
This is a repository copy of Size Limited Iterative Method: A Hybridized Heuristic for Train
Unit Scheduling Optimization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150722/

Version: Accepted Version

Proceedings Paper:
Copado-Mendez, P, Lin, Z and Kwan, R (2018) Size Limited Iterative Method: A Hybridized
Heuristic for Train Unit Scheduling Optimization. In: 14th International Conference on
Advanced Systems in Public Transport (CASPT). 14th International Conference on
Advanced Systems in Public Transport (CASPT), 23-25 Jul 2018, Brisbane, Australia. .

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

CASPT 2018

Size Limited Iterative Method: A Hybridized Heuristic

for Train Unit Scheduling Optimization

Pedro J. Copado-Mendez · Zhiyuan

Lin · Raymond S. K. Kwan

Received: date / Accepted: date

Abstract In this research is presented an hybrid approach based on heuris-
tics for solving large instances for the Train Unit Scheduling Optimization
(TUSO). TUSO has been modelled as an Integer Multi-Commodity Flow Prob-
lem (IMCF) lay on a Directed Acyclic Graph (DAG), and solved by Integer
Linear Programming (ILP). This method proceeds in a way to iteratively im-
prove the quality of one or more given feasible solutions by solving reduced
instances of the original problem where only a subset of the arcs in the DAG
are heuristically chosen to be optimised. Our approach is designed for reducing
the original DAG into a much smaller size, but still retaining all the essential
arcs for the optimal solution as much as possible. The capabilities of this frame-
work for train unit scheduling optimization are tested by real-world cases and
compared with the results from running the ILP solver alone for the original
full problem instance and with the manual solutions for each dataset.

Keywords Train Unit Scheduling Optimization · Hybrid approach ·
Heuristics

1 Introduction

A train unit is a reversible non-splittable fixed set of train cars, which can be
coupled/decoupled with other units of the same or compatible types if it is

P.J. Copado-Mendez, Raymond S.K. Kwan
School of Computing, University of Leeds
Leeds LS2 9JT
Tel.: 0113 343 5430
E-mail: p.j.copado-mendez, r.s.kwan@leeds.ac.uk

Zhiyuan Lin
Alliance Manchester Business School
The University of Manchester
Manchester M13 9SS
E-mail: zhiyuan.lin@manchester.ac.uk

required. The train unit is the most commonly used passenger rolling stock in
UK, Europe and many other countries, because of its well-known advantages
over locomotives/wagons such as energy efficiency, acceleration and shorter
turnaround times. Nonetheless, it still has to face the high costs associated
with leasing, operating and maintaining a fleet. Hence, given a rail operators
timetable on one operational day, a fleet of train units of different types and
a rail network of routes, stations and infrastructures, Train Unit Scheduling
Optimization (TUSO) (Lin, 2014) aims at determining the appropriately as-
signment plan such as each trip is covered by a single or coupled units in order
to satisfice the passenger demand. Note that TUSO is NP-hard problem as is
proved in Schrijver (1993); Chen (2005); Cacchiani et al (2010); Lin and Kwan
(2017).

For dealing with TUSO is formulated as Integer Multi-Commodity Flow
(IMCF) problem based on Directed Acyclic Graph (DAG) (Ahuja et al, 1993;
Cacchiani et al, 2010) and they solved by Linear Programming (LP) based
heuristic Cacchiani et al (2013) or exact methods Cacchiani et al (2010); Lin
and Kwan (2016). The particular problem scenario of TUSO in the UK is
studied in Lin and Kwan (2013, 2014). A two-phase approach has been devel-
oped, where in the first phase the assignment of train units to trips is carried
out without considering station layout details Lin and Kwan (2014), whilst
in the second phase the fleet assignment is implemented in terms of shunting
movements, unit order and blockage of units, where the station infrastructure
is taken into account Lei et al (2017). In addition, in Lin and Kwan (2016), a
branch-and-price ILP model has been designed to solve the first phase exactly
for medium sized instances, but it is difficult to handle large sized instances due
to its exact nature. In order to deal with this limitation, in Copado-Mendez
et al (2017) a hybrid approach combining the exact solver and a heuristic
framework was introduced and treated in this work.

