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ARTICLE

Evidence of ubiquitous Alfvén pulses transporting
energy from the photosphere to the upper
chromosphere
Jiajia Liu 1, Chris J. Nelson 1,2, Ben Snow 1, Yuming Wang 3,4 & Robert Erdélyi 1,5

The multi-million degree temperature increase from the middle to the upper solar atmo-

sphere is one of the most fascinating puzzles in plasma-astrophysics. Although magnetic

waves might transport enough energy from the photosphere to heat up the local chromo-

sphere and corona, observationally validating their ubiquity has proved challenging. Here, we

show observational evidence that ubiquitous Alfvén pulses are excited by prevalent intensity

swirls in the solar photosphere. Correlation analysis between swirls detected at different

heights in the solar atmosphere, together with realistic numerical simulations, show that

these Alfvén pulses propagate upwards and reach chromospheric layers. We found that

Alfvén pulses carry sufficient energy flux (1.9 to 7.7 kWm−2) to balance the local upper

chromospheric energy losses (~0.1 kWm−2) in quiet regions. Whether this wave energy flux

is actually dissipated in the chromosphere and can lead to heating that balances the losses is

still an open question.
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V
ortices are ubiquitous in the universe on a huge variety of
scales, from sinking water in domestic taps to spiral
galaxies1. The first evidence of localised swirls in the solar

photosphere, which had been widely hypothesised to form as a
consequence of intergranular flows2, was obtained two decades
ago3. Considerable efforts have since been made to find their
counterparts in the higher solar atmosphere, from the perspec-
tives of analytical theory4, magnetohydrodynamic (MHD)
simulations5–7 and high-resolution observations8,9. Numerical
simulations have suggested that upwardly propagating MHD
waves (especially Alfvén waves) can be excited by photospheric
swirls and can, in certain circumstances, carry significant
amounts of energy into the middle and upper layers of the solar
atmosphere7,10,11. However, the above scenario has yet to be
confirmed by observations. Even if the propagation of these swirls
from the photosphere to the chromosphere were to be confirmed,
their ubiquity needs to be successfully assessed in order for them
to remain a viable candidate to carry sufficient energy throughout
the solar atmosphere12.

Signatures of 14 long-lived (~10 min) solar tornadoes,
which could be related to large-scale swirls (with average dia-
meter ~1.5 Mm), have been manually identified using multi-
wavelength images13. It was suggested that, Alfvén waves
co-existing with these solar tornadoes could play an import role
in local energy channelling into the solar corona. However, two
crucial questions remain: firstly, given that only a relatively small
number of large, long-lived swirl-related tornadoes were observed
in a small field of view (FOV), are such events ubiquitous in the
entire solar atmosphere? And secondly, could all swirls live long
enough to actually form tornadoes? In other words, are waves or
pulses more common in transporting energy in the solar atmo-
sphere? Because we do not yet know whether pulses dissipate
in a different way than waves, this latter question is fundamen-
tally important when assessing the affinity to dissipate these
perturbations.

We applied the automated swirl detection algorithm (ASDA)14

to photospheric observations with a pixel size of ~39.2 km sam-
pled by the Solar Optical Telescope (SOT) onboard the Hinode
satellite15, and found on average 21.5 photospheric swirls in each
frame with a FOV of ~800Mm2 (suggesting a swirl population of
~1.6 × 105 in the photosphere). These swirls had an average
radius and rotating speed of ~290 and ~0.9 km s−1, respectively.
Applying ASDA to photospheric observations (Fe I 6302.5 Å
wideband) by the CRisp Imaging SpectroPolarimeter (CRISP)
mounted on the Swedish 1-meter Solar Telescope (SST)16

revealed similar results. The details of swirl detection using ASDA
is in the methods section (Eq. 1).

Here, we report a step-forward by analysing the co-spatial and
co-temporal relationship between photospheric and chromo-
spheric swirls automatically detected by ASDA from both SOT
(see the Methods section and Fig. 1) and SST (see Supplementary
Note 1 and Supplementary Fig. 1) observations. Correlation
analysis between swirls detected at different heights from obser-
vations of both instrument, together with realistic numerical
simulation, show that ubiquitous Alfvén pulses are excited by
prevalent intensity swirls in the solar photosphere. These Alfvén
pulses could propagate upwards in the solar atmosphere and
reach the chromospheric layers. We estimate the energy flux
carried by a single Alfvén pulse as 1.9–7.7 kWm−2, which is more
than enough to balance the local upper chromospheric energy
losses (of the order of 0.1 kWm−2).

