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Abstract

The use of immune algorithms is generally a time-intensive process—especially for problems with numerous variables. In the

present paper, we put forward a distributed parallel cooperative coevolutionary multi-objective large-scale immune algorithm that

is implemented using the message passing interface (MPI). The proposed algorithm comprises three layers: objective, group and

individual layers. First, to address each objective in a multi-objective problem, a subpopulation is used for optimization, and an

archive population is used to optimize all the objectives. Second, the numerous variables are divided into several groups. Finally,

individual evaluations are allocated across many core processing units, and calculations are performed in parallel. Consequently,

the computation time is greatly reduced. The proposed algorithm integrates the idea of immune algorithms, which explore sparse

areas in the objective space, and uses simulated binary crossover for mutation. The proposed algorithm is employed to optimize

the 3D terrain deployment of a wireless sensor network, which is a self-organization network. In our experiments, through compar-

isons with several state-of-the-art multi-objective evolutionary algorithms—the cooperative coevolutionary generalized differential

evolution 3, the cooperative multi-objective differential evolution, the multi-objective evolutionary algorithm based on decision vari-

able analyses and the nondominated sorting genetic algorithm III—the proposed algorithm addresses the deployment optimization

problem efficiently and effectively.

Keywords: decision variable analysis (DVA), cooperative coevolution (CC), large-scale optimization, message passing interface

(MPI), wireless sensor networks (WSNs), 3D terrain deployment

1. Introduction

In the wireless sensor network (WSN) deployment optimiza-

tion procedure [1], wireless sensor nodes can be optimized via

self-organization [2] to maximize the Coverage, optimize the

Connectivity Uniformity and minimize the Deployment Cost.

With the rapid development of sensor and wireless communi-

cation technologies, WSNs have been applied to various fields.

The work of [3] presented an air temperature monitoring appli-

cation for WSNs. Shen et al. [4] described the wireless sensor

nodes for a medical service. Zhang et al. [5] illustrated the

WSN k-barrier coverage problem. Zhou et al. [6] researched

the energy issue, regarding which clustering and data compres-

sion were studied. Zhang et al. [7] utilized mobile sinks to

alleviate the communication burden.

In addition, the response of the human immune system

to antigens can be viewed as a process of self-organization.
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Based on this concept, the clonal selection algorithm (CLON-

ALG) [8], which can be used for global optimization problems

(GOPs) and multi-objective optimization problems (MOPs) [9],

was proposed. Other nature-inspired algorithms also follow the

self-organizing procedure. For example, Xue et al. [10] de-

scribed the self-adaptive artificial bee colony algorithm, which

is different from the immune algorithm.

In the real world, many problems require several (usu-

ally conflicting) objectives to be considered simultaneously.

Multi-objective evolutionary algorithms (MOEAs) [11, 12, 13]

are capable of producing a plurality of solutions during one

run, which is convenient for approximating the Pareto front

(PF). For NP-hard problems, evolutionary algorithms (EAs)

[14, 15, 16, 17] can usually converge to near-optimal solutions

using limited computational resources [18] within a reasonable

time compared to brute force and deterministic methods.

The first multi-objective immune algorithm (MOIA) was

proposed in [19]. In this study, the immune algorithm (IA) was

integrated into the genetic algorithm (GA) to improve the selec-

tion of individuals for evolution. Gong et al. [20] presented the

nondominated neighbor immune algorithm (NNIA), which se-
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lects a small quantity of nondominated individuals in a sparse

area for cloning, recombination and mutation. In [21], sim-

ulated binary crossover (SBX) and differential evolution (DE)

were combined and applied to cloned individuals in a hybrid

evolutionary framework for MOIAs called HEIA, which per-

formed well for both unimodal and multimodal problems.

EAs are based on an iterative evolution of the population

(the solutions), which is time-consuming—especially for ex-

pensive problems. Distributed evolutionary algorithms (dEAs)

[22, 23] allocate the tedious computational burden across nu-

merous computational nodes, greatly reducing the required

time. Cloudde [24] used DEs with various parameters to op-

timize multiple populations in a distributed parallel manner,

yielding a promising performance from both the effect and effi-

ciency aspects. [25] provided a comprehensive study concern-

ing parallel/distributed MOEAs. Utilizing the multi-objective

optimization algorithm based on decomposition (MOEA/D)

[13], parallel MOEA/Ds (pMOEA/Ds) [26] [27] were pro-

posed.

