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GSWO: A Programming Model for
GPU-enabled Parallelization of Sliding
Window Operations in Image Processing

Abstract—Sliding Window Operations (SWOs) are widely used ir Window Moving Direction

image processing applications. They often have to be perform = =====<

repeatedly across the target image, which can demand signific. " window — — ﬂ [
2™ Window — = == |

computing resources when processing large images with lar 1 Windor
windows. In applications in which real-time performance is esgenti o, 2~ row
running these filters on a CPU often fails to deliver results within e,

. . . 1™ Window
acceptable timeframeThe emergence of sophisticated graphiC o s=row — =
processing units (GPUs) presents an opportunity to address t
challenge. However, GPU programming requires a steep learni
curve and is error-prone for novices, so the availability of htha |
can produce a GPU implementation automatically from the origin
CPU source code can provide an attractive means by which the G 3x3 Window
power can be harnessed effectivelhis paper presents a GPU-
enabled programming model, called GSWO, which can assist GPU ] ] o ]
novices by converting their SWO-based image processing applications Figure 1. lllustration of a Sliding Window

from the original C/C++ source code to CUDA code in a highly.. .
automated manner. This model includes a new set of simple S ce SWOs need to be performed repeatedly across the entire

pragmas to generate GPU kernels and to support effective GEJgetimage (see Figure 1), significant computing resources are
memory management. We have implemented this programming motiequired when processing large images with large windows. If
based on a CPtb-GPU translator (C2GPU). Evaluations have beemeal-time performance is essential, running these filters on a

performed on a number of typical SWO image filters and afigiit® ~ CPU may not deliver the results within an acceptable time.
The experimental results show that the GSWO model is capable of

efficiently accelerating these applications, with improved applicabilitFaced by these computational demands, many researchers have
and a speed-up of performance compared to several leadingocPUadopted parallel computing [8-11]. As thousands of computing
GPU sourcee-source translators. threads are available nowadays on individual graphics cards,
graphics processing units (GPUs) have become increasingly
Index Terms— Parallel Computing, Sliding Window Operation, ~ popular for handling computationally intensive tasks that can

OpenCL, CUDA, Automatic Translation be parallelized [12]. SWOs are particularly suitable for this as
the calculations associated with different window locations are
I Introduction independent of each other and can thus be executed in parallel.

Sliding Window Operations (SWOs) are performed Veryjnfortunately, the parallelization of CPU code for execution on
frequently in image processing and analysis [1-3]. Atypic@pys is not straightforward, and manual implementation
SWO repeatedly applies an image filter to a pre-defined sUpically involves significant effort. Indeed, designing and
window that slides progressively across the target image. Magisiementing GPU algorithms that utilize the GPU potential
filters involve logical and mathematical operations with highy, st effectively requires an in-depth knowledge of the
complexity. Examples include rank-order filters (adaptive tWQsngerlying GPU architecture. In this process, non-experts are

pass filter [4], fuzzy rank LUM filter [5], etc.), which involve gror prone, and novices experience a steep learning curve.
sorting values of the pixels in the window in ascending order;

and morphological filters (directional morphological filter [6],Researchers/programmers already have access to a number o
dilation and erosion filter [7], etc.), which perform GPU-enabled image processing libraries or open-source code,
morphological operations such as erosion, dilation, opening afgch as OpenCV_GPU for CUDA [13], GPUCV [14],
Closing by using a moving window. ethothepi-CUDA-lmage-ProceSSing [15], CUDA/NPP |ibral’y
(for morphological operations) [8], CUDA-based denoising
filters [16], etc., but we have observed that the GPU-enabled
filters from these existing resources do not meet a wide range
of user demands. Although the filters have been carefully
conceived by experts for optimal performance gain on GPUs,



in general each is designed for a specific purpose and has littld. SWOs for image filtering

extendibility— no customized development is allowed. Furthelln 3 typical image filter, a user-defined window moves in a
since overall they cover only a limited set of standard SWOgster-scan order until the entire image is covered as shown in
often researchers/programmers still have to write their owfigyre 1. We denote an Nx M-sized image by-Dn = 1,..,N
SWO code either to modify the standard filters or to implemeg{ = 1, . M; an IxJ-sized sliding window byiM = 1,...,t j =

new SWOs. The difficulties inherent in GPGPU algorithm  3: and the set of r-step operations within this sliding window

design and implementation make it highly desirable to havepg p(jy ;). Table 1 shows a typical implementation of an SWO
means by which users can write the GPGPU code they requiig¢a CPU.

even if they lack an in-depth knowledge of GPUs. o .
Table 1. Work flow of an SWO in image processing

This paper provides a proof of concept demonstrating the
possibility of employing an easty»—use CPQO—GPU 'COQe . 'float DINJ[M] = ReadInputimage()

translator to accelerate SWO-based image filter applicationsJo " .+ point x =0 :

deliver markedly improved performance over CPU-basegd . start_point_y = 0

approaches. It presents a new programming ma&®Wo, that s: I

allows GPU-enabled parallelization of SWOs for imag®: // Outer Loop start for wholeimage Dnm

processing in a highly automated mannethe users can 7@ forn=1:N

annotate their source code for image filters using pragmas, eﬁjd form=1:M o

the annotated code is then automatically converted into GPUJ. 2:22—23:2:—; N 2]

code with optimized parameter settings. GSWO is based o g float W[IJ[J] = Copy‘DataFromInputlmage(n, m, 1, J):
web-based platfornC2GPU, which supports automated codejs:

/[ Initialisation and set memory.

conversion from CPU to GPU [17]. 13:  // Nested Loop start for Sliding Window Wi
. . 14: fori=1:1

Our implementation of the GSWO model produced a set gt. forj=1:J

newly defined pragmas that support CRIIGPU conversion 16:  // Execute operations P(ps...7)

of a variety of SWO source codes. By using these pragmas; B P2 P ;T

users can generate GPGPU code for their SWO image filtdi& end; end;

CopyDataTolnputimage (D[N][M], W[I][J]);

ith havi k I f GP h ine’:
without having a good knowledge of GPUs, thus supportlrg_ and: o

customized development in many image applications a#e-
affording the possibility of remarkable performance gains.

If the execution time of operations R(p) is assumed to be t,
In summary, the main contributions of the paper are: the running time of the SWO in Table 1 is:

e An annotation-based programming model, GSWO, is T=NxMxIxJxt (1)
presented and implemented for automated @RGPU ] S o
translation of SWOs for image processing. The modéﬁor operat|on§ with h|gh complexity (i.e. large t) t.hat use large
features hew SWO pragmas that are easy to use and #@9es and windows (i.e. large N, M, I, J), Equation (1) shows
applicable to many types of parallelizable operations i atthe SWO can become very time consuming.
sliding windows. It also introduces a memory managements. Computationally intensive image filters

hierarchy for effective memory creation and data transfefyos are typically used in image filters, many of which are
between CPU and GPU. computationally intensive; rank-order filters [4-5] and

o A thorough performance evaluation of the GSWO moddyorphological filters [6-8] are two typical examples.

using benchmarks and practical applications has been carrfeghk-order filters are generally used for noise removal [4] and
out, the results of which suggest notable performance gaigien involve sorting the values of the pixels in the sliding
and improved usability for SWO filter applicationswindow into ascending order, which is time-consuming. Well
compared to other leading CROFGPU translators [23-30]. known rank-order filters include low-upper-middle filter [18],

The rest of the paper is organized as follows. Section 2 providd@de filter [19], alpha-trimmed mean filter [20] and median

a brief overview of related work, and we present the propostfier [91. Much attention has been paid to accelerating these

GSWO programming model in Section 3 and the experiment4ers in image processing

validation results in Section 4. Section 5 draws conclusiomgorphological filters are widely used to extract edges or

from the work and suggests areas for future investigation.  skeletons of images in applications such as remote sensing
image recognition [11] and document image analysis [21]. The

Il. Related Work computational cost of morphological filters mainly comes from
This section gives a brief introduction to SWOs and a survey ksfcursive erosion, dilation, opening and closing transforms
the existing CPUe-GPU sourcde-source translators. [22]. Increasing the size of the structuring elements can add a

significant extra computational cost to the filters [8].



