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ABSTRACT: A novel method for the accurate and efficient
calculation of interaction energies in weakly bound complexes
composed of a large number of molecules is presented. The
new ALMO+RPAd method circumvents the prohibitive
scaling of coupled cluster singles and doubles while still
providing similar accuracy across a diverse range of weakly
bound chemical systems. Linear-scaling procedures for the
Fock build are given utilizing absolutely localized molecular
orbitals (ALMOs), resulting in the a priori exclusion of basis
set superposition errors. A bespoke data structure and
algorithm using density fitting are described, leading to linear
scaling for the storage and computation of the two-electron
integrals. Electron correlation is included through a new,
linear-scaling pairwise local random phase approximation
approach, including exchange interactions, and decomposed into purely dispersive excitations (RPAxd). Collectively, these
allow meaningful decomposition of the interaction energy into physically distinct contributions: electrostatic, polarization,
charge transfer, and dispersion. Comparison with symmetry-adapted perturbation theory shows good qualitative agreement.
Tests on various dimers and the S66 benchmark set demonstrate results within 0.5 kcal mol−1 of coupled cluster singles and
doubles results. On a large cluster of water molecules, we achieve calculations involving over 3500 orbital and 12,000 auxiliary
basis functions in under 10 min on a single CPU core.

1. INTRODUCTION

Chemistry relies on the idea that results obtained for molecules
in one context are transferrable to other, similar situations. The
idea of a molecule implies there is an inherent locality to the
underlying description. While no such physical distinction truly
exists, it is undeniably helpful to compartmentalize and
categorize chemical systems. The latter is especially true in
the case of noncovalent interactions, the ubiquitous forces
underlying phenomena as diverse as geckos attaching
themselves to walls,1,2 to the cohesion of asteroids,3 and
more.4,5 Such interactions are defined to be any stabilization
weaker than would be expected for a chemical bonda
definition so broad as to be insurmountably difficult to study
without distinguishing further. Typically, such a distinction is
found through decomposition of the interaction into terms
such as electrostatic, polarization, and dispersion;6 the complex
is then typified by the predominant component.
Noncovalent interactions are difficult to study, both

experimentally and theoretically. Isolating weak forces in the
condensed phase is problematic,7 although progress has been
made in the use of molecular balances.8 Similarly, attempts in
the gas phase are hindered by the fact that the thermal energy
may overcome the weak binding. Theory therefore is of vital
importance to understand these weakly bound systems.

However, the presence of small energy differences and the
importance of dispersionan effect entirely due to dynamical
electron correlationmean that only the most accurate
computational methods perform consistently well.9−11 The
lack of a reasonable description of dispersion, in particular,
excludes the majority of density functionals, which have been
shown to often give qualitatively and quantitatively inaccurate
results, although progress has been made on this front.12−16

Even the cheaper correlated methods, especially second-order
perturbation theory, will consistently overbind systems with
significant delocalization such as the benzene dimer,9 while
underbinding many others, for example, in saturated systems.17

The gold standard is considered to be coupled cluster with
singles, doubles, and perturbative triples [CCSD(T)],18,19

which scales as N( )7 , where N is a measure of system size.
Problematically, the correlation energy generally converges
very slowly with basis set size, such that very large bases are
needed to achieve high accuracy.20 The result is that
quantitative study is restricted to small molecular systems in
the gas phase.
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Considerable attention has been given to trying to reduce
the cost of coupled cluster calculations.21−24 The primary
reason for slow convergence with basis set size is the poor
description of the interelectronic cusp25 when Gaussian-type
orbitals are used. Recognition of this led to the development of
explicitly correlated F12 methods,26,27 where terms linear in
the interelectronic separation are included as geminals in the
wave function. Such methods dramatically improve the rate of
convergence to the complete basis set limit,28 allowing much
smaller basis sets to be used without loss of accuracy. However,
this comes at the cost of additional many-electron integrals; it
was only with the advent of density fitting,29,30 or resolution of
the identity, approaches that it became feasible to carry out
explicitly correlated calculations efficiently. Density fitting
involves approximating the many-electron integral tensors by
lower rank tensors using large auxiliary basis sets, a technique
which has been found to be more generally applicable.31,32 For
example, it has been used in the Fock build33,34 and integral
transformation35−37 stages of canonical wave function-based
methods, yielding considerable savings in computational
effort.38−40 Unfortunately, in the case of coupled cluster, the
use of density fitting does not improve the overall scaling
(although it can considerably reduce the scaling prefactor).
More recently, there have been attempts to use low-rank
decompositions on the coupled cluster amplitude equations
directly, with some promising early results.41

The prohibitive scaling behavior of correlated wave function
methods is unphysical.42 It is an artifact of the use of canonical
molecular orbitalsthe requirement for diagonalization results
in orbitals extended over the entire system. As noted above,
however, the properties of molecules are usually localized, and
we would expect this to be reflected in the orbitals, at least in
the occupied subspace. It is possible to use the invariance of
the Hartree−Fock reference to rotations within the occupied
and virtual subspaces to localize the molecular orbitals after the
fact.43 When used subsequently in the correlated part of the
calculation, this has two advantages: the pair correlation
between distant, localized orbitals is small and so can either be
treated more cheaply or not at all; the steep and unphysical
expansion of the virtual space available to each electron can be
eliminated by restricting excitations to atomic orbitals spatially
close to the occupied molecular orbitals. There are now a
myriad of such “local correlation” methods,23,44−49 which allow
for coupled cluster calculations that scale essentially linearly
with system size. None of the orbital localization procedures
used in local correlation approaches are perfect, however, and
great care needs to be taken in choosing thresholds for when
terms are neglected; in particular, a lack of consistency across
different geometries could result in discontinuous potential
energy surfaces.
One method, related to coupled cluster, which has recently

seen a lot of interest in the density-functional theory
community is the random phase approximation (RPA). This
method was first introduced in the 1950s by Bohm and
Pines50−52 as a way to determine exactly the correlation energy
of the uniform electron gas. Previous perturbative attempts
failed, as the perturbation series were divergent, while the
renormalization inherent in the diagrammatic approach of
Feynman, and later Goldstone,53 circumvented these prob-
lems. Since then, it has been demonstrated that the RPA yields
the exact long-range dispersive behavior, and it has been
successfully applied to a wide range of molecular systems.54,55

As we discuss later, it is also intimately connected with coupled

cluster theory and as such has been used to bridge the gap
between density functional-based and wave function-based
approaches.55

The problems in performing high-accuracy calculations are
further compounded by the fact that in practically interesting
systems, e.g., biological and supramolecular contexts, com-
plexes are not normally found in their equilibrium geometries.
The interaction of interest will usually be strongly influenced
by the environment, such that the surroundings must be taken
into account. In large systems with multiple components, new
difficulties present themselves: (1) Many-body effects become
important, meaning that pair potential approximations are
inadequate.56 (2) The number of local minima increases
exponentially with system size.57 (3) The intermolecular and
intramolecular degrees of freedom become strongly coupled.58

(4) The gradients become tainted with basis set superposition
errors (BSSE).59 The usual counterpoise scheme60 for
correcting BSSE would involve calculations on all fragments
in the full complex basis, in addition to the supermolecular
calculation itself. The cost therefore explodes as the number of
fragments increases. In addition, BSSE is larger for smaller
basis sets to the point where for very small bases it can be
substantial enough as to result in a false minimum on a
repulsive potential energy curve.61 Therefore, to study
intermolecular interactions in large systems, it is preferable
to eliminate the superposition errors explicitly from the
beginning.
Several different methods have been suggested for the a

priori elimination of BSSE. These include symmetry-adapted
perturbation theory (SAPT),62−65 block-localized wave
functions,66 absolutely/extremely localized molecular orbi-
tals,67−69 local correlation methods,42,49,58,70,71 dual basis set
methods,72−74 and the chemical Hamiltonian approach.61,75,76

The first of these is perhaps the most popular and has the
added advantage of providing a decomposition of the
interaction energy into physical components, such as electro-
statics and dispersion. However, the cost of high-order SAPT is
not much better than traditional correlated methods, although
recent density-fitted implementations are very efficient.7,77 The
chemical Hamiltonian approach, in contrast, attempts to
directly identify the terms in the supermolecular Hamiltonian
that introduce BSSE and removes them.61,75,78 This has the
advantage of being readily extendable to traditional correlated
methods, in a way that SAPT cannot. The mean-field results
obtained in this way have been seen to be virtually
indistinguishable from counterpoise-corrected Hartree−Fock
results,75 without the need for monomer calculations in the full
basis. However, it offers no computational savings beyond this
and does not solve the underlying problem of localization.
An alternative method is to constrain the molecular orbitals

(MOs) on a fragment to only use the atomic orbital (AO)
basis local to that fragment. As the AOs are by construction
localized, this results in absolutely localized molecular orbitals
(ALMOs), with all BSSE necessarily eliminated as a result.
This was first suggested by Stoll et al.79 and then further
developed by Cullen.80 It has sometimes been attributed to the
later work of Gianinetti et al. under the name self-consistent
field for molecular interactions (SCF-MI);81,82 this was then
extended by Iwata and co-workers.83−87 More recently, the
Head-Gordon group have made extensive use of ALMOs,69,88

introducing charge transfer corrections and an energy
decomposition analysis.89−92 Applications of the latter to a
wide range of systems have yielded interesting results.93,94
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In the present work, we use absolutely localized molecular
orbitals to develop an inherently fragment-based method for
calculating interaction energies free from BSSE. These are used
to eliminate the localization problems in a local treatment of
the correlation energy and in this way naturally get a correlated
energy decomposition analysis. Following development of the
theory, we demonstrate how the new method can be made to
be essentially linear scaling in the number of fragments and
describe its amenability to massive parallelization. Finally, the
applicability and efficiency of the method is demonstrated on a
range of chemically interesting systems, showing that it gives
essentially coupled cluster quality results at a fraction of the
computational cost.

