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Abstract
Purpose Incidence of anal squamous cell carcinoma (ASCC) is increasing, with curative chemoradiotherapy (CRT) as the
primary treatment of non-metastatic disease. A significant proportion of patients have locoregional treatment failure (LRF),
but distant relapse is uncommon. Accurate prognostication of progression-free survival (PFS) would help personalisation of CRT
regimens. The study aim was to evaluate novel imaging pre-treatment features, to prognosticate for PFS in ASCC.
Methods Consecutive patients with ASCC treated with curative intent at a large tertiary referral centre who underwent pre-
treatment FDG-PET/CTwere included. Radiomic feature extractionwas performed using LIFEx software on baseline FDG-PET/
CT. Outcome data (PFS) was collated from electronic patient records. Elastic net regularisation and feature selection were used
for logistic regression model generation on a randomly selected training cohort and applied to a validation cohort using TRIPOD
guidelines. ROC-AUC analysis was used to compare performance of a regression model encompassing standard clinical prog-
nostic factors (age, sex, tumour and nodal stage—model A), a radiomic feature model (model B) and a combined radiomic/
clinical model (model C).
Results A total of 189 patients were included in the study, with 145 in the training cohort and 44 in the validation cohort. Median
follow-up was 35.1 and 37. 9 months, respectively for each cohort, with 70.3% and 68.2% reaching this time-point with PFS.
GLCM entropy (a measure of randomness of distribution of co-occurring pixel grey-levels), NGLDM busyness (a measure of
spatial frequency of changes in intensity between nearby voxels of different grey-level), minimum CT value (lowest HU within
the lesion) and SMTV (a standardized version of MTV) were selected for inclusion in the prognostic model, alongside tumour
and nodal stage. AUCs for performance of model A (clinical), B (radiomic) and C (radiomic/clinical) were 0.6355, 0.7403,
0.7412 in the training cohort and 0.6024, 0.6595, 0.7381 in the validation cohort.
Conclusion Radiomic features extracted from pre-treatment FDG-PET/CT in patients with ASCC may provide better PFS
prognosis than conventional staging parameters. With external validation, this might be useful to help personalise CRT regimens
in the future.
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Introduction

The incidence of anal cancer is rising in populations across the
world [1–3]. This is mostly due to an increase in incidence of
squamous cell carcinoma, the predominant histological type
of anal cancer (ASCC). By comparison, adenocarcinoma,
basaloid and cloacogenic histological types do not show the
same increase in incidence [3]. Nonetheless, anal cancer re-
mains a rare cancer with an incidence of 0.73 per 100,000
population [3]. The mainstay of treatment for non-metastatic
ASCC is curative, non-surgical concurrent chemoradiothera-
py (CRT), with only early anal margin tumours (stage T1 N0)
suitable for local excision. CRT has been demonstrated to be
the best curative treatment option for achieving local control,
recurrence-free and/or progression-free survival (PFS) in
ASCC compared with surgery or radiotherapy alone [4–7].
At present, this involves chemotherapy (mitomycin C and 5-
fluorouracil) and concurrent radiotherapy, most commonly
using 45–54 Gy in 1.8 Gy fractions depending on tumour
stage [7].

The European Society for Medical Oncology (ESMO)
Clinical Practice Guidelines recommend using multi-
parametric magnetic resonance imaging (MRI) for accurate
tumour staging and to inform radiotherapy treatment planning
in ASCC [8, 9]. The guidelines also recommend use of base-
line fluorine-18 fluorodeoxyglucose positron emission
tomography/computed tomography (FDG-PET/CT) because
of high sensitivity for identifying involved lymph nodes and
distant metastases [9]. Systematic reviews report that FDG-
PET/CT alters TNM stage in 41% of ASCC and influences a
change in treatment plan in at least 28% of patients [10, 11].
Consequently, FDG-PET/CT is routinely performed as part of
the initial imaging pathway at many institutions. Anal margin
and anal canal tumour staging have been recently re-
categorized (TNMv8), but, in both, local tumour (T) stage is
predominantly determined by size [12]. Imaging features are
combined with clinical assessment to provide a TNM stage
and so risk categorise patients.