Table 2. Comparison of properties of typical directive-based tools

hiCUDA [30] PGI (OpenACC) [32] MINT [28] CUDA-lite[29]
Language support C-to-CUDA C++/Fortanto-CUDA C-to-CUDA CUDA-to-CUDA
Easy-use of directives | Complex Complex Easy Easy
Applicability Good Outstanding Limited Good
Speedup performance | Good Good Outstanding Good
Optimisation option Use of shared memory  No particular one Shared memory and loop aggregatio Improved memory hierarchy
Readability of GPU codd Moderate No Good Good

Rank-order filters and morphological filters are only twagenerate GPU source code by manually adding annotations to
examples of uses of SWOs in image processing. Many othbe input CPU source code. Since users can directly insert
image filters involve a wide variety of SWOs, most of whicknnotations into their own code, the range of applications such

cannot be represented by standard filters. translators support is much wider than those supported by
) o o _ algorithmic skeleton or polyhedral model based tools.
With this in mind, the GSWO model and its implementation

(i.e. pragmas) have been designed to be capable of performW6 collected a number of typical directive based translators and
CPU40-GPU source conversion from arbitrary SWO code in have compared their performance in Table 2. This indicates that
highly automated manner. This will be particularly valuable t810St Of the directive-based tools can process only C, and not
researchers who are committed to the implementation of no%ﬁ' which is a significant dlsadvantage for use in application
standard, compute-intensive image filters in an innovativdl €&S such as image processing.
application, but who lack basic GPU skills. The commercial compiler PGl accelerator [32] accelerates
. L applications written in C++ by adding OpenACC [31]

C. Bxisting CPU-to-GPU source translators directives, but its pragmas are far too complex, and the GPGPU
Existing CPUto-GPU source translators can be classified intoode it outputs is almost unreadable (since PGl is designed as a
three categories [23], based on algorithmic skeletons [24Jpmpiler instead of a sourt¢e-source translator).

polyhedral models [25-27] and directives [28-32], resDECtive%UDA—lite [29] introduces directives to improve the memory

Algorithmic skeleton based tools adopt the idea of generatiljerarchy of CUDA by directly inserting the directives into the
efficient target code by specific algorithm classes, such &JDA code. However, it is not a CPid-GPU sourcee-
SkePU [24]. Advantageously, they have highly optimizedource conversion tool.

library implementations for each algorithm class. Howevey,. . .

algorithmic skeleton tools demand that users manualﬁlgéjpli)% [t3o O]tyF;))riggid?:?JBfgorsgg)cgr?swllt'uea gSEZf Cpggegg]ians
implement and add a new algorithm skeleton if one is n t|CUDA are optimized by dealing Wit.h global memory and
available for a specific class of CPU code. Also, their usabili ansformations to leverage the complex memory hierarchy. A
's often low due to the difficulties involved in rewriting thewgakness is that hiCUDA requires users to have sufficient GPU

original CPU source code and in defining algorithm classes a ;
their corresponding skeletons. Enowledge to be able to specify the threads and thread blocks.

Polyhedral model based tools translate source code with affiMéNT [28] is a very easye-use Cto-CUDA source translator

: : ntaining five types of pragma. It is designed for accelerating
loop structures by performing dependency analysis and 106 X / .
transformation (PardAll [27], Pluto [40]). While they requireségutlscgns]gﬂtigoigsu??/vil:lr:/lsgﬁe(i;npttjiﬁvznlgllNTTh;rggtri]vstleit?(;
little input from the users, they are applicable only to sour&xeP P

code with affine loop structures. This means that the polyhedlgaﬁ ;}i:ﬁ:nzghlgmogf“mz;dlg{ UDA C which may produce a
model can deal only with loop nests with affine bounds andf 9 P '
conditional expressions. D. Limitationsof MINT

Thus, while these two approaches can efficiently cope with tdmplicity is a major goal of the directive design in MINT, and
automatic parallelization of some known algorithm templatdincorporates several eagy-use pragmasarallel, for, copy

and certain types of loops, they are both highly sensitive to tA8d single. While these pragmas are sufficient to deal with
characteristics and data structures of the input CPU source c§Heple C code, they cannot support SWOs in image processing
In image filter applications using SWOs, this implies that an§fue to following limitations.

new image filter has to be manually implemented and addedeas The copy pragma in MINT combines memory allocation
an extra class. A further issue associated with these two and data transfer. However, SWOs in image processing
approaches is the highly laborious task of identifying need to separate these two operations in order to allow the
parallelizable regions and revising the relevant code. This reuse of the allocated memory for data transfer (which may
drawback significantly limits their wide acceptance by occur many times between the CPU and GPU), without
programmers. Because of these limitations, the two approacheshaving to involve memory re-allocation each time.

above are not considered in this paper. e Only stencil computing is supported in the kernel

Directive-based CPU-GPU source translation tools [28-32] ~ generation; SWOs in image processing employ many
offer a semi-automatic way of generating GPU code. They can OPerations S(p. 1) that are not supported by MINT.



e The pragmaparallel must be located immediately behindpragma of “single initialisatiofi defines a one dimensional
the pragmacopy, which means that MINT cannot handlefloat array for storing the pixel information in a 3x3 sliding
algorithms in which we need to insert source code betweenndow. Then we use “#pragna for nest(2) tile(16,16)” to
these two pragmas. mark the nested loops for GPU acceleration. The clauses “nest

and “tile” inherited from MINT [28] respectively indicate the

The work presented in this paper is directive-based in order ) . . :
meet the demands of flexibility and extendibility that imaggegsﬁ)tg glzzrs:l%?iri)vilr;(gl fnptigfgeg?w the iteration space of a loop

processing presents. Users are able to annotate their code using

the proposed GSWO pragmas to achieve parallelization oflmide the nested loops, the pragma of “transfei’ covers the
variety of SWOs in image processing. The GSWO pragm&sPU code of transferring the 2D image data of a 3x3 sliding
represent significant improvements over the pragmas in MIN¥indow into a 1D float array, which had been marked by the
as they support a wide variety of SWOs for image processingagma “initialization”. The pragma “remair’ includes the
The SWO model also features effective memory manageme@f?U code to obtain the median from this 1D float array. Lastly,
allowing for superior performance over the majority of existinghe pragmé‘assigii marks the CPU code to transfer the new

CPU+0-GPU translators. data from thelD float array to the corresponding 2D image data
associated with a 3x3 sliding window. In the GSWO model, the
. GSWO Programming M odel CPU code highlighted by such pragmas will be automatically