2. THEORY

The theory behind absolutely localized molecular orbitals has
been developed, and redeveloped, by several groups. We
present it here briefly in the context of second quantization, as
this is helpful when including electron correlation later in the
theory.
Consider a system of F fragments. Each fragment, X, has an

atomic orbital (AO) basis, {χXμ}, associated with it, containing
nX functions. From these, oX occupied and vX virtual molecular
orbitals, ϕXp, will be formed. The total supermolecular basis
then comprises the union of all such fragment bases, with N =
∑X nX AOs, O = ∑X oX occupied orbitals, and V = ∑X vX
virtual orbitals. Throughout the following, we define

= { }
=

n o v n o v/ / max / /
X F

X X X
1,2,..., (1)

Tensor notation is used throughout, as is the Einstein
summation convention with the exception of sums over
fragments, which are always explicitly shown for clarity. As is
usual, subscripted indices indicate covariant quantities, while
superscripted indices represent contravariant quantities. Dots
are used as placeholder indices to clarify the composite indices
required to denote the fragmentation; for example, Xi is a
single index.
2.1. Absolutely Localized Molecular Orbitals

(ALMOs). The covariant ALMOs are expanded as a linear
combination of atomic orbitals, with the coefficients con-
strained to be fragment localized. In tensor notation, this is
written as

ϕ ϕ ϕ ϕ| ⟩ = | ⟩ | ⟩ = | ⟩
μ

μ

μ

μ
·

·
·

·T Vand
Xi X Xi

X
Xa X Xa

X
(2)

where the coefficient tensors, T and V, are constrained such
that

= = ≠μ μ
·

·
·

·T V X Y0 ifYi
X

Xi
Y

This is in contrast to the canonical theory, where we would
instead constrain all MOs to be orthogonal; the above removes
the degrees of freedom that would allow us to do so, such that
the orbitals so obtained are in general nonorthogonal.
The wave function is more compactly represented in second

quantization by operators, apγ
† and apγ, which create or

annihilate, respectively, an electron in orbital ϕp with spin γ.
The lack of orthogonality means that these satisfy the
anticommutation relations

δ

[ ] = [ ] =

[ ] =

γ γ γ γ

γ γ γγ

† †
+ +

†
+

a a a a

a a s

, , 0

,

p q p q

p q pq

1 2 1 2

1 2 1 2 (3)

where spq = ⟨ϕp|ϕq⟩. This completely encodes the anti-
symmetry of the wave function, but the nonvanishing nature of
spq complicates matters. Instead, we introduce a symmetrically
orthogonalized set of operators for the occupied orbitals as

σ̃ = [ ]γ γ
† † −a ai j

ji1/2
(4)

where σ is the occupied−occupied overlap metric. The density
operator, which projects onto the occupied subspace, is thus ρ̂
= |ϕ̃i⟩ ⟨ϕ̃i|; we transform the virtual orbitals by projecting them
out of the occupied subspace

ρ̃ = ̂ − ̂ = ̂γ γ γ
† † †a a qa(1 )a a a (5)

The occupied−occupied and occupied−virtual anticommuta-
tion relations thus become the usual

δ δ[ ̃ ̃ ] =γ γ γγ
†

+a a,i q iq1 2 1 2

Writing a single excitation operator in the form Ẽpq =
∑γap̃γ

† aq̃γ, the usual molecular Hamiltonian is given by

δ̂ = ̃ ̃ + ̃ ̃ − ̃H h E g E E E
1

2
( )pq pq pqrs pq rs ps rq (6)

where h̃pq and g̃pqrs are the one- and two-electron integrals in
the orthogonalized basis. For simplicity, we consider only a
restricted closed-shell wave function, |Φ⟩ = ∏i∈occ.aiα

† aiβ
†
|⟩, but

the extension to the spin-unrestricted case is simple, as has
been detailed elsewhere.95 The energy is thus given by

= ⟨ |̃ ̂ + ̂ | ⟩̃ = { + }E i h f i H F PTr ( ) (7)

where H and F are the AO representations of the core
Hamiltonian and Fock operators, ĥ and f,̂ with Fμν = Hμν +
⟨μν∥λτ⟩Pτλ. From this, we see that the density matrix is given
by

σ=μ ν μ ν
·

·
·

·P T TX Y
Xi
X Xi

Yj
Y, ,Yj

(8)

Note that this couples fragments together, such that the energy
is not simply a sum of disjoint monomer energies.
Taking the derivative of the energy with respect to a

rotation, e−κ̂, of the orthogonalized orbitals, where κ̂ = κpq(Ẽpq

− Ẽqp), we get the stationary condition

κ
ϕ ϕ ϕ ϕ

∂

∂
= ⟨Φ|[ ̃ ̂ ]|Φ⟩ = ⟨ ̃| ̂ | ⟩̃ = ⟨ | ̂ ̂ | ̃ ⟩ =

E
E H f qf2 , 4 4 0

ai
ai a i Xa

Xi

(9)

This is equivalent to the requirement q̂fρ̂̂|ϕ̃Xi⟩ = 0. Thus,
occupied−occupied and virtual−virtual rotations within each
fragment’s orbital space do not affect the energy, such that we
may choose orbitals within each fragment to be orthonormal,
diagonalizing the on-fragment blocks of the Fock matrix: ⟨ϕ̃Xj|f|̂
ϕ̃Xi⟩ = ϵXiδij. We therefore define fragment-localized density
and Fock operators as

ρ ϕ ϕ ρ ρ̂ = | ̃ ⟩⟨ ̃ | ̂ = ̂ + ̂ ̂ ̂ + ̂†f q f qand ( ) ( )
X

Xi

Xi X X X (10)

Note that ρ̂ = ∑X ρ̂X, and that f ̂X has been constructed to be
Hermitian. Using the condition in eq 9, along with the facts
that ρ̂X |ϕYi⟩ = δXY |ϕ̃

Xi⟩ and q̂ |ϕXi⟩ = 0, we see that

ϕ ϕ ϕ ϕ ϕ̂ | ⟩ = | ⟩⟨ ̃ | ̂ | ̃ ⟩ = | ⟩ϵf f
X Xi Xj Xj

Xi

Xi Xi

Transferring to the AO representation, this yields a set of
modified Roothaan−Hall equations for each fragment block
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= ϵF C S CX X
X

XX X
X

X (11)

This is the same result obtained by Stoll et al.79 By
construction, there can be no BSSE present in the solution
to these. Moreover, given that the diagonalization of anM × M

matrix is an M( )3 process, the cost for diagonalizing F

fragment Fock matrices is (Fn )3 , as opposed to

=N F n( ) ( )3 3 3 for the full matrix.
2.2. Perturbative Correction to the ALMO SCF

Energy. By restricting the orbitals to be absolutely localized,
the energy obtained must, in general, be higher than the full
HF solution. The missing density can be attributed to the lack
of orbital rotations between fragments, i.e., the lack of density
transfer between fragments. In fact, a Mulliken analysis96

trivially shows that the charge on each fragment remains static
under the ALMO approximation; we note, however, that this is
not true using a Löwdin analysis,97 implying there is still a
degree of uncertainty.
Equivalently, the difference can be thought of as the

monomers each being restricted to a smaller, local AO basis
instead of being allowed to relax in the full supermolecular
basis. Dual-basis methods offer an efficient way to expand the
converged solution into the larger basis.98−101 In this approach,
we diagonalize the Fock matrix and construct a new density,
P∞, from which the energy correction is determined as

