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A branch-and-price-and-cut method for train unit

scheduling with complex minimum turnround time

requirements

Zhiyuan Lin · Pedro J. Copado-Mendez ·

Raymond S. K. Kwan

Abstract We propose a branch-and-price-and-cut method with warm-start
for solving the integer fixed-charge multicommodity flow (IFMCF) model for
the network flow level of the train unit scheduling problem, in particular with
complex minimum turnround time requirements. This problem is regarded
to be difficult due to its nature in integer flows and fixed-charge variables.
The key components of this method are a warm-start strategy and a dynamic
cut generation scheme that will only add certain constraints when needed.
We also study the theoretical perspective in finding strong valid inequalities
associated with the dynamic cuts for preventing time allowance violations due
to coupling/decoupling.

Keywords Train unit scheduling · Minimum turnround time · Fixed-charge
network flow · Branch-and-price-and-cut · Valid inequalities

1 Introduction

A train unit is a set of train carriages (or cars for short) with its own built-in
engine(s). Without a locomotive, it is able to move in both directions on its
own. A train unit can also be coupled with other units of the same or similar
types, which are distinguished by features such as power source, numbers of
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cars and speed. Train units are the most commonly used passenger railway
rolling stock in the UK and many other countries. Normally a train operating
company will possess a fleet of train unit of different types to achieve balanced
operations. A timetable gives information on a collection of trips each with
its origin, destination, intermediate stations, departure time and arrival time,
plus some extra requirements that may not be known by general public, such
as passenger capacity demand, compatible types of train unit and maximum
formation lengths if units are coupled to serve a trip.

Given a train operator’s fixed timetable and a fleet of train units, the Train
Unit Scheduling Problem (TUSP) (Lin and Kwan 2014) aims to cover each
timetabled trip service by a train unit or a formation of coupled units. From
the perspective of a train unit, the problem assigns a sequence of trains to
it as its daily workload. As mentioned earlier, a notable feature of the TUSP
differentiating it from other kinds of transport vehicle scheduling (e.g. bus and
aeroplane) is that more than one train unit can be coupled together to serve
the same trip. Coupling/decoupling (sometimes shortened as “c/d” in this pa-
per) could provide more flexibility in unit capacity per trip, especially under
the fluctuation of passenger demands. In addition, it can also be used as a
way of redistributing train unit resources across the rail network. Despite of
its benefits for real-world operations, c/d in TUSP has brought some challen-
ges for automated train unit scheduling based on network flow optimisation
methods, such as dynamic minimum turnround time for connecting two trips
due to time consumed by c/d operations and formation lengths, redundant
c/d operations, unit type compatibility relations, and locations banned for
c/d operations.

An integer fixed-charge multicommodity flow model for solving the train
unit scheduling problem has been proposed in Lin and Kwan (2013, 2014),
where the fixed-charge variables (also called block-arc variables in the train
unit scheduling context) are important for calculating coupling/decoupling
related values that are used for dealing with the aforementioned dynamic mi-
nimum turnround time requirements and redundant c/d operations. However,
due to the nature of this formulation, it was difficult to solve medium to
large sized instances, making it once impractical for real-world instances. By
dropping the block-arc variables, in Lin and Kwan (2016) a branch-and-price
approach is proposed where the requirements realised by the block-arc vari-
ables in the fixed-charge model are either achieved by customised branching
strategies or left to a post-processing phase known as Phase-2 in Lin and
Kwan (2014). Although shown to be workable in real-world instances, solving
the problem sequentially by two stages will often lose the overall optimality.
Moreover, it may significantly increase the difficulty in Phase-2, which is a
complex problem itself. Therefore, the focus of our research has turned back
to the IFMCF model.

In this paper, we present our recent further exploration on the IFMCF
modeland propose a solution approach based on warm-start and dynamically
generated cuts that will only be added when minimum turnround time viola-
tion is detected. This method is shown to be useful for solving medium sized



instances from TransPennine Express (TPE). Some theoretical exploration on
valid inequalities associated with the cuts will also be discussed. The following
parts are organised as follows. § 2 surveys the previous work relevant to this
topic. § 3 describes the complex problem of time allowance in connecting two
trips by the same train unit subject to both static and dynamic minimum
turnround time. § 5 proposes a branch-and-price-and-cut approach for dealing
with the above challenge due to dynamic minimum turnround time. Finally
§ 6 concludes this paper and envisages future research directions.

2 Literature review

In many countries, train units are the most commonly used rolling stock type
for passenger rail networks and we restrict our scope of literature survey to
train unit scheduling only.

2.1 Rolling stock circulation problem

The rolling stock circulation problem (RSCP) has been studied extensively
by the Dutch group focusing on the real-world tasks from the Dutch railway
company Nederlandse Spoorwegen (NS) where train units are used for pas-
senger railway. In the RSCP, the predecessor and successor of each trip are
basically given as the input. An early work by Schrijver (1993) first uses an
integer multicommodity flow model for this kind of rolling stock scheduling
problem for a real-world instance in NS over a single line with two coupling
compatible unit types. The goal is to minimize the fleet size. This approach
does not include issues such as train composition, unit coupling/decoupling,
depot parking nor unit blockage.

Alfieri et al (2006) later consider a similar problem to Schrijver (1993) with
two richer models. The first one ignores unit order in a coupled formation
and passenger demands and coupling upper bounds are realised directly by
constraints. The second model considers unit order by introducing a transition
graph technique, in conjunction with new decision variables representing unit
compositions for each trip. An extension of the work of Alfieri et al (2006)
is proposed by Fioole et al (2006), where considerations in combining and
splitting of passenger trains are studied and a new mixed integer programming
model is proposed to deal with it. Both a commercial solver and a heuristic
based linear programming (LP) relaxation are used with computational results
showing that good quality solutions can be found within hours.

Peeters and Kroon (2008) have further extended the problem scenario in
NS to multiple lines with one family of compatible unit types. In addition,
extra variables and constraints for describing unit inventories are added. By
applying Dantzig-Wolfe decomposition, the master problem is decomposed
with respect to trains. Branch-and-price is used to get integer solutions which
can handle real-world instances of NS in a short time after fine-tuning.