As we said above this research addresses the particular issue of designing
an efficient approach, which we called Size Limited Iterative Method (SLIM)
for the large instances of IMCF used for the network-level for TUSO, but the
solution qualities are not guaranteed to be exact. Given a complex DAG as
presented here Lin and Kwan (2014, 2016), the goal to find the reduced DAG
which contains only those arcs that take part in the optimal solution because
of the observation that the final optimal solution only contains a very small
subset of the solution space (arcs) in terms of the original data. The method
proposed is hybridization that take advantage of both of an exact and a pure
heuristic to achieve high quality near-optimal solutions. Compared with many
commonly used (meta-)heuristics, our iterative hybridized approach regards
an exact solver as a black box and mainly operates on the solution space for
the solver. In every iteration, the solver only solves a reduced small-sized prob-
lem (a subset of all arcs) fast and comfortably, followed by an evaluation and
modification of the subset of arcs to be fed to the next iteration such that the
objective will be no worse. Finally, the subset of arcs will converge to what is

very close to an optimal solution. The hybrid framework design is challenging
since there is a huge number of possible combination subsets of arcs that can
form a feasible solution, and how the hybrid framework will pick up these op-
timal ones from a rough initial feasible solution through a series of iterations
is non-trivial.

The remainder of this paper is organized as follows. In Section ??, the
literature review. Problem description in Section 2. Moreover, the SLIM ap-
proach is described in Section 3. Finally, an extensive experimental evaluation
is provided in Section 4 and conclusions as well as an outlook to future work
is given in Section 6.

2 Problem Description

The problem aims at covering all timetabled trips for an operational day us-
ing the minimum number of train units and reducing the operational cost.
Two or more units can be coupled together to meet the high passenger de-
mand of a train trip. Different types of train units may be incompatible to
be coupled, and coupling/decoupling operations may not be allowed at some
locations. This problem is transformed into a network framework based on
DAG denoted by G = (N ,A), where the node set N = N

⋃
{s, s′} is the set

of train services, and s and s′ are the source and sink node. The arc set is
defined as A = A

⋃
A0, where A = {(i, j)|i, j ∈ N} is the connection-arc set

and A0 = {(s, j)|j ∈ N} ∪ {(j, s′)|j ∈ N} is the sign-on/off arc set.

Each arc (i, j) stands for the potential linkage relation between trip i and
trip j to be served by the same unit at the same station (same-location arc)
or different stations (empty-running arc) also called empty-running (ECS).
Given trip i has origin and destination denoted by io and id and departure
and arrival time that are represented as id

t
and io

t
respectively.

Finally, an s − s′ path in G represents a sequenced daily workload (the
train nodes in the path) for a possible unit schedule or diagram and the flow
on it indicates the number of units used for serving those trains. Details of
this DAG representation can be found in Lin and Kwan (2016).

3 Description of SLIM

The current investigation involved developing a novel hybrid heuristic ap-
proach for dealing with large instances of IMCF, since this problem is time-
consuming as we showed in previous research (Lin and Kwan, 2016). In these
previous research an exact method based on branch-&-price algorithm was de-
veloped for small-medium instances of IMCF (Lin and Kwan, 2016), which we

will be henceforth denoted by Rolling Stock Optimization (RS-Opt). Hence,
the method presented here is an attempt to overcome the RS-Opt limitations,
solving reduced instances of the original problem by means of the RS-Opt
which is iteratively called as a black-box.

Our approach, Size Limited Iterative Method (SLIM), is based on the gen-
eral idea that a optimal solution (or whatever solution) is a sub-graph com-
posed of all nodes of the original graph but only a small fraction of arcs, i.e.
the essential arcs connecting the source and sink nodes through paths covering
all nodes. We henceforth refer to this sub-graph as Essential Arcs Graph de-
noted by G. By adding a small quantity of new arcs from G to this G, it can be

extended to Augmented Arcs Graph denoted by Ĝ. A new G
′

is obtained after
solving this augmented arcs graph, which is better or equal than the previous
Ĝ. If these operations (G → Ĝ → RS-Opt → Ĝ′) are repeated sequentially
several iterations then it is expected reach high-quality (sub-)optimal solution
in a reasonable time.

