimental strategies and collecting relevant life-

logging data.  

Thus, it will be put as one of key future works in developing 

data fusion approaches, which is to continue a formal human-in-

the-loop validation of the model by involving users’ feedbacks 
for updating fusing rules.  

6.3 Advanced learning approaches for IoT enabled PA 
data fusion  

    There have been always advanced and new learning 

approaches on the board of data mining, such as multi-task 

learning and deep learning techniques in processing large-scale 

IoT data.  

    Due to great utilisation in multi-modality data fusion 

applications, multi-task learning techniques have recently been 

drawn a great attention. The multi-task model is constructed 

based on the traditional linear regression algorithm. This idea is 

developed from the theory of Frequentist in statistics and belongs 

to the category of statistical machine learning. The core strategy 

of this idea is to optimize by constructing a loss function. For 

many multi-modality data fusion applications, multi-task can be 

customized to explore contacts based on research scenarios. For 

example, in the face of fusing a large number of features from 

heterogeneous data resources, the concept of introducing 

"groups" can apply all group feature factors in batches or choose 

to discard. In order to make the model also have the ability to fuse 

multiple sources of data, the multitasking model can be further 

developed to consider multimodal data in the learning process. 

    On the other hand, deep learning techniques are also quite 

popular. Deep learning could abstract the features of a multi-layer 

network structure to expect deep network nodes that can directly 

predict disease progression. For instance, in the prediction of AD 

disease progression, the most commonly used deep learning 

model is the recurrent Neural Networks (RNN), and its greatest 

advantage is the prediction of time series problems. Using 

longitudinal data for disease model building is a challenging task. 
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RNN can help to resolve the relationship dependence between 

different time points by using its characteristics that can 

memorize historical information. In addition, longitudinal data is 

valuable due to its difficulty in obtaining and excessive cost, and 

RNN can supplement incomplete data to further improve forecast 

performance.  

    Above two key techniques have already been widely used in 

multi-modality healthcare related applications, such as disease 

prediction. The appliance of PARM is strongly associated to 

healthcare, thus we believe these two techniques have huge 

potential in further exploration for IoT enabled PARM study. 

6.4 Practical Value 

Practical value of data fusion approach is importance but rarely 

verified in IoT enabled systems in literature. The primary issue is 

that most of valuable data is kept by companies and not open to 

public. In this paper, we have provided a pioneered investigation 

perspective for considering data fusion techniques from 3 

dimension in an IoT environment. While data fusion techniques 

have been seen as a hot topic in research in the last twenties years, 

it recently becomes more accessible and practically significant 

with the recent prevalence of mobile devices connecting in IoT 

systems. In the healthcare field, due to significant population 

aging in the coming decades, data fusion technology requires 

considering its mode from conventional hub-based system to 

personalised healthcare system. The successful design and 

utilization of data fusion into practical will enable more accurate 

measure and monitoring of daily physical activity with low cost 

devices, further lead to faster and safer preventive care for chronic 

diseases. Therefore, we believe the transferring and verification 

existing data fusion methods into valuable practice will be an 

important future direction. 

7. Conclusion 

PARM has significant benefits for improving the quality of 
life of a person who suffers with chronic diseases and 
maintain fitness for active healthy people. Data fusion is an 
effective approach to achieve better performance of the PA 
model. From numerous literatures, we can safely conclude 
that the PAR using a small number of wearable devices in the 
uncontrolled environment within different categories of 
subjects are not fully and successfully resolved. In an effort to 

understand potential use and opportunities of Data fusion 

techniques in IoT enabled PARM applications, this paper gave a 

systematic review, critically examining PARM studies from a 

perspective of a novel 3D dynamic IoT based physical activity 

collection and validation model. It summarized traditional state-

of-the-art data fusion techniques from three plane domains in the 

3D dynamic IoT model: devices, persons and timeline. The paper 

goes on to identify some new research trends and challenges of 

data fusion techniques in the IoT enabled PARM studies, and 

discusses some key enabling techniques for tackling them. 
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