
This is a repository copy of Resolution of Station Level Constraints in Train Unit 
Scheduling.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150723/

Version: Accepted Version

Proceedings Paper:
Lei, L, Kwan, R, Lin, Z et al. (1 more author) (2018) Resolution of Station Level Constraints
in Train Unit Scheduling. In: 14th International Conference on Advanced Systems in Public
Transport (CASPT). 14th International Conference on Advanced Systems in Public 
Transport (CASPT), 23-25 Jul 2018, Brisbane, Australia. . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


CASPT 2018

Resolution of Station Level Constraints in Train Unit

Scheduling

Li Lei1 · Raymond S.K. Kwan1
·

Zhiyuan Lin2
· Pedro J Copado-Mendez1

Abstract Train unit scheduling assigns vehicles to cover all trips of a fixed
timetable satisfying seat demands at minimum operational costs. Solved as
a network flow problem, train stations are simplified to single points where
certain station operation details are not considered. For instance, when a trip
is covered by coupled train units, the coupling order is left undetermined, and
infeasibility may arise because of track and platform layouts, movement di-
rections and timings. This paper investigates the resolution of such station
level constraints for a multi-commodity flow based approach; in particular, we
shall focus on feasible coupling order as an example. A hybrid-iterative ap-
proach is proposed for coupling order assignment with refinement of train unit
scheduling by considering conflict-free linkage implementation at the station
level.

Keywords Train unit scheduling · Coupling order · Station Constraints ·
Resolution

1 Introduction

A physical train unit has fixed carriages and integral engine(s) that can move
in either directions. Train units are commonly used in railway passenger trans-
port replacing traditional locomotive trains. They are classified into many types

with characteristics such as power source, number of carriages, and number of
seats. In the UK, there are many franchised train operators, such as Greater
Anglia, Virgin Trains, Northern, First Great Eastern, and TransPennine Ex-
press. Each operator manages a certain number of train units constituting a
train unit fleet. A timetable describes a set of logical trips with fixed routes (ori-
gin, destination and intermediate stations) and timings (clock time of arrival

1School of Computing, University of Leeds, Leeds, UK
E-mail: scll, r.s.kwan, p.j.copado-mendez@leeds.ac.uk
2Alliance Manchester Business School, University of Manchester Manchester, UK
E-mail: zhiyuan.lin@manchester.ac.uk



and departure, and duration time of each trip). Physical units are assigned
to serve logical trips under the condition of passenger demands, i.e. a trip
can be served by a single unit or multiple units defined as unit blocks in this
research. To satisfy different seat demands, unit blocks may involve coupling

operation to form longer unit blocks or decoupling operation to be decomposed
into shorter unit blocks. That gives rise to the issues of unit positions in trips
described as the coupling order problem. If a trip is served by multiple units
of different types, the coupling order is significant, in particular when the unit
block serving this trip involves coupling or decoupling operations. Usually,
coupling and decoupling operations are executed at corresponding platforms
at certain stations. As the movement of unit blocks are strictly restricted by
tracks, station layouts and how they connect with other stations are key fac-
tors giving rise to the coupling order issues.
Post network flow scheduling conflict resolution is vital to avoid operational
blockages at the station level and to determine feasible coupling order, which
can bring the network scheduling studied by Lin and Kwan (2014) to be more
operable since they consider stations as simple points without structural de-
tails. The process of coordinating with the RS-Opt (network-scheduling solver
developed by Lin and Kwan (2016)) is called RS-Opt-PT in this paper. RS-Opt

optimizes train unit assignment at the network flow level by a branch-and-price
approach and tentatively allocates unit blocks to trips and connections among
assigned unit blocks. Its solution is incomplete since the coupling order is not
determined and the feasibility of the tentative linkages among trips has not
been verified.
Stations are the places to implement linkages. Coupling order is normally
formed at the corresponding station, however, its influence is not isolated
within that station but can be propagated to the entire network because of
running trips. If a blockage caused by coupling order arises at a certain sta-
tion, more operations (for instance reordering shunting) are needed to fix the
blockage. This increases operational cost and may disturb the operation of
an entire railway network. Hence, coupling order assignment must be consid-
ered not only at the station level but also at the network level. In this paper,
a hybrid-iterative approach is proposed. In the main loop, a new scheduling
solution will be sought if RS-Opt-PT has encountered unresolvable coupling
order conflicts. RS-Opt-PT feeds the critical station constraints detected back
to RS-Opt to eliminate inoperable factors and make the train unit scheduling
solution more complete and operable.

2 Literature review

Huisman et al (2005) survey on the operational research in passenger railway
transportation focusing on European cases, where the train unit planning is
classified as two levels. The central level covers the entire network operations
such as timetabling, train unit scheduling, circulation and etc. The local level
focuses on the local-size-impact operations including shunting, platform as-



signment, and routing of train units at station etc. The train unit scheduling
problem can be addressed as two levels (Lin and Kwan (2014) and Kwan et al
(2017)). The network flow level aims to solve train sequencing and fleet assign-
ment by treating stations as simple points temporarily ignoring station layouts.
The coupling and decoupling activities are a distinct feature to satisfy passen-
ger demands at the network flow level. The station level copes with finalizing
the operational plan and any train unit shunting within stations/depots.
The network flow level of train unit scheduling finds paths to assign unit type
and quantities to each timetabled trip. Once an assignment has been found
from the simplified model temporarily ignoring station-level constraints, there
are two operational aspects open to be further determined. The first aspect is
the unit coupling order in multi-type trips, which has no impact on the net-
work flow but must be finalized to prevent blockages at stations. The second
aspect is the linkage implication restricted by station layouts. This research
focuses on these two points to make the train unit scheduling solution more
operable which has not been scrutinized carefully in other researches.