2.2 Train unit assignment problem

The train unit assignment problem (TUAP) has similar definitions and settings
with the TUSP, in particular that no predecessors or successors are fixed in
advance. Cacchiani et al (2010) present an integer multicommodity flow model
for the TUAP based on a directed acyclic graph (DAG). Since the maximum
number of coupled units is 2, LP-relaxation can be strengthened in an exact
way with respect to the knapsack constraint per trip (Cacchiani et al (2013a)).
An LP-based heuristic is used for finding the integer solutions. Real-world
instances of a regional train operator in Italy was solved, where the fleets had
up to 10 distinct unit types and the timetables contained 528–660 trains. The
heuristic is able to find solutions 10–20% better than the manual solutions in
practice.

Later a fast and effective heuristic method based on Lagrangian relaxation
was presented in Cacchiani et al (2013b) for the same TASP problem. The
focus is on finding a good suboptimal solution fast for real-time scenarios.
Computational experiments involved some larger instances of up to around
1000 trips.

2.3 Train unit scheduling problem

The train unit scheduling problem (TUSP) (Lin and Kwan, 2014, 2016a; Kwan
et al, 2017) is similar to the TUAP (Cacchiani et al, 2010), with additional
real-world requirements such as unit type coupling compatibility, locations
banned for coupling/decoupling, combination-specific coupling upper bounds,
and station-level unit blockage issues, as well as dynamic minimum turnround
time to be focused in this paper.

In Lin and Kwan (2014), a two-phase approach is proposed for the TUSP
where the first phase assigns and sequences train trips to train units tempora-
rily ignoring some station infrastructure details, and the second phase focuses
on satisfying the remaining station detail requirements. The issue of dynamic
MTRT has been considered and dealt with by block-arc variables in a way
that all of the corresponding constraints are included in the model, making
the problem computationally difficult. In Lin and Kwan (2016a), a customi-
sed branch-and-price approach for solving the network flow level of the TUSP
is presented. Local convex hulls (Lin and Kwan, 2016b) are used to streng-
then weak LP-relaxation bounds. TUSP with bi-level capacity requirements is
studied in Lin et al (2017). A heuristic branch-and-bound is designed in Lin
and Kwan (2018) for removing redundant c/d operations without the need of
block-arc variables, as well as a warm-start solution generator for the model
with block-arc variables.

For larger and harder TUSP instances, a hybridized algorithm called size
limited iterative method (SLIM) is developed in Copado-Mendez et al (2017).
It drives the network flow integer multicommodity flow model as a core ILP
solver with an iterative heuristic framework. Observing that the final opti-



mal solution only contains a very small subset of the solution space (arcs) in
terms of the original data, the proposed hybridized method combines heuristics
and exact methods, trying to take advantage of both of an exact and a pure
heuristic to achieve high quality near-optimal solutions. The computational
experiments have shown promising results.

Train units have to be scheduled at both the network and station level.
Usually, the two levels are treated as individual scheduling problems. Lei et al
(2017) connects the two levels together and mainly focuses on the train unit
shunting at station level to resolve network scheduling solution given by the
two-phase approach, where two operational aspects are to be further determi-
ned at the station level: unit permutation in a train served by coupled units
and the precise conflict-free shunting movements.

2.4 Train unit rescheduling

How to best reschedule a fleet of rolling stock units during a disruption is an
optimization problem regularly faced by railway operators. Lusby et al (2017)
propose a branch-and-price method based on a path formulation where near-
optimal solutions can be found within a few seconds. Furthermore, they show
that the proposed methodology can be used, with minor modification, on a
tactical planning level, with near-optimal rolling stock schedules. In addition,
a method integrating rolling stock scheduling with train unit shunting is pro-
posed by Haahr and Lusby (2017) where high quality solutions for real-life
instances shows the benefits from such an integration.

3 Problem description

3.1 Modelling TUSP by directed acyclic graph

The TUSP can be modelled on a directed acyclic graph (DAG) G = (N ,A),
as used in Cacchiani et al (2010) and Lin and Kwan (2014, 2016a). For a
typical DAG, we define the node set N = N ∪ {s, t}, where N is the set of
trip nodes representing timetabled trips, and s and t are the source and sink
node conventionally used for a network flow model. The arc set is denoted by
A = A ∪ A0. A connection arc a = (i, j) ∈ A links two trip nodes i, j ∈ N

if “the two trips can be consecutively served by the same train unit”. Note
that in fact this statement is only applicable under certain conditions and the
conditions where it is not true are exactly what this paper focusses on. A sign-
on arc (s, j) ∈ A0, j ∈ N indicates the start of a unit’s workload and a sign-off
arc (j, t) ∈ A0, j ∈ N indicates the end of a unit’s daily task. When the arrival
location of i is different from the departure location of j, an empty-running
movement is needed from i to j and we assume that its empty-running time
∆TE

ij > 0 is known in advance. The time needed for other auxiliary activities
such as re-platforming, shunting and depot-return can also be included into



∆TE
ij as they can be regarded as a special kind of empty-running. If there is

neither empty-running nor other auxiliary activities (meaning the train unit
simply stays at the same platform without any shunting during turnround),
we let ∆TE

ij = 0. We use E ⊂ A to denote the set of empty-running arcs.
Generally every train nodes has a sign-on arc and a sign-off arc associated

with it. However not every pair of trips i and j will be given a connection arc
(i, j). A common criterion for determining whether i can be connected to j

is that T
dep
j , the departure time of trip j, is sufficiently later than T arr

i , the
arrival time of trip i. By “sufficient” it usually means the minimum turnround
time (MTRT), i.e. the gap needed for a turnround action between trips i and
j, should be respected. Often a default value on MTRT is associated with a
pair of a location L and time band T , denoted as ∆T 0

LT . Note that an arc
(i, j) ∈ A \ E can be uniquely mapped to a location/time band pair (L, T )ij

1

and thus the MTRT to be followed over (i, j) can be set as ∆T 0
ij := ∆T 0

LTij
.