SLIM strives to seek the optimal G
∗

over all possible Ĝ’s, starting from a
given initial G0. The size of Ĝ is limited by real value 0 < µ < 1. This µ is care-
fully calibrated in order to solve each sub-problem rapidly, however, there are a
large number of Ĝ; being impractical to implement an exhaustive exploration.
In order to deal with this difficulty only some Ĝ are heuristically constructed
through the exploitation, separately, of three standpoints of TUSO and the
DAG representation: (1) the station or stations; the so-called Location-Based
Heuristic (or LBH). (2) The time band o interval when trips depart; henceforth
called the Time-Based Heuristic (or TBH). And (3) the trips that form a unit
diagram or path in the DAG; named Path-Based Heuristic (or PBH).

In the following we describe the basic SLIM algorithm, which is pseudo-
coded in Algorithms 1 in more details. The behaviour of SLIM depend on the
values of four parameters: maximum number of iterations itmax, maximum
time tmax, lmax the maximum number of elements that can be inserted in
the list L, 0 < cmax ≤ 1 stands for the maximum convergence rate that the
algorithm has to reach for stopping, the aforementioned augmentation rate µ.
Finally, the string of augmentation |λ| = itmax, which points which heuris-
tic use in each iteration by SLIM. λ is a string formed within the numbers
{1, 2, 3} which denote use LHB or THB or PHB respectively. The heuristics
will be further described in details in Section 3.2.2.

The main loop works as the following; given an initial feasible solution G0

which is inserted in the list of ranked solutions in lines 1-3. At each iteration,
three phases are identified: extraction, augmentation and solving (lines 5-8).

In the extraction, the algorithm first get the incumbent solution Ĝ from the
list L, Second, the algorithm produces Ĝ indicated by λ during augmentation
phase. And finally, the RS-Opt is invoked in order to solve Ĝ getting a new

solution G
′

which is stored in L. The algorithm ends when one of these condi-
tions are satisfied: a maximum number of iterations or the time limitation is
reached or a certain number of the highest rank solutions in the list L are equal.

Algorithm 1 SLIM

Require: G, tmax, itmax, lmax, µ, λ, cmax

Ensure: G∗

1: L := emptyList(lmax)
2: G0 := initialSolution(G)
3: L := insertSorted(G0, L)
4: while not endCriteriaReached(itmax, tmax, L) do
5: G := extraction(L)

6: Ĝ := augmentation(G, µ)

7: G
′

:= coreSolver(Ĝ)

8: L := insertSorted(G
′

, L)
9: end while
10: G

∗

:= best(L)

And important component in this approach is the storage of new solutions
in aforementioned list L, which size is defined by the input parameter lmax.
Its main feature of L is that solutions are ranked according to these criteria:
first number of units, second number of ECS and finally the objective function
value. The reason for this is to promote some diversification of solutions for the
extraction. Although, in this research only the best solution is considered as
the current solution. Another important feature is it can provide a measure of
algorithm convergence when it is totally or partially complete within the same
solution. So we introduced cmax, which is defined above, is a halt condition.

In the following we will discussed other problems to face as how to generate
the initial solution, that in some cases could be critical. On the other hand,
we will describe the heuristic controller which holds the heuristics devised for
the augmentation phase.

3.1 Initial Solution

For creating an initial feasible solution, in majority of cases is enough to use
the greedy first-in-first-out (FIFO) rule. This rule links arrival trains with
their next most tight departure trains as much as possible in each station. But
sometimes it might occur (1) the quality of the solutions produced is quite
poor or (2) infeasible due to the given fleet size was surpassed. To deal with
this, we used to methods: the well-known Divide & Conquer (DC) strategy
and the ILP relaxation solution.