GSWO performs CPUe-GPU source conversion and Wastranslated into GPU code. The implementation of the GSWO

developed as part of the C2GPU toolkit [17], the systerﬁﬁIOdeI is discussed in detail below.
architecture of which is based on that of MINT [28], but with a A. Parallelization of SWOs

number of extended components. More details of the C2GFAL seen in Table, the algorithm structure of an SWO in image
toolkit can be found in [17] and in Figure 9. GSWO follows the o cessing is very suitable for parallelization. Its GPU-enabled

system design in MINT [28], which comprises a host processphijementation typically follows the steps below (see Table 4
and an accelerator, and is neutral about all of the data transfﬁrrsa detailed example of an implementation):

between them. To accelerate SWO-based image filter

applications, each thread deals only with the operations withln A GPU device memory buffeéd®FUis created and allocated

a single sliding window. The GPU parallelization of SWOs also 0 store the complete image data, which is transferred from

implies the following assumptions: no parallelization within the  the CPU host buffer into the GPU device buffe©".

sliding window, and no input data reuse between the slidiy The GPU kernel parameters are registered; the number

windows. Table 3 shows a simple example presenting the codeblocks and threads are determined.

of a 3x3 median filter implementation using a GSWO model. 8, The operations P{p1) are rewritten in the kernel as

list of the GSWO pragmas is given in Table 5. individual functions; the GPU kernel function is called after
registering the GPU kernel parameters.

Table 3. Example of a 3x3 SWO-based median filter 4 The processed image dataD#fVare transferred back to the

CPU Code host bufferDn,m

1: #pragmaparalld {
2 eeeeeeeeens Table4. A GPU implementation of SWO in image processing

3. #ipragmasingleinitialization { o
4 float v[9] = {0,0,0,0,0,0,0,0,0}; } 1 { /' nitialisation and create GPU memory.
5. #pragmafor nest(2) tile(16,16) 2: CreateGPUMemory(D°™)
6: for (i=1;i<=height;i++) 3: /I Transfer whole image data from CPU to GPU
7. for (j =1;j <=width ; j++) { 4: Transfer DataFromCPUtoGPU(Dnm, D%V )
8. #pragmasingle transfer { 5: /I Register GPU Kernel Parameters
9: v[0] = Image[i-1][j-1] ; 6: dim3threads() ;
10: v[1] = Image[i-1][j] ; e dim3 blocks() ;
11: e 8: /I Calling GPU Kernel Function
12: v[8] = Image [i+1][j+1]; } 9: GSWO_Function<<<<blocks, threads>>>( D%V, I, J, N, M);
13: #pragma single remain { 10: /I Transfer whole image data from GPU to CPU
14 for (M=0;m<9; m++) 11: Transfer DataFr omGPUtoCPU(Dnm, DY)
15: for (t=m+1; t<9; t++) { 12: '}
16: if(v[m] > v[t]) { 13:
17: tmp = v[m]; 14: /I Rewrite operations S(p....t) in Kernel Function
18: vim] = v[t]; 15: _ global___ void GSWO_Function(D®Y, 1, J, N, M ¥
19: vit]=tmp; }} } 16: /I Thread Index Calculation
20: } 17: int _idy = blockldx.y * blockDim.y + threadldx.y ;
21: #pragma single assign { 18: int _idx = blockldx.x * blockDim.x + threadldx.x ;
22:  Imageil[j] = v[4] ; } 19: /I Define variable to store SW data
23: } 20: float WCPY= CopySwWDataTo(D®, I, J)
24: } 21: /I Execute operations S(ps...t) in Kernel

g: I ij p;f pSS\Nd pr WEPY to DCPY

: ransfer ata from to

GPU parallelization of the SWOs median filter in TalBle 24- DSV = CopySWDataFrom(We, 1, J)

begins with using “#pragma parall&l to point out the 25 }
parallelizable region of CPU code. Within this region, the



Tableb5. Listing of GSWO model pragmas

Directives Descriptions
Paralle To identify a region generating a kernel function
Basic pragma Parallel region To identify a parallel region containing parallebnk
For To mark the succeeding “For” loop for GPU acceleration
Single To indicate serial regions in the GPUSWO model
CopyByTexture To create a CUDA texture on a device, and bindntrind with 2D data
CopyMalloc1DArray To create a CUDA array on a device, associatingtit @iCUDA texture on the device
Memory CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy aimbetween CPU and GPU memory
M anagement CopyMemcopy2DToArray | To create a CUDA function cudaMemcpy2DToArray tpydata between CPU and GPU memor
CopyBindTexture To bind the created texture memory to a CUDA globalya
Copy2DArrayTolDArray To convert the array with different dimensions on tiRJGnemory buffer
Initialisation To define a one dimensional array for storing tha éaf sliding window
Kernd Transfer To transform the code of putting the data in a slidirgdow intoa local variable within a “For”
Generation . loop . - . .
Remain To transform the operations on a sliding window from CRjdréhm to the GPU kernel.
Assign To assign the new data to the relevant GPU buffér thi¢ correct index.
Transfer To transform the code of pirtp the data in a sliding window into a local variable within a “For”
loop
Thread and Block Nest () To indicate the depth of for-loop parallelizatioithin a loop nest
Size (inherited from Tile (t«, ty, t;) To specify how the iteration space of a loop nest Eetsubdivided into tiles
MINT [28]) Chunksize (¢, ¢,.C,) To aggregate logical threads into a single CUDA tthrea

The main acceleration should come from the parallelization @he final improvement of the GSWO model is that it extends
S(p.,..7) in each sliding window. In theory, the total runningthe pragmgparallel of MINT into two pragmagarallel and
time of Equation (1) will be reduced from NxMx IxJx O(t) toparallel region to distinguish the kernel region from the parallel
IxJxO(t). However, in practice, overhead costs need to lregion. The pragmgarallel region indicates the start of a
considered, for example, the variables used to store the slidipgrallel region containing the CPU source code for
window data have to be created and the data have to fwrallelization, whereas the pragmarallel marks a loop for
transferred to the GPU. generating a GPU kernel function. This extension is similar to
the directivegarallel andkernels in the OpenACC standard,

R R but it is less complicated, and easier to use by non-expert GPU
To allow for parallelization, three major typeS of directive argrogrammers_ With these two pragmas, the GSWO model can
normally required. support a more complicated algorithm structure than MINT can.
o I(_jentlflcatl_on _of parallel region and ker_nel region: The_se C. GSWO Pragmas

directives indicate parallel regions, which contain obviously ~ o )
parallel work, and regions generating GPU kernel code A list of the GSWO pragmas is given in Table 4.

¢ Memory Management: These directives manage the tasks od) Basic pragmas

memory allocation, conversion, transfer and optimization . S .
the GPU and GPU buffers OF_he basic pragma is similar to the pragma in MINT. The only
difference is that:

* Kernel Generation: These directives supervise the GPL, Parallel Region indicates the start of a region containing

kemel code generation parallel work, and such regions within the block of this
The primary advantage of GSWO over MINT is that its pragma will be accelerated
memory management directives have an enhanced hierarchiyparallel indicates the start of a region for kernel function
GSWO introduces a set of memory management pragmas togeneration, whiclhormally contains “For’ loops.
control GPU memory allocation, GPid-CPU memory
transfer and CPU memory conversion, respectively. It aldy) Memory management pragmas
prowdes pragmas to allow for the use of texture memory (F—Jor the memory management pragmas, GSWO extends the
addition to the use of global memory). These new pragm ” . .
bring the flexibility and effectiveness to memory managemen Opy” pragma by allowing for memory allocation, data
that is needed in SWOs for image processing. conversion and data transfer.