As for empty-running arc (i, j) ∈ E with two associated location/time band
pairs (L, T )i and (L, T )j , we set ∆T 0

ij := ∆T 0
LTi

+∆T 0
LTj

. When creating G, a

connection arc (i, j) will be generated between i, j ∈ N if the following is met:

ρij = T
dep
j − T arr

i −∆TE
ij −∆T 0

ij ≥ 0, (1)

where ρij is called the residual time between i and j. Each generated arc is
given a cost cij representing costs such as carriage-kilometre, empty-running
and other possible preferences.

Let P be the set of s-t paths in G such that each p ∈ P represents a sequence
of trips as a workload plan for a unit. Moreover, Pj and Pa are used to denote
the set of paths passing through node j and arc a respectively. Let K be the
set of unit types, corresponding to the commodities in a multicommodity flow
model. Type-graphs Gk = (N k,Ak) as sub-graphs of G are constructed with
respect to each type k ∈ K. The components of Gk will also be denoted in a
similar way, e.g. P k represents the set of paths in Gk.

3.2 Complex MTRT for TUSP

Condition (1) can only guarantee the default MTRT ∆T 0
ij , to be satisfied in

common situations. In practice there are more demanding requirements on
MTRT and we discuss them in the following parts.

3.2.1 Bi-level MTRT

The default MTRT is a fixed value for given a location at a given period of
time. For instance, at London Liverpool Street Station, MTRT of 5 minutes
during peak time and 10 minutes during off-peak time are applied. Generally,
an operator would like to have a not-too-short turnround time (e.g. ≥ 10

1 When the arrival time of i and departure time of j are from different time bands, the
time band yielding a larger MTRT will be used.



minutes) for connecting two trains to let operations be more robust. However,
during peak hours, this preference may have to be compromised to be shorter,
such as ≥ 5 minutes. Another occasion for using a longer MRTR is that the
arrival train is a long journey, giving less punctuality and robustness to the
subsequent turnround period. Therefore, the default MTRT could be increased
from the standard 5 minutes to 10 minutes.

At TPE, the above rules are made more flexible. There is a desirable (lon-
ger) MTRT that is to be met as much as possible, while a mandatory (shorter)
MTRT is also imposed to keep the train connections feasible. Often, this requi-
rement has to be balanced with other objectives. For instance, it may not be
appropriate to satisfy a desirable MTRT at the price of increasing the number
of used train units.

To accommodate the above, two kinds of MTRT can be set for some (L, T )
pair: a desirable MTRT ∆TD

L,T that is to be reached as much as possible and

a mandatory MTRT ∆TM
L,T that must be satisfied, where ∆TM

LT ≤ ∆TD
LT .

Similar to the case with a single level of MTRT, two levels of MTRT can be
defined over arcs as ∆TD

ij and ∆TM
ij . We define the slack time between i, j ∈ N

as σij = T
dep
j − T arr

i −∆TE
ij .

Preferences between∆TD
ij and∆TM

ij are realised by giving different weights

in their corresponding arcs. An arc with slack time between ∆TM
ij and ∆TD

ij

is less preferred than an arc with slack time longer than ∆TD
ij . Let cij be the

standard cost for (i, j) as mentioned earlier. Let γij > 1 be a penalty weight for
arc (i, j) that is undesirable. Now we have a modified method in constructing
arcs in G with bi-level MTRT:

For every (i, j) ∈ A:

– If σij < ∆TM
ij , no arc will be created;

– If ∆TM
ij ≤ σij < ∆TD

ij , create an arc (i, j) and assign it with a penalised
cost γij · cij ;

– If σij ≥ ∆TD
ij , create an arc (i, j) and assign it with a standard cost cij .

Finally note that the definition of the residual time ρij under the bi-level
MTRT case should be based on the mandatory MTRT, i.e. ρij := σij −∆TM

ij .

3.2.2 Dynamic MTRT due to coupling/decoupling (MTRT-CD)

We call the default and bi-level MTRT as static as their values do not change
once all factors determining them are given. Thus, such MTRT can be included
into the problem requirement by solely correctly setting certain components
in the underlying DAG G before carrying out the subsequent solution process.

When coupling/decoupling is involved during a turnround, the MTRT im-
posed in ensuring time allowance has to be increased accordingly, as c/d ope-
rations takes non-negligible time. It is possible that for a certain trip pair i

and j with ρij ≥ 0, the default MTRT ∆T 0
ij is no longer big enough when

some c/d is involved. On the other hand, when no c/d takes place over the
same (i, j), ∆T 0

ij would remain valid again. In this case, the effective MTRT
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Fig. 1 Coupling/decoupling time calculation at (i, j)

of (i, j) varies depending on the specific situation of train units operated there
and thus may not be totally determined beforehand as the static MTRT by
setting up the DAG. We call this sort of MTRT as dynamic.

Figure 1 shows an example of time allowance calculation at a connection-
arc (i, j) ∈ A. There are five train nodes i, j, k,m, n, four used connection-arcs
(i, j), (i, k), (m, j), (n, j) and five train units 1© to 5©. Train i is from location
A to B (and so on for other trains) and the five units (can be of the same or
different types) are all compatible. First, units 1©, 2©, 3© are coupled together
to serve train i. Then at the arrival station B of i, unit 1© is detached from
the block and continues to serve train k while unit 2© and 3© remain together
at B. Meanwhile unit 4© arrives at B from E by train m and unit 5© arri-
ves at B from F by train n, and both are attached to the unit block 2©+ 3©
to form a new block 4©+( 2©+ 3©)+ 5© to serve train j later. Note that, the
permutation of coupled units (e.g. 4©+( 2©+ 3©)+ 5© against ( 2©+ 3©)+ 4©+ 5©
etc.) should also be carefully considered to avoid potential inoperable plans,
which is left to some post-processing stage such as Phase-2 of Lin and Kwan
(2014) and Lei et al (2017). We also assume that impractical operations such
as units 2© and 3© shortly decouple with each other and then couple with
4© and 5© to form a permutation “ 2©+ 5©+ 3©+ 4©” would be very unlikely to
happen in practice. We make an assumption that it takes n− 1 times of single
coupling/decoupling operation when n blocks are coupled/decoupled, which
is realistic since coupling/decoupling three or more units simultaneously will
generally violate safety regulations. Note that we here only calculate the time
taken solely by coupling/decoupling operations, because the time consumed
by other auxiliary activities like shunting or empty-running has been alre-
ady included into the connection information and subtracted from the time
gap (as they can be determined a priori). As shown in Figure 1, there are
one decoupling ( 1©‖ 2©+ 3©) and two coupling ( 4© → 2©+ 3©, 2©+ 3© ← 5©)
operations occurring at station B. Assuming that the slack time σij = 12
minutes, and the default MTRT ∆T 0