Δ = { [ − ]}∞E F P P PTr ( )

However, diagonalization of the full Fock matrix is a costly

N( )3 procedure. Instead, it can be circumvented by iteratively
finding an orbital rotation, û, that diagonalizes the Fock
operator, as outlined by Liang and Head-Gordon.102 Defining
xvo = uvouoo

−1, where the o and v subscripts denote occupied and
virtual blocks, running over all fragments, the energy correction
is simply given by

Δ = { }E x f2Tr vo ov (12)

The rotation parameters are found by iterative solution of

+ − − =f f x x f x f x 0vo vv vo vo oo vo vo vo (13)

This formulation is useful for two main reasons. First, its
most expensive part computationally is the quadratic term,
involving two matrix−matrix multiplications. It therefore scales
an order of magnitude better than diagonalization and despite
being iterative involves far fewer floating point operations. It
should be noted that the quadratic term can be dispensed with,
leading to the usual second-order peturbative correction,
removing the need for iterations. However, the second
advantage of the present approach is seen later in its utility
for decomposing the energy correction into contributions
between fragments.
2.3. Including Electron Correlation. As discussed in the

Introduction, dispersion is often very important in intermo-
lecular interactions.7 Dispersion can be identified with
dynamical electron correlation, of which only exchange terms
are included in the mean-field treatment above. As such, it is
vital to go beyond the mean-field limit if we are to treat
supermolecular systems accurately. It is well known that
dispersion can be formulated exactly in terms of the frequency-
dependent electric polarizabilities of a system, using a
technique called the “adiabatic connection”.54,103−106 In simple
terms, the Hamiltonian in eq 6 is decomposed into a zeroth-
order part (the Fock operator) and a fluctuation potential, ŵ,

controlled by a parameter λ: Ĥ = f ̂ + λŵ. By slowly, or
adiabatically, “switching on” the perturbation from λ = 0 to λ =
1 and integrating, the correlation is recovered. If we make the
assumption that only the part of the response of the electrons
to a light wave that is in phase with the wave makes a non-
negligible contribution, we arrive at the random phase
approximation (RPA).50−52,107 The correlation energy is then
found by integrating the fluctuation over the response in the
electric polarizabilities, themselves determined by solution of a
Dyson equation. This is the approach taken both in time-
dependent and range-separated density functional
theory.54,105,108−113 In this way, it can be shown that the
correct R−6 long-range dispersive behavior in the interaction
energy is recovered.6

More recent interest in RPA has arisen from its intimate
connection with coupled cluster methods.114−119 In fact, direct
RPA (dRPA),103 where the fluctuation wiajb is simply the two-
electron integral (ia|jb), is almost equivalent to coupled cluster
doubles (CCD) with only the diagrams with ring topologies
included.117 This is termed ring coupled cluster, or rCCD;
there is a slight difference, however, in that the cluster
amplitudes are not required to be symmetric with respect to
orbital permutation. Starting from the orthogonalized basis of
eq 4, we further orthogonalize the virtual orbitals within
themselves in the same way

ρ π̃ = ̂ − ̂ [ ]γ γ
−a a(1 )a b

ba1/2
(14)

where π is the virtual−virtual overlap metric. Note that the
projection out of the occupied space necessarily delocalizes the
virtual orbitals somewhat, but this can be shown to be in the
sense that leaves them closest to the original, absolutely
localized orbitals.120 They are therefore expected to remain
well localized. The double excitation operator T̂2 can then be
written as tĩj

abaã
†ab̃

†aj̃aĩ where tĩj
ab are the excitation amplitudes.

Writing |Φij
ab⟩ = aã

†ab̃
†aj̃aĩ|Φ⟩, the CCD energy and amplitude

equations are given by

Δ = ⟨Φ| ̂ ̂ |Φ⟩ = ̃ ̃

⟨Φ | ̂ ̂ |Φ⟩ = ⟨Φ | ̂ |Φ⟩

E H T w t

H T E T

exp( )

exp( ) exp( )

iajb ij
ab

ij
ab

ij
ab

CCD 2

2 CCD 2

(15)

It can easily be shown117 diagrammatically that the above
amplitude equation with only ring diagrams retained leads to
the dRPA residual

̃ = ̃ + ̃ ̃ + ̃ ̃ + ̃ ̃ ̃ =R K At tA tKt 0 (16)

Here, K̃iajb = (iã|̃jb̃̃), and A = ϵ ̃ + K, where ϵĩajb = δij f ̃ab − f ̃ijδab.
This is an algebraic Riccatti equation, for which many simple
and efficient methods of solution exist,121 allowing iterative
determination of the RPA energy, given from eq 15 as

Δ = { ̃ }̃E Kt
1

2
TrdRPA (17)

However, we would like to make use of the inherent locality
of the orbitals, achieving a local correlation method with the
orbitals localized a priori. To do so, we back-transform eqs 16
and 17 using the relations in eqs 4 and 14 to get the following
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σ π π σ

σ π π σ

π σ σ π

Δ = [ ]

= + +

+ =

E K t

R K A t t A

t K t

1

2

0

ik ac
kcld

db lj
ij
ab

iajb iajb iakc
kl cd

lj
db

ik
ac cd kl

ldjb

ik
ac cd kl

ldme
mn ef

nj
fb

dRPA

(18)

Equation 18 is written entirely in terms of the ALMOs,
allowing us to only consider pairs of fragments and thus reach
linear scaling due to the rapid decay of interactions with
distance between fragments, as is discussed in the pairwise
RPA approximation later. However, written as above, we can
evaluate the amplitudes as tik

acπcdσkl, retaining all of the
computational advantages of traditional RPA, minimizing the
on-fragment scaling.
2.3.1. Including Exchange. Direct RPA performs very well

in the long range but provides a much poorer description of
electron correlation in the short range.119,122,123 For example,
the pair-correlation function in the high-density electron gas
becomes negative at small separations.55,123 This is due to the
missing exchange terms in the Coulomb interaction, i.e., the
fact that antisymmetrized integrals are not used. At short
separations, exchange-repulsion dominates as the distributions
of electrons of the same spin attempt to overlap. Several
different schemes have been suggested to ameliorate this
problem,55,119,122 one of the simplest of which is to simply
calculate the energy by contracting the amplitudes with the
antisymmetrized integrals

= | − |B ia jb ib ja2( ) ( )iajb

This is called the second-order screened exchange (SOSEX)
correction.124 Such a correction only affects the energy,
however, whereas a full solution requires inclusion of exchange
effects in the residuals. By replacing all instances of K with B in
eq 16 (and the equivalent local forms), we arrive at the RPA
plus exchange (RPAx) version.119 The energy becomes

Δ = { ̃ }̃E Bt
1

4
TrRPAx (19)

where the extra factor of 1/2 is necessary to avoid double
counting. SOSEX is equivalent to including all contractions of
the amplitudes with the interaction that does not form “loops”,
i.e., where exactly one particle and one hole line have been
exchanged, whereas RPAx also includes exchange in the
Coulombic screening when determining the amplitudes. We
note that the second-order contribution in RPAx equates to
the MP2 energy.
2.4. Energy Decomposition Analysis. The motivation

for the choice of development of the method outlined above
has been 2-fold: to achieve linear scaling of computation cost
with respect to the number of fragments, as is discussed in the
next section, and to yield a physically motivated energy
decomposition. Building on previous work using ALMOs,89,90

we describe four main components.
The first of these is the “frozen” energy, describing the

electrostatic interaction between the unrelaxed, frozen
monomer orbitals in their distorted geometries. After the full
SCF calculations have been performed on the monomers in
their interacting geometries, each fragment has a set of
unperturbed occupied orbitals, TX,frz.. Inserting these in eq 8
gives the frozen density, which due to the presence of the
inverse metric is, in general, not the superposition of
noninteracting fragment densities, as the orbitals will not be

orthogonal between fragments. Using this density in eq 7 gives
the total energy of the unperturbed system; the difference
between this and the sum of the monomer energies is then
defined to be the frozen energy. This therefore represents the
interactions between unperturbed fragment electron densities,
represented by the occupied orbitals, which in turn
corresponds to multipole−multipole interactions. A further
term, the relaxation energy, could be included at this point as
the difference between the monomer energies in their relaxed
and interacting geometries.
The next two terms are polarization and charge transfer.