In addition, GSWO introduces a set of newly defined kernd|"V0 copy based pragmas are defined for memory allocation.
generation pragmas. These were designed by following the CopyMalloclDArray creates a CUDA array on the device,
typical procedure of an SWO, which contains initiation, associating it with a CUDA texture memory.

transfer, remain and assigrhey are simple and can be appliece CopyByTexture creates CUDA texture memory on the
to all types of parallelizable operations in sliding windows. Our device, binding (unbinding) it with 2D data (e.g. the image);

experiments showed that using our pragmas provides athis normally occurs in the initialization step.
significant improvement in usability and productivity when )
compared with other CPt-GPU translators. Data transfer between the CPU and GPU includes two copy-

based pragmas:



o CopyMemcopy2D is used to provide a CUDA function e Single Assign generates CUDA kernel code that copies the
(cudamemcpy2D) to transfer a matrix in a normal data processed data in the sliding window to the relevant GPU
structure from the device memory to host memory. buffer obtained via the thread and block IDs.

o CopyMemcopy2DToArray creates a CUDA function

cudaMemcpy2DToArray to copy data in a non-norme ; -0 e ﬂ o e \
structure (Z-curve) between CPU and GPU memory T D i :
B __global__ void Kernel (...; .oy .o
A further pragmaCopyBindTexture is defined to bind texture § % Loyl
memory to a CUDA global array. P e {.’ﬂi‘.ﬂ:ﬂ?ﬂﬂﬂw J
10 start_point ¥y =m ; Int y = blockidiy * blockDim.y . ;
11 float WITI[T] = CopyDataFromInputlmage(n, m, L );

Data conversion is used to convert an array on the CPU mem 1, ‘ _ .

buffer to different dimensions, for example, converting dat ;| S =t 0 IR G | (I aii-sn00m |
5 flont SW_data[I=T] = {0,0.0,...000000 0 00,0} 3

from a 2D array to a 1D array for GPU use. One such pragi 1'9 [ ]

<4

is Copy2DArrayTolDArray. 15 J
19 spragma GPUSWO for nest (o) tile (. , )

Examples of the memory management pragmas and th 3

translations into CUDA code are illustrated in Table 9.

/! Data Transferring

for (it xx=x- .. xxe=x+ __ xx+s)
B for (Mt y¥ =¥ - . I¥¥ S=¥ + vyt

{

00 = Bl w e 0 o= vy &R

&
The data transfer and conversion pragmas used to transfer 3
L?w Eétif(::&xm_c FA 2

data of the sliding windows are allocated within gaeallel %
region pragma, but outside thparallel pragma. Also, the 3

SW_datal0] = WLIL :
SW_data{1] = WLJL 5
SW_data[2] = W

054=(float) =, 0.58-(float) v):
¥

names of parameters in the memory creating pragm s . = —
correspond to the names of relevant 2D or 1D array variable 3 | T2 SHane sk R visze 0.0 e .
33 7 Execute opesarions Plp, ;) PiPai Py Pr
36

c) Kernel generation pragmas o

26: end, end;

The kernel generation pragmas in GSWO are designed for G
£pragma GRUSWO zingle Assien winsize (I, J)
{ CopyDataToluputTmage (DINIIM] W) J%_-

ssign procesad dita
float* row = (float*)((char*)d_out
+ * Pitch):

roulx] = SW_data[ I

kernel code generation. They generate the kernel code to: g

e perform the SWOs. ;? Q )
e allow for correct data transfer between CPU and GPU. 31 S
In the GSWO model, we have designed new “‘single” pragmas Figure 2. Work flow of the Kernel Generation Pragmas

for kernel code generation, four of which are defined below.

e Single Initialisation: generates CUDA kernel code that
defines a 1D array with size 1xJ for storing the data in t

Figure 2 shows an example workflow of the kernel generation
ragma in the GSWO programming model. Also, the CUDA
- . ; L : \ rnel code generated from each kernel generation pragma is

sliding window. If the data in the sliding window are define llustrated in Table 6, which represents sample code ofia Ix

as a 2D array in CPU code, as seen in Figure 2, we neediq,y size image filter implementation on the CPU (left), and
define a 1D array to replace the 2D array outside of the “For i}s converted CUDA code (right)
e )

pragma in the CPU code. In translating to the CUDA kern
the Single Initialisation pragma directly moves this D. Block and Thread Size
statement into the kernel. In the CPU code, all of thghe selection of block and thread size in GSWO model is based
referenced data can normally be defined in the “For” loop.  on the pragmas in MINT: negtle and chunksize. As shown in
However, in GSWO, all of the referenced data have to beaple 5, they are inherited and used by the GSWO model for
defined outside the “For” loop (for the purpose of building  indicating the depth of for-loop parallelization within a loop
the AST tree by ROSE). nest, specifying how the iteration space of a loop nest is to be
e Single Transfer generates CUDA kernel code to transfer theubdivided into tiles, and aggregating logical threads into a
data of the sliding window into the 1D array defined in thgingle CUDA thread, respectively. The size of a CUDA thread
Single Initialisation pragma, so a 1D array with size 9 isblock in the GSWO model is the same as in MINT: threads
used to store the data for a 3x3 sliding window. In outJ/cx, t,/cy,t/Cy).
implementation, the CUDA kernel receives the data of t

sliding window from the CUDA texture memory, as show In GSWO model is not as significant asitin MINT. The

g FllgureRZ. . CUDA Kk | q h kernel generator in MINT makes all of the parameters in the
e Single Remain  generates ernel - code  thaty .o argument become kernel call parameters and makes all

.corrlesponds. to the opera}tions onhthe sliding windovc\j/. In OWemory references through device memory. This requires code
Implementation, we simply copy the CPU source code to ﬂ?& be added into the kernel body to compute global thread IDs
CUDA kernel. By doing this, any user-written CPU sourc

@nd references to be rewritten in terms of block and thread size.

code can be converted into CUDA kemel code, as long #he mechanism of kernel generation in the GSWO model has

the_ target CPU source code is parallehzab_le, €9. WRen redefined as a simple way in Section IIl.C(c). The

yarlaples are data independent between differenp IO%omputation of global thread IDs is generated by default in the

Iterations. kernel body. The code for rewriting references is handled by
each individual pragma.