2.1 Train unit scheduling at the network flow level

Cacchiani et al (2010) consider basic constraints of passenger demands, cou-
pling upper bounds and additional constraints of maintenance and overnight
balance. Two inter-convertible ILP formulations (arc formulation and path
formulation) are established based on a directed acyclic graph described in
Cacchiani et al (2013a). A LP-based heuristic is designed to solve the path
model but it is reported as crucial in finding feasible solutions in many tested
instances since the problem is regarded as very difficult. Another heuristic
method based on Lagrangian relaxation developed by Cacchiani et al (2013b)
to increase the performance.
A more comprehensive real-world constraint model to describe the network
flow problem in the UK is described by Lin and Kwan (2013) and a hybridized
iterative method is proposed by Lin and Kwan (2016) and Copado-Mendez
et al (2017) to solve larger problem instances. In practice, most train operators
in the UK consider different levels of capacity provisions, such as for peak and
off-peak. To achieve this, Lin et al (2017) study the train unit scheduling with
bi-level capacity requirements and propose a new integer multi-commodity
flow model guided by historic capacity provisions and passenger count sur-
veys supported by computational experiments on real-world data showing the
effectiveness of this methodology.

2.2 Train unit shunting at the station level

A timetable defines arrival/departure times and platforms for each trip, and
a train unit schedule assigns unit blocks to serve each trip. Shunting sched-
ule guarantees the assigned unit blocks are operable at the fixed timings and



platforms at stations.
Tomii et al (1999) consider the station shunting problems as a resource-
constrained project scheduling problem divided into two sub-problems: re-
source allocation and shunting time decision. A two-stage-search algorithm is
proposed to solve this problem combining with probabilistic local search and
PERT (programming evaluation and review technique).
Freling et al (2005) and Kroon et al (2008) consider the train unit shunt-
ing problem at a station as two sub-problems: matching problem and parking
problem. Freling et al (2005) describe a set-partitioning integer linear pro-
gramming model to solve these two sub-problems separately, which prevents
capacity overflow and unit blockage at all sidings minimizing the number of
coupling/decoupling operations. This model is solved by root-only column gen-
eration combined with a branch-and-bound strategy. Since the matching and
parking problems are connected to each other, Kroon et al (2008) propose an
integrated approach with four models considering both dead-end and through
types of siding, thus, the global optimality is guaranteed. The idea of virtual
tracks is introduced to reduce the problem size. Computational experiments
on two stations of the NSR network have been done.

2.3 Bridging between network flow and station plan

The train unit scheduling at the network flow level and station level are not
isolated but connected by running trips on the railway network. Lin and Kwan
(2014) propose models for both the network flow level and the station level,
and the two levels can communicate through arc variables. Conceptually, the
re-matched linkages at the station-level model are encouraged if they are also
chosen by the network flow level. Ideally, the good quality and operable solu-
tion at both levels are achieved through this communication. Based on their
work, Lei et al (2017) analyze the potential station shunting issues caused by a
solution at the network flow level without determination of coupling order. In
addition, a specific branch-and-cut algorithm of connecting flow level and de-
pot shunting together is proposed by Haahr and Lusby (2017) with simplified
assumption that tracks are all dead-end.

3 Problem description

Train unit scheduling at the network flow level concerns train unit assignment
to satisfy all the trips fixed by a timetable with respect to a series of constraints
such as passenger demands, coupling and decoupling, and compatibility etc.
This problem can be modeled as an integer multi-commodity flow problem
based on a DAG (Directed Acyclic Graph) where the nodes and arcs repre-
sent trips and possible connections among trips respectively. In Lin and Kwan
(2016), limited train units are assigned to fixed trips in which the matches
between arrival and departure unit blocks have been tentatively decided but



the coupling order in trips served by coupled units and the feasibility of the
matching between arrivals and departures considering station level details are
left open to be further determined. This may cause blockages while imple-
menting the network-flow-level solution at the station level because of factors
such as railway connections among stations, directions of approaching to and
leaving from a station, platform type, shunting operations etc.

3.1 Resolution constraints

The basic hard constraints to get a conflict-free schedule at the station level
are:
(1) If some extra station shunting movements are added to some unit blocks,
there must be sufficient time available.
(2) There may be flexibility in the timings of re-platforming, depot/siding
shunting, and empty running unit blocks. Their movements must not cause
any blockage.
(3) Station layouts and how stations connect to each other.
(4) If a linkage is to be feasible, the unit blocks linked have to be at the right
time and at the right platform.
(5) The unit block accumulation at each platform is restricted by the platform
usable length.
Some factors helpful for determining coupling order and easing station-level
conflicts:
(1) Some platform types may force upon some specific coupling orders so as
to make feasible certain coupling and decoupling operations.
(2) Interchangeability of the same type of units.
(3) Introducing extra essential shunting movements within time allowance.
(4) Adjusting the unit blocks with flexible timings related to re-platforming,
siding/depot shunting, empty running etc.
(5) Capacity over-provision on some trips.