With the arrival of “big data”, many complex problems have

emerged; solving such problems is both time-consuming and

storage-consuming [28, 29]. Similarly, many MOPs now have

numerous variables (e.g., more than 100 variables [30]). Some

examples include classification [31], clustering [32], and rec-

ommendation systems [33]. However, the goal of traditional

MOEAs is to solve multi-objective small-scale optimization

problems (MOSSOPs). Consequently, the traditional algo-

rithms may be incapable of tackling multi-objective large-scale

optimization problems (MOLSOPs) because of the “curse of di-

mensionality”. To optimize numerous variables, some promis-

ing approaches first separate the variables into groups and then

optimize them in a cooperative coevolutionary (CC) [34] man-

ner. For large-scale global optimization problems (LSGOPs),

many grouping mechanisms have been applied, including fixed

grouping [34], random grouping [35], the Delta method [36],

dynamic grouping [37], differential grouping (DG) [38], global

differential grouping (GDG) [39] and graph-based differential

grouping (gDG) [40]. Antonio et al. proposed the cooperative

coevolutionary generalized differential evolution 3 (CCGDE3)

method [41], which used fixed grouping.

MOLSOPs differ from LSGOPs in that no single solution

optimizes all the conflicting objectives; instead, a solution set

should be generated to approximate the PF. In MOLSOPs, vari-

ables have different properties [42], which can be classified as

follows:

1. position variables, which affect only the diversity of the

solution set;

2. distance variables, which affect only the convergence of

the solution set; and

3. mixed variables, which affect both the diversity and the

convergence of the solution set.

Therefore, position variables should be permuted to approxi-

mate the PF as comprehensively as possible. However, distance

variables should be optimized so that they can closely approach

the PF.

To identify these variable types, the multi-objective evo-

lutionary algorithm based on decision variable analyses

(MOEA/DVA) [30] utilizes a mechanism called decision vari-

able analyses (DVA). The position as well as mixed variables

are categorized as diversity-related variables, while distance

variables, as convergence-related variables. The convergence-

related variables are allocated to multiple groups that are then

optimized under the CC framework.

The use of multiple populations can impact the optimization

performance. In cooperative multi-objective differential evolu-

tion (CMODE) [43], each objective is optimized by a subpop-

ulation, and an archive is used to maintain good solutions and

optimize all objectives. This approach has yielded good exper-

imental results.

Compared to MOSSOPs, designing parallel/distributed

MOEAs for MOLSOPs will be more beneficial. In this pa-

per, we propose the distributed parallel cooperative coevolu-

tionary multi-objective large-scale immune algorithm (DPCC-

MOLSIA), which is aimed at solving MOLSOPs effectively

and efficiently.

The contributions of this paper can be summarized as fol-

lows:

1. Each objective is optimized by a subpopulation. Thus,

the exploration with respect to each objective is enhanced,

and all objectives are comprehensively optimized by an

archive. Variables are grouped according to their prop-

erties and interactions, contributing to effective optimiza-

tion.

2. The idea of the IA is introduced, more computational re-

sources are used to explore sparse areas in the objective

space, and SBX is utilized for evolution.

3. We construct a three-layer parallel structure. The evalu-

ations of individuals in different groups of multiple pop-

ulations can then be performed in parallel, which greatly

reduces the computation time.

The remainder of this paper is organized as follows: Sec-

tion 2 provides some preliminary information required for this

paper. The details of the DPCCMOLSIA are discussed in Sec-

tion 3. Then, in Section 4, we describe the experimental study

and present the corresponding analyses. Finally, Section 5 con-

cludes this paper.

2. Preliminaries

2.1. MOP and Variable Properties

An MOP involves several objectives that usually conflict with

each other. Therefore, addressing an MOP comprises obtaining

a solution set that approximates the PF. For the minimization

problem, we have the following formula:

Minimize F (X) = { f1 (X) , f2 (X) , ..., fM (X)} , (1)

where X = (X1, X2, ..., XD) is a point in the solution spaceℜD.

Here, D denotes the variable quantity, fi, i = 1, 2, ...,M, repre-

sents the objectives, and F (X) denotes the point in the objective

spaceℜM that corresponds to X.
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Figure 1: Image of solution sets for the MOP formulated in Eq.

2, sampled by altering one variable while holding the others

constant at 0.5.