There is increasing interest in radiomics, which involves
conversion of medical images intomineable high-dimensional
quantitative data. The use of these data to predict treatment
response and patient outcome has been reported across a range
of primary tumours [13, 14]. There are very few studies eval-
uating radiomics in ASCC, but a recent study of 28 patients
treated with curative-intent CRT reported that MRI texture
analysis could predict tumour progression [15]. Other studies
evaluating parameters derived from baseline FDG-PET/CT in
ASCC patients have reported that metabolic tumour volume
(MTV) [16, 17] and maximum standardized uptake value
(SUVmax) [18] predict local recurrence and overall survival.
To the best of our knowledge, there are no studies evaluating
FDG-PET/CT radiomics in ASCC or these measurements of
tumour heterogeneity in combination with MTV, SUVmax and

conventional prognostic factors (e.g. TNM stage) in a risk
stratification prognostic model.

The aim of this study was to evaluate if radiomic features
extracted from baseline FDG-PET/CT are predictive for PFS
in patients with ASCC treated with curative-intent CRT com-
pared with conventional staging. The secondary aim was to
compare performance of a conventional prognostic feature
model to a radiomic feature prognostic model and a combined
model.

Materials and methods

This study was designed as a transparent reporting of a multi-
variable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) type 2 study designed to assess the po-
tential benefit of FDG-PET/CT radiomics in patients with
ASCC [19]. Adherence to this is detailed in Supplemental
Table 1.

Patient selection

Consecutive patients with histologically proven ASCC who
underwent baseline FDG-PET/CT at a single large tertiary
referral centre between June 2008 and 31st of December
2016 were identified retrospectively from a maintained data-
base of FDG-PET/CT scans performed at our institution.
Exclusion criteria included patients with small tumours when
there had been pre-imaging excision of superficial lesions (to-
tal excision biopsies of tumours under 2 cm in size with a clear
margin of at least 5 mm) or when lesions measured under
4 cm3. This is because there is a size threshold below which
radiomic analysis may be unreliable and non-reproducible due
to the delineation of the tumour [20, 21]. Furthermore, only
patients treated with curative-intent CRT using standardised
departmental protocols (concurrent radiotherapy, mean
49.6 Gy in 1.8-Gy fractions, with mitomycin C and 5-
fluorouracil regimens) were included. Patients with advanced
metastatic disease were therefore excluded as, in our institu-
tion, they received different treatment regimens.

Electronic clinical and radiological databases were used to
obtain patient demographic details, clinical history, treatment
data, clinical outcome and follow-up duration. The electronic
records included the institutional radiology information sys-
tem (Computerized Radiology Information System, (CRIS),
Healthcare Software Systems, Mansfield, UK) and the oncol-
ogy electronic patient record system (Patient Pathway
Manager, PPM; EHR Development Team, Leeds Teaching
Hospitals NHS Trust). The pertinent follow-up information
included progression-free survival (PFS), comprising of
locoregional failure (LRF), new distant metastatic disease
and death (unless due to an alternative none ASCC cause of
death, e.g. ruptured aneurysm), based on which occurred first
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with a median of 45-month clinical follow-up (interquartile
range 28- to 61-month follow-up) [7, 22]. The LRF definition
included all treatment failures or sites of disease recurrence
occurring within the pelvis up to the level of the sacral prom-
ontory, either confirmed histologically by biopsy or where this
was not possible by MDT consensus opinion [23].

Prospective consent was obtained from all patients at the
time of imaging for use of their anonymised FDG-PET/CT
imaging data in research and service development projects.
All patients were prospectively entered into a departmental
database used for retrospective identification and audit.
Formal ethics committee approval was waived for this study
which was considered by the institutional review board to
represent evaluation of a routine clinical service.