ut the impact of selected block and thread size on acceleration



Table 6. Benchmarks for evaluating the GSWO model

Benchmarks Descriptions
MinFilter Get maximum value among all elements
MaxFilter Get minimum value among all elements
MedianFilter Get middle value after all elements are sorted numeyicall
Rank-order MidPoi nt_FiIter (Mid-P) _ Get an average value of_ maximum and minimum among alleemm_ o
filters AIpha-Trlmm_ed_M ean Filter (Alpha-T) Disregard the most atypical elem_en_t_s a_nd ca!culatmm value using those remainin
Standard Deviation Filter (S-D) Used to emphasize the local variability in an image
Mode Filter Replace pixels with the most frequently occurring pisadlie selected from all elements
Mean Filter Find an average value among all elements
Multi-stage directional median (M-D-M) Used middle value obtained from the pixels set alongdoections to edges
Erosion To shrink foreground elements and enlarge backgrowmlegits with structure element
Dilation To enlarge foreground elements and shrink backgrelerdents with structure element
Opening To first do erosion and then do dilation with one ctiee element
Morphological CIc_Jsin_g To first do Qilation ar_]d t_hen (_10 erosion with one ciee element ' _
filters Th!nnln_g To do erosion and d!lat!on W!th extended type ofcdtrre elements from h!t and miss
Thickening To do erosion and dilation with extended type ofcdtrte elements from hit and miss
Hit-and-miss To do erosion and dilation with structure element introducing “do not care”
Recursive erosion To recursively do erosion operators with structure element
Recursive dilation To recursively do dilation operators with structureralat
Practical Camera Fingerprint M easurement IME company [36]
Applications Document Analysis EU IMPACT project [37]

IV. Performance Evaluation

The GSWO model has been evaluated using a variety of U&a¢ evaluation platforms were: (a) Intel Core i7-2670QM CPU
cases, including a set of SWO image filters and two imag&'d NVIDIA GeForce GT 540M; (b) Intel Core i7-3770K CPU

processing applications (camera fingerprint measurement

e NVIDIA GeForce GTX 690; (c) Intel Core i7-2700K CPU

document segmentation [36, 37]). The cases selected &R¢ _NV|D|A' GeForce GTX 680. All used NVIDIA GPU SDK
computationally expensive but parallelizable. The evaluatiofgrsion 4.1; OpenMP programs were compiled using Visual
compares the computation time between the GPU and cpejudio 2008; and all computation used double precision.

The baseline is the performance of the original CPU code om. Performance Speed up
conventional hardware without the use of multi-threads; thg,, ¢jassic SWO image filters were used as benchmarks for the

evaluation tested the performance of the GSWO—generatg\ga

luation— see Table 5. They were applied to a 3325x4765

CUDA, MINT-generated CUDA and OpenMP compared t‘?magje, with sliding windows of different sizes, including 3x3,

this.

Table 7. CUDA code of Kernel Generation Pragmas

CPU Code
1.

2 #pragma parallel {

3

4 int x = blockldx.x * blockDim.x +
3: #ipragma single threadldx.x;

initialisation{ int y = blockldx.y * blockDim.y +
4: float v[9] = threadldx.y;

{0,0,0,0,0,0,0,0,0}; } inti=0;

GPU Kernd

*d_out, intw, int h){
I/l index caculation

__global__ void kernel(int Pitch, float

5x5, 7x7, 9x9.Figure 3 shows the performance above the
baseline; for simplicity, it includes only the performance with
5x5 sliding windows.

Rank-order Filter Evaluation by GSWO

Zg B CPU (i7-3770) vs GPU (GTX 690)
2 CPU (i7-2670) vs GPU (GT540)

5: #pragmafor nest(2)

tile(16,16)

6: for (i =1;i<=height; i++)

7: for(j =1;j <= width ; j++){
8: #pragma single transfer{

9: v[0] = Image [i-1][j-1] ;
10:  v[1] = Image [i-1][j] ;

11

12:  v[8] = Image [i+1][j+1]; }
13: #pragma single remain{

14: for(m=0;m<9; m++)
15: for (t=m+1;t<9; t++)
{

16: if(vim] > v[t]) {

17: tmp = v[m];

18: v[m] = v[t];

19: vitj=tmp; }}}
20: #pragma single assign {

21:

|n;age[i]U] =vi4];}

float v[9] = {0,0,0,0,0,0,0,0,0};
/I data transfer
for (int xx = x - 1; XX <= X + 1; xx++)
for (intyy =y-1;yy <=y + 1; yy++) {
if (0<=xx&& xx<w && 0 <=yy
&& yy < h) // boundaries
V[i++] = tex2D(tex_CFA_2,
0.5f+(float) x, 0.5f+(float) y);}
/I directly copy from CPU code
for(m=0;m<9; m++)
for (t=m+1;t<9; t++) {
if(vim] > vIt]) {
tmp = v[m];
v[m] = v[t];

vit] =tmp; }
/I pick the middle one
float* row = (float*)((char*)d_out +y *
Pitch);
row[x] = v[4];

}

Speedup Ratio ( CPUvs GPU )
=

Min  Max Median Mid-P Alpha-T S-D Mode Mean M-D-M

Figure 3. Speed-up performance evaluation of GSWO

On both platforms (a) and (b) described abewapart from the
dilation and standard deviation filters, the speed-up ratios of the
benchmarks are over one. Mean Filter and Mid-Point Filter are
accelerated by GSWO up to 2-5 times.

The performance of the benchmarks with highly intensive
computation (median filter, alpha-trimmed mean filter and
mode filter) is particularly impressive, with speed-up ratios
reaching up to 10-30. However, for image filters with low



computational demands, the speed-up ratios are also low. This conclude, the GSWO programming model is capable of
is because the parallel regions in these filters represent onlacgelerating the performance of most of the typical SWO image
small proportion of the entire running time. filters. It is particularly suitable for filters with highly intensive

o ) ) computations and large sliding windows. One possible
We have also evaluated the effect of sliding window size aigieneck of the GSWO model is the limited size of on-chip

computational complexity on the speed-up ratios. Figure fiemory on some GPUs, which thus may not fully support the
shows that when the sliding window size increases, the speggplication when a large sliding window and a complex filter is
up ratios of the GSWO-generated GPU code over the CRjding used. However, GPU hardware is being given increased
baseline are significantly increased. Figure 4 also shows that #eboard memory on a regular basis and there is every prospect
speed-up ratio for a filter increases according to its level @fat this bottleneck is purely a temporary phenomenon.
computational demand. GWSO accelerates those with the mo

intensive computation by up to 30x. % Acceleration Comparisons

To compare the performance of GSWO to that of other CPU-
to-GPU translators, we attengutto apply MINT [28], Bones

Rank-order Filter Evaluation by GSWO with increasing Sliding Window Size

B ~MinFiher 23], Par4All [27], OpenCV_GPU for CUDA [13], Polyhedral
30
g i *Maxfilter Benchmark [33], OpenACC PGI compiler [32] and OpenMP
5 » o MedianEilter [39] to these SWO image filters. Weuhd that:
= = ~MidPointFilter ¢ The original CPU code cannot be directly processed by most
518 +Alpha-Trimmed Mean of the above tools. Bones and Par4All do not process C++
[ ol B R while Par4All has a limited capability in reduction
§ 1 operations and cannot produce GPU code for the maximum
2 o Mode and minimum primitives.
3 Mean ¢ Polyhedral Benchmark is not a translator, but is simply a set
0 = Multipl Direction Median of algorithms which can be used for testing the performance
33 5*s ™ of translators. It cannot process the above applications. Also,
Stua'oh St kg Window Polyhedral and Bones are both algorithm skeleton based

Figure 4. The impact of sliding window size on speed-up ratio t00IS— the image filters under test are out of their scope.