Due to the conflicts among objectives, the types of different

variables involved can be numerous; correspondingly, variables

can be classified as position, distance, and mixed variables. For

instance, consider the following MOP:

{
f1 = 0 + x1 + sin (4πx2) + ex3(x4−0.05) + x2

5

f2 = 1 − x1 − cos (4πx2) + x2
3
+ x3

4
+ x2

5

s.t. xi ∈ [0, 1], i = 1, 2, 3, 4, 5,

(2)

where f1 and f2 are two objectives and x1, x2, x3, x4 and x5 are

decision variables.

Fig. 1 illustrates the solution sets sampled by altering each

variable individually while holding the others constant at 0.5.

From the image, we can determine the properties of the vari-

ables: x1 is a position variable, as it influences only the diver-

sity; x2 is a mixed variable, as it influences both the diversity

and the convergence; x3 and x4 are distance variables, though

their relative positions change only slightly with variation of

the values; and x5 is a distance variable, as it influences only

the convergence.

2.2. CC

CC [34] divides a great quantity of variables into several sub-

components that are optimized separately. For fitness evalua-

tion, the target subcomponent is recombined with representa-

tives from the other components to constitute a complete solu-

tion.

2.3. Immune Algorithm

The CLONALG was proposed in [8]; its process is detailed

in Algorithm 1. In the CLONALG, an antibody denotes a can-

Algorithm 1: CLONALG

Input: number of variables: D;

number of antibodies: NAb;

number of generations: Ngen;

antibodies: POPAb;

number of antibodies to be selected: Nsel.

Output: final antibodies: POPAb;

final affinities: AFFAb.

/* Initialization */

1 G = 0;

2 Randomly initialize POPAb, AFFAb = f (POPAb);

3 Selected antibodies POPsel = φ, AFFsel = φ;

4 Reproduced antibodies POPrep = φ, AFFrep = φ;

/* Main Loop */

5 while G < Ngen do

6 Selection according to AFFG
Ab

:

7 POPG
Ab
→ POPG

sel
, AFFG

Ab
→ AFFG

sel
;

8 Cloning according to AFFG
sel

:

9 POPG
sel
→ POPG

rep;

10 Hypermutation:

11 POPG
rep → P̃OP

G

rep, ÃFF
G

rep = f

(
P̃OP

G

rep

)
;

12 Insertion:

13 POPG
Ab
+ P̃OP

G

rep → POPG+1
Ab

, AFFG+1
Ab
= f
(
POPG+1

Ab

)
;

14 G + +;

Algorithm 2: DPCCMOLSIA

1 Initialization;

2 Variable property and interaction analyses;

3 Variable grouping;

4 Parallelism implementation;

5 Optimization;

didate solution, the optimal solution is seen as the antigen, and

the affinity represents the fitness.

3. The Proposed Algorithm: DPCCMOLSIA

Algorithm 2 lists the main steps in the framework of the

DPCCMOLSIA. The main procedure is detailed in the follow-

ing subsections.

3.1. Variable Property and Interaction Analyses

Variables are classified as position variables, distance vari-

ables and mixed variables according to their influences on di-

versity and convergence. At the end of this process, the posi-

tion variables and mixed variables are categorized as diversity-

related variables, and the distance variables are categorized as

convergence-related variables. For the MOP formulated in Eq.

2, x1 and x2 are classified as diversity-related variables, while

x3, x4 and x5 are classified as convergence-related variables.

3



3.2. Variable Grouping

Because more than one objective exists, the interactions

among variables are obtained with respect to each objective by

adopting the idea of gDG [40]. The diversity-related variables

are separated into a single group. We group the convergence-

related variables according to the following idea: if two vari-

ables interact with each other for any objective optimized in the

present subpopulation/archive, we consider them to be interact-

ing. Take the MOP mentioned above in Eq. 2 for example,

x1 and x2 are diversity-related variables; thus, they are grouped

together. For the convergence-related variables, x3 and x4 in-

teract in f1 and act independently in f2; thus, we allocate them

to a single group in subpopulation 1 (only optimizing f1), to

separate groups in subpopulation 2 (only optimizing f2), and to

the same group in the archive (optimizing both f1 and f2). x5 is

independent from other variables for both f1 and f2; thus, it is

allocated to another separate group.