Radiomic feature analysis

Five steps were involved in ensuring objective radiomic fea-
ture analysis: image acquisition and reconstruction; image
segmentation and rendering; feature extraction and quantifica-
tion; databases and case sharing; ad hoc informatics analysis
[24].

Imaging acquisition and reconstruction

A standard protocol was used for FDG-PET/CT examinations
with torso-imaging acquisition from the skull base to upper
thighs. The CT component was acquired with the following
settings: 140 kV; 80mAs; tube rotation time 0.5 s per rotation;
pitch 6; 3.75-mm section thickness. Patients were asked to
maintain normal shallow respiration during the CT acquisi-
tion. No iodinated contrast material was administered.
Serum blood glucose was routinely checked and if blood glu-
cose was > 10 mmol/L, scanning was not performed. Patients
fasted for 6 h prior to intravenous fluorine-18 FDG injection
(dose varied according to patient body weight). Scans prior to
June 2010 were performed on a 16-slice Discovery STE PET/
CT scanner (GE Healthcare, Chicago, IL, USA) and from
June 2010 to October 2015 on a 64-slice Philips Gemini
TF64 scanner (Philips Healthcare, Best, Netherlands), After
October 2015, all scans were performed on a 64-slice
Discovery 710 scanner (GE Healthcare, Chicago, IL, USA).
All scans used iterative reconstruction, CT for attenuation cor-
rection, applied scatter and randoms correction. Image recon-
struction parameters for the different scanners are shown in
Table 1. Each scanner used consistent reconstruction settings,
matrix and voxel size.

Image segmentation and rendering

The entire segmentation and radiomic feature extraction pro-
cess was performed using LIFEx software (v4.0, Local Image
Feature Extraction, www.lifexsoft.org) [21].

The primary tumour and associated involved lymph nodes
were delineated using a semi-automatic technique on PET/CT
imaging by a single observer (clinical radiologist, 5-year ex-
perience) under supervision of an experienced dual-certified
radiology and nuclear medicine physician (15-year experience
of oncological PET/CT). A mean standardised uptake value
was calculated in the right lobe of the liver (L-SUVmean) from
a volume of interest (VOI) greater than 100 cm3 using a pre-
viously described method [25]. Using L-SUVmean as a refer-
ence value, the primary tumour and associated involved
lymph nodes were semi-automatically segmented to generate
a tumour VOI (t-VOI) and separate lymph node VOIs (ln-
VOIs). Voxels were included in the t-VOI or ln-VOI if they
had an SUV greater than 1.5 times the L-SUVmean. This meth-
od generated more accurate VOIs than using a 40% SUVmax

threshold that has been described elsewhere [26]. Lymph
nodes were considered involved if they were enlarged (>
10 mm) and morphologically abnormal (rounded, soft tissue
replacement of their fatty hilum and/or an irregular contour) in
inguinal and/or iliac lymph node chains, and if they demon-
strated SUV values greater than 1.5 times the L-SUVmean.
Each t-VOI and LN-VOI was visually checked for accuracy
and, where necessary, manually adjusted to exclude any non-
tumour uptake. Special attention was paid to tumours located
near the urinary bladder due to intense physiological urinary
tracer activity and patients with background anal/GI tract
FDG-activity. The same t-VOI and ln-VOIs were automatical-
ly segmented from the corresponding CT images.

Within each t-VOI, SUV and CT Hounsfield unit (HU)
values were resampled into discrete bins using absolute re-
sampling. This minimises the correlation between textural fea-
tures and reduces the impact of noise and the size of matrices.
Sixty-four bins were used for the PET component with the
minimum and maximum bounds of the resampling interval
set to 0 and 20 SUV; therefore, a bin size of 0.3 SUV was
used for analysis of the PET component. Voxels with an SUV
greater than 20 were grouped in the highest bin. For the CT
component, voxels were resampled into 400 discrete bins
across the range of − 1000 and 3000 HU; therefore, a bin size
of 10 HU was used for the CT component analysis. Spatial
resampling of the t-VOI and LN-VOI was performed using
voxel dimensions of 4.0 × 4.0 × 4.0 mm for PET images and
2.5 × 1.2 × 1.2 mm (4.0 × 1.2 × 1.2 mm before June 2014) for
CT images.