– DC strategy relies on (1) splitting the original set of trains into 1 < m < N
subsets. (2) Solving each sub-problem separately and (3) merging them into
one:

1. The step (1) could be done according to the time, demand-type-capacity
and multi-level in order divide into m balanced train subsets. The
former divided into balanced train subset according to time intervals
points. The second considered passenger trip demand and capacity of
train unit type, where the trips with high demand form a subset while
the rest still into another subset. The latter regarded to the application
of both strategies hierarchically.

2. In the step (2), each subset of trains was solved separately using RS-
Opt.

3. Finally, in step (3), all partial solutions was merged into one opera-
ble solution. This step was carried out by adding DAG arcs such that
the partial solutions were connected satisfying flow conservation con-
straints.

– The LP-relaxation of IMCF can be solved within reasonable time and the
arc-flow is rounded up. However, it might produce infeasible solutions in
for cases in which the coupling/decoupling operation is banned in some
locations (Lin and Kwan, 2012).

Both approaches often outperforms the FIFO, but the DC strategy requires
more research and LP relaxation is not as efficient as FIFO.

3.2 Heuristic Controller

The heuristic controller monitors the different algorithm components: extrac-
tion, augmentation, solving, and storage of results in L and algorithm final-
ization. These components will discussed in more details in the next sections.

3.2.1 Extraction

In the extraction, the incumbent G
′

is selected from the solution list L. There
are several alternatives for extraction such as stochastic or deterministic. The
first alternative could be a uniform random selection overall solutions in L,
whereas another option could be random selection but biased to the elite one.
The second alternative is taking always the elite solution as an incumbent. We
opted for deterministic extraction for sake of simplicity and in order to focus
this research on the heuristic design.

3.2.2 Augmentation

The augmentation phase works as constructive heuristic such that Ĝ = (N̂ , Â)

is built through extension of the set of arcs Â = Â ∪ H means by set of arcs
H ⊂ A. The cardinality of H is limited by µ · |A − Ā|. For completing H, we
designed three heuristics, which were mentioned above, that are described in
the following:

– LBH: The idea behind is inspired on the ”station view” as is visualized
in Figure 1 where the problem can be decomposed into a sequence of local
optimizations where only a few stations are considered in each iteration.
Hence only arcs of these stations are included in H as showed in Algorithm
2. This algorithm visits locations L and collect arcs in ArcsL = {l|a =
(i, j) : id = l′ or jo = l′} completing H until MaxArcs arcs.

Fig. 1: On the left is represented a portion of Ĝ in location B, where those
arcs in solid line represent the arcs in G and dashed line arcs denote those arcs

chosen by LBH. On the right is the new G
′

obtained which the fleet size is
reduced.

The functionality of this heuristic is illustrated by an example in Figures
1a and 1b. In this example station A, B and C and involved but we only
focus on station view of B which shows its arrivals and departures: trips T1
and T2 arrive to station B (at 11:54 and 12:20 respectively) from station
A, whereas T7 and T8 make the reverse route (from B to A at 13:00 and
13:25), likewise, for trips T3 and T4 and T5 and T6 as you can observe

in Figures 1a-b. In Figure 1a trip T1 links to T6 and T3 links to T8 (arcs
in solid black line) while units for T2, T4 are no longer used and 2 units

extra are required for T5 and T7. Hence, LBH builds Ĝ collecting those
potential arcs in dashed red line such as T1-T5, T2-T7, T3-T7 and T4-T8

and so on. In Figure 1b is presented the solution G
′

where the two extra
units were removed making a more efficient using of fleet.

Algorithm 2 Location-Based-Heuristic

Require: µ,A, Ā,L
Ensure: H
1: MaxArcs := ⌈µ · |AĀ|⌉
2: Arcs := 0
3: for all l ∈ L do
4: ArcsL := {l|a = (i, j) : id = l′ or jo = l′}
5: for all a ∈ ArcsL do
6: if a /∈ H then
7: H := H∪ {a}
8: Arcs := Arcs+ 1
9: end if
10: if Arcs ≥ MaxArcs then
11: break
12: end if
13: end for
14: end for

Remark:

– Note that L and ArcsL works as a circular list. Since they retain the
last point visited in order to explore the successive elements in other
algorithm invocations and also starting from the first position when all
positions are visited (lines 3 and 4) of Algorithm 2.