During the ALMO SCF procedure, the frozen orbitals above
are allowed to relax, corresponding to the distortion of the
monomer densities due to the presence of other fragments, i.e.,
polarization. The polarization energy can thus be defined as
the difference between the energy calculated with the frozen
and full densities. However, as was noted earlier, the absolute
localization constraint prevents transfer of electron density
between fragments. Allowing the orbitals to relax in the full
basis, as described by eq 12, can therefore be robustly defined
as representing charge transfer. Charge transfer is by definition
a directional quantity, however, and it is desirable to be able to
determine the contribution from “charge” transferred between
fragments X and Y. We do this by introducing Mulliken
partition operators

ϕ ϕ ϕ ϕ̂ = | ̃ ⟩⟨ ̃ | ̂ = | ̃ ⟩⟨ ̃ |p qand
Xi Xi

Xi

Xa Xa

Xa

noting that the sum over all fragments and orbitals of these
gives the ALMO occupied (density) and virtual subspace
projectors, respectively. The energy due to charge transfer
between fragments X and Y is then found by inserting these
into eq 12

∑Δ = { ̂ ̂ ̂ }̂ = { }→E p f q x f xTr Tr ( ) ( )X Y

i a
Xi Ya ov XY vo YXCT

, (20)

This highlights the usefulness of taking the iterative approach
of eq 13. We note that whereas the frozen and polarization
energies are constructed to be free from BSSE, the charge
transfer term necessarily reintroduces some error. However,
due to the perturbative nature of the correction, this error is
expected to be small, as is shown later.
By transforming the density in the same way, we can also

define (Mulliken) partial charges:

Δ = { ̃ }→ †Q T PV xTr ( )X Y
X Y vo YXCT,M (21)

However, we stress that this does not represent a physical
transfer of electrons from one entity to another; it is rather the
nonlocal response of the electron density on each fragment
when brought into proximity with the other fragments. That is,
we have split polarization into local and nonlocal portions;
ΔEpol. reflects the redistribution of electron density constrained
to a finite volume around the fragment, defined by the extent
of the local atomic orbitals, while ΔECT encompasses the
remaining relaxation.
The dynamical electron correlation in this method is

determined using RPA, which encompasses to some extent
infinite-order many-body effects on the single particle level.
The a priori local nature of the orbitals allows for considerable
savings in computational cost but also for the explicit removal
of BSSE from the correlation energy. Solving eqs 18 (or the
RPAx equivalent) leads to excitation amplitudes in terms of
orbitals strictly localized to specific fragments. As only double
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excitations are included in rCCD, such excitations can involve
at most four fragments (one for each index). Extending an idea
first introduced by Schütz et al. in the context of local MP2,58

we can classify these excitations as described in Figure 1. We
note that this approach is similar to the diatomics/triatomics in
molecules approach of Head-Gordon and co-workers125,126 but
across molecules rather than atoms.

We identify five categories of excitation, based on what they
physically represent. When all of the orbitals are located on a
single fragment, not shown in Figure 1, a term is clearly
intramolecular. As these are only slightly perturbed by the
presence of the rest of the complex, it is reasonable to
approximate that these do not form part of the interaction
energy. Dispersion is taken to be the response of on-fragment
excitations to simultaneous excitation within a separate
fragment, i.e., the dispersive coupling between the separated

fragment electron densities. This corresponds to class (a) in
Figure 1, whereas class (b) is exchange-dispersion. This is
again a number-conserving coupling of excitations involving
exchange between fragments. This is not well separated from
the dispersion term, as the reference wave function is fully
antisymmetrized and so inherently includes exchange-repulsion
in all terms. As such, this is not directly comparable with the
same term in SAPT. The dispersive energy contributions are
therefore taken from eq 18 as

∑ ∑ ∑ ∑ σ π π σΔ = [ ]
> ∈ ∈

− − − −E t K
X Y X ia X jb Y

ij
ab

ij
ab

disp.

( ) ( )

1 1 1 1

(22)

∑ ∑ ∑ ∑ σ π π σΔ = [ ]‐

> ∈ ∈

− − − −E t K
X Y X X Y

ij
ab

ij
ab

exch disp.

(ib) (ja)

1 1 1 1

(23)

The two remaining classes in Figure 1 are ionic and BSSE,
all of which involve excitations from X to Y, without a
corresponding excitation into X. It should be stressed that no
electrons are transferred; these are rather couplings between
different states in the underlying Fock space. The term ionic is
denoting that the excitations are not particle number-
conserving within a fragment, representing another form of
“charge transfer”. In particular, it is supposed that diagrams (e)
and (i), which are double excitations from the same fragment
into distant virtual orbitals on separate fragments, represent an
attempt to improve the description of intramolecular
correlation using the extended basis. In principle, any terms
involving excitations between fragments could contain some
measure of superposition error, but the aforementioned terms
are likely to be the main contributors due to the sharp distance
dependence of the underlying physical interactions.
As the RPA is performed on the ALMO density directly

no charge-transfer correction is made to the wave function,
only the energythe ionic terms will likely contain not only
some BSSE but also a significant amount of the charge transfer
effects that would be encompassed at the mean-field level by
ΔECT. In addition, the virtual orbitals are projected out of the
occupied subspace, as per eqs 5 and 14, such that they are not
completely localized. As a result, the ionic and BSSE terms are
entangled, albeit only to a small extent; coupled with the fact
that superposition errors are known to be much larger at the
correlated as opposed to mean-field level, we choose to define
the charge-transfer contribution as in eq 12 and neglect all but
the dispersion and exchange-dispersion terms in Figure 1. It is
important to note that in doing this we are removing some of
the higher-order many-body effects from the dispersion energy.
These divide into two categories: many-body excitations and
many-body interactions between fragments. The former are
still included through the renormalization inherent in RPA and
are not reduced any more than they would be in, say, CCSD.
The latter, however, are necessarily only included indirectly
through the mean-field density upon which the dimer RPA
calculations are performed. Initial tests on benzene trimers
have shown that the three-body effects are not removed
completely (unlike in MP2 calculations) but are reduced
compared to CCSD. In principle, higher-order effects could be
included by doing a tripletwise RPA and so on, and this will
need careful investigation in the future, as such many-body
interactions can be very important in extended systems.

Figure 1. Schematics of all unique classes of interfragment excitations.
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3. IMPLEMENTATION

The main aim of the present work is to present an accurate
method for noncovalent interactions that is efficient and
scalable to large systems. As we have described the system in
terms of fragments, there are two scaling regimes to consider:
scaling with fragment size and with the number of fragments.
The latter magnifies the former considerably and therefore is
the larger source of computation cost; effectively, it is a
measure of the entire system size. As such, we focus here on
achieving linear scaling with regard to the number of
fragments. There are three main expensive parts of any SCF
procedure: evaluation (and storage) of the two-electron
integrals, forming the Fock matrix, and diagonalizing the
Fock matrix. The latter exhibits the correct scaling by virtue of
the use of ALMOs, as was mentioned earlier. In the RPA
portion of the calculation, the main difficulties are in the
transformation of the integrals to the molecular orbital basis
and the solution of the amplitude equations.
3.1. Density Fitting. Both problems involving the two-

electron integrals can be ameliorated by using density fitting
(DF). This requires the evaluation of two- and three-center
Coulomb integrals, GPQ = (P|Q) and Bμν

P = (μν|P), where {χP}
is an auxiliary basis set (ABS) of Gaussians. We use capital
letters to denote functions of the ABS and lowercase as per
usual for the MO basis. The usual algorithm127 for the
evaluation and transformation of the density-fitted integrals is
to first Cholesky decompose G = LLT and invert the Cholesky
factor, L, before forming b = BL−1. The transformed integrals,
b̃, can thus be formed in two steps as

∑ ∑̃ =
ν μ

μν μ νb b T Via

P P i a
i
kjjjjjjj

y
{zzzzzzz

If the full integrals are then required, they can be formed in the
AO or MO bases as bbT or b̃b̃T, respectively.

The evaluation of B clearly requires N M( )2 computations,
where N and M are the number of functions in the orbital and
auxiliary bases, respectively. The Cholesky decomposition is

M( )3 but with a very small prefactor, while the trans-

formation is (ON )2 for the inner step and (OVN) for the
outer step. Overall the algorithm is therefore cubic scaling, as is
the memory cost. While this is a considerable improvement on
the quartic and quintic scalings of the conventional integral
and transformation algorithms, it is still problematic for large
systems.
However, such steep scaling with system size is unphysical. If

we consider two one-particle densities separated by a distance
R, represented by Gaussians of combined angular momentum l
and exponents αp and αq, it can be shown128 that the electron
repulsion integral, V, between the two asymptotically follows
the relation

α
α

α α

α α
∼ =

++
V

R

2
wherepq

pq
n n

p q

p q
2 1

(24)

Hence, the worst case is for spherical Gaussians, where the
integral decays at the same rate as the Coulombic potential
itself. Nonetheless, the integral tensors should eventually
become highly sparse, with each fragment having an effectively
fixed domain size over which integrals do not fall below a given
threshold.