3.2 Inoperable scenarios in a given network-flow-level schedule

The linkages of matching the arrival to departure unit blocks are tentatively
given by the network flow level. The linkages imply a set of shunting operations
at stations to transit arrivals to departures, such as coupling, decoupling, sta-
tion empty running for re-platforming or depot/siding shunting etc. Linkage
implementation is based on station infrastructure which has been ignored by
the network flow level, such that a given network-flow-level schedule may be
inoperable during the implementation process at the station level. The block-
age is sometimes known as crossing in (Kroon et al (2008) and Freling et al
(2005)).

Crossing matching Rolling stocks can only run on rail tracks, which is a dis-
tinct feature from road (e.g. bus) vehicles. The movements and operations



Table 1: Example of 4 trips at same platform

Trip No. Origin-Destination Departure time Arrival time

T1 A-B 07:00 10:30
T2 C-B 09:00 10:40
T3 B-C 10:50 12:30
T4 B-D 10:55 12:00

of transition from arrival to departure unit blocks are restricted by tracks.
To illustrate how crossing matching invalidate a schedule derived solely based
on timetable and fleet information (i.e. without infrastructure information on
track layouts etc.), consider a simple example. Table 1 is the timetable of 4
trips and suppose all the four trips have been assigned to the same through
platform of station B. Suppose Unit I can serve T1, T3 and T4, while Unit
II can serve T2, T3 and T4. There may be two possible solutions: Solution
(1) Unit I (T1 → T3), Unit II (T2 → T4); Solution (2) Unit I (T1 → T4),
Unit II (T2 → T3). The FIFO (first in first out) principle is encouraged at the
network flow level, hence, the most likely schedule given by the network flow
level is Solution (1). At the station platform level, the positions of unit blocks
are presented in Fig. 1. It is inoperable as this assignment causes a blockage

Fig. 1: Cross matching of network flow level Fig. 2: Feasible matching at station level

between unit I and unit II. There is an alternative feasible Solution (2), shown
in Fig. 2. This example illustrates how train directions and station layouts can
seriously affect the feasibility of a network-flow-level schedule.

Unit block accumulation on platform At the network flow level, platform length
constraints are implicitly considered via coupling car upper bound for every
trip. However, the unit block accumulation with time at each platform is not
considered. This may result in an invalid network-flow-level solution.

Coupling order reversal en-route of multi-unit blocks Usually, no coupling or
decoupling operation happens at intermediate stations, but one important
feature of coupling order captured while considering moving directions is front-
rear-reversal. If the arrival and departure directions of a coupled unit block
are opposite at some platforms of intermediate stations, the front and rear of
the unit block of the corresponding trip must be reversed; if they are the same,
its coupling order keeps the same. Fig. 3 illustrates three scenarios of coupling



order reversal en-route of a coupled unit block based on platform structure
and trip directions. i.e. the coupling order of a trip may be mutative during
its journey.

Fig. 3: Coupling order scenarios en-route

Coupling and decoupling operations The aim of coupling and decoupling op-
erations is to redistribute units to serve fixed trips and balance unit resources
on the network. Units of compatible types can be coupled together to form
longer unit blocks and multi-unit blocks can be decoupled into shorter unit
blocks. For a multi-type unit block, its coupling order may be important as
some coupling/decoupling operations can only be performed in a certain or-
der. Improper coupling order causes blockages at stations which may impact
the entire network operating. To avoid blockages while coupling/decoupling
operations is a big step to bring the schedule more operable.

Coupling order propagation on the network Railway network contains stations
and tracks connecting stations together. Running trips concatenate the oper-
ations of generating and terminating trips at stations together based on a
rough time sequence. Thus, the operational decisions especially coupling or-
der at stations would be passed around the network via running trips. For
instance, station A proposes a certain coupling order for a unit block based on
its current shunting environment, however, it may be invalid to other shunting
environment at other stations or even at station A since the shunting envi-
ronment is dynamically changing by time. Hence, extra operations must be
adopted to fix this invalidity. Generally speaking, if the network-flow-level so-
lution contains the structure in Fig. 4, the coupling order propagation on the
network must be considered carefully.

Fig. 4: A critical unit diagram structure



4 A hybrid-iterative approach

Train unit scheduling at the network flow level aims at assigning limited
train units to cover trips with satisfied passenger demands. The results from
the RS-Opt contains incomplete unit diagrams with unfixed coupling order
and unverified linkages. To illustrate coupling order clearly, let us define a

Table 2: Notations used in this approach

G directed acyclic graph
G∗ directed acyclic graph refined from G

ya arc-selection binary variables
τ unit type
xτ
a arc-type-flow integer variables

x
τq
a binary variables indicating whether the xτ

a is positive or not
0 source of G∗

∞ sink of G∗

Sc station set related to conflict c, c ∈ CP or c ∈ CN

H platform set
N trip node set
Na

h
/Nd

h
time sorted arrival/departure node list of platform h, h ∈ H

Nc node set related to conflict c, c ∈ CP or c ∈ CN

A arc set of G∗

A0 sign-on arc set of A, A0 ⊂ A

A∞ sign-off arc set of A, A∞ ⊂ A

AN trip-to-trip arc set of A, AN ∪A0 ∪A∞ = A

Ai
+ entering arc set of trip i, i ∈ N

Ai
−

leaving arc set of trip i, i ∈ N

Ai
d

same platform trip-to-trip arc set of trip node i, i ∈ N

Ai
r re-platforming arc set of trip node i, i ∈ N

A∗ arc set supposed to be implemented at the stations in Sc

A+
c arc set causing conflict c, c ∈ CP or c ∈ CN

A−

c complementary arc set of A+
c out of A∗

Γ timetable input
θ geography input
ce(a), c′e(a) additional cost of arc a, a ∈ AN