– Other important point considered here is that the locations L are vis-
ited in decreasingly order by the complexity (or number of arcs). But
in the case of the list ArcsL, we tested two possibilities: arcs randomly
sorted in the list (Rd), becoming more stochastic or sorted ascendency
according to the arc slack time given by jd

t
− io

t
thus deterministic (Ln).

– TBH: This heuristic differs from location-based in considering time inter-
vals or time band over the time horizon instead of locations, likewise, only
taking into account departure time of each trip for placing each trip in its
interval (See Figure 2a-b). Notice that an extra parameter 1 < k < |N | is
required which determines the amount of k+ 1 intervals or bands equidis-
tant I = {(lb0, ub0), . . . (lbk, ubk)} that time horizon is divided into.

Fig. 2: Illustrative example of the THB works: on top is depicted the train
horizon time splitted into 2 intervals. Below, two paths in a portion of G
where the solid arcs lines represent arcs in G and dashed black stand for sign-
on/off whereas red ones denote the augmented arcs Ĝ whose arrival time is in

the first interval. On the botton, is the resulted new G
′

solved where the two
paths become a one path.

Now all intervals are visited such that for each interval (lb, ub), the list of
arcs ArcsL contains those arcs a = (i, j), where the departure time jo

t
of

the trip j belong to the interval as is defined as below: ArcsL := {a =
(i, j)|(lb, ub) : lb ≤ jo

t
≤ ub}. Note that the THB algorithm is equivalent

to Algorithm 2 but replacing lists L by I also all points discussed in pre-
vious section. In Figure 2a-b is depicted how TBH works. In 2a the thick
black line on top denotes the time horizon which is divided into 2 intervals.
The sub-graph below is formed by 2 paths (solid black lines and dashed
black lines). This sub-graph represents an uneffiecient solutions because is
required an extra train unit for covering T5 when it could be done by the
same as path T1-T4. Hence, TBH is building the Ĝ with pontencial arcs
within in the first interval (dashed red line). In Figure 2b is presented the

new solution G
′

where the extra units was removed.

– PBH: Given a path p ∈ Ḡ whose inward/outward arcs in A−Ā could po-
tentially re-link the nodes of p to a more efficient solution. This heuristic
considers some of these arcs which are included in the set H giving rise to
an enhanced G. The heuristic requires as input parameters two hash tables
which given a node i, SucNdL(i) return a list of inward arcs to node i and
PreNdl(i) the outward ones. Also a integer MaxArcsNd that stand for

maximum number of arcs per node.

Algorithm 3 Path-Based-Heuristic

Require: µ,A,A, P̂, SucNdL, PreNdL,MaxArcsNd
Ensure: H
1: MaxArcs := ⌈µ · |A − Â|⌉
2: Arcs := 0
3: while Arcs ≤ MaxArcs do
4: p := ChooseRandomPath(P)
5: for all i ∈ nodes in p do
6: ArcsNd := 0
7: while ArcsNd ≤ MaxArcsNd or Arcs ≤ MaxArcs do
8: a := PreNodeList(i).Next()
9: a′ := SucNodeList(i).Next()
10: if a /∈ H then
11: H := H∪ {a}
12: ArcsNd := ArcsNd+ 1
13: Arcs := Arcs+ 1
14: end if
15: if a′ /∈ H then
16: H := H∪ {a′}
17: ArcsNd := ArcsNd+ 1
18: Arcs := Arcs+ 1
19: end if
20: end while
21: end for
22: end while

In Algorithm 3 is presented the pseudo-code, the algorithm iterates until
MaxArcs is not reached. In main loop a path p in chosen randomly, so
for each node i until MaxArcNd arcs from the lists PreNodeList(i) and
SucNodeList(i) are included in the set H. Also lists PreNodeList(i) and
SucNodeList(i) are circular one.