Feature extraction

The feature extraction process used mathematical methods to
evaluate the voxel intensity, their relative positions and the
relationships between intensity and position to extract quanti-
tative data from the t-VOI. The ln-VOI was only used to
contribute to the total tumour volume and was not assessed
by texture analysis. The radiomic texture analysis features are
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discussed in more detail elsewhere, vary in complexity based
on the mathematical models they require, and all features ex-
tracted were based on standardised practices [21, 27]. In brief,
first-order features extract information regarding either voxel
intensity, with no spatial relationship information, or spatial
information only with no intensity information included in
their calculation. Second-order texture features compare rela-
tionships between adjacent voxels, whilst third-order texture
features compare relationships betweenmore than two voxels.

Statistical analysis

All data was tabulated in Microsoft Excel (Office 365, 2017;
Richmond, VA, USA) and statistical analysis was performed
using SPSS (Version 16, 2016; IBM, Armonk, NY, USA), and
RStudio (Version 1.1.134. RStudio: Integrated development
environment for R. Boston, MA. http://www.rstudio.org/)
using the glmnet package [28].

The study cohort was randomised on a ratio of 3:1 into
‘training’ and ‘validation’ cohorts using SAS (v9.4 SAS
Institute Inc. Cary, NC, USA). Descriptive statistics (chi-
squared and t test) were performed for the two cohorts and
compared to ensure similarity between the groups. Elastic net
regularisation was used for radiomic feature selection which
automatically performs variable selection to shrink the model
to reduce over fitting and co-variate correlation [29]. This
technique has been shown to be superior to other methods of
analysis when the set of features can be much larger than the
number of cases [30]. To act as a comparator of current best
practice, predicted outcomes were generated from the training
cohort using a logistic-regression model (model A). This was
based purely on standard clinical factors (patient age, sex,
tumour and nodal stages), previously described in the litera-
ture as significantly related to oncological outcomes. Clinical
factors (patient age, sex, tumour and nodal stages, planned
radiotherapy dose and fractions) were included in the variable
selection process alongside radiomic features. Two separate
radiomic predictive models were created using radiomic fea-
tures alone (model B) and combined with clinical features
(model C).

The logistic-regression model based on elastic net feature
selection and the model based on standard clinical features
were separately developed on the training cohort and then

tested on the validation cohort with predicted outcomes com-
pared with PFS. Each set of predicted outcomes was com-
pared with observed outcomes using receiver operating char-
acteristic (ROC) analysis to assess each model’s ability to
predict PFS.

Results

Between 1st of June 2008 and 31st of December 2016, a total
of 307 patients were identified for potential inclusion in the
study. A total of 118 patients were excluded, reasons included;
FDG-PET/CT imaging performed after excision of primary
lesion—31 patients; FDG-PET/CT not performed—23 pa-
tients; non-ASCC histology—17 patients; treatment not ad-
ministered with curative intent—13 patients; primary lesion
too small for analysis (< 4 cm3, 64 voxels)—16 patients; pri-
mary tumour not visible on FDG-PET/CT—7 patients; in-
complete imaging or clinical data—11 patients. After exclu-
sions, there were 189 patients included in the study cohort.