3.3. Parallelism Implementation

For MOLSOPs, especially expensive ones, parallelism can

be beneficial. The DPCCMOLSIA is a distributed parallel al-

gorithm implemented using the MPI. In the DPCCMOLSIA,

the parallel structure has three layers.

Assuming that NCPU CPU resources are available, the vari-

ables are divided into NG
i

groups. Here, i = 1, 2, ...,M + 1—

the subpopulations are represented by i = 1, 2, ...,M, and the

archive is represented by i = M + 1. NP individuals exist in

each subpopulation and in the archive population. Then, we

have the following equation:

NCPU
i
=

NG
i∑M+1

j=1 NG
j

× NCPU

s.t. i = 1, 2, ...,M + 1,

(3)

where NCPU
i

denotes the quantity of CPUs allocated to the sub-

population i or the archive.

NCPU
i, j
=

NCPU
i

NG
i

s.t. j = 1, 2, ...,NG
i
,

(4)

where NCPU
i, j

is the quantity of CPUs in the charge of group j in

subpopulation i or the archive.

The evaluations of the individuals are allocated across the

multiple CPUs in each group.

NCPU
i, j,k
=

NP

NCPU
i, j

s.t. k = 1, 2, ...,NCPU
i, j
,

(5)

where NCPU
i, j,k

is the number of individuals that are assigned to

CPU k of group j in subpopulation i or the archive.

Therefore, based on the three-layer parallel structure, the

evaluations of the individuals in each group of all M + 1 pop-

ulations are conducted in parallel, which substantially reduces

the computation time.

To guarantee the optimization performance, information

must be shared among the groups. Hence, the communication

Algorithm 3: Evolution

Input: generation number: Ngen.

Output: final population: POP f inal.

1 for G = 1→ Ngen do

2 Evolve all variable groups in the subpopulations

(Algorithm 4) and the archive (Algorithm 5) in parallel;

3 Exchange information among the groups;

4 Gather all the individuals from all groups to generate the

final population POP f inal;

strategy should be properly designed [44, 45]; we adopt the von

Neumann topology.

3.4. Evolution Combined with the Idea of the IA

The overall evolution process is provided by Algorithm 3.

The evolution of each group in the subpopulations (Algorithm

4) or in the archive (Algorithm 5) is described in the following

subsections.

3.4.1. Subpopulations

In Line 2 of Algorithm 4, in the evolution, tour selection

is employed to choose 2 individuals from the full population.

Then, in Lines 3 and 4, we use SBX to evolve variables in the

target group and integrate them with other variables to form a

complete individual.

X̃i, j =

{
S BX

(
Xi, Xr1

, Xr2
, j
)

if j ∈ index

Xr3, j otherwise,
(6)

where X̃i denotes the generated new solution, Xi is the target

parent individual, Xr1
and Xr2

are the 2 reference individuals,

Algorithm 4: Evolution of One Variable Group in Subpop-

ulations

Input: number of individuals: NP;

population: POP1.

Output: new population: POPnew1.

/* Evolution */

1 for i = 1→ NP do

2 Select 2 reference individuals;

3 Use SBX to generate offspring i;

4 Combine the generated offspring with other variables

to construct a complete solution;

5 Perform polynomial mutation;

/* Evaluation */

6 Allocate the generated solutions to the CPU resources in

the group and perform the evaluations in the CPUs in

parallel;

7 Collect the fitness values from the CPUs;

/* Refinement */

8 Combine the generated solutions with the old population;

9 Obtain NP individuals with respect to their fitness values

of the considered objective→ POPnew1;

4



index contains the variables to be optimized by the present

group, and Xr3
is integrated with the optimized variables to form

a complete solution, which has the following form:

r3 =



i if r <
G

Ngen

r4 else if r′ < 0.5

r5 otherwise,

(7)

where G denotes the present generation number and Ngen de-

notes the maximum generation number. Here, r and r′ are ran-

dom numbers generated uniformly within [0.0, 1.0], and r4 and

r5 are two individuals selected via tour selection. Then, in Line

5, polynomial mutation is performed.

In Lines 6 and 7, to evaluate the newly generated solutions,

we use parallelism to alleviate the computational burden. This

is the third layer of the parallel structure of the DPCCMOLSIA.

Finally, in Lines 8 and 9, the NP best individuals with respect

to the considered objective are preserved.