ij = 5 minutes, giving the residual time

ρij = σij−∆T 0
ij = 12−5 = 7. Suppose each single coupling/decoupling opera-



tion takes 3 minutes, then the time needed for c/d operations is 3×1+3×2 = 9,
longer than the residual time. So there is no sufficient time to perform such a
coupling/decoupling operation over connection (i, j).

Note that this conclusion cannot be drawn without a given solution over
(i, j). Thus unlike static MTRT, it is difficult to include dynamic MTRT-CD
operations beforehand while constructing the DAG G.

3.2.3 Dynamic MTRT due to train formation length (MTRT-FL)

For some train operators such as TPE and Greater Anglia, there is anot-
her kind of dynamic MTRT, known as the MTRT due to train formation
length (MTRT-FL) at some certain stations and/or time bands. Here, for-
mation lengths are usually measured by the number of cars. The more cars
a formation has, the longer the MTRT would be. The main reasons for this
requirement are given in the following.

– Short-term preparation work such as seat/table/toilet cleaning and inser-
ting tickets at seat backs are conducted during a turnround. The longer a
formation is, the more time is needed to do the preparation.

– When coupling/decoupling is also involved, a drive needs to walk to the
coupler to conduct certain operations and walk to the cab in the unit for
the next trip.

– At stations with all dead-end platforms, a driver has to walk from one end
to the other end of the train unit during a turnround to carry on the next
trip unless the train unit will be taken over by another driver.

In the TUSP, the formation (or component) in terms of unit combination
for each trip is not fixed but to be determined. Even if the requirements on
the passenger capacity demand and the maximum number of coupled cars are
satisfied, there may still be several possibilities of feasible formations for a
trip, making this unknown in advance similar to the case the c/d operations.
Therefore, this kind of MTRT has a dynamic nature as well.

Table 1 Dynamic MTRT due to formation length in Great Anglia network

Num of cars MTRT (min) Remarks

4 4 At Cromer MTRT for a 1 or 2 car diesel unit is 3 minutes
Unit type 378 requires 5 minutes

8 6 Trains at Liverpool Street require 7 minutes.
12 7 Trains at Liverpool Street require 9 minutes.

For instance, in the Great Anglia rail network, the following MTRT rules
in Table 1 are generally applied (without additional c/d operations). From the
table it can be seen that MTRT increases as the number of cars in a train
formation increases. In addition, while general rules applies, special condition
also exists that MTRT-FL can also depend on factors such as location and



unit type involved. We call the train unit types that are coupling compatible
as being of the same family, and let F be the set of all unit families in fleet K.
If special condition exists as in the Remarks area, train units from the same
family will normally be grouped into the same MTRT category since they can
be coupled with each other.

Formation length mixed with coupling/decoupling If no coupling/decoupling
occurs during a turnround, the formation length remains unchanged from the
arrival train to the departure train. When coupling/decoupling is involved,
there are more than one formations (trains) during a turnround with diffe-
rent lengths. The operational rules in TPE states that in this mixed case,
for arc (i, j), the longest formation between the arrival train i and depar-
ture train j should be used. Let ni and nj be the number of cars for train i

and j. The formation length to be used over arc (i, j) should be max(ni, nj).
Moreover, the MTRT required is set as the largest between the one due to cou-
pling/decoupling and the one due to formation length, rather than the sum of
them. For instance, when an 8 car formation splits into two 4 car formations
during a turnround, the formation length of 8 cars should be used. Assuming
that 8 cars require 7 minutes MTRT, and the corresponding decoupling requi-
res 6 minutes of MTRT, the overall MTRT needed over (i, j) should therefore
be max(6, 7) = 7 minutes.

4 The ILP formulation

The objective of the TUSP is to minimise the total operational costs such as the
number of used units, the carriage-kilometre and the number of c/d operations.
See Lin and Kwan (2018) for details on the problem of redundant c/d and how
to remove it by either heuristic based branch-and-bound or exact method with
additional fixed-charge variables. We briefly list the major constraints to be
satisfied in the following, and further details can be found in Lin and Kwan
(2014, 2016a).

(i) For each unit type k ∈ K, there is a fleet size bk that cannot be exceeded;
(ii) For each trip j ∈ N , a passenger demand should be satisfied;
(iii) A maximum number of coupled cars should not be exceeded, where its

specific value may vary depending on the unit formation achieved at j;
(iv) When coupling two or more units of different types, compatibility rela-

tions should be satisfied;
(v) There are locations banned for performing c/d operations;
(vi) Time allowance in connecting two trips following both static and dynamic

MTRT;
(vii) Station level refinement: unit blockage, unit order in coupled formations,

re-linking



An integer fixed-charge formulation (IFC) developed for the TUSP is gi-
ven:

(IFC) min Wx

∑

k∈K

∑

p∈Pk

cpxp +Wy

∑

j∈N





∑

a∈δ
−
(j)

ya +
∑

a∈δ+(j)

ya



 (2)

subject to

∑

p∈Pk

xp ≤ bk, ∀k ∈ K (3)