¢ MINT was designed only for stencil operations and cannot
Figure 5 shows the correlation between the speed-up ratio and'andle SWO-based image filters. This was tested in our
the kernel complexity for the 10 benchmarks using 5x5 sliding ImPlementation. Also, the current version of MINT does not
windows. The “For” and “If” statements were used to measure  SUPPOIt C++.

the Complexity of the kernelif there were two “If” statements Hence, the acceleration Comparisme main|y carried out
within a “For” loop from 1 to 50, the kernel computation  ysing the OpenACC PGI compiler, OpenCV_GPU_Filter and
complexity was taken to be 50x2. The impact of different basgpenMP. We report test results over all types of benchmark.
operations (arithmetic operations, assignments, tests, readstRe SWO based image filters were implemented in C++ using
writes) on numbers and types are ignored here. It can be s€g§ual Studio 2008, based on external library OpenCV 2.4.3.
that the benchmarks are clustered in the bottom-left and tophe optimization flags used in VS2008 include Maximize
right corners of the diagram. For a given size of sliding windovgpeed Optimization and Enable Intrinsic Functions. The test
the acceleration ratio increases noticeably as the complexityigfage had resolution 3325x4765, and 5x5, 9x9 and 11x11

the kernel grows. sliding windows were used on hardware systems (b) and (c
Rank-order Filters Evaluation by GSWO with Kernel Computation Complexity described earlier' The quallty Of acceleration performance Wlth
18 other penalization tools was evaluated using speed-up ratio
1 MCHEEEE o (CPU vs GPU), which measures the running time of the image
» S filter part of the whole program. Figuwé(a),(b),(c) show the
comparison results.
12
Speedu .
o  The speedup performance of the OpenACC PGI compiler on
atio Ipha- . R . . .
g T all rank-order filters, erosion and dilatiaras compared with
] the GSWO model and the results with window size 9x9 are
6 Muitiple Direction . . . . .
. s Median shown in Figure 6(a) For image filters with lower
dryr—— computation complexity (min, max, etc.), neither improve
2 .Mw.’?:é‘ﬁ?e'z , the performanceas speedup ratios are lower than 1.
# StandardDeviation- . . . N
0 Filter However, for image filters with heavy computatbn
0 100 200 300 400 500 600

complexity (median, Alpha-T, mode), both speed up the
) ] ) ] application by up to 10-26x. This implies that the OpenACC
Figure 5. The impact of kernel computation complexity on  pG| compiler also follows the finding we demonstrated in

speeddp Figure 5- the acceleration ratio increases noticeably as the
complexity of the kernels grows.

Kernel Computation Complexity



Another noticeable issue is that the GSWO model has beteerThe GPU module in the OpenCV library implements a
acceleration performance than the OpenACC PGI compiler number of GPU based image filter and algorithms. But it

Performance Evaluation of GSWO and OpenACC

2% W OpenACC (i7-2600k vs GTX 680 )

GSWO (i7 - 2600k vs GTX680 )
24
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Speedup Ratio ( CPU vs GPU )

supports onlya few types of image processing filter among
our benchmarks in Table 6, which are max filter, min filter,
erosion and dilationWe used the GPU filters function
provided by OpenCV.2.4.3 to replace the relevant code part
of image filters in our CPU implementations. The results of
window size 9x9 and 11x11 are shown in Figure 6(b). It can
be seen that GSWO has a consistently better performance
than OpenCV_GPU filter, but most of these filters run faster
onaCPU implementation than anGPU, probably because

of their low computational complexity.

e We compared the performance of OpenMP when dealing
with all rank-order filters, erosion and dilation with that of
the GSWO model using 8 cores and 5x5 windows. We added
OpenMP directives into the CPU filter part and enabled

Figure 6(a). Speed-up ratio comparison between GSWO and openmp2.0 language support from Visual Studio 2008. As

OpenACC (9%9 sliding windows)
Performance Evaluation of GSWO and OpenCV_GPU_Filter
u OpenCV_GPU_Filter (9x9)
GSWO (9x9)

# OpenCV_GPU_Filter (11x11)
BGSWO (11x11)

il

MinFilter MaxFilter Dilate Erode

Speedup Ratio ( CPU vs GPU )

Figure 6(b). Speed-up ratio comparison between GSWO an
OpenCV_GPU_Filter.

Performance Evaluation of GSWO and OpenMP

® GPUSWO(i7-3770 vs GTX690)

Z OpenMP(i7-3770vs 8 core)

= u GPUSWO(i7-2670 vs GT540M)

is W OpenMP(i7-2670vs 8 core)
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Figure 6(c). Speed-up ratio comparison between GSWO andy

OpenMP (5%5 sliding windows).

with the OpenACC PGI compiler, the acceleration of
OpenMP on filters with low computational complexity
kernel is not noticeable, so the results in Figure 6(c) focus on
the speedup performance of OpenMP and GSWO on filters
with high computational complexity kernels. It shows that
on modest hardware, GSWO can accelerate the benchmark
filters up to 12-27x, which is higher than the performance of
OpenMP on 8 cores with the speedup ratio up to 6-9x. It
implies that the GSWO model has a competitive advantage
over the existing OpenMP based tools.

In summary, for accelerating SWO image filter applications,
the GSWO programming model is highly competitive with the
stateof-the-art of automatic CPtb-GPU source translators,
which makes it attractive in comparison to other research
focused tools, such as hiCUDA, MINT, Pard4All and Bones.
Also, the GSWO model has improved acceleration ability than

aditional OpenCV_GPU _filters or OpenMP supports. While
compared to commercial products such as PGI, the GSWO
model usually has a lower acceleration performance, but it still
can exceed PGI compiler on median filters.

Another advantage of GSWO over the PGI compiler is that the
output of GSWO is CUDA code, which is readable, and more
importantly, revisable. The sourtesource conversion
provides users with the opportunity to carry out further
modification of the converted source code according to their
needs, as well as to use the machine-generated code as an
example to support their learning of GPU programming
techniques.

C. Case Study 1: Camera Fingerprint Measurement

Camera fingerprint measurement is a particularly popular topic
information forensics and security. In most approaches
denoising methods are applied to a set of images that are known
to come from a given camera [34-35]. In this section, we

for the Median Filter, but is worse on Alpha-Trimmed Meassvaluate GSWO using sample camera fingerprint measurement

Filter and Mode Filter. This may because the GSWO mod

applications from an industrial source, IME [36].

does not consider and use further qptimization of. th_e GPhe C++ code applies a 3x3 median filter for image denoising,
kernel, but the OpenACC PGI compiler should optimize th,psequently measuring the camera fingerprint by comparing

GPU kernel in other ways, like using shared memory.

the denoised image with the original image. The number of
images was 39, each of resolution 3648x2736. When applying



the median filter, the images were split into a number @bnsidered a real application that contains many C++ source
Regions of Interest (ROIs). The loop in this function can band head files. In order to use the GSWO model in the
parallelized. application, users have to break up the data dependency of the
o i . functions in the C++ file and also need to add some extra CPU
A key feature of the application is that, in the workflow, itggge to transfer the image data format so as to be acceptable by
algorithm skeleton contains loops outside the sliding windoye GSWO model. This process adds some running time to CPU
operation, as shown in Figure 7. Most existing GB\GPU  programs, and further reduces the speed-up ratio. However, it
translators cannot be successfully applied to these codffes not mean that the GSWO model is not useful since the
because of the complex algorithm skeletons. MINT [28] cafunning time of the whole program is eventually reduced.
indirectly process the sample code by revising the original
function into three separate sub-functions and generating threeTable 8. Evaluation of Camera Fingerprint Measurement
kernels. However, the GPU performance is even slower thar
the CPU performance because repeated CUDA memory C(':)U G(FS))U Speedup Details
allocation functions are cae!d}l within the main Ioops.' N “orxew | 28 82 340 Whole Application (1 image)
contrast, the GSWO model is fully capable of processing t.he(3T540 84 19 429  Whole Application (1 image)
code. The resu.lts are shown in Table 8. The CPU version is @y son | 15 39 423 Kemel Region (1 image)
sequential version without these of OpenMP. GT 540 51 8.3 6.17  Kernel Region (1 image)