3.4.2. Archive

Traditionally, in each generation, all individuals take part in

evolution. However, this paper introduces the idea of the IA, in

which, in each generation, we select several good individuals

and produce NP offspring, the entire process of which is illus-

trated in Algorithm 5. In detail, the selection of individuals in

Line 1 is determined by two criteria: nondominance and crowd-

ing distance. If the quantity of nondominated individuals is less

than Nsel, all of them are selected for cloning; otherwise, we se-

Algorithm 5: Evolution of One Variable Group in Archive

Input: number of individuals: NP;

population: POP2;

maximum number of individuals to be selected: Nsel.

Output: new population: POPnew2.

/* Selection */

1 Select Nsel individuals according to the Pareto dominance

and crowding distance;

/* Clone */

2 Clone the selected individuals to a total number of NP;

/* Evolution */

3 for i = 1→ NP do

4 Select 2 reference individuals;

5 Use SBX to generate the offspring i;

6 Combine the generated offspring with other variables

to construct a complete solution;

7 Perform polynomial mutation;

/* Evaluation */

8 Allocate the generated solutions to the CPU resources in

the group and perform evaluations on the CPUs in parallel;

9 Collect the fitness values from the CPUs;

/* Nondominated sorting */

10 Combine the generated solutions with the old population;

11 Obtain NP individuals according to the Pareto dominance

and crowding distance→ POPnew2;

lect the Nsel individuals that have larger crowding distances. In

the cloning process in Line 2, the quantity of replicates of each

selected individual depends on the crowding distance [21].

NC
i
=

disti∑Nsel

j=1
dist j

× NP, (8)

where NC
i

represents the number of replications of selected in-

dividual i and disti is its crowding distance in the population,

which is calculated as follows:

disti =
M∑

m=1

distm
i
, (9)

where distm
i

denotes the crowding distance of the i-th individual

with respect to objective m, with

distm
i =



∞ if (i)∗ = 1

0 if (i)∗ = NP

f̃
(i)∗+1
m − f̃

(i)∗−1
m

f̃ NP
m − f̃ 1

m

otherwise.

(10)

f̃
(i)∗

m is the f i
m sorted in descending order, and (i)∗ denotes the

new index of the i-th individual in the sorted sequence.

disti =

{
2 × distmax

i
if disti = ∞

disti otherwise,
(11)

where distmax
i

is the maximum crowding distance. Because ∞

values are assigned to the crowding distances, to calculate NC
i

,

we have to convert them.

In Line 4 of the evolution process, we select 2 individuals

from among the Nsel selected individuals if Nsel > 2; otherwise,

the selection scope is the whole population. Then, in Lines 5

and 6, we use SBX to generate the target individual. For the in-

tegration, r4 and r5 (Eq. 7) are 2 randomly selected individuals

from the Nsel best individuals used for cloning when Nsel > 2

or from the whole population when Nsel ≤ 2. Then, in Line 7,

polynomial mutation is performed.

Finally, in Lines 10 and 11, we combine the new individu-

als with the present population to obtain the NP best individu-

als according to the Pareto dominance and crowding distance.

When the quantity of nondominated individuals is below NP,

several dominated individuals will be preserved.

4. Experimental Research: Application to 3D Terrain De-

ployment of Heterogeneous Directional Sensor Networks

4.1. 3D Deployment Problem and Terrain Data

We use the 3D deployment problem proposed in [1], which

includes three objectives: Coverage, Connectivity Uniformity

and Deployment Cost. We also utilize the same real-world 3D

terrain data (Fig. 2), which are composed of plain (Fig. 2a),

hilly (Fig. 2b) and mountainous (Fig. 2c) terrains. These three

terrains have different characteristics that are used to verify the

proposed algorithm with respect to various conditions.

5



(a) Plain Terrain (b) Hilly Terrain (c) Mountainous Terrain

Figure 2: Illustration of 3D terrain data.

4.2. Parameter Setup

We compare the DPCCMOLSIA with the CCGDE3 [41],

the CMODE [43], the MOEA/DVA [30] and the nondominated

sorting genetic algorithm III (NSGA-III) [46] in terms of ad-

dressing the deployment optimization problem.

For all the algorithms, the optimization process is performed

24 times. The fitness evaluations (FEs) are set to 104 ×D; here,

D = 2 × 102.