∑

k∈K

∑

p∈Pk
j

H
j
f,kxp ≤ h

j
f , ∀f ∈ Fj , ∀j ∈ N (4)

∑

k∈K

∑

p∈Pk
a

xp ≤ uaya, ∀a ∈ A (5)

xp ∈ Z+, ∀p ∈ P k, ∀k ∈ K (6)

ya ∈ {0, 1}, ∀a ∈ A (7)

In the above model, xp gives the number of used units over path p in the
DAG. The fixed-charge variable ya, aka the block-arc variable in the TUSP
context (Lin and Kwan, 2018), indicates whether arc a is used (= 1) or not
(= 0). In the objective function, two weights Wx and Wy are assigned to
two terms respectively. The first term minimises the operational costs that
can be measured per path (unit diagram), including the number of used units,
carriage-kilometre and the number of empty-running (dead-heading) trips and
so on. Let δ−(j), δ+(j) ∈ A be the sets of arcs coming into and going out of
trip j respectively. The second term is used for minimising the total number of
coupling/decoupling operations, in order to remove the redundant ones (Lin

and Kwan, 2018), where
∑

j∈N

(

∑

a∈δ
−
(j) ya +

∑

a∈δ+(j) ya

)

gives the total

number of c/d operations over all trips.

As for the constraints, Constraints (3) ensure the number of used units
for each type k does not exceed its fleet size bk. Constraints (4) are the train
convex hull constraints (Lin and Kwan, 2016b) representing the valid unit
combinations as a result of target passenger capacity requirement, maximum
number of coupled units and other implicit constraints, where Fj is the set of
nonzero facets describing the convex hull associated with trip j. Constraints (5)
are used for calculating the binary block-arc variables where ua is the possible
maximum flow amount over arc a. Finally Constraints (6)–(7) give the variable
domains.

Two critical operational requirements are not directly included in (IFC),
i.e. the coupling compatibility relations among different unit types and the
locations banned for operating coupling/decoupling activities. They are satis-
fied by customised branching rules in the branch-and-price core-solver (Lin
and Kwan, 2016a) without the need of block-arc variables y. The station level



refinement process to ensure full operability is left to post-processing stages
(Lin and Kwan, 2014; Lei et al, 2017).

As for Point (vi), the static MTRT can be directly satisfied while creating
the DAG. The dynamic MTRT is a challenging issue. It is possible to leave
them to Phase-2 as in the two-phase framework such that a model with only
one kind of flow variable xp is sufficient for the network flow level (Phase-1).
However, solving the entire problem in a sequential manner by two stages will
often lose the overall optimality. Moreover, it may significantly increase the
difficulty in Phase-2, which is a complex problem per se. In Lin and Kwan
(2014), constraints for removing the possibilities that violate MTRT-CD via
fixed-charge variable y are used. For a used connection arc (i, j) ∈ A, if a
time allowance violation such as the example in § 3.2.2 is found, the following
constraint can cut-off such a violation:

τDarr(i)





∑

a∈δ+(i)

ya − 1



+ τCdep(j)





∑

a∈δ
−
(j)

ya − 1



 ≤ ρij , (8)

where τDarr(i) and τCdep(j) are the time consumption for a single decoupling
operation at the arrival location of trip i and the a single coupling operation
at the departure location of trip j respectively.

The dynamic MTRT-FL can be formally described as the following: For
a formation up to nr cars, the dynamic MTRT should be no more than τfr
minutes for unit family f , r = 1, 2, . . . , R and f ∈ F , where n1 < n2 < · · · <
nR and τ

f
1 < τ

f
2 < · · · < τ

f
R. Note that when c/d is involved, the formation

length should be based on the largest between the arrival and departure trains.
Let wk

j =
∑

p∈Pk
j
xp be the number of units of type k used for trip j ∈ N . To

satisfy MTRT-FL, the following constraints can be applied:
∑

k∈f

nkw
k
i =

∑

k∈f

∑

p∈Pk
i

nkxp ≤ nr, ∀(i, j) ∈ Af
r , ∀f ∈ F , r = 1, 2, . . . , R (9a)

∑

k∈f

nkw
k
j =

∑

k∈f

∑

p∈Pk
j

nkxp ≤ nr, ∀(i, j) ∈ Af
r , ∀f ∈ F , r = 1, 2, . . . , R (9b)

In the above, nk is the number of cars for unit type k, and Af
r is defined as

Af
r =

{

{a ∈ A : τfr ≤ σa < τ
f
r+1}, if r 6= R

{a ∈ A : σa ≥ τ
f
R}, if r = R

(10)

Taking the cases in Table 1 as an example. Assume there are two families,
where Type 156 (with 3 cars) and 157 (having 5 cars) forms the first family f1
and Type 378 (with 4 cars) forms the second family f2. Also assume that the
current arcs correspond to neither Liverpool Street nor Cromer. We thus have
the following constraints derived from (9) shown in Table 2 (For simplicity, we
use the node flow variable wk

j ).
In most cases, the constraints in (9) for r = R are redundant as nR is

already the largest possible number of coupled cars and should be included



Table 2 Constraints for MTRT-FL corresponding to Table 1

Family r Constraints

1 3w156
q + 5w157

q ≤ 4, q = i, j,∀(i, j) : 4 ≤ σij < 6

f1 = {156, 157} 2 3w156
q + 5w157

q ≤ 8, q = i, j,∀(i, j) : 6 ≤ σij < 7

3 3w156
q + 5w157

q ≤ 12, q = i, j,∀(i, j) : σij ≥ 7

1 4w378
q ≤ 4, q = i, j, ∀(i, j) : 5 ≤ σij < 6

f2 = {378} 2 4w378
q ≤ 8, q = i, j, ∀(i, j) : 6 ≤ σij < 7

3 4w378
q ≤ 12, q = i, j, ∀(i, j) : σij ≥ 7

in Constraints (4). We therefore in principle no longer consider them in this
paper. Preprocessing can be applied to strengthen some constraints in (9). For
example, 3w156

q + 5w157
q ≤ 4⇔ w156

q ≤ 1, w157
q = 0, and 3w156

q + 5w157
q ≤ 8⇔

w156
q ≤ 1, w157

q ≤ 1, most likely by explicitly computing the convex hulls in

terms of variable wk
q due to the small dimensions. It is also not difficult to

include special cases as in Remarks in Table 1 at specific stations into (9), as
locations can be implied by arcs.