GTX 690 | 1118 280 3.78 Whole Application (39 image)
GT 540 3047 707 4.31 Whole Application (39 image)

[ Outer Loop start for whole image My, ] GTX 690 | 663 153 4.35 Kernel Region (39 image)
l GT 540 2023 325 6.21 Kernel Region (39 image)
Get a Sliding Window Image D, ,, .
[ o : J D. Case Study 2: Document Segmentation

\ Large-scale document digitization is another research issue

T with potential application in museums and libraries. The

Run SWO Model ’—. ] e performance of an OCR system depends heavily on document
ﬁ Ot Lo i, layout analysis, region segmentation and text-line
bl segmentation, which is a time-consuming procedure for large-

No , Get

Another i s tntamtsa 1) scale and high-resolution document digitization.
Image Get Denoised Image B S
B m We applied SWO-based dilations and erosions to process
\ S i b / sample newspaper document images from IMPACT [37],
which is one of the most widely recognized large-scale
[M,m,,,.e Camera Fingerprint } document digitization projects of_ recent years. The processed
newspaper images, of resolution 3595x5194, were then
re—] Vs, Finished evaluated by a region segmentation method [38]. The results are

shown in Table 9 and in Figure@Appendix B.

{ Measure Overall Camera Fingerprint ]
Table 9. Document Analysis code evaluation by GSWO

Figure. 7. Camera finger measurement application from IMg_System (a) (seconds) System (b) (seconds)
CPU_GPU Times | CPU GPU Times Details

Table 8 shows that GSWO speeds up the whole applicatioh26 1.0 0.26 13 16 0.81 3 x 3 dilation
performance by up to 3-4x, on average, while maintaining thé.19 1.2 0.92 43 19 222 5 x 5 dilation
same accuracy as the original CPU source code. While we|aBs9 12 292 182 23 7.87 9 x 9 dilation
able to achieve a 6x performance gain in the kernel region, th@24 1.03 0.24 15 23 0.68 3 x 3 erosion
overheads associated with use of the GPUs (e.g. data transfetro 1.0 1.07 57 21 2.73 5 x 5 erosion
between CPU and GPUSs) reduce the performance advaniages 1.1 2.87 16.8 25 6.62 9 x 9 erosion
somewhat. However, the overall performance gain is still

satisfactory. Notably, most of the existing CRESPU t00ls  \yhen the dilation or erosion operator uses 5x5 sub-windows,
(€.9. Bones [23], Par4All [27], Polyhedral Benchmark [33], PGhe GSWO translator speeds up the performance by a factor of
[32]) cannot process the source code of this application. 1 _3x \when the dilation or erosion operator uses sub-windows
A noticeable result in Table 8 is that the speedup ratio wimaller than 5x5, the GPU performance becomes slower than
reduce if you deploy a mid-performance graphic card alongsitiee CPU performance due to the overheads mentioned earlier.
a high-speed CPU. The first reason is that we used the runnifgjs result confirms that the GSWO programming model is
time of the whole program to calculate the ratio, whicimost suitable for applications with high kernel complexity.
adversely affects the speed ratio. The second reason is that we



Figure 8 illustrates the evaluation results of the region Running sufficiently fast Good Good

segmentation method [38], which extracts text regions frorr, D€bug diagonistics liES Ve
. . . o . Readabliltiy of output code Yes No
newspaper images, based on a hybrid of erosion and dilation. "“oyerall rate of usability Good Good

the original newspaper image, a large number of text regions
are missed due to the low density of the characters. When 3kable 10 demonstrates that the overall usability of both tools is
dilation operators were used, most of text regions werated as good by new users, though each has advantages and
segmented but two pieces of the text regions in the middle @fadvantages. The OpenACC compiler supports the learning
the document were still missing. When 5x5 dilation operatog$id use of memory management pragmas rather better than
were used, the output quality improved but one text region #8SSWO, but GSWO performs better for kernel generation
the middle of the document was still missing. By use of 9xgragmas. This is because the kernel generation design of the
dilation operators, all text regions in the newspaper wef@SWO model focuses particularlgn SWO image filter
successfully segmented. Table 8 shows that GSWO is capadplications, whereas the OpenACC compiler aims at more
of speeding up the application performance by up to 6x. generic cases.

E. Usability Comparisons The memory management pragmas of the GSWO model are

To compare the practical usability of the GSWO model to thgxtensions of MINTto support more flexible data transfer. The
of other CPUto-GPU translators, we provided CRo:GPU OpenACC is a well-known standard with mature design on
translators listed in Section IV.B to non-expert GPU users fiémory management. These issues lead to fewer pragmas

accelerating their real applications. The initial findings are &N usedn OpenACC for memory management than in the
below. GSWO model, buavariable number of pragmas being used in

. . kernel generation. The CPU code revision and debug
e The majority of research tools, like MINT [28], Bones [23], ,. - : ) .
Par4All [27], etc. cannot process C++ and are hard to Iealq""’ugm()StICS are both required in OpenACC and GSWO in the

A common phenomenon is that these tools can attain ve? raI.IeIization of SWOs application.s. However, GSWO has an
high speed-up ratios using particular forms of optimizatiofonsiderable advantage concerning the readability of the
specifically tuned to the task, but such performance c&rMDA code output, which can significantly help new users to
rarely be achieved in real-world, practical applications. ~ track errors and potentially improve performance.

e OpenMP and OpenCV based GPU filters are the easiest
approaches for non-expert GPU users. The GPU filter
functions in OpenCV are nearly as same as its cpijom the results above, we conclude that the GSWO
functions. The seof OpenMP in CPU programs only needgrogramming model is capable of accelerating the performance
to put one directive into the SWO filter kernel. Howeverdf many SWO-based image applications. By applying the
their acceleration performance is not as good as GSWO. GSWO model, we are able to achieve significant performance

e OpenACC PGI compiler is the strongest CRLGPU tool gains in sliding window operations, particularly those that are
in the market. Both of the OpenACC PGI compiler and theomputationally demanding. Compared to many existing
GSWO model are directive based CRIJSPU translators. automatic CPUe-GPU programming models, the GSWO
The usability comparison between them is reported. model has an enhanced usability and acceleration performance.