In Figures 3a and 3b is showed how PHB works: in Figure 3, there is a
portion of G with two paths above (1) and below (2), the selected path
is path (2), which solid and dashed black lines stand for arcs path and

sign-on/off arcs, respectively. The Ĝ is constructed by arcs (dashed red)

along the path (2). In Figure 3b, the new G
′

path (1) and (2) became only
one path reducing the fleet size in 1.

3.2.3 Concurrent Computing

In this section, we present a simple, but effective, parallelization strategy
for SLIM taking advantage of concurrent computing capability using multi-
threading technology over a computer within several cores that share a single
unified memory subsystem. The goal is to transform a sequential heuristic

Fig. 3: The PHB works as following: on top a portion of G with two paths
above (1) and below (2), the selected path is path (2), which solid and dashed
black lines stand for arcs path and sign-on/off arcs, respectively. The dashed

red arcs along the path (2) are chosen for Ĝ. On the bottom, path (1) and (2)
became only one path reducing the fleet size in 1.

search to a cooperative multi-search where the same scheme is preserved: ex-
traction, augmentation and solving, but running several RS-Opt at the same
time.

Algorithm 4 Multi-Thread SLIM (MTSLIM)

Require: . . . , kmax

Ensure: G∗

1: L := emptyList(lmax)
2: G0 := initialSolution(G)
3: L := insertSorted(Ḡ0, L)
4: while not endCriteriaReached(itmax, tmax, L) do
5: if not threadAvailable(kmax) then
6: waitOne()
7: end if
8: runThread(subProblem(L))
9: end while
10: G

∗

:= best(L)

Parameter Value
itmax 200
tmax 100000s
lmax 15
µ 0.5

Table 1: SLIM input parameters for the heuristics comparison

Algorithm 5 subProblem

Require: L
Ensure: L
1: G := extraction(L)

2: Ĝ := augmentation(Ḡ, µ)

3: G
′

:= coreSolver(Ĝ)

4: L := insertSorted(G
′

, L)
5: releaseThread()

This new version of SLIM henceforth Multi-Thread SLIM (MTSLIM). MT-
SLIM (Algorithms 4 and 5) differs from SLIM (Algorithm 1) is the former
requires a new input parameter kmax, which denotes number of threads. And
also is necessary semaphores for synchronising threads and the main program
in line 6 and line 5 in Algorithms 4 and 5 respectively. Note that if kmax = 1
then MTSLIM becomes SLIM. In Section 4.2 is solved a small dataset.

4 Experiments

In the following sections we will present some of the result a we have obtained
with the experiments. We will start with the outcomes from the Heuristic
Assessment and compare them on each combination. Then we will present the
results obtained from the concurrent computing and finally real-life cases.

4.1 Heuristics Assessment

We run some experiments aimed at comparing the heuristics presented above
and their different variants. The experiments were done in two steps: firstly,
each heuristic was used (See Table 2) and second, the best heuristics combined
together (See Table 2). The dataset used for this experiment was GWR-EMU
which contains 253 nodes and 1376 arcs. We will enter in more details with
this dataset in Section 5.

The experiments carried out running 10 times setting SLIM with the pa-
rameter tabled in Table 1. We ran SLIM with Location-based (Loc), Time-
based (Tim) and Path-based (Pth) separately. Each heuristic was run into two
variats: in two variants: arcs sorted randomly (LocRd, TimRd, PthRd) or arcs
sorted by slack time (deterministic LocLn, TimeLn).

LocRd LocLn TimRd TimLn PthRd LocRd+TimRd+PathRd
Bst Avg Bst Avg Bst Avg Bst Avg

42.766 45.135 45.385 43.754 45.903 44.457 41.961∗ 43.911∗ 42.566 43.671∗

Table 2: Comparison of the heuristics solving a the same dataset

In Table 2 are shown the results for each heuristic and for stochastic heuris-
tic is tabled the best of 10 result (Bst) and average (Avg). Other experiments
carried out was the combination of all stochastic heuristics (LocRd+TimRd+PthRd
in Table 2) according to this pattern λ = {L, T, P, L, T, P, P} where 50% of
the iterations were used PthRd heuristic and with the same settings of Table 1.