One possibility for exploiting this would be to directly use
conventional sparse matrix formats, such as the popular
compressed row storage data structure.129 However, this is not
useful if elementwise access is needed, as this would require
expensive binary searches. To solve this problem, we have
devised an adapted sparse data structure and accompanying
algorithm, which fully utilizes the underlying fragmented
structure of the system. Consider a slice of the three-index DF
tensor B along the ABS axis, P. The matrix can be represented
as shown in Figure 2, where a typical sparsity pattern is also

indicated, and the blocks are fragment by fragment. This
matrix can be represented by two arrays with length NBlocks =
F(F + 1)/2, after symmetry is taken into account. The first is
an array of zero-sized matrices, while the second is a list of
boolean values reflecting whether the corresponding integral
block is zero. The approach can trivially be expanded to
include the ABS blocks by “z-marching” along the index P
indexing as shown within each P slicethen incrementing the
ABS index and repeating. In this way, only the nonvanishing
blocks need be stored, but these can still be rapidly accessed
individually due to the redundant, zero-sized matrices. As such,
sparsity is not accurately reflected within each block. However,
the number of significant blocks per fragment will eventually
reach a fixed size, such that the storage and evaluation of the
integrals reaches linear scaling. The data redundancy is a small
compromise that allows for a considerably faster Fock build
routine, as is discussed shortly.
An estimate for the maximum value within a block, weighted

by the initial density P, can be found using the Cauchy−
Schwarz inequality128 and the distance dependence in eq 24

≲∞ ∞ ∞ ∞
−RB P g G P2XY

Z XY

XYXY ZZ
XY

XY Z
1/2 1/2

( )
1

(25)

where R(XY)Z is the distance from fragment Z to the midpoint
of fragments X and Y. This requires an accurate initial density
and evaluation of the diagonal two-electron integrals, gXYXY.
The latter can very efficiently be computed and stored once at
the beginning of the calculation, and the density is formed
from the converged monomer densities, such that it should be
a good initial guess. Using this coarse, fragment-blocked

Figure 2. Schematic of a simple sparse matrix representation as
fragment-based blocks, where F is the number of fragments. The
darkness of a block indicates the magnitude of the maximum integral
element within that block, a measure of which blocks can be ignored.
For example, all diagonal blocks will necessarily be “dark” and need to
be included, whereas most off-diagonal blocks (such as blocks 3 and 5
on the top row) are negligible.
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screening, the integral evaluation and storage becomes linear
scaling in system size. However, the Cholesky decomposition
of the two-index quantities is still necessary, and eventually for
very large systems, this will dominate the cost.
3.2. Local Fock Build. The two-electron integrals and

density matrix are used in each iteration of the SCF procedure
to form the Fock matrix. The core Hamiltonian part is
inexpensive: it is the Coulomb and exchange portions that
conventionally show quartic dependence on the number of
basis functions. Of these, the latter is, in principle, much more
complicated than the former. Within the density fitting
framework, the exchange matrix can be written as

∑

∑

μ τ λ ν= ⟨ | | ⟩

≈

μ ν
τ λ

μ τ λ ν
τ λ

−K r P

b b P

X Y

W Z

X W Z Y W Z

W Z

X W
Q

Z Y
Q W Z

,
,

12
1 ,

,
, ,

,

The contraction with the density occurs across the two three-
index integral tensors, resulting in an apparent quintic cost.
However, if we write the density in the symmetrically
orthogonalized basis, we get

∑ ∑≈ ̃ ̃ = ̃ ̃
μ ν μ τ

τ
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·

·
·
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Q i
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ikjjjjjj y{zzzzzzikjjjjjj y{zzzzzz
(26)

which is cubic scaling.
However, a cubic scaling term every iteration is still a

problem. Exchange is inherently a short-range effect, such that
we can use the inherent localization of the ALMOs to reduce
the unphysical cost. A “local exchange” approach was first
proposed by Polly and co-workers33 and has more recently
been improved by Köppl and Werner;34 we use their method
as a starting point. The basic idea is that each localized orbital
only has significant overlap with other orbitals within a fixed
extent. Therefore, for each molecular orbital, i, an orbital
domain can be assigned, [i], comprising the atomic orbitals
that will give nonvanishing contributions to the exchange. As
the system size increases, the domain sizes eventually become
fixed due to the localization, such that the calculation becomes
linear scaling.
The use of density fitting requires that three such domains

be defined per occupied orbital: a local MO domain, [i]MO; an
AO domain, [i]AO; and an auxiliary domain, [i]ABS. This can be
seen by partitioning eq 26

∑

∑ ∑
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A clear disadvantage of this approach, in general, is that the
results so obtained are likely to be highly sensitive to the
choice of domains. This is where the fragment localization of
the present method is particularly useful. Instead of
considering the significance of individual orbitals, the
contribution of a fragment as a whole can be considered.
This will of course result in the inclusion of orbitals that are
not necessary, but the well-separated nature of the fragments
precludes the exclusion of important contributions, somewhat
resolving the strong dependence on choice of domain.

We use the following criteria for the domains. The AOs of
fragment X are included in [i]MO if they make a significant
contribution to the density on i; that is, if

∑ρ = ̃ ̃ > ϵ
μ

μ μ→
∈

·
·

·
·

T T
X i

X

i i
MO

(28)

where ϵMO is a user-defined threshold. Typically a value of ϵMO

≈ 10−6 suffices. It is then presumed that, almost by definition,
if the density of i has a significant contribution from {Xμ}, then
this will also be true of k̃. Thus, [i]MO ⊂ [i]AO. However, as the
Coulomb force decays slowly with separation, the AO domain
will, in general, be considerably larger than the MO domain.
Let μ denote the exponent of the most diffuse basis function
on X and assume that the extent of this functionthe cutoff
beyond which its norm changes less than a given threshold,
ϵAOis much greater than 1. Then, for i located on fragment
Y, we include all the atomic orbitals from fragment X if

π μ

μ
≈

− ϵ
<r R

ln( 2 ) ln( )

2
X XY

AO

1/2Ä
ÇÅÅÅÅÅÅÅÅÅÅ

É
ÖÑÑÑÑÑÑÑÑÑÑ (29)

where RXY is the center-of-mass separation of the two
fragments. Again, a reasonable threshold is ϵAO = 10−6. Finally,
the ABS domains are found by a population analysis, as
suggested by Polly et al.33 For i on Y, the ABS of X is included
in [i]ABS if the partial charge associated with charge transfer
from i to X is greater than a threshold, ϵABS. However, for
ALMOs, a Mulliken analysis gives zero charge transfer, such
that a Löwdin analysis must be used instead. The condition is
thus

∑= [ ̃] > ϵ
μ

μ→
∈

q S T
i X

X

i
1/2 2

ABS

(30)

In the original local exchange method,33,34 the domain would
be further extended by including all atoms connected to the
atom of the current orbital. However, by assumption, there are
no covalent bonds between fragments here, such that this is
not necessary.
In general, the domains should need to change with each

iteration. However, given a high quality initial density, such as
is provided by the converged monomer densities, the domains
can be fixed in the first iteration. An additional complication,
though, is that the restriction of the fitting basis means that the
fitting metric, G, is no longer valid in the restricted space. As
such, the full metric needs to be restricted by retaining only the
blocks included in the ABS domain, but this needs to be done
separately for each occupied orbital. In practice, this is a minor
technical issue that does not affect the efficiency of the
algorithm.
At face value, the Coulomb contribution to the Fock matrix

should be much simpler. Using density fitting, it is given by

= [ ]
μν μνJ b b PQ T

Q (31)

meaning it can be formed by two N M( )2 matrix−matrix
products. It is tempting to try to reduce this cubic scaling in
the same manner as for the exchange, but as has already been
mentioned, the Coulomb interaction falls off much more
slowly with distance. As such, prohibitively large domains
would be needed. Moreover, the local exchange algorithm
requires storage of the raw three-center integrals, rather than
those symmetrized with the inverse fitting metric. Therefore,
we instead form the Coulomb matrix as (μXνY|PZ)B̃ZP, where B̃
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= G−1PXY(XY|Z). In this way, we need only loop over nonzero
integral blocks, (XY|Z), something which is also true for eq 27
with the raw integrals. Thus, the integral blocking not only
severely reduces the memory imprint but also more rapidly
brings the computational cost of the Fock build to linear
scaling. The only remaining nonlinear term is the multi-
plication by the inverse metric in the Coulomb part, which is
quadratic. Note that, while G will become sparse in the
macroscopic limit, this does not imply its inverse will be sparse;
in fact, the opposite is usually true.129 However, as this is a
single matrix−matrix multiplication, it is a negligible cost.
3.3. Pairwise RPAd. The calculation of the RPA dispersion

energy requires integrals transformed to the molecular orbital
basis, which can be achieved using density fitting as described
earlier. Note that the requirements on the auxiliary basis to
minimize DF errors are different for the integral transformation
compared to the Fock build, so in general, a separate ABS must
be used. For direct RPA and RPA+SOSEX, we have that K =
b̃b̃T, allowing us to avoid ever forming the full four-index
integral tensor. Moreover, we can use this to rewrite eq 16 as

ϵ̃ ̃ + ϵ̃̃ = −t t uuT (32)

where u = (1 + t)̃b̃. This is not possible for RPAx due to the
exchange terms in the residual. The most expensive
computation in each iteration will thus be the evaluation of

the quadratic term on the right-hand side, which is O V M( )2 2

for dRPA and O V( )3 3 for RPAx. Thus, these are formally
fifth- and sixth-order scalings with system size, although the
number of occupied orbitals, O, is generally much smaller than
N.
As several iterations are required, this scaling is prohibitive.