α, β, γ weight for different types of additional cost
tsa slack time of arc a, a ∈ AN

tra time consumed by station shunting operation of arc a, a ∈ AN

tph operational time consumed at platform h, h ∈ H

U set of dummy trip
ũ(i,j) dummy trip interpreted by a re-platforming arc (i, j), (i, j) ∈ AN

tai/taũ arrival time of trip i/dummy trip ũ, i ∈ N , ũ ∈ U

tdi/tdũ departure time of trip j/dummy trip ũ, i ∈ N , ũ ∈ U

s, s′, s′′ solution at different stages
CP conflict list at the platform stage
CN conflict list at the network stage

unit-composition sequence [u1...um] as the fixed coupling order, and a unit-
composition multi-set < u1...um > as unfixed coupling order, and a reverse
function rev(couplingOrder, number) to express the coupling order reversal
en-route. Note that odd number gets reversed coupling order and even number



gets the same coupling order. A hybrid-iterative approach of finalizing imple-
mentable linkages and assigning coupling order with refinement of train unit
scheduling at the station level is proposed.
This approach contains four main parts: DAG refinement, platform-based cou-
pling order assignment, network-based coupling order assignment and conflicts
resolving stage. The DAG refinement is based on introducing station-level con-
figuration such as layouts to get a smaller graph which is helpful to reduce
the computational time of the network-level RS-Opt. The platform-based cou-
pling order assignment tentatively determine the coupling order for some trips
according to critical station operations for example coupling, decoupling, re-
platforming etc. The network-based coupling order assignment finally decide
the coupling order considering the structure of the railway network. The con-
flicts are collected during these two assignment processes, which are going to
be added to RS-Opt as dynamic constraints. Table 2 describes the notations
used in this approach.

Algorithm 1 A hybrid-iterative approach for train unit scheduling
Require: Γ , θ
Ensure: s′′

1: CP := emptyList

2: CN := emptyList

3: G∗ := DAG Refinement(Γ, θ)
4: s := RSOpt(G∗)
5: repeat

6: for all h in H do

7: < s′, CP > := P latformAssignment(s, h)
8: end for

9: < s′′, CN > := NetworkAssignment(s′, θ)
10: s := RSOpt(CP,CN,G∗)
11: until (CP.isEmpty() and CN.isEmpty())
12: End algorithm

Algorithm 1 describes how this hybrid-iterative approach works, where the
input Γ represents a given timetable and θ denotes corresponding physical
structure information of stations and railway network which is a new feature
for enhancing the basic model in Lin and Kwan (2014), and the output s′′ is
the full train unit scheduling results with finalized coupling order assignment
and linkages. CP and CN are conflict lists and initialized to be empty at
the beginning of the algorithm. A refined graph G∗ is to be generated by
introducing θ for the use of RS-Opt to give an incomplete scheduling solution
s. Next step is to pass s through two stages of coupling order assignment,
platform-based assignment and network-based assignment respectively. During
coupling order assignment, the station-level conflicts are to be detected and
saved in the lists of CP and CN . The collected station-level conflicts are
converted as dynamic constraints to be added back to RS-Opt re-optimizing a
new solution. This loop will be executed until the algorithm reaches the stop
conditions such as no conflict detected, iteration time bound etc.



4.1 DAG Refinement

A directed acyclic graph (DAG, G = (N,A)) consists of a set of nodes and
directed arcs such that no cycle exists. RS-Opt is based on the original graph
G where nodes are the trips in a given timetable and directed arc a between
nodes i and j (a = (i, j)) is representing a potential linkage and xτ

a are the
unit type flow on arcs. Source and sink nodes are added as usual. The arcs
start at the source node (0) are called sign-on arcs and the arcs end at the sink
node (∞) are called sign-off arcs and the other arcs are defined as trip-to-trip
arcs, denoted by A0, A∞ and AN respectively. A path p is defined as a serving
sequence of trip nodes starting at the source node 0 and ending at the sink
node ∞, which is a diagram of daily workload for a unit. While generating
the original G, a set of constraints are implemented for instance minimum
turnaround time, location banning for coupling/decoupling operations, per-
mitted unit type for each trip, etc. Since each station is considered as a sin-
gle point and linkages are basically restricted by rough minimum turnaround
times. G does not include the station-level constraints. On the other hand, a
great large number of possibilities of linkage combinations among all trips in
a scheduling solution increase the difficulty and complexity of the train unit
scheduling problem. Two measures are taken to enhance the original graph G,
which is significantly helpful to narrow down the searching space of RS-Opt.
(1) Updated minimum turnaround time to reduce the size of G: usually, the
arrival and departure platforms are fixed for each trip during the timetabling
stage. Regarding the station geographical structure and connections of railway
network, some platform pairs at a station are incompatible for re-platforming.
This feature cannot be realized as G does not contain any station structure.
However, it is significant to slim the size of G. The linkage arcs between incom-
patible platform pairs can be crossed out or assigned a very large turnaround
time. Once the railway structure is considered, some simple station-level shunt-
ing movements can be easily detected such as re-platforming at a station.
The station shunting could be time consuming and the turnaround time must
be modified according to the activated platform information. If some station
shunting movements are needed for implementing a linkage, some essential
operational time must be considered. Hence, the linkages with slack time less
than the updated turnaround time can be eliminated from G.
(2) Updated arc cost to increase the quality of G: in the daily railway opera-
tion, normally, a unit block should not park at a platform for a long time. It
should serve another trip as soon as possible or be shunted to the depot/siding
if there is enough time. Thus, the first-in-first-out principle is implied as an
additional cost for each arc in AN , shown in equation 1, which can encour-
age the connection in Figure 5 (a) rather than (b). In addition, the linkage
preference can be set at a few levels. Each trip node i ∈ N has a group of
entering arcs (Ai