The study cohort was randomised on a ratio of 3:1 into
‘training’ and ‘validation’ cohorts, containing 145 and 44 pa-
tients respectively. Detailed population descriptions are pro-
vided in Table 2. Within the total population, LN-VOI con-
tributed only 0.35% to the median MTV volume (IQR 0.00–
3.23%, median 0.07 cm3 [0.0–0.78 cm3]) with a median of
one node per 3.3 patients (a maximum of 2 nodes were in-
cluded per patient). A greater number of nodes were felt to be
involved, and so staged as involved for clinically purposes but
excluded from this analysis as they were too small or did not
accumulate FDG.

Likewise, each cohort had similar proportions of treat-
ment failure and/or local disease recurrence; 37 patients
(25.5%) in the training cohort and 12 patients (27.3%) in
the validation cohort. The cohorts also had similar rates of
non-local recurrence (distant sites of recurrence), 6 pa-
tients (4.1%) and 2 patients (4.5%) respectively. In the
training cohort, 36 patients died whilst in the validation
cohort 8 died; of these, at least 6 and 2 were due to non-
ASCC causes (e.g. ruptured abdominal aortic aneurysm)
and so included in the PFS group and censored at the time
of their deaths. PFS was used as the outcome measure to
incorporate absence of local and distant residual disease,

Table 1 Reconstruction parameters for each scanner

Scanner Reconstruction Scatter correction Randoms correction Matrix Voxel size (x, y, z)

GE Healthcare STE OSEM Convolution subtraction Singles 128 4.6875 × 4.6875 × 3.27

Philips Gemini TF64 BLOB-OS-TF SS-simul DLYD 144 or 169 4 × 4 × 4

GE Healthcare Discovery 710 VPFX Model based Singles 192 3.65 × 3.65 × 3.27

OSEM ordered subsets expectation maximization, BLOB-OS-TF spherically symmetric basis function ordered subset algorithm, VPFX Vue Point FX
(3D Time of Flight), DLYD delayed event subtraction
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delayed recurrence or new disease; again, similar PFS
rates were demonstrated in each cohort (102 patients
(70.3%) compared with 30 patients (68.2%) respectively),
see Fig. 1. The log-rank between the two curves is 0.593,
confirming no statistically significant difference between
the cohorts. The median follow-up period for both groups
was also similar at 35.12 months and 37.89 months from
the start of radiotherapy to censoring, for the training and
validation cohorts respectively.

The logistic regression model was calculated using the
trial cohort and established variables reported to be of sta-
tistical significance in predicting outcome in ASCC includ-
ing sex, age at diagnosis, tumour and lymph node stages.
This model was similarly applied to the validation cohort.
Elastic net regularisation obliviates the need for separate
univariate analysis as the technique selects the variables
for model inclusion as described in the “Materials and
methods” section above. Using the training cohort, a mean
cross-validated error value was plotted and a minimum val-
ue of 0.099 was calculated using elastic net regularisation
for model B, and 0.190 for model C. Using this value as the
minimum lambda value resulted in 10 variables being in-
cluded in the prognostic model. These are documented in
Table 3 and include conventional prognostic indicators (e.g.
T and N stage), treatment details (radiotherapy dose and
fractions) and radiomic features (e.g. grey-level co-occur-
rence matrix (GLCM) entropy and neighbourhood grey-
level different matrix (NGLDM) busyness).

The prognostic elastic net regularisation model was applied
to the validation cohort to generate predicted outcomes which
were then compared with observed outcomes. Figure 2 dem-
onstrates ROC curves generated for each model in the training
(Fig. 2a) and validation (Fig. 2b) cohorts. The blue line repre-
sents model A, generated from clinical features only using a
basic logistic regression technique. The black line represents
model B generated from radiomic features alone using elastic
net regression, and the red line represents model C generated
from radiomic and clinical features using the same technique.
The AUCs for models A, B and C were 0.6355, 0.7403,
0.7412 for the training cohort and 0.6024, 0.6595, 0.7381
for the validation cohort, respectively.