However, the fragment-based localization again allows for
reduction to linear scaling. In the energy decomposition, we
partitioned the RPA excitations as per Figure 1, dispensing
with all but the dispersive terms, where such terms are
inherently limited to pairs of fragments as rCCD (and
therefore RPA) is restricted to double excitations. This does
not mean that only two-body effects are included, though, as
RPA implicitly includes contributions to infinite order at the
orbital level. However, it does allow us to adopt a natural local
correlation approach, where the orbital domains are restricted
by performing separate RPA calculations on pairs of fragments.
If the ALMO orbitals were used directly, this would be exact,
but the projection of the virtuals makes the pairwise approach
an approximation. On the other hand, one only needs to
project the virtuals out of the smaller occupied space for the
pair, such that localization is better maintained. Moreover, as
dispersion has an asymptotic R−6 dependence, only pairs
within a given distance of each other (we measure the center-
of-mass separation) need be included, such that the number of
RPA calculations per fragment eventually becomes fixed,
leading to linear scaling. We term this approach “pairwise
RPAd”, where the “d” denotes the restriction to dispersion and
exchange-dispersion excitations.
3.4. Parallelization. The fragment-based partitioning of

the monomer calculations, integrals, Fock build, diagonaliza-
tions, and pairwise RPA calculations make this method what is
termed “pleasingly” parallelizable, meaning that it can be
divided into tasks that are essentially independent of one
another. The lack of significant communication required in all
but the formation of the density ideally suits a distributed
memory parallelism, and several portions of the method would

benefit from the use of accelerators. The technical hurdles
involved with such massive parallelism are beyond the scope of
this paper. Instead, we consider a simple multithreaded
approach that can later be combined with a larger scale
parallelization.
First, all integrals can trivially be threaded by balancing over

shell pairs, triplets, or quartets, depending on the integral class.
This can be done separately within each fragment integral
block, such that the blocks can themselves later be parallelized
over. Assuming that the orbital domains are of roughly similar
sizes on each fragmenta coarse but reasonable assumption
each fragment block of the Fock build can be threaded by
chunking up the largest domain (always the AO domain). This
is particularly simple for the exchange portion, but for the
Coulomb portion, the first half transformation of the density-
fitted integrals must be completed on all threads before the
second half transformation is performed, somewhat limiting
the effectiveness of the multithreading. Instead for this portion,
it would perhaps be better to multithread the matrix
multiplications. In the core ALMO iterations, the formation
of the density matrix and inverse metric necessitates shared
memory, such that these parts can simply be threaded
fragment-by-fragment. The individual fragment diagonaliza-
tions can also make use of standard multithreaded linear
algebra routines, as can the contractions in the iterative
solution of the RPA amplitude equations.

3.5. Summary. The scalings of the different components of
the calculation with respect to both fragment and system size
are given in Table 1. It shows that all of the major steps are

essentially linear scaling, with the exception of the Coulomb
part of the Fock matrix. This is, however, only formally
quadratic due to an unavoidable matrix−matrix multiplication;
properly accounting for sparsity would eventually (but slowly)
lead to linearity. The density fitting, however, requires a cubic
Cholesky decomposition, which will dominate for very large
systems, despite the efficiency of standard algorithms. We are
currently looking at how this can be circumvented. Finally, the
on-fragment scaling is still dominated by the RPA calculation.
In principle, this could be alleviated by further use of local
correlation methods, but applying such an approach would
require a very careful consideration of the additional errors it
would introduce.

4. RESULTS

The ALMO+RPA method has been implemented in our in-
house electronic structure package,130 which utilizes the LIBINT

Table 1. Summary of Formal Scaling of Different Parts of
ALMO+RPAd Calculation, along with Their Conventional
Counterpartsa

Procedure Overall Fragment Conventional

Full ERIs  n4 N4

DF ERIs Fn2m n2m N2M

Cholesky   M3

Diagonalization Fn3 n3 N3

Coulomb FMn2  N4

Exchange Fn4 n4 N4

Charge transfer V2 v2 

RPA Fo3v3 o3v3 O3V3

aUpper and lower case quantities refer to the system and fragment
sizes, respectively.
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package131 of Valeev and co-workers for the molecular
integrals, and the EIGEN library132 for all linear algebra,
including tensor manipulations. Additional DF-MP2,35

CCSD,133 CCSD(T),133,134 and M06-2X135 calculations were
performed in the MOLPRO package,136 while DF-SAPT77,137

calculations were carried out using Psi4.138 Unless noted
otherwise, all calculations use the aug-cc-pVDZ (aVDZ)
orbital basis139−141 with the associated JKFit127,142,143 and
MP2Fit144 density fitting sets for the Fock- and MO-basis
integrals, respectively. All timing and memory benchmarks are
reported for calculations on a single processor on the same
compute node, with two 10-core Intel Xeon CPUs and 256 GB
of RAM. Scalings with system size are reported for the RPAx
variant of the method, as this is the most computationally
complex variant, as discussed earlier. In the following, we apply
the ALMO+RPA method to a variety of different systems,
including benchmarking against the S66 database.10,145 In this
way, we demonstrate and assess the accuracy of the method,
the errors associated with the various approximations, and the
scaling with both fragment and system size. Finally, we
compare the energy decomposition with that from symmetry-
adapted perturbation theory.
4.1. Scaling. The scaling with number of basis functions

per fragment is demonstrated for the water dimer in Figure 3

by using the progression of orbitals basis sets: cc-pVnZ and
aug-cc-pVnZ, with n = D,T,Q.139,140 The ALMO+RPAxd
curve has a scaling exponent of 2.7, or approximately cubic, as
should be expected from Table 1. Moreover, this represents
savings of several orders of magnitude over conventional
counterpoise-corrected CCSD calculations, as can be seen
from Figure 3e.
To study the scaling with overall system size, we consider

two extreme cases: a linear chain of hydrogen fluoride
molecules and a series of water clusters. The former
corresponds to the best possible scenario, with a single
hydrogen bond added per new fragment and with interactions
along a single spatial axis. The clusters, on the other hand, are
known to be particularly difficult,146 as they are tightly bound,
with multiple interactions per fragment. First, the efficacy of
the fragment-blocked density fitting scheme is shown in Figure
4. In both cases, the memory requirements become linear, but
this happens much more rapidly for the chain. The reduction
in memory means that 108 hydrogen fluoride molecules
(roughly 3500 and 12,500 orbital and auxiliary basis functions)
or 50 water molecules (2000 and 7500 functions) can be

considered entirely in-core with slightly over 16 GB of
memory. The different rates at which these savings are reached
are due to the different sparsities of the underlying integral
tensors,
The time spent on each portion of an ALMO+RPAxd

calculation as a function of total system size is shown in Figure
5. From this, the linear scaling is clear to see, with the

exception of the integrals. In fact, the integral routines
themselves are linear. This is a significant contributor to the
cheapness of the Coulomb and exchange terms; instead, it is
the Cholesky decomposition of the fitting metric hidden in this
term that is leading to unfavorable scaling. In fact, for the 108
hydrogen fluoride fragments, just the Cholesky routine takes
up roughly 40% of the total computation time. For larger
fragments, however, it will take longer for this to become the
bottleneck. Nevertheless, it would be best to try to avoid this
problem, and attempts have been made in this direction
elsewhere.147 We also note that the Coulomb term should not
formally be linear but appears to be so here, most likely by
virtue of how inexpensive it is overall.
The significant reduction in cost is due to a number of

approximations, each of which has an associated error. Figure 6
reports the average error in the interaction energy per fragment
due to the density and local and pairwise RPA approximations
for the first few fluoride chains. This shows that the error due
to both, when the thresholds stated earlier are used, is less than
0.1 kcal mol−1 in the total interaction energy and stays
remarkably static as the system size increases. We do not
observe any of the convergence problems noted else-
where,148,149 most likely due to the coarseness of our
approximation. In particular, the change in the density due
to using the local approximation has essentially no effect on the

Figure 3. Total time taken to calculate the interaction energy for the
water dimer in basis sets of increasing size. The overall scaling for
ALMO+RPAxd is cubic, compared to the sixth-order scaling of
CCSD, leading to substantial speedups.