+) and leaving arcs (Ai
−
). The arc-costs can be set precisely

such that the longer the time gap, and the more operations, the higher the
cost. Consider the leaving linkages of each trip node i as two groups: direct
linkages (Ai

d) without any location change, indirect linkages (Ai
r) which may



Fig. 5: Linkages encouraged by FIFO principle

involve locations changes at corresponding stations for example re-platforming
linkages, depot-return linkage, etc. Therefore, a hierarchical additional linkage
cost strategy can be designed for both groups of linkages based on the practical
knowledge, shown in equations 2 and 3.

ce(a) = α ∗ (tas)
2, ∀a ∈ AN (1)

c′e(a) = β ∗ (tsa)/
∑

a∈Ai
d

(tsa), ∀a ∈ Ai
d, ∀i ∈ N (2)

c′e(a) = γ ∗ (tsa + (tra)
2)/

∑

a∈Ai
r

(tsa), ∀a ∈ Ai
r, ∀i ∈ N (3)

4.2 Platform-based coupling order assignment

Day-time coupling and decoupling operations are mostly done at platforms in
the UK, which can be interpreted by the solution graph of RS-Opt. The link-
ages can be roughly described as three fundamental scenarios: direct scenario,
coupling scenario and decoupling scenario. The multi-coupling/decoupling op-
erations can be regarded as the combinations of these basic scenarios.
(1) Direct scenario: for a trip node i, if

∑

a∈Ai
+

ya = 1 and
∑

a∈Ai
−

ya = 1,

the unit block serving trip i does not involve neither coupling nor decoupling
operations. For this scenario, the coupling order is not constrained.
(2) Coupling scenario: for a trip node j, if

∑

a∈A
j

+

y(i,j) ≥ 2, at least one

coupling operation must be implemented to form trip j, which may impose a
critical coupling order for trip j at its origin.
(3) Decoupling scenario: for a trip node i, if

∑

a∈Ai
−

y(i,j) ≥ 2, at least one

decoupling operation must be executed for the unit block of node i to serve
other different trips, where a specific coupling order of trip i at its destination
may be needed.



Normally, two types of operation are critical to the coupling order determina-
tion: coupling operation forms a certain coupling order; decoupling operation
needs a certain coupling order for a multi-type unit block. Coupling and de-
coupling operations highly depend on station geographical layouts, arrival and
departure times of trips at corresponding stations, and approaching directions
to platforms. Thus, the coupling order can be tentatively decided by coupling
or decoupling operations combined with timings, directions and geographical
station layouts. Besides, the cross matching blockage and unit block accumu-
lation at each platform can be verified and the conflicts caused by these two
factors can also be collected at this stage.
Algorithm 2 takes each platform (h) as the input and obtains train unit sched-
ule (s′) with partial coupling order assigned by coupling and decoupling op-
erations at each platform and collects conflicts (CP ) to be further resolved.
For each platform, there are three lists from the RS-Opt solution s: arrival
list, departure list and linkage list connecting the arrivals to departures. This
algorithm starts with the following initialization: dL and aL are time sorted
departure and arrival trip list respectively; dtrip takes the first departure trip
and its departure time is assigned to time. If an arrival unit block u needs
re-platforming shunting, one dummy trip (ũ(i,j)) will be generated to express
that u leaves the destination platform of trip i to the departure platform of
trip j. Its arrival and departure times are flexible and how to verify those
flexible times will be discussed in section 4.4.
unitStore is a data structure for holding the unit blocks at each platform. For
the dead-end platform, an element (unit block) can only get in or get out from
one end of the unitStore; but the element can be pushed in or popped out from
either end of the unitStore for a through platform. Each element pushed into
unitStore is delivered by arrival trips (atrip) and each element popped out
from unitStore is going to serve departure trips (dtrip), including newly gen-
erated dummy trips for shunting movements. Since coupling and decoupling
operations are required sometimes, each element may be split into multiple
elements and contiguous elements may be glued together as one element. The
elements get in/out unitStore by a certain sequence sorted by timings, cou-
pling/decoupling operations, moving directions and station layouts.

The unitStore.length is for limiting the unit accumulation within the max-
imum unit number/length (max) for each platform as the platform length
is limited. An arrival unit block can be pushed into the unitStore if it has
enough space, otherwise, the method unitShuntAway() will be applied to
check if some units can be shunted away to give enough space to push it into
unitStore, which is based on the time available in the corresponding linkages.
If unitShuntAway() = true, corresponding dummy trips for the moved-away
unit blocks will be generated. The unit-shunted-away operations (sh) of these
shunting movements will be merged into the solution s′, and the arrival unit
block will be pushed into unitStore; if unitShuntAway() = false, this case
will be recorded as an over accumulating conflict to be saved in the conflict list
CP . The unit blocks (uc) causing this conflict will be removed from unitStore.
For each departure trip, the method of checking if its related linkages can be



Algorithm 2 Platform assignment algorithm (for each platform)
Require: h, h ∈ H

Ensure: s′ and CP

1: dL := sortedDepartureTripList

2: aL := sortedArrivalTripList

3: dtrip := dL.firstrip()
4: time := dtrip.depT ime

5: repeat

6: for all atrip in (aL | atrip.arrT ime < time) do

7: if (unitStore.length < max) then

8: unitStore.push(atrip.composition)
9: else if (unitStore.length > max and unitShuntAway() = true) then