Discussion

The results of this study indicate that radiomic features (ob-
jective measures of tumour heterogeneity) extracted from pre-
treatment FDG-PET/CT may be useful to more reliably pre-
dict PFS in ASCC than standard features. In particular, the
inclusion of GLCM entropy (a measure of the randomness
of distribution of co-occurring pixel grey-levels), NGLDM
busyness (a measure of the spatial frequency of changes in
intensity between nearby voxels of different grey-level), the
minimum CT value (lowest HU within the lesion) and a stan-
dardized version of MTV may provide superior, and more
objective prediction of PFS than existing methods of

Fig. 1 Kaplan-Meier survival
curves comparing the
progression-free survival between
the training and validation
cohorts. The log-rank between the
two curves is 0.593, confirming
no statistically significant
differences between the cohorts
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prognostication. To our knowledge, this is the first study to
report the potential of PET-derived radiomic feature analysis
for outcome prediction in ASCC pre-treatment.

Pre-treatment risk modelling in ASCC is important; a cur-
rent platform of three anal cancer trials (PLATO) is testing
radiotherapy dose alteration in ASCC [23, 31]. In early-stage
tumours, dose de-escalation is being evaluated (ACT4) and in

locally advanced tumours does escalation (ACT5). The ability
of the more reliable (and non-invasive) phenotype ASCC
could be a valuable tool to further guide personalised treat-
ment protocols for these tumours. Given the potentially seri-
ous patient morbidity associated with ASCC treatment, pri-
marily radiation-related toxicity [32], accurate identification
of patients with more aggressive tumour phenotype potential-
ly warranting higher radiotherapy treatment doses is para-
mount. Improving imaging biomarkers is therefore important
in ASCC to help offer more personalised radiation therapy
[23]. The current study has shown that a model incorporating
radiomic features extracted from FDG-PET/CT scans, ac-
quired as part of routine clinical practice, can predict PFS with
greater accuracy than existing methods. This compliments
recent work by Hocquelet et al. in a small series of 28 patients
reporting that MRI texture features were potential predictive
biomarkers in ASCC [15].

MTV has previously been reported as a prognostic marker
of overall survival in ASCC, with increasing tumour size or
MTV correlating with poorer overall survival, either greater
than 7 cm3 or greater than 26 cm3 [16, 33]. In the current
study, the elastic net regularisation selected standardized
MTV (SMTV—the MTV value relative to the patient’s body
weight (cm3 kg−1) instead of MTV). Based on the principles
of this modelling technique, the variables (MTV and SMTV)
are likely to have been highly correlated and SMTV will have
been selected because of its greater predictive power.

Fig. 2 The blue line represents model A (clinical features), the black line
represents model B (radiomic features) and red line represents model C
(combined radiomic/clinical features), each generated on the training (a)

and validation (b) cohorts. The AUCs for models A, B and C were
0.6355, 0.7403, 0.7412 for the training cohort and 0.6024, 0.6595,
0.7381 for the validation cohort

Table 3 Elastic net regularisation feature selection (model B)

Elastic net regularisation feature selection/model Variable weighting

Tumour stage − 0.011

Lymph node stage − 0.019

Planned total radiotherapy dose (Gy) 0.007

Planned total radiotherapy fractions 0.012

Minimum CT value (HU) 0.000004

GLCM entropy log10- PET − 0.002

GLCM entropy log2- PET − 0.002

NGLDM busyness- PET −0.023
Total SMTV (mL/Kg) −0.037
Total TLG (SUV/mL) −0.005
Constant 0.160

CT computed tomography, PET positron emission tomography, HU
Hounsfield units, GLCM grey-level co-occurrence matrix, NGLDM
neighbourhood grey-level different matrix, SMTV standardised metabolic
tumour volume, TLG total lesion glycolysis
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Similar to data reported by others, SUVmax was not a sta-
tistically significant predictor of progression-free survival
[16]. However, total lesion glycolysis (TLG), a measure of
SUVmean relative to the size of a lesion (SUVmean/cm

3), was
of prognostic significance and selected for inclusion in the
model. This was not included as a variable in the study by
Gauthe et al., but was found to be a strong predictor of out-
come in univariate analysis in the study by Bazan et al. [16,
33]. However, due to the correlation between TLG and MTV,
the TLG was excluded from multivariate analysis [33]. Using
SMTV, rather than MTV, will have decreased the correlation
with TLG and so both variables were selected and included in
the final model in our study.