- ) While the GSWO model has no significant advantages on
For usability, comparison was made between the GSWO modghe|eration and usability over the OpenACC PGI compiler, it

and the PGI compiler regardiege of use and ease of learming g1j|| gemonstrates a possibility of using an etsyse CPUto-
The evaluation involved four parts, including understanding py code translator to accelerate the SWOs based Image Filter

loop patterns and pragmas, use of pragmas, the effect of Cgb'blications with good performance.
code revision and debug diagnostics. Feedlaskcollected

via a questionnaire, from non-expert GPU users in four GPSMietually, when designing directive based automatic CRb-
project partners (IME, AnSmart, B3C, RotaSoft) based on u§U source translator, there is a tradeoff between the flexibility

of the GSWO model and the OpenACC PGI compiler. Thand the easge-use of pragmas. It is true thacreasing the
results are shown in Table 10. number of clauses may give more flexible management of

_ _ _ device memory or optimization and letadbetter acceleration
Table 10. Learning and use by inexperienced GPU users performance, buit also increases the difficulty of use. The

V. Discussion and Limitations

GSWO OpenACC__ Pragma des?g.n_ in the GSWO model tries to strike a balance
Under stand loop pattern fair fair between flexibility and ease of use. Compared to the OpenACC
Under stand Basic pragma good fair PGI compiler, GSWO less simple in broader generic cases, but
U"d?)rf;grrfa'v'emory'v'anagemmt fair moderate s yery simpleto use in SWO applications. It is important for
Understand Kernel Generation pragma good moderate  users to know the performance difference to decide whether to
Number of total pragmas used 814 5-10 use a specialized tool and sacrifice flexibility or use a more
Number of Memory Management 59 1 general tool with slower results.

pragmas used

N”"’S;;d"f Kernel Generation pragmas - 35 There are a few minor limitations on GSWO. Firstly, it is not

CPU code revision Moderate  Moderate  Suitable to operations that are not parallelizable or are relatively
Extra lines of code Moderate Moderate _ light in computational terms. But sufficient numbers of




parallelizable, computationally demanding tasks exist in Appendix A

practice for GSWO to make a significant contributionThe system structure and translation flow of the C2GPU toolkit
Secondly, a possible bottleneck of the GSWO model is the jjystrated in Figure 9. The input to the toolkit is C/C++
limited size of on-chip memory available on some GPUgrce code annotated with pragmas. Once the source file is
dgwces; this may not fglly support the use of a large slidingaq, the ROSE frontend constructs the AST tree and passes it
window and an intensive-computation filter. However, they tne core of the C2GPU toolkit. The core of the toolkit
regular expansion in on-board GPU memory will certainly helpayerses the AST and queries the parallel regions. Directives in
to mitigate this limitation. Thirdly, the memory managemeng parallel region go through the components of Identifier,
pragmas of the GSWO model are not simple for a non-expertdga|yser and Optimizer in the toolkit core. The Translator
understand and use correctly, though they can be succesg%ponem uses the rules from the above components to
with a little care. Finally, no optimizations of the CUDA kernel§,ansform the AST. The output from the toolkit is CUDA or

in the GSWO model are considered in this paper. The key idg@encL source code generated by unparsing the transformed
of kernel generation in the GSWO model is based on thesT

parallelization of a typical operational procedure of an SWO
image filter. The procedure of kernel generation is an SW&his paper uses only the CUDA code generated by the toolkit.
procedure based translation, but is not a strictly sentence bv
sentence translation. The codes presenting operations withi

sliding window are eventually transferred into CUDA kerne Pt ) T OMP Replacement
body. Hence, traditional optimization methods that use shar i

memory or improve memory bandwidth cannot be use o )i Icantitinc |
directly. We will investigate using shared memory to improv ',: ; (oonraam) (Varbe — :
Frontend |/ | Classificati dentificati Identification
," E and
— Classification :

kernel acceleration in future work.
GPSME : 1 1
Toolkit i
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We believe that the benefits of the GWSO approach grea
outweigh these disadvantages, and that GWSO affords a r
and effective way of accelerating SWO image processir
applications.

: { Analyser ‘ Optimizer ’ i

|

Translator

i
E

el 1

Kernel Handler Memory Device H
Outliner C ation i

8!

VI. Conclusion and Future Work

This paper has presented an annotation-based programrmr
model, GSWO, which supports sliding window operations in
wide range of image filters. It enables users to carry out sourt
to-source conversion of self-implemented image filters fror Configuration
CPU to GPU in a highly automated manner. Compared to ma '
existing automatic CPWs-GPU programming models, the |sameae |||
GSWO model has an enhanced usability and accelerati | i - |
performance. The experimental results show its good speed N 1
and usability in a variety of image processing applications, at a Figure 9 GSWO Core Library

similar level to the statef-the-art tool OpenACC PGl

compiler.

ROSE

Backend

Kernel

Future work will introduce new pragmas to extend the GSWO
model for more general time-consuming image processing
applications, such as object detection. Meanwhile, it expects to
be compatible with existing research tools [28] [31] [33] to
optimize the GPU performance of this teokhared memory
optimization, loop aggregation and register optimization. The
support of OpenCL output is also under consideration.
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Appendix C

Table 9. CUDA code of memory creation pragmas

Directives Descriptions

cudaChannelFormatDesc desc_1;

desc_1 = cudaCreateChannelDesc<unsigned char>();
copyByTexture tex_dev_3_D.normalized = false;

(D, toDevice, N, M, Bind, char)

copyMalloc1DArray
(W, toDevice, 1, J,pitchl)

copyMalloc1DArray
(im_GPU, toDevice, I, J, pitchl,
InKernel)

copy2DArrayTolDArray
(W, toHost, 1, J, W_1D, 2DT01D)

copyM emcopy2D
(W, HosttoDevice, |, J, pitch1,W_1D)

copyM emcopy2DToArray
(W, DevicetoDevice, ROI_w, ROI _h,
pitchl)

copyBindTexture
(W, DevicetoDevice, W, float, Bind)

copyM emcopy2D
(im_GPU, DevicetoHost, I, J, pitchl,
W_1D)

copy2DArrayTolDArray
(W_1D, toHost, I, J, W, 1DT02D)

tex_dev_3_D.addressMode[0] = cudaAddressModeClamp;

tex_dev_3_D.addressMode[1] = cudaAddressModeClamp;

tex_dev_3_D.filterMode = cudaFilterModePoint;

cudaMallocArray(&array_dev_3_D,&desc_1,N,M);

cudaMemcpyToArray(array_dev_3_D,0,0,((char *)D),si¢elvdr ) * N * M, cudaMemcpyHostToDevice);
cudaBindTextureToArray(tex_dev_3_D, array_dev_3_D);

cudaMallocPitch(((void **)(&d_dev_5_W)),&::pitch12B* sizeof(float ), J);

cudaMallocPitch(((void **)(&d_dev_6_im_GPU)),&::@h123,| * sizeof(float ), J);

int i_1;

int j_1;

for(i_1=0;i_1<J;++i_1)

for(_L1=0;j 1<I;++_1){
W_1D[i_1*I+j_1] = W[i_1][_1]; }

cudaMemcpy2D(d_dev_5_W,sizeof(float ) * I, W_1D, pik2B, sizeof(float ) * 1, J,
cudaMemcpyHostToDevice);

cudaMemcpy2DToArray(array_dev_4_W,0,0, d_dev_5_Whpi#8,sizeof(float ) * ROI_w, ROI_h,
cudaMeryidpviceToDevice);

cudaChannelFormatDesc desc_3;
desc_3 = cudaCreateChannelDesc<float>();
cudaBindTextureToArray(&tex_dev_4_ W, array_dev_4&wésc_3);

cudaMemcpy2D(W_1D,sizeof(float ) * I, d_dev_6_im_GPpith123,sizeof(float ) * I, J,
cudaMemcpyDeviceToHost);

inti_2;

intj_2;

for(i_2=0;i_2<J; ++i_2)

for _L2=0;j_2<1;++_2){
WI[i_2][j_2] =W_1D[i_2*I+j_2]; }
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