10: sh := shuntingInformation

11: s′ := union(s, sh)
12: update element sequence

13: unitStore.push(atrip.composition)
14: else if (unitStore.length > max and unitShuntAway() = false) then

15: c := newConflict

16: CP.add(c)
17: unitStore.remove(uc)
18: end if

19: end for

20: link := dtrip.linkages

21: if (canImpli(link) = true) then

22: s′ := union(s′, couplingOrder)
23: unitStore.pop(dtrip.composition)
24: else

25: c := newConflict

26: CP.add(c)
27: unitStore.remove(uc)
28: end if

29: dtrip := dL.next()
30: time := dtrip.depT ime

31: update aL and dL

32: until (dL.isEmpty())
33: End algorithm

implemented at the station level is called canImpli(link). If yes, the coupling
order couplingOrder will be merged into the solution s′ and the unit block
serving the departure trip will be popped out of unitStore; if not, a new con-
flict will be saved into CP and the unit blocks related to this conflict will be
removed out of unitStore. Then dtrip and time will be renewed as the next
departure trip and its departure time respectively and aL and dL will be also
updated. The main loop of this algorithm is executed for each departure trip
until dL is empty.
Part of the coupling order and necessary shunting movements for some unit
blocks can be determined and this is the basis of the network-based coupling
order assignment process. Meanwhile, this stage collects some conflicts caused
by a set of linkages used in a solution, called arc-only conflicts. The resolution
of this type of conflict is going to be discussed in section 4.5



4.3 Network-based coupling order assignment

Unit block coupling order may have been fixed for some trips by the platform-
based coupling order assignment. Nevertheless, there may be some trips left to
be further determined, gathered in the unfixed-trip list uL and sorted by their
departure times. Since station operations are connected by running trips, the
coupling order of some trips in uL can be eventually determined with respect
to the order-fixed unit blocks and railway-network structure. Two particular
issues for the network assignment processes: the en-route reversal of a unit
block; flexible timings for some empty shunting movements (to be discussed
in section 4.4).
The propagation of coupling order on the network can be addressed from the
solution graph of RS-Opt and network conflicts can be captured during the
propagation process. A simple example is shown in Fig 6, in which three unit
(of types X and Y) paths serving seven trips are used. Suppose that those three

Fig. 6: Coupling order propagation on a network

platforms are dead-end and all the trips have no en-route reversal operation.
After the platform-based coupling order assignment stage, the coupling order
of trip 3 at its destination is partially undermined, which can be further deter-
mined by searching forward/backward along with relevant unit paths to find
some other coupling-order determined trips. Ultimately, the coupling order of
trip 3 ends up with a coupling order conflict.
A node i, i ∈ uL is covered by unit diagram path(s) Pi connecting other nodes
on this network. Set the trip node i as the divider. The trip nodes on the paths
in Pi can be split into two time-sorted lists. One includes the trips earlier than
i, called backward trip list and denoted by bLi; the other contains the trips



later than i, called forward trip list and denoted by fLi.
The main loop of Algorithm 3 is to search in bLi and fLi for each trip i in uL,
shown in Figure 7. The searching process follows the paths in s. Each search
step traces through trips on a path till fixed coupling order is found or the
coupling order of node i does not propagate in the searching space anymore.
Note that only the arcs involving coupling, decoupling operations and the arcs

Fig. 7: Backward and forward searching at the network level

with multi-type unit flow pass the propagation of coupling order. The trip
nodes in bLi which can fix the coupling order of its divider trip i are called
backward valid trip nodes. Similarly for forward valid trip nodes. The coupling
order of node i can be further determined by the valid nodes found from either
bLi or fLi. A coupling order conflict is to be captured if the coupling orders
of node i decided by bLi and fLi are different. If there is no any valid node
found, the coupling order will be left undetermined.
Some trips may not be assigned a fixed coupling order after these two-stage
coupling order assignment. For example in the case of ib = if = undetermined,
the coupling order does not cause any potential operational blockage, and it is
not critical to a coupled unit block on its path. Coupling order conflict arises
only if backwardCouplingOrder 6= forwardCouplingOrder and the coupling
order for other cases can be addressed out.
The coupling order conflict is not confined to a set of arcs but also the unit-
type-quantity flow on those arcs, which is defined as an arc-flow conflict. For
instance, Fig. 8 shows an example of 19 trips with assigned unit compositions
and tentative linkages, but the set of red arcs and the set of purple arcs are
reported as two arc-flow conflicts to be added to the list of CN considering
the station layouts. These two conflicts are to be fed back to RS-Opt to be
re-optimized and will be eliminated in a new solution.