As we can see highlighted in bold in Table 2 stochastic heuristics overcome
deterministic ones . Besides, the PthRd was dominated over others as we ex-
pected . The LocRd+TimRd+PthRd obtained the best average (highlighted
in bold), however the PthRd was obtained the best performance of 10 runs.
It seems that using all stochastic heuristics indicate that we can expect better
results and the most frequent heuristic should be the PthRd in λ.

4.2 Concurrent computing

To compare the difference of these methods, we experimented with MTSLIM
on the problem instance used in the previous section. The methods was con-
figured with same parameters as well, with the exception of the parameter
kmax = 10. Recall that this parameter establishes the number maximum of
threads available. Note that we set kmax = 10 in order to archive the 100%
CPU utilization.

Fig. 4: : Comparison between SLIM (1-thread) against MTSLIM with 4-thread,
7-thread and 10-thread

In Figure 4 is ploted the average peformance of 10 runs of SLIM and MT-
SLIM for each kmax = 4, 7, 10. We can observe in Figure 4 that the MTSLIM
for kmax > 1 converged to the optimal objective function value faster than
SLIM. However, SLIM reached lower value than MTSLIM 7-threads (blue
line) and 10-threads during the first 100 seconds. The configuration for MT-
SLIM that get a better perfomance is 4-threads (green line) rather than 10
(purple line). The reason for that is that more than 4 threads running currently
decreases the general algorithm efficiency for this dataset.

5 Real-life Cases

Experiments based on 4 real-world cases from UK train operators were con-
ducted in order to test the capabilities of our proposed approach. We im-

plemented SLIM in Visual C# 2017 and the ILP model was modelled using
Xpress-Mosel language and solved by FICO Xpress 7.9. The experimental eval-
uation was carried out on a PC with Intel(R) Core(TM) i7-4790 CPU with 2
cores at 3.60GHz and 32GB of RAM. For each case SLIM performed 10 run-
ning attempts at maximum of 7200 seconds and 20 iterations except for the
first instance which was 10000 seconds and 100 iterations. In both cases the so-
lution list size was 10. Regarding to the initial solution method FIFO was used
in all cases except for cases 3 and 4 where the DC method and LP-relaxation
was used respectively. The results given by SLIM are compared with the results
obtained from running the ILP core solver alone with an optimality gap of 0%
and with the manual schedules from the practitioners are displayed in Table 3.

Instance SLIM ILP Solver Man
case trips/arcs/ttu time/s avg obj obj tu time/s obj tu % tu
1 253/26656/1 10000 52.05 51.23 41 43200 51.23 41 0 41
2 358/6025/3 268 59.60 59.60 59 234.60 59.60 59 0 59
3 499/20162/2 5260.41 74.15 72.45 72 n/a n/a n/a n/a 72
4 579/25693/7 1043.20 64.70 64.70 64 n/a n/a n/a n/a 64

Table 3: Comparison between SLIM, ILP model and Manual

The structure of the table is as follows. The first tow columns contain
the configuration of each problem instance specified with the number of trips,
number of arcs and number of train unit types (ttu). The next three columns
provide the results of SLIM where the first column is the average time, the
second is the average objective value and finally, the best objective value of the
10 runs and fleet size (tu). The next four columns show the results obtained by
the ILP model with a maximum running time of 12h. In the cases that can be
solved by the ILP solver, the objective value, fleet size and optimality gap are
reported. The last column shows the manual results provided by practitioners.

It can be observed that SLIM can match almost the same quality as the
human schedulers in terms of the fleet size. Moreover, the cost given by SLIM
is very close to the theoretically best cost provided by the ILP model in those
cases it can solve. In addition, SLIM can deal with some cases where the ILP
solve alone cannot within the time limit.

6 Conclusions

In this research, we propose a hybrid approach for TUSO which starts from
an initial feasible solution and iteratively improves the solution’s quality using
customised heuristic strategies driving a core ILP solver. We presented three

heuristics for augmentation phase and an concurrent version which were as-
sessed giving rise a suitable parameters settings. We achieved a high-quality
solution in a reasonable time for many large sized instances. In future work,
we will further consider different strategies for the extraction phase of selec-
tion and replacement in the list of solutions, test MTSLIM/SLIM with other
real-world cases, and tuning of parameters as well.