Results
Chromospheric swirls. Figure 1b depicts one of 765 high-
resolution chromospheric intensity maps close to the disk centre

at the Ca II H line core (3968.5 Å) taken at 05:50:01 UT on 5
March 2007 by the SOT. Fifty-five chromospheric swirls have
been detected, among which about half (31) rotate in the positive
(counter-clockwise, blue) and the other half (24) in the negative
direction (clockwise, red). The tracked velocity field and asso-
ciated swirls determined are shown in more details in the close-up
views in Fig. 1c, d. Photospheric swirl detection results from
the SOT FG blue continuum (4504.5 Å) observations 118 s earlier
are shown in Fig. 1a as a comparison. This time delay is con-
sistent with that we find from the statistical correlation analysis
(see below).

In total, 36834 chromospheric swirls have been detected in 764
generated velocity maps, ~49.8% of which rotate in the positive
direction, resulting in 48.2 ± 10 swirls in each frame (Fig. 2a).
Detections from both Ca II and Hα line core (8542 and 6563 Å)
chromospheric observations (see Supplementary Fig. 1) collected
at the SST, which sampled a different quiet region and, therefore,
provide support of that our results are general, reveal similar
numbers (36–44) of swirls in each frame, but within a FOV of
~1600 Mm2 (see Supplementary Figs. 2 and 3). This is consistent
with the fact that more photospheric swirls were detected by the
SOT observations than by the SST observations14. It is likely that
the discrepancy in numbers of swirls detected based on the SOT
and SST datasets was caused by the fact that SST data have lower
cadence and spatial resolution than the SOT data, and also
may suffer from residual seeing effects which were not corrected
for during data processing. The SOT observations analysed here
suggest a swirl population of at least 3.7 × 105 in the solar
chromosphere. The distribution of the effective radius (see
definition in Eq. 2) of chromospheric swirls, shown in Fig. 2b,
is very similar to that of photospheric swirls, with an average
effective radius of ~290 ± 64 km. No significant differences are
detected between swirls rotating in positive and negative
directions. The average rotating speed (Eq. 2) of chromospheric
swirls (~1.8 ± 0.7 km s−1, Fig. 2c) is double of the rotating speed
of photospheric swirls. The distribution of swirl lifetimes (Fig. 2d)
is similar to that of the photospheric swirls14. The number of
swirls drops nearly exponentially with increasing lifetime, with an
average lifetime of ~21 s and maximum likelihood estimation17 of
the exponential rate parameter of ~0.05. More than 60% of
chromospheric swirls, initially detected by the ASDA algorithm,
have lifetimes less than twice of the cadence (12.8 s), however,
swirls observed only in a single frame were discarded from this
lifetime analysis. These results do, though, imply that future
observations should be performed with higher cadence to
determine more accurate properties of swirls.

Correlation between photospheric and chromospheric swirls.
To study whether the observed photospheric and chromospheric
swirls are related, we performed a series of correlation analyses.
Corresponding results are shown in Fig. 3. With a time lag of 0 s,
we calculated the correlation indices (see the methods section) of
all co-temporal photospheric and chromospheric Γ2 (Eq. 1) maps,
the average value (CI) of all the correlaton indices and the average
percentage of photospheric swirls which overlap with chromo-
spheric swirls. Then, we repeated the above calculation by varying
the time lag between photospheric and chromospheric frames
from −300 s to 300 s (shifting the photospheric observations from
−300 s to 300 s). Corresponding errors were measured by cross-
checking the calculation with randomly shuffled datasets 50
times. The blue solid curve in Fig. 3b shows that the CI has a
significant peak of ~1%, above the 5σ level (blue shadow), at a
time lag of ~125 s. The overlap (black solid curve) reaches a peak
of about 41%, above its 5σ level (grey shadow), at a time lag of
~140 s. The same analysis but on a pre-shuffled dataset reveals no
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Fig. 1 Photospheric and chromospheric swirls detected by ASDA using SOT observations. The observed intensity is shown as the white-black background

in all panels. Photospheric intensity swirls (a) detected at 05:48:03 UT were found to be best correlated with chromospheric swirls (b) detected 118 s later

(05:50:01 UT). Swirls, with positive (negative) rotating direction are denoted in blue (red). Contours and dots are their edges and centres, respectively.