4.4 Flexible timings

The time available for unit blocks transiting from arrivals to departures are
limited, which is rigidly constrained by the timetable. Within this limited time
space, a series of time-consuming operations must be accomplished at the cor-
responding stations including coupling, decoupling, re-platforming, shunting



Algorithm 3 Network assignment algorithm

Require: s′, θ
Ensure: s′′ and CN

1: uL := sortedUnfixedTripList(s′)
2: i := uL.firstrip()
3: fLi := sortedForwardTripListforTrip i

4: bLi := sortedBackwardTripListforTrip i

5: repeat

6: backwardsearching(bLi)
7: if validtripisfound in bLi then

8: ib := backwardCouplingOrder

9: else

10: ib := undetermined

11: end if

12: forwardsearching(fLi)
13: if validtripisfound in fLi then

14: if := forwardCouplingOrder

15: else

16: if := undetermined

17: end if

18: if ib = if and ib 6= undetermined then

19: s′′ := union(s′, ib)
20: else if ib 6= if and ib := backwardCouplingOrder then

21: s′′ := union(s′, ib)
22: else if ib 6= if and if := forwardCouplingOrder then

23: s′′ := union(s′, if )
24: else if ib = if and ib = undetermined then

25: s′′ := union(s′, ib)
26: else

27: c := newConflict

28: CN.add(c)
29: end if

30: i := uL.next()
31: update uL

32: until (uL.isempty())
33: End algorithm

to depot/siding, cleaning, equipment inspection etc. If a unit block u arrives
with trip i at platform h and finishes all the necessary operations consuming
time of tph and later leaves from h to another platform h′ to serve trip j. The
dummy trip ũ(i,j) from h to h′ is generated and its departure time tdũ and
arrival time taũ are flexible. However, the duration time of dummy trip u is
restricted by the clock time of timetable such that time boundaries for the
departure and arrival times of dummy trips must be considered to ensure no
blockage caused at inappropriate time. Normally, ũ can be moved away from
h after the necessary operations are done but it must be shunted away before
the next arriving trip, and its departure time range is shown in constraint 4.
Besides, ũ must arrive at h′ earlier than the departure time of trip j minus
necessary departure operations and later than the last departure trip at h′,
and its arrival time range is shown in constraint 5.

tai + tph < tdũ < tai+1, ∀ũ ∈ U (4)



Fig. 8: Network conflicts to be added to CN

tdj−1 < tdũ < taj − tph′ , ∀ũ ∈ U (5)

Figure 9 shows a simple example of avoiding blockage by manipulating flexible
time boundaries together with coupling order decision. Suppose that h1 and
h4 are dead-end platforms and h3 is a through platform and the directions
of T3 and T4 are the same. The following two procedures explain what time
boundary is feasible.

Fig. 9: Avoid blockage by manipulating the flexible timings boundaries

Procedure 1. ta2 < taũ1
< td3 − tph1

→ T3[u1u2]ori → rev([u1u2], 1) →
T3[u2u1]dest → T4[u2u1]ori → rev([u2u1], 2) → T4[u2u1]dest → u1 blocks the



departure of u2 → infeasible time boundaries
Procedure 2. taũ1

< ta2 → T3[u2u1]ori → rev([u2u1], 1) → T3[u1u2]dest →
T4[u1u2]ori → rev([u1u2], 2) → T4[u1u2]dest → T5[u2]ori and T6[u1]ori → fea-
sible time boundaries

4.5 Resolving remaining coupling order conflicts

The conflicts detected at both the platform-based and network-based stages
must be resolved to obtain a fully operable solution. A naive method is to in-
troduce extra shunting movements (such as re-ordering, side shunting etc.) to
make it be operable if the relevant linkages have sufficient slacks for such shunt-
ing operations (Lei et al (2017)). For the conflicts which cannot be resolved
by that naive method, new cut will be generated for each conflict accordingly
and fed back to RS-Opt as dynamic constraints to be re-optimized. A set of
arcs in a solution causing either arc-only or arc-flow conflict is denoted by A+

c ;
ya = 1, ∀a ∈ A+

c .
(1) The resolution of arc-only conflict (CP ): if a network flow solution con-
tains all the arcs in A+

c , the conflict c will happen. To avoid the conflict c,
the arcs selected in a new solution must not include all the arcs in A+

c , which
can be realized by constraints 6. By dynamically adding these constraints at
each iteration of Algorithm 1, solutions including arc-only conflicts will be
eliminated.

∑

a∈A
+
c

ya ≤| A+
c | −1, ∀c ∈ CP (6)

(2) The resolution of arc-flow conflict (CN): an arc-flow conflict c′ arises when
a certain structure of arcs (A+

c′) selection and the specific unit-type-quantity
flow on those arcs (xτ

a, a ∈ A+
c′) are included in a solution, where xτ

a can be
extracted from the integer path-flow decision variables xτ

p in RS-Opt according
to equation 7, in which Pa is the path set covering arc a.

xτ
a =

∑

p∈Pa

xτ
p , ∀a ∈ A (7)

To eliminate the arc-flow conflict from the solutions, the integer cut technique
proved by Balas and Jeroslow (1972) can be applied, aiming at adding integer
constraints which is infeasible for the integer point (xi = 1, i ∈ B and xi = 0,
i ∈ Q) and feasible for other integer points, where B is the set of variables
whose values are equal to 1 and Q is the set of variables whose values are 0. The
logical relation of this event is shown in equation 8, which can be converted
to equation 9. Since the variable xi is binary, equation 9 can be restrictively
mapped to integer constraints 10 to avoid a certain integer point.

¬[(∧xi, (i ∈ B)) ∧ (∧xi, (i ∈ N))] (8)

(∨¬xi, (i ∈ B)) ∨ (∨xi, (i ∈ N)) (9)



∑

i∈B

(1− xi) +
∑

i∈N

(xi) ≥ 1 (10)

This technique is only valid for binary variables, but the arc-flows to be avoided
are integers. Thus, the binary variable xτq

a is introduced, which equals to 1
when xτ

a equals to any value in the set of {1,2,3} as the unit coupling upper
bound for a trip is assumed to be three for typical UK operations; otherwise,
it equals 0.

xτq
a =

{

1, if q = (1, 2, 3).