Finally, when both c/d and formation length have to be taken into account
as mentioned in § 3.2.3, the rule of taking the largest MTRT indicates that
the two kinds of constraints (8) and (9) can be used simultaneously. In other
words, when they are not synchronised with each other in terms of dynamic
MTRT, the most constraining one will take effect and thus the largest MTRT
value will be automatically applied.

Constraints (8) and (9) in theory can prevent time allowance violation
with respect to MTRT-CD and formation length. However, since the number
of such constraints can be large, in practice they will significantly slow down
the solution process as observed from the experiments. In § 5, we further
propose solution approaches in particular for dealing with the large number of
Constraints (8) and (9).

5 A branch-and-price-and-cut approach

We propose a branch-and-price-and-cut to solve the IFCMF model (IFC) with
block-arc variables based on the branch-and-price solver from Lin and Kwan
(2016a). In addition, it is important to apply both a warm-start strategy and
a dynamic cut generation method to ensure the model can be solved in a
reasonable time in our tested instances.

Warm-start As aforementioned, one important task of the block-arc varia-
bles y is to minimise the total number of c/d operations, thus eliminating
the redundant ones. We use the results from the heuristic approach given in
Lin and Kwan (2018) from solving the model without block-arc variables to
warm-start the IFCMF model (IFC). Simply speaking, the column genera-
tion process at the root node of the branch-and-bound tree is triggered by



a feasible solution from the result of this heuristic, where promising arc flow
assignments are branched to reduce redundant c/d within the involved arcs. It
can often achieve high quality solutions with respect to minimising the total
number of c/d operations, thus significantly speeds up the solution process for
the IFCMF model.

We discuss the details for generating dynamic cuts corresponding to (8)
and (9) in the next two subsections.

5.1 Dynamic cuts for MTRT due to formation length

We first discuss the generation of dynamic cuts corresponding to Constraints (9),
as it does not involve the fixed-charge variable y. As aforementioned, only arcs
in A′ = {(i, j) ∈ A : σij < maxf τ

f
R} may have a potential in violating MTRT-

FL. At the beginning of the branch-and-price, no cuts from (9) is included
into Model (IFC). There are three branching rules in the branch-and-price
solver in Lin and Kwan (2016a), i.e. train-family branching, banned location
branching and integer branching. It is found that only starting the integer
branching after both train-family and banned location branching are finished
would most likely give the best efficiency on the branch-and-bound (BB) tree.
Here we also follow this empirical convention and start generating dynamic
cuts for MTRT-FL during the stage of integer branching where both train-
family and banned location branching. We summarise the generation of cuts
for MTRT-FL in Algorithm 1.

Algorithm 1 Generation of dynamic cuts for MTRT-FL at a BB tree node
• Given: A BB tree node n to find its lower bound (e.g. by LP-relaxation)
• Let: prt(n) be the parent node of n and A′

prt(n)
⊆ A′ be the set of arcs whose cuts

Πprt(n) in Constraints (9) have been generated in prt(n)
• Initialise: Πn := Πprt(n), set of cuts used in reduced master problem (RMP) of n
• Initialise: A′

n := A′
prt(n)

• Solve the RMP at n by column generation
repeat

V iolationFound = FALSE

for (i, j) ∈ A′ \A′
n do

if violation on MTRT-FL found at (i, j) under family f then

Πn+ = {πf
ij} // π

f
ij :

∑
k∈f nkw

k
q ≤ nr, q = i, j; r = 1, 2, . . . , R− 1

A′
n+ = {(i, j)}

V iolationFound = TRUE

Resolve RMP at n by column generation, update LP-relaxation
Break

end if

end for

until V iolationFound = FALSE

Based on last LP-relaxation solution, either cut-off n or put n into active queue

Let uj be the maximum number of units that can be coupled for trip j.
A predetermined order for the arcs in A′ can be set in an descending way



according to the value of
ui+uj

σij
. Intuitively, the larger this value is, the more

likely a violation on MTRT-FL will occur over (i, j). While doing the for loop
as in Algorithm 1, following this order may help in speeding up the process.

5.2 Dynamic cuts for MTRT due to coupling/decoupling

Similar to MTRT-FL, not all connection arc will give a MTRT time viola-
tion due to c/d, as there is a maximum number of coupled units for a train
formation, which may vary among trips and even for the same trip depen-
ding on the unit combination assign to it. Define A∗ = {(i, j) ∈ A : ρij <

(ui− 1)τarr(i)+(uj − 1)τdep(j)}. Only arcs in A∗ has a potential to be violated
by MTRT-CD (We have assumed that impractical operations will not happen,
see § 3.2.2).

5.2.1 Branch over block-arc variables violating MTRT-CD

Observed from numerical experiments, it is found that among all arcs in A∗,
only a small proportion may actually violate Constraints (8) either in a final
solution or during the branch-and-price process. Therefore, it is not necessary
to impose Constraints (8) over all arcs in A∗ throughout the branch-and-bound
tree but only to add one when needed. This gives the basic idea of generating
dynamic cuts to be used in conjunction with a branching scheme over the
fixed-charge variables y.

This branching scheme over block-arc (fixed-charge) variable ya ∈ A is
based on the following principle:

(i) Only branch on fixed-charge y after all flow variables x are integral and
no violation on formation length is found;

(ii) Variable selection when branching on y: First consider if an arc (i, j)
violating MTRT-CD can be found, where the value of yij in the LP-
relaxation can be either fractional or binary. If such a yij is found, branch
on it that each of the two children will have a binary value on yij and
the current violation over (i, j) is removed.