Acknowledgements This research is supported by an Engineering and Physical Sciences
Council (EPSRC) project EP/M007243/1. We would like to also thank First Transpennine
Express, First Great Western Railway, Abellio Group and Tracsis PLC for their kind and
helpful collaboration.

References

Ahuja R, Magnanti T, Orlin J (1993) Network Flows: Theory, Algorithms, and
Applications. DOI 10.1016/0166-218X(94)90171-6, URL http://cs.yazd.

ac.ir/hasheminezhad/STSCS4R1.pdf

Cacchiani V, Caprara A, Toth P (2010) Scheduling extra freight trains on rail-
way networks. Transportation Research Part B: Methodological 44(2):215–
231, DOI 10.1016/j.trb.2009.07.007, URL http://dx.doi.org/10.1016/j.

trb.2009.07.007

Cacchiani V, Caprara A, Toth P (2013) A Lagrangian heuristic for a train-
unit assignment problem. Discrete Applied Mathematics 161(12):1707–1718,
DOI 10.1016/j.dam.2011.10.035, URL http://linkinghub.elsevier.

com/retrieve/pii/S0166218X11004185

Chen J (2005) Confluent Flows. PhD thesis, Northeastern University
Copado-Mendez PJ, Lin Z, Kwan RS (2017) Size Limited Iterative Method
(SLIM) for Train Unit Scheduling. In: Proceedings of the 12th Metaheuris-
tics International Conference, Barcelona, Spain.(2017), Leeds

Lei L, Kwan RSK, Lin Z, Copado-Mendez PJ (2017) Station level refinement
of train unit network flow schedules. In: 8th International Conference on
Computational Logistics, ICCL 2017

Lin Z (2014) Passenger Train Unit Scheduling Optimisation. PhD thesis
Lin Z, Kwan R (2014) A two-phase approach for real-world train unit schedul-
ing. Public Transport 6(1-2), DOI 10.1007/s12469-013-0073-9

Lin Z, Kwan RSK (2012) A Two-phase Approach for Real-world Train Unit
Scheduling. Santiago, Chile, July, pp 23–27

Lin Z, Kwan RSK (2013) An integer fixed-charge multicommodity flow
(FCMF) model for train unit scheduling. Electronic Notes in Discrete Math-
ematics 41:165–172, DOI 10.1016/j.endm.2013.05.089, URL http://dx.

doi.org/10.1016/j.endm.2013.05.089, arXiv:1011.1669v3
Lin Z, Kwan RSK (2016) A branch-and-price approach for solving the train
unit scheduling problem. Transportation Research Part B: Methodological
94:97–120, DOI 10.1016/j.trb.2016.09.007, URL http://dx.doi.org/10.

1016/j.trb.2016.09.007

http://cs.yazd.ac.ir/hasheminezhad/STSCS4R1.pdf
http://cs.yazd.ac.ir/hasheminezhad/STSCS4R1.pdf
http://dx.doi.org/10.1016/j.trb.2009.07.007
http://dx.doi.org/10.1016/j.trb.2009.07.007
http://linkinghub.elsevier.com/retrieve/pii/S0166218X11004185
http://linkinghub.elsevier.com/retrieve/pii/S0166218X11004185
http://dx.doi.org/10.1016/j.endm.2013.05.089
http://dx.doi.org/10.1016/j.endm.2013.05.089
arXiv:1011.1669v3
http://dx.doi.org/10.1016/j.trb.2016.09.007
http://dx.doi.org/10.1016/j.trb.2016.09.007

Lin Z, Kwan RSK (2017) Multicommodity Flow Problems with Commodity
Compatibility Relations 00003, DOI 10.1051/itmconf/20171400003

Schrijver A (1993) Minimum circulation of railway stock. CWI Quarterly
6(3):205–217

	Introduction
	Problem Description
	Description of SLIM
	Experiments
	Real-life Cases
	Conclusions