0, otherwise.
(11)

An arc-flow conflict c′ is only part of a solution, which needs to be isolated from
the entire solution if we target to eliminate conflict c′. Note that Nc′ represents
the set of trip nodes which cause the arc-flow conflict c′; Sc′ represents the
set of stations related to the conflict c′; A∗ represents the set of arcs in which
the arcs are supposed to be implemented at the station of Sc′ , A

∗ ⊂ A and
A−

c′ = A∗\A+
c′ . The integer cuts to be added back to the RS-Opt are constraints

12.

∑

a∈A
+

c′

∑

τ

(1−
∑

q

xτq
a ) +

∑

a∈A
−

c′

∑

τ

∑

q

xτq
a ≥ 1, ∀c′ ∈ CN (12)

5 Ongoing research and conclusions

Two small artificial datasets are designed for the purpose of testing RS-Opt-

PT. The first one turned out to have no conflict found in the RS-Opt solution
and feasible coupling orders can be determined. For the other one, two arc-flow
conflicts were present. Investigation of the technique for resolving the conflicts
by means of dynamic cuts in section 4.5 is still on going. More datasets are to
be tested for covering as many cases as possible. This research also benefits
from the collaboration with First Group and real datasets from GWR are be-
ing tested. One of the datasets contains 579 trips, 9 unit types from 2 families
and 30 origin/destination stations. The setup and configuration for testing
and refining our models especially on implementing the conflict constraints in
RS-Opt are a very substantial ongoing task, which has to be carefully analyzed
with artificial and real datasets. More details and results will be reported in a
future paper.
The network-flow model has the limitation of ignoring station level constraints,
which leads to an incomplete solution. This defect restricts the operability
when it is implemented at the station level because of a set of undecided fac-
tors, for instance, the coupling order impacted by station layouts, timings, and
unit movement directions, etc. This research scrutinizes the potential problems
in a solution of RS-Opt and the hybrid iterative approach is proposed to of-
fer a more complete and operable solution by systematically analyzing the



station-level conflict constraints. First of all, it can enhance the network-flow
solution to fix and validate the coupling orders. Secondly, it can capture the
conflict constraints to feed back to the RS-Opt to guide the re-optimization
process and eliminate potential operational conflicts by narrowing down the
search space. In our future research, more features and connections between
the network flow level and station level will be investigated and a new math-
ematical model may also be derived to reform the linkages and to finalize the
complete train unit scheduling solution.

Acknowledgements Li Lei is funded by a Ph.D. grant of the School of Computing, Uni-
versity of Leeds. And we would like to thank First Group, and Tracsis Plc for their kind
and helpful collaboration.

References

Balas E, Jeroslow R (1972) Canonical Cuts on the Unit Hypercube. SIAM Journal on
Applied Mathematics 23(1):61–69

Cacchiani V, Caprara A, Toth P (2010) Solving a real-world train-unit assignment problem.
Mathematical Programming 124(1-2)

Cacchiani V, Caprara A, Maróti G, Toth P (2013a) On integer polytopes with few nonzero
vertices. Operations Research Letters 41(1):74–77

Cacchiani V, Caprara A, Toth P (2013b) A Lagrangian heuristic for a train-unit assignment
problem. Discrete Applied Mathematics 161(12):1707–1718

Copado-Mendez P, Lin Z, Kwan R (2017) Size limited iterative method (SLIM) for train
unit scheduling. In: Proceedings of the 12th Metaheuristics International Conference,
Barcelona, Spain

Freling R, Lentink RM, Kroon LG, Huisman D (2005) Shunting of passenger train units in
a railway station. Transportation Science 39(2):261–272

Haahr J, Lusby RM (2017) Integrating rolling stock scheduling with train unit shunting.
European Journal of Operational Research 259(2):452–468

Huisman D, Kroon LG, Lentink RM, Vromans MJCM (2005) Operations research in pas-
senger railway transportation. Statistica Neerlandica 59(4):467–497

Kroon LG, Lentink RM, Schrijver A (2008) Shunting of passenger train units: an integrated
approach. Transportation Science 42(4):436–449

Kwan RSK, Lin Z, Copado-Mendez PJ, Lei L (2017) Multi-commodity flow and station
logistics resolution for train unit scheduling. In: Proceedings of the 8th Multidisciplinary
International Conference on Scheduling: Theory and Applications, MISTA, pp 321–324

Lei L, Kwan R, Lin Z, Copado-Mendez PJ (2017) Station level refinement of train unit
network flow schedules. In: 8th International Conference on Computational Logistics,
ICCL

Lin Z, Kwan RSK (2013) An integer fixed-charge multicommodity flow (FCMF) model for
train unit scheduling. Electronic Notes in Discrete Mathematics 41:165–172

Lin Z, Kwan RSK (2014) A two-phase approach for real-world train unit scheduling. Public
Transport 6(1-2):35–65

Lin Z, Kwan RSK (2016) A branch-and-price approach for solving the train unit scheduling
problem. Transportation Research Part B: Methodological 94:97–120

Lin Z, Barrena E, Kwan RS (2017) Train unit scheduling guided by historic capacity provi-
sions and passenger count surveys. Public Transport 9(1-2):137–154

Tomii N, Zhou LJ, Fukumura N (1999) An algorithm for station shunting scheduling prob-
lems combining probabilistic local search and PERT. In: International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent Systems, Springer,
pp 788–797