Figure 4. Peak amount of memory required during the ALMO
+RPAxd calculation on either the linear hydrogen fluoride chains
(left) or water clusters (right), showing the improvements resulting
from using the blocked integrals as opposed to the conventional
density fitting scheme.

Figure 5. Amount of time spent in each part of the ALMO+RPAxd
calculation for varying sizes of HF chains (left) and water clusters
(right). The Coulomb and exchange timings are per iteration, while
the integral timings include the Cholesky decomposition required to
form the inverse fitting metric.
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correlated part of the calculation, and the loss of three-body
effects in the pairwise RPA is insignificant. Additional errors
and calibration graphs for the various thresholds are given in
Section 4 of the Supporting Information.
Finally, the performance of the multithreading described

earlier is shown for both a large chain and a large water cluster
in Figure 7. This shows excellent speedups up to around four

threads before starting to tail off. The effect is much larger in
the water cluster, as this is dominated by the parallelized bits of
code, in particular, the Fock build. The fluoride chain, on the
other hand, is dominated by the Cholesky decomposition,
which was not threaded here. Overall, using only eight threads,
the calculation on a cluster of 32 water molecules can be
carried out in under 3 min; when combined with a distributed,
fragment-based parallelism, there is clearly potential for very
large systems to be considered with minimal time require-
ments.
4.2. Potential Energy Curves. A fast, linear-scaling

method is useless if the results are not accurate. As
noncovalent interactions cover such a broad remit, it is
important to test the method on a wide range of examples.
Moreover, it is important to go beyond a single interaction
energy; the method should also accurately reproduce
equilibrium geometries and molecular properties. We demon-
strate this by considering potential energy curves for four
different bimolecular complexes, as a function of the

intermolecular separation. These systems are the water
dimer, a widely studied example of hydrogen bonding; FCl···
OH2, an unusually strong halogen bond;150 the helium−neon
complex, which is purely dispersively bound; and the complex
of benzene and HCN, where the cyanide is perpendicular to
the benzene ring. Geometries are given in the Supporting
Information.
Figure 8 compares the ALMO+RPAxd results, where the

exchange (x) is SOSEX, termed RPA(SOSEX)d, with other

double excitation theories, namely, counterpoise-corrected
CCSD and MP2. In addition, the CCSD result without
counterpoise correction is given, demonstrating that the BSSE
has been successfully eliminated. In all cases, the new method
is in excellent agreement with the coupled cluster results, while
MP2 performs considerably worse. Reassuringly, the locations
of the energy minima and the overall shapes of the curves are
reproduced by the new method.

4.3. Performance on the S66 Benchmark Set. We have
performed more extensive benchmarks on single-point
calculations at equilibrium geometries by doing so for every
complex in the S66 database of biologically relevant non-
covalent interactions.145 These are of particular interest
because one of the most appealing uses of the new method
is to investigate how solvent affects the interactions in such
systems. Calculations were performed using a variety of
different methods with the aVDZ basis sets, with geometries
(see SI) optimized at the CCSD/aVDZ level. The database is
split primarily into three different “types” of interactions:
hydrogen bonded, dispersively bound, and other (usually a
mixture of the two). It is also possible to instead split by the
dominant component in the SAPT decomposition: electro-
statics, dispersion, or an even mix of the two; we will compare
the classifications from the new method’s energy decom-
position to those from SAPT in the next section.
In Figure 9, we see that the ALMO+RPA(SOSEX)d method

gives far better agreement with the equivalent CCSD results
than any of the other methods, in particular, in the case of the

Figure 6. Error per fragment in the different contributions to the
interaction energy caused by using the local approximation in the
Fock build and the pairwise approximation in the RPAxd calculation
for different sizes of hydrogen fluoride chains.

Figure 7. Combined speedup in computation time for the integral
evaluation, Fock build, and RPA portions of the calculation using
multithreading. Results are given for the (HF)54 chain and (H2O)32
cluster. The calculations were performed on the same compute node,
separately, with no other calculations running. The timings for the
serial calculations were 3.3 and 18.1 min for the fluoride chain and
water cluster, respectively.

Figure 8. Potential energy curves for the water dimer (top left), FCl···
OH2 (top right), He···Ne (bottom left), and benzene with HCN
(bottom right). The CCSD without counterpoise is not included for
the helium−neon complex, as the error is so large it makes it
impossible to see the differences in the other curves.
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dispersion-dominated complexes. The dRPA and RPAX (full
exchange) variants show similar but slightly worse errors, as
they underpredict and overpredict the exchange contribution,
respectively; all raw results are given in the Supporting
Information. It should be noted that as MP2 tends to overbind
the electrostatically dominated systems it can often appear
closer to CCSD(T) results than CCSD for small basis sets.
However, this is a fortunate error correction, rather than a
physical feature of MP2; it does not contain the physics
described by a triples correction. Moreover, the improvement
is not consistent across all systems, so cannot be relied upon.
This is why we in the first instance have compared it to a
CCSD benchmark.
The perturbative triples contributions of CCSD(T) are

known to be very important in accurately describing the
interaction energies, however.145 Figure 10 shows the error

distributions instead compared to the CCSD(T) result. In this
case, ALMO+RPA performs worse than MP2 overall but better
on the hydrogen-bonded complexes. The improvement in the
MP2 result is largely due to the dispersion-dominated systems,
where the triples contribution is particularly large, such that
the significant overbinding of MP2 relative to CCSD is
compensated for. This demonstrates the necessity for the
inclusion of triples effects in future iterations of the present
method; we are currently investigating various approaches for
doing this. In principle, as we have a CCSD-like formalism, we

should be able to include a (T)-like correction, at relatively
little extra cost.
It is useful to try to disentangle the error due to the use of

ALMOs from that of retaining only the ring coupled cluster
diagrams. This can be done by comparing the ALMO energies
to counterpoise-corrected Hartree−Fock energies. Without the
charge transfer correction, the mean-absolute error across the
whole set is 0.95 kcal mol−1, reducing to 0.33 kcal mol−1 when
the full, iterative correction in eq 12 is applied. The latter error
stays fairly consistent across all classes of interactions at 0.25,
0.42, and 0.32 kcal mol−1 for the hydrogen bond, dispersion,
and other categories, respectively. The average BSSE present in
the HF and CCSD correlation energies is −0.65 and −1.39
kcal mol−1, showing that this has been effectively eliminated.
There is a technical issue here with the use of the local

exchange procedure, however. As noted by Köppl and
Werner,34 while the density is fairly insensitive to the local
approximation, the energy is often quite sensitive to the choice
of domains. As such, they recommend performing a single, full
exchange build from the converged density; the difference
between this and the local result will here be termed the X-
correction. The coarseness of the domain building, i.e., its
fragment-based nature, means however that the energy is far
less sensitive in most cases. In fact, for all but the dispersion-
type systems, it accounts for less than 3% of the total
interaction energy. However, unless the distance threshold in
the domain selection is adjusted to reflect the longer
separations in the dispersive complexes, the X-correction can
account in magnitude for up to 50% of the total interaction,
and on average 9%, and so must be included. The larger
percentage is also partly due to the fact that these systems tend
to have smaller interaction energies. This may become a
problem when more fragments are present, as the full exchange
build will scale cubically with system size; in these cases, it is
then best to select a distance cutoff where at least nearest-
neighbor fragments are included in the domains for a fragment.
The average timings for DF-MP2, CCSD, CCSD(T), M06-

2X, and DF-SAPT2 relative to ALMO+RPAxd both with and
without the X-correction are given in Table 2. These show that

even with the correction term the new method is at least twice
as fast as density-fitted MP2 and over an order of magnitude
faster than CCSD, despite giving very similar results to the
latter. Moreover, these speedups will increase rapidly when
either the number of fragments or size of the basis is increased.
To consider convergence of the energies with respect to the
latter, calculations were performed on the benchmark geo-
metries from the original S66 paper145 using the aVTZ basis
sets; the mean-absolute error compared to the complete basis
set limit CCSD results was 0.60 kcal mol−1.