(iii) If such an arc cannot be found, find a fractional ya and branch on it
following a standard approach.

We elaborate this branching scheme in Algorithm 2.

A predetermined sorting for the arcs in A∗ can also be set in a descending

order according to the value of
|ui−uj |

σij
. It is also based on the intuitively

observation that the larger this value is, the more likely that wi 6= wj , thus
increasing the possibility of a violation on MTRT-CD over (i, j). While doing
the for loop as in Algorithm 2, following this order may help in speeding up
the process.



Algorithm 2 Branching on y in conjunction with removing MTRT-CD
• Given: A BB tree node n to find its lower bound (e.g. by LP-relaxation)
• Let: prt(n) be the parent node of n and A∗

prt(n)
⊆ A∗ be the set of arcs whose bran-

ching cuts/actions regarding MTRT-CD have been generated in prt(n) and collected into
Πprt(n)

• Initialise: Πn := Πprt(n), set of cuts/actions used in RMP of n
• Initialise: A∗

n := A∗
prt(n)

• Solve the RMP at n by column generation
for (i, j) ∈ A∗ \A∗

n do

if Violation on MTRT-CD is found at (i, j) then

Form two (latent) branches:
1. Fix yij to 0, e.g. by deleting arc a. (Action recorded as π0

ij)

Πn+ = {π0
ij} and A∗

n+ = {(i, j)}
2. Fix yij to 1 and add the cut

π1
ij : τDarr(i)

∑

a∈δ+(i)\{(i,j)}

ya + τCdep(j)

∑

a∈δ
−
(j)\{(i,j)}

ya ≤ ρij

Πn+ = {π1
ij} and A∗

n+ = {(i, j)}
Break

end if

end for

if No violation on MTRT-CD found in A∗ \A∗
n then

Branch on fractional y in a standard way
end if

5.3 Valid inequalities

It is well-known that fixed-charge network flow problem can suffer from weak
LP-relaxation bounds. In this part we discuss several classes of valid inequa-
lities to strengthen the bounds.

To begin with, the following valid inequalities are self-explanatory:

∑

a∈δ
−
(j)

ya ≥ 1;
∑

a∈δ+(j)

ya ≥ 1, ∀j ∈ N. (11)

Next we focus on deriving certain classes of valid inequalities for the dyn-
amic cuts used alongside with branching y into 1 as in Algorithm 2, i.e.

τDarr(i)

∑

a∈δ+(i)\{(i,j)}

ya + τCdep(j)

∑

a∈δ
−
(j)\{(i,j)}

ya ≤ ρij . (12)

For simplicity, since the overall maximum number of units that can be coupled
at any trip can never exceed 3 in TPE, we take a more conservative step
by setting ui = uj = 3 over arc (i, j). This implies that there can be at
most two coupling and two decoupling operations during a turnround, and we
thus assume ρij < 2τarr(i) + 2τdep(j). Other cases with ui or uj < 3 would
make the problem simpler and can be obtained by analogy. We assume that
τarr(i), τdep(j) and ρij are all integers and the difference of |τarr(i) − τdep(j)| is
“sufficiently small”, e.g. less than 3 minutes, which are common practices in



railway companies. We also assume that |δ+(i)| ≫ 2 and |δ−(j)| ≫ 2 unless
otherwise stated. Finally the following valid inequalities can be added while
generating dynamic cuts (12) while fixing yij to 1 in Algorithm 2:

∑

a∈δ+(i)\{(i,j)}

ya ≤ 2;
∑

a∈δ
−
(j)\{(i,j)}

ya ≤ 2;
∑

a∈δ+(i)∪δ
−
(j)\{(i,j)}

ya ≤ 3. (13)

5.3.1 Special case with equal coupling and decoupling time

Using simplified notations as τDarr(i) = τi and τCdep(j) = τj We first consider a
special case where τi = τj = τij , which is commonly seen in TPE and other
train operators. Letting ∆ij := δ+(i)∪ δ−(j) \ {(i, j)}, Cut (12) then becomes
τij

∑

a∈∆ij
ya ≤ ρij , where the range of ρij is 0 ≤ ρij < 4τij . Define the binary

set for Cut (2) where yij is fixed to 1:

Yij =







y ∈ {0, 1}∆ij

∣

∣

∣

∣

∣

∣

τij
∑

a∈∆ij

ya ≤ ρij







(14)

Let Ch ∈ Ch, h = 1, . . . , 4 be the minimal covers of Yij when (h−1)τij ≤ ρij <

hτij . For a fixed h, all Ch have the same cardinality |Ch| = h, giving the cover
inequalities

∑

a∈Ch
ya ≤ h− 1, ∀Ch ∈ Ch. To strengthen them, notice that the

extended covers E(Ch) = ∆ij , ∀Ch ∈ Ch and the fact that all coefficients of y
in Yij are the same. From the classical conclusions (Nemhauser and Wolsey,
1988) , the following

∑

a∈∆ij

ya ≤ h− 1, h = 1, . . . , 4 (15)

gives a facet of conv(Yij) when ρij takes different integer values, which hap-
pens to be the same result if one simply applies basic rounding technique:
∑

a∈∆ij
ya ≤ ⌊

ρij

τ
⌋ = h− 1 for Yij .

5.3.2 General cases when τi 6= τj

Define ∆i = δ+(i)\{(i, j)} and ∆j = δ−(j)\{(i, j)}. When τi 6= τj , the binary
set becomes:

Yij =







y ∈ {0, 1}∆ij

∣

∣

∣

∣

∣

∣

τi
∑

a∈∆i

ya + τj
∑

a∈∆j

ya ≤ ρij







, (16)

which is a very much simplified 0-1 knapsack set and classical results (Nem-
hauser and Wolsey, 1988) can be used to derive (strong) valid inequalities by
finding minimal covers and lifting. Nonetheless, due to the simple structure of
Yij , we here discuss some easily obtained strong valid inequalities to avoid the
trouble of explicitly performing lifting procedures. Without loss of generality,
we assume that τi < τj . First notice the obvious outcomes:



– If τi > ρij , τj > ρij , then Yij can be replaced by xa = 0, ∀a ∈ ∆ij

– If τi ≤ ρij , τj > ρij , then xa = 0, ∀a ∈ ∆j and the following cut is strong
for Yij :

∑

a∈∆i
ya ≤ h − 1, when (h − 1)τi ≤ ρij < hτj , h = 2, 3, 4. Note

that in some cases the above cut can be dominated by (13).