To ensure fair comparison, we set the population size, NP,

to 120 with respect to all algorithms. Specifically, for the

CCGDE3, the population is split into 2 subpopulations, each of

which has 60 individuals. For CMODE, because there are 3 ob-

jectives that must be optimized, we use 3 subpopulations, each

of which has 20 individuals, and set the maximum size of the

archive to 120. For the MOEA/DVA and NSGA-III, we simply

set NP to 120. For the DPCCMOLSIA, each of the subpopu-

lations and the archive population has 120 individuals. Finally,

we select 120 individuals from all populations.

DE is used in the CCGDE3, and we set F = 0.5 and CR =

1.0. SBX and polynomial mutation are used in the MOEA/DVA,

NSGA-III and DPCCMOLSIA, and the distribution indexes are

set to ηc = ηm = 20. The probabilities of crossover and muta-

tion are set to pc = 1.0 and pm = 1.0/D, respectively.

For MOEA/DVA, the probability of selecting individuals

among the neighborhood is 0.9, the neighborhood size is 0.1 ×

NP and the replace limit is 0.01 × NP.

For DVA in MOEA/DVA, the number of control variable

analysis is NCA = 20 and the number of interdependence anal-

ysis is NIA = 6. For the variable property and interaction anal-

yses in DPCCMOLSIA, NCA = 20 and NIA = 1.

Additionally, for the DPCCMOLSIA, we set Nsel = 0.1×NP,

and the number of CPUs used is 72, while other algorithms are

serial.

4.3. Performance Indicator

Because the optimal solutions are unknown, we use the hy-

pervolume (HV) indicator [47] and visualize all the obtained

solution sets. The HV indicator translates the solution set qual-

ity into a single evaluation index. The higher the HV indicator

value, the better the optimization performance.

4.4. Results and Analyses
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Figure 3: Visualization of solutions for all terrains.

First, we demonstrate all the obtained final nondominated so-

lutions after 24 runs of each algorithm on each of the three ter-

rains in Fig. 3. Here, P − ∗ denotes the results for the plain

terrain, H −∗ denotes the results for the hilly terrain, and M −∗

denotes the results for the mountainous terrain.

Fig. 3 shows that the characteristics are quite different for

the different terrains. In general, for the plain terrain, all the

algorithms perform better in terms of Coverage. For the hilly

6



terrain, the algorithms tend to perform well in terms of the De-

ployment Cost objective. Finally, for the mountainous terrain,

the performances of the algorithms are far inferior to their per-

formances for the other two terrains. We can comment on the

above phenomena as follows:

1. Because the plain terrain is flatter than the other two ter-

rains, it is easier to achieve better Coverage.

2. The hilly terrain has fluctuations in elevation, and the algo-

rithms tend to deploy the sensor nodes in low-lying areas,

thus guaranteeing better Deployment Cost.

3. The mountainous terrain has severe elevation changes,

which makes it much more difficult to address compared

with the other two terrains. Consequently, the algorithms

exhibit poor performances for this terrain.

In the following, we give detailed results of all algorithms

with respect to each terrain and provide corresponding perfor-

mance analyses.

4.4.1. Plain Terrain

The evolutionary curves of the HV indicator values are illus-

trated in Fig. 4.

We can see that the DPCCMOLSIA has the best perfor-

mance (0.6864839), followed by the MOEA/DVA (0.6582590),

the CMODE (0.6290526), and the NSGA-III (0.5526697); the

CCGDE3 has the worst performance (0.3539973). Moreover,

the DPCCMOLSIA has the fastest convergence speed, but

less improvement occurs in the consequent process, while the

MOEA/DVA is quite inferior in the beginning stage but im-

proves significantly in the middle stage.
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Figure 4: Evolutionary curves of HV indicator values (plain

terrain).

The visualization is shown in Fig. 5. In accordance with the

HV indicator and considering the diversity and convergence of
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Figure 5: Visualization of solutions for plain terrain.
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solutions, the overall performance of the DPCCMOLSIA is the

best.

Coverage is an important factor to consider in WSN deploy-

ment problems. From the visualization, we can see that the

DPCCMOLSIA is able to obtain a very low fitness value (high

coverage rate) for the Coverage objective, which validates its

performance. Because the plain terrain is quite flat, it is easier

to optimize the objectives Connectivity Uniformity and Deploy-

ment Cost.

Overall, the performances of all the algorithms for the

plain terrain can be ordered as follows: DPCCMOLSIA >

MOEA/DVA > CMODE > NSGA-III > CCGDE3.