4.4. Comparison with SAPT. In the above, DF-SAPT2
was chosen for comparison as it is probably the most similar
method currently available to the ALMO+RPA approach: (1)

Figure 9. Mean absolute errors for different methods with an aVDZ
basis, across the S66 database, relative to the CCSD/aVDZ results.
The errors are further split by interaction type, as in the original S66
paper145: hydrogen-bonded (H), dispersion dominated (D), and
other (O).

Figure 10. Mean absolute errors for different methods with an aVDZ
basis, across the S66 database, relative to the counterpoise-corrected
CCSD(T)/aVDZ results.

Table 2. Ratios of Total Wall Time for Various Methods to
That for ALMO+RPAxd with and without Local Exchange
Correctiona

DF-MP2 CCSD CCSD(T) M06-2X DF-SAPT2

with X-correct 2.2 21.7 76.5 2.0 4.9

without X-correct 2.9 27.9 99.6 2.5 6.4
aRatios are averaged across the S66 test set with calculations carried
out on a single core (32 GB of memory).
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It eliminates BSSE from the beginning. (2) It is designed
specifically for interaction energies. (3) It contains a coupled
cluster-style correlation energy. (4) It provides an energy
decomposition analysis. The components from both the
present method and SAPT for the entire S66 data set using
the aVTZ basis are given in the Supporting Information. Here,
we just compare how the new method classifies the different
interactions and thus whether this agrees qualitatively with
SAPT.
The original classification came from the ratio of dispersion

to electrostatic energy terms.145 However, there is no direct
comparison of the SAPT electrostatic term with, for example,
the frozen energy term in the ALMO EDA, because the latter
already includes exchange. Instead, we note that by calculating
the SAPT charge transfer term of Stone and Misquitta151 we
can extract an equivalent to the ALMO polarization term by
removing charge transfer from the SAPT induction. Then,
considering the ratio, rD/P, of dispersion to polarization, we can
recover exactly the original classifications: electrostatic, rD/P <
2; mixed, rD/P < 8; and dispersive, rD/P ≥ 8. A comparison is
shown in Figure 11. In general, it can be seen that qualitative
agreement between the two is good, with only four complexes

resulting in different categories being assigned. Two of these
are borderline cases where one method gives rD/P ≈ 7.9 and
the other slightly over the cutoff (T-shaped benzene dimer and
benzene···MeNH2 complexes). The other two (MeNH2 with
peptide and pyridine) the ALMO EDA classifies as electro-
static (rD/P ≈ 1.6, 1.8), whereas SAPT classifies them as mixed
(rD/P ≈ 3.0, 5.6). In both instances, this is due to SAPT
predicting a larger dispersion contribution than ALMO+RPA.
This is borne out in the total interaction energies, where SAPT
and ALMO+RPA overbind and underbind by about 0.5 kcal
mol−1, respectively, compared to CCSD/CBS results.

5. CONCLUSIONS

We have presented a new method capable of accurately
determining BSSE-free interaction energies for supramolecular
systems composed of many fragments. By building on
absolutely localized molecular orbitals and applying a variety
of cutting-edge computational chemistry techniques, it has
been possible to arrive at a procedure that gives CCSD quality
results for a range of chemically interesting systems at a
fraction of the cost of full, counterpoise-corrected calculations.
In particular, a chain of 108 hydrogen fluoride molecules

Figure 11. Ratio of dispersion to polarization contributions, rD/P, in the interaction energies of the complexes in the S66 database. Results are
compared for the SAPT (red, left bar) and ALMO (blue, right bar) energy decompositions, with the cutoffs for classification shown as dashed lines.
The molecule number is as given in the original database.145 All numerical data can be found in the Supporting Information.
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corresponding to over 1000 electrons, 3500 orbital basis
functions, and 12,500 auxiliary basis functionscould be
treated on a single processor in 486 s, or slightly over 8 min,
using less than 10 gigabytes of memory. It was found that by
specializing to systems composed of a large number of small-
to medium-sized monomers, it is possible to make full use of
the inherent localization of the ALMOs both in the mean-field
and correlated regimes. In particular, problems with large
energy errors in the local Fock build are alleviated by using a
coarser definition of the orbital domains, and large super-
position errors are mostly removed from the correlation energy
by decomposing the excitations into distinct terms. Finally, the
new method allows the interaction energy to be decomposed
into physically distinct terms in a quantitatively accurate way.
This coupled with the essentially linear-scaling and inherently
parallel nature of the calculation opens up the possibility of
gaining insight into the interactions in extended systems, such
as polymers, supramolecular complexes, and even crystals.
There are caveats, however, mainly in the scaling with

individual fragment size, which is prohibited by the use of
RPA. Possible ways to improve this could include developing
method-specific basis sets to minimize the problem or
translating the problem to a density-functional theory setting,
where RPA correlation is routinely used. This would, however,
remove the ability to decompose the excitations into different
terms. In addition, the Cholesky decomposition required for
the density fitting procedure becomes a bottleneck for very
large systems. Again, this could be alleviated by utilizing
massive parallelization. In this way, it would become possible
to routinely treat systems involving many hundreds of
molecules in an accurate manner and to gain physical insight
into the main underlying physical effects through energy
decomposition. The ability to partition this further into
interactions between specific pairs of molecules will be
particularly useful in studying the effects of cooperativity
between multiple noncovalent interactions, which is especially
important in the condensed phases. Finally, we reiterate that
the inclusion of higher-order excitations, in particular triples, is
vital to the accurate description of intermolecular interactions.
The rCCD-based approach here is set up in such a way that
such effects can readily be included, for example, as is done in
the DLPNO−CCSD(T) method,152 and we are currently
working on implementing this.
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(97) Löwdin, P.-O. On the Non-Orthogonality Problem Connected
with the Use of Atomic Wave Functions in the Theory of Molecules
and Crystals. J. Chem. Phys. 1950, 18, 365−375.
(98) Havriliak, S.; King, H. F. Rydberg radicals. 1. Frozen-core
model for Rydberg levels of the ammonium radical. J. Am. Chem. Soc.
1983, 105, 4−12.
(99) Steele, R. P.; Head-Gordon, M.; Tully, J. C. Ab Initio Molecular
Dynamics with Dual Basis Set Methods. J. Phys. Chem. A 2010, 114,
11853−11860.
(100) Zhang, J.; Dolg, M. Third-Order Incremental Dual-Basis Set
Zero-Buffer Approach: An Accurate and Efficient Way To Obtain
CCSD and CCSD(T) Energies. J. Chem. Theory Comput. 2013, 9,
2992−3003.
(101) Deng, J.; Gilbert, A. T. B.; Gill, P. M. W. MP2[V]: A Simple
Approximation to Second-Order Møller-Plesset Perturbation Theory.
J. Chem. Theory Comput. 2015, 11, 1639−1644.
(102) Liang, W.; Head-Gordon, M. An exact reformulation of the
diagonalization step in electronic structure calculations as a set of
second order nonlinear equations. J. Chem. Phys. 2004, 120, 10379−
10384.
(103) Langreth, D.; Perdew, J. The exchange-correlation energy of a
metallic surface. Solid State Commun. 1975, 17, 1425−1429.
(104) Langreth, D. C.; Perdew, J. P. Exchange-correlation energy of
a metallic surface: Wave-vector analysis. Phys. Rev. B 1977, 15, 2884−
2901.
(105) Hermann, J.; DiStasio, R. A.; Tkatchenko, A. First-Principles
Models for van der Waals Interactions in Molecules and Materials:
Concepts, Theory, and Applications. Chem. Rev. 2017, 117, 4714−
4758.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00615
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

P



(106) McLachlan, A. D.; Ball, M. A. Time-Dependent Hartree-Fock
Theory for Molecules. Rev. Mod. Phys. 1964, 36, 844−855.
(107) Pines, D. A Collective Description of Electron Interactions:
IV. Electron Interaction in Metals. Phys. Rev. 1953, 92, 626−636.
(108) Tkatchenko, A.; Ambrosetti, A.; DiStasio, R. A. Interatomic
methods for the dispersion energy derived from the adiabatic
connection fluctuation-dissipation theorem. J. Chem. Phys. 2013,
138, 074106.
(109) Ambrosetti, A.; Reilly, A. M.; DiStasio, R. A.; Tkatchenko, A.
Long-range correlation energy calculated from coupled atomic
response functions. J. Chem. Phys. 2014, 140, 18A508.
(110) Tkatchenko, A.; DiStasio, R. A.; Car, R.; Scheffler, M.
Accurate and Efficient Method for Many-Body van der Waals
Interactions. Phys. Rev. Lett. 2012, 108, 236402.
(111) Toulouse, J.; Zhu, W.; Ángyań, J. G.; Savin, A. Range-
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