When τi ≤ ρij , τj ≤ ρij , it implies ρij ≥ 2. A key step in getting strong cuts
is to find as many minimal covers for Yij as possible. Here we show that all
such minimal covers can be enumerated and some strong cuts can be derived
under certain conditions without applying lifting procedures.

First there exists a family of minimal covers Ci ∈ Ci such that Ci ⊂
∆i, ∀Ci ∈ Ci, since |δ+(i)| ≫ 2, |δ−(j)| ≫ 2, |τarr(i) − τdep(j)| is “sufficiently
small” and 2 ≤ ρij < 2τi + 2τj . Indeed Ci is made of collections of any
⌊ρij

τi
⌋ + 1 arcs in ∆i. The extended cover of every Ci is the entire ground

set: E(Ci) = ∆ij . Let Ci = {a1, a2, . . . , ar} be any minimal cover in Ci.
Now as long as Ci \ {a1, a2} ∪ {q}, where q ∈ ∆j is the arc in ∆ij giving
the largest coefficient, is independent (Nemhauser and Wolsey, 1988), the cut
∑

a∈∆ij
ya ≤ |Ci| − 1 = ⌊ρij

τi
⌋ will define a facet of Yij . The set independence

implies

τi

(⌊

ρij

τi

⌋

− 1

)

+ τj ≤ ρij . (17)

Thus as long as (17) is satisfied, the cut based on extended cover E(Ci) = ∆ij

will be facet-defining wrt Yij .
Second there exists a class of minimal covers Cj ∈ Cj such that Cj ⊂

∆j , ∀Cj ∈ Cj , where each member of Cj is a collection of any ⌊ρij

τj
⌋ + 1

arcs in ∆j . Then we have Cj ⊂ E(Cj) = ∆j ⊂ ∆ij . Let an arbitrary
Cj = {a1, a2, . . . , ar}.

∑

a∈∆j
ya ≤ ⌊

ρij

τj
⌋, the cut derived from E(Cj) will

be strong if the following two conditions are satisfied (Nemhauser and Wolsey,
1988):

(i) Cj \{a1, a2}∪q is independent, where q ∈ ∆j is the arc giving the largest
coefficient.

(ii) Cj \ {a1} ∪ q is independent, where q = argmaxa{τi : a ∈ ∆i}.

(i) is always satisfied, while (ii) is satisfied if

τi + τj

⌊

ρij

τj

⌋

≤ ρij . (18)

There is a third class of minimal covers Cij ∈ Cij where Cij ∩ ∆i 6=
∅, Cij ∩∆j 6= ∅. The extended cover E(Cij) = Cij ∪∆j . When |Cij ∩∆j | =
h, h = 1, 2, . . . , which implies ρij ≥ hτj , any Cij ∈ Cij is made of h arcs from

∆j and ⌊
ρij−hτj

τi
⌋+1 arcs from∆i. By applying the same criteria in Nemhauser

and Wolsey (1988), the extended cover cut
∑

a∈Cij∪∆j
ya ≤ h+ ⌊ρij−hτj

τi
⌋ will

be strong if

τi

(⌊

ρij − hτj

τi

⌋

+ 2

)

+ τj(h− 1) ≤ ρij . (19)



Let {·} denote the fractional part of a number. The above is equivalent to

(

2−

{

ρij − hτj

τi

})

τi ≤ τj (20)

Note that since τi < τj ≤ ρij < 2τi + 2τj , actual possible values for h are
here only limited to 1, 2 and 3.

Finally we finish this section by remarking that since all possible cases of
the classes of minimal covers are found in C = Ci∪Cj ∪Cij , for each C ∈ C , it
is possible to derive an associated a strong cut for Yij following the results in
Balas (1975) without actually applying explicit lifting, which can be rephrased
with respect to (16) as the following:

Theorem 1 (Balas (1975)) Let C = {a1, a2, . . . , ar} be a minimal cover of
Yij with a1 < a2 < · · · < ar (if the arcs are indexed by positive integers) and
τ(a1) ≥ τ(a2) ≥ · · · ≥ τ(ar) where τ(aq) is the coefficient of arc aq ∈ C. Let

µh =
∑h

q=1 τ(aq) for h = 1, . . . , r; also let µ0 = 0 and λ = µr−ρij ≥ 1. Every
valid inequality of the form

∑

a∈∆ij\C

βaya +
∑

a∈C

ya ≤ |C| − 1 (21)

that represents a facet of conv(Yij) satisfies the following conditions:

(a) If µh ≤ τ(a) ≤ µh−1 − λ, then βa = h.
(b) If µh+1 − λ+ 1 ≤ τ(a) ≤ µh+1 − 1, then βa = h+ 1.

For instance, for any C ∈ Ci, for an arc a ∈ ∆ij\C∩∆i, since τ(a) = τi = µ1

with h = 1, we should apply βa = h = 1.

6 Conclusions and future research

A branch-and-price-and-cut approach is proposed for efficiently solving the
IFCMF model for the network flow level of the TUSP. Two kinds of dynamic
MTRT due to formation length and coupling/decoupling activities respecti-
vely are included into the model and customised solution approaches such as
dynamic cuts are designed for them. Some theoretical analyses are given for
deriving relatively simple strong valid inequalities without carrying out lifting.

Further research directions on the branch-and-price-and-cut method in-
clude more efficient cut generation strategies, computational experiments on
TPE datasets and a possible integration with the hybrid heuristic method
SLIM (Copado-Mendez et al, 2017) to solve even larger instances.
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