4.4.2. Hilly Terrain

The HV indicator value evolutionary curves for all the algo-

rithms for the hilly terrain are illustrated in Fig. 6.

The HV indicator values again reveal that the DPCC-

MOLSIA has the best performance (0.7894622), followed by

the MOEA/DVA (0.7794569), the CMODE (0.7070007), the

NSGA-III (0.6374458), and the CCGDE3 (0.4470647). The

characteristics of all the algorithms resemble those described

above for the plain terrain.
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Figure 6: Evolutionary curves of HV indicator values (hilly ter-

rain).

The visualization of the solutions are shown in Fig. 7. Gener-

ally, the DPCCMOLSIA more comprehensively approximates

the optimal PF and still guarantees good Coverage. As men-

tioned above, because the fluctuations in the hilly terrain are

relatively smaller and the flat area is larger compared to the

mountainous terrain, the algorithms obtain a relatively good

Deployment Cost.

Overall, the performances of the algorithms for the hilly ter-

rain can be ordered as follows: DPCCMOLSIA >MOEA/DVA

> CMODE > NSGA-III > CCGDE3.
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Figure 7: Visualization of solutions for hilly terrain.

8



FEs ×106

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
V

 v
al

u
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CCGDE3
CMODE
MOEA/DVA
NSGA-III
DPCCMOLSIA

Figure 8: Evolutionary curves of HV indicator values (moun-

tainous terrain).

4.4.3. Mountainous Terrain

The HV indicator value evolutionary curves of the DPCC-

MOLSIA, the MOEA/DVA, the CMODE, the NSGA-III and

the CCGDE3 for the mountainous terrain are illustrated in Fig.

8.

The DPCCMOLSIA again yields the highest HV indicator

value (0.6119342), followed by the MOEA/DVA (0.5773018),

the CMODE (0.5459146), the NSGA-III (0.4343607), and the

CCGDE3 (0.2848895). The characteristics of the different al-

gorithms are similar to those for the plain and hilly terrains.

Visualizations of the nondominated solution sets produced

by all the algorithms are illustrated in Fig. 9. Overall, the DPC-

CMOLSIA performs the best. Because the mountainous terrain

has severe altitude variations, it is much more difficult for the

algorithms to achieve a good optimization performance.

The performances of all five algorithms for the mountain-

ous terrain can be ordered as follows: DPCCMOLSIA >

MOEA/DVA > CMODE > NSGA-III > CCGDE3.

Overall, comprehensively considering all the tested terrains,

the DPCCMOLSIA is the best in terms of the optimization re-

sults; the MOEA/DVA is inferior; the CMODE is the third; the

NSGA-III is fourth; and the CCGDE3 is last.

Table 1 summarizes the computation times required by the

various algorithms. Compared to the serial algorithms, the

computation time of the DPCCMOLSIA is substantially re-

duced.

5. Conclusions and Prospects

In the present paper, we put forward a distributed parallel

cooperative coevolutionary multi-objective large-scale immune

algorithm (DPCCMOLSIA), which uses a three-layer parallel
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Figure 9: Visualization of solutions for mountainous terrain.
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Table 1: Average Computation Time of the CCGDE3,

CMODE, MOEA/DVA, NSGA-III and DPCCMOLSIA, and

the Speedup Ratios with Respect to the DPCCMOLSIA

AVERAGE TIME CCGDE3 CMODE MOEA/DVA NSGA-III DPCCMOLSIA

Plain terrain 8.52E+03 8.99E+03 8.67E+03 9.21E+03 1.64E+021

Hilly terrain 1.29E+04 1.45E+04 1.14E+04 1.49E+04 2.37E+02

Mountainous terrain 9.64E+03 1.31E+04 1.07E+04 1.26E+04 2.30E+02

All terrains 3.11E+04 3.66E+04 3.08E+04 3.67E+04 6.31E+02

Speedup ratio 4.93E+01 5.80E+01 4.88E+01 5.82E+01 /

1 Values in bold denote better performance.

structure to substantially reduce the computation time. By de-

composing the objectives and variables, the original complex

MOLSOP is transformed into simpler, small-scale problems

that are easier to address. Via tests on real-world terrain data,

compared with several other algorithms (CCGDE3, CMODE,

MOEA/DVA and NSGA-III), the DPCCMOLSIA can achieve

better optimization results in much less time. In the future, we

plan to continue improving the DPCCMOLSIA and to test it on

additional real-world problems.
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