Another, subtle difference of note is the definition of MTV.
Here, MTV (and therefore SMTV and by extension TLG)
incorporated the sum of t-VOI and LN-VOI, as did Bazan
et al. [33]. This was considered more representative of the
entire tumour volume than t-VOI alone, as used by Gauthe
et al. [16]. However, on review, the LN-VOI contributed only
0.35% to the medianMTV volume (IQR 0.00–3.23%, median
0.07 cm3 [0.0–0.78 cm3]); therefore, this distinction is most
likely arbitrary unless the burden of lymph node disease is
significantly greater than the primary lesion itself.

The variables selected by the elastic net regularisation
model are all features providing a measure of tumour hetero-
geneity. This included the minimum CT value (HU) which it
is postulated maybe because tumours with a worse prognosis
are more likely to have increased intra-lesion degeneration
and necrosis resulting in intra-lesion gas locules [34].

The retrospective nature of this study is a limitation, but the
low incidence of ASCC and high PFS rates, relative to other
cancers, make it more challenging to acquire large prospective
data. Furthermore, the exclusion of very small and advanced
metastatic tumours further limited the inclusion criteria to only
those tumours suitable for CRT administered with curative
intent. Nonetheless, we have analysed a relatively large pa-
tient cohort treated with standardised departmental protocols.
Additionally, a standardised imaging protocol was used
throughout the study period, despite three different PET/CT
scanners being used, and the random cohort allocation prior to
analysis has ensured as robust a methodology as possible to
overcome this issue. Furthermore, spatial resampling and in-
tensity binning performed on all data increases adherence to
keymethodological principles of radiomics and the repeatabil-
ity of this study [35–39].

The spatial resolution of pelvic MRI is superior to that of
CT and/or PET imaging. However, MRI scans were not
analysed in this study because of a lack of consistency in the
imaging protocols and scan acquisition parameters in clinical
use. As a result, image signal intensity values can show sig-
nificant variability across different patients, scanners and pro-
tocols, inherently restricting the usefulness of radiomic feature
analysis. By comparison, the intensities of voxels in PET and

CT images have been studied to a greater degree and are more
reliable, assuming the use of a robust intensity binningmethod
[40–42]. Whilst an additional harmonisation step to further
improve the reliability of PET/CT derived radiomic features
has recently been reported, following data collection and anal-
ysis had been completed for this study, and no similar
harmonisation method is established for MRI [43, 44]. In the
absence of widely accepted MRI harmonisation process, the
use of a single MRI scanner/protocol for all patients may have
minimised the impact of some inconsistencies in MRI signal,
but it would also significantly limit the clinical impact of any
findings. This warrants further study.

Another potential limitation is only one observer
performing the tumour segmentation. However, as the seg-
mentation was performed semi-autonomously, the observer
input had already been minimised which will have helped to
mitigate potential intra- and inter-observer differences.
External validation of the findings in this study is required in
the first instance to ensure the results are reproducible and/or
require refinement. Following this, incorporation of the meth-
odology into a future well-designed multi-centre prospective
trial would be required in order to confirm benefit in routine
patient management.

Conclusions

Radiomic features extracted from pre-treatment FDG-PET/
CT in patients with ASCC may provide greater accuracy in
predicting PFS than conventional staging parameters. This
could have a potential powerful clinical impact by helping risk
stratify and personalise treatment in ASCC patients. External
validation of the results in this initial study, and prospective
evaluation in a multi-centre cohort, is required before a clear
impact on clinical decisions can be confirmed.
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