Turquoise arrows in c, d represent the tracked velocity field by the FLCT method25,26. The analysed data contain a series of photospheric and

chromospheric observations in a quiet region close to the disk centre. Source data are provided in the Source Data file
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significant peaks above the 3σ levels at all (see Supplementary
Fig. 4a). Similar analysis of the SST observations (see Supple-
mentary Fig. 5) shows that the CI and overlap between Fe I
wideband photospheric and Ca II 8542 Å line core chromospheric
observations peak at a time lag of 102 and 176 s above the 5σ
levels, respectively. The CI and overlap between the Hα 6563 Å
line core and Ca II 8542 Å line core chromospheric observations
both peak at a time lag close to 0 (−7.5 s) above their corre-
sponding 5σ levels. No peak above 3σ level has been found when
comparing the Fe I wideband photospheric and Hα 6563 Å line
core chromospheric observations, which might be a result of the
extended formation heights of the Hα line18.

A peak overlap of 41% means a high number (suggesting a
population of ~0.66 × 105 expected in the photosphere) of SOT
photospheric swirls have been found to correspond to chromo-
spheric swirls. However, it should be remembered that this is the
result for just a single time lag between photospheric and
chromospheric observations. The inhomogeneity of the magnetic
field and plasma properties in the solar atmosphere needs to be
kept in mind. Further analysis (see Supplementary Fig. 4b) shows
that: about 81% of the detected SOT photospheric swirls
(suggesting a population of ~1.30 × 105 expected in the photo-
sphere) have correspondences in the chromosphere within a time
lag range of 100–160 s; and about 94% of the photospheric frames

have more than half swirls overlapping with chromospheric swirls
found within a time lag range of 100–160 s. Similarly (see
Supplementary Fig. 5d), about 86% of the detected SST Fe I
photospheric swirls have correspondences in the Ca II 8542 Å line
core chromospheric observations within a time lag range of
100–160 s; and about 99% of the SST photospheric frames have
more than half swirls overlapping with chromospheric swirls
found within a time lag range of 100–160 s.

The above results suggest that: most of photospheric swirls can
be correlated to chromospheric swirls; the mode time-scale
required for the swirling motion to propagate from the photo-
sphere to the chromosphere is about 130 s; and, less than 0.01%
(Fig. 2) swirls live longer than 100 s, indicating that most swirls
fade away before forming large-scale tornadoes and the swirling
motion should travel upward as a short (~20 s) pulse instead of a
wave train. Considering the formation height of the Ca II H line
core is between 1000 km and 2000 km18, the short pulse should
travel at a speed of 8–15 km s−1.

In order to investigate the nature of the pulses carrying the
swirling information, we performed a series of 3D MHD
simulations using the Sheffield Advanced Code (SAC)19 under
a realistic gravitationally-stratified atmosphere. At the beginning
of the simulation, we introduced, at 450 km above the τ500= 1
level, a rotational motion, with a lifetime of 20 s centred on the
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flux tube. Figure 4a depicts a snapshot of the simulation (see
Supplementary Movie 1) at t ≈ 93 s. The perturbation of the
rotational motion has now already travelled up to 600 km above
the bottom. It is clear from the Supplementary Movie 2 (as well as
Fig. 4), that, the azimuthal magnetic field perturbation is opposite
oriented to the velocity field perturbation, indicating strongly the
Alfvén nature of the pulse. The remnant weak velocity and

magnetic field perturbations at the bottom (see Supplementary
Movie 2) are suggested to be the trapped initial perturbations due
to the very low (~0.5 km s−1) local Alfvén speed outside the flux
tube (see Supplementary Fig. 6).

In order to further analyse these pulses, a vertical slit was
placed close to the centre of the flux tube. Corresponding time-
distance plots are shown in Fig. 4b–d. Panel b of the vertical
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velocity perturbation shows that the pulse travels upward at three
different local speeds: the sound speed (dash-dotted curve), the
Alfvén speed (solid curve) and the tube speed (dashed curve).
However, only the Alfvén pulse carries information of the
rotational motion (panel c) and azimuthal magnetic field

perturbation (panel d). It takes ~120 s for the Alfvén pulse to
travel from the upper photosphere (bottom of the simulation
domain) to the upper chromosphere (top of the simulation
domain), revealing an average speed of ~9.6 km s−1. These
simulation results agree well with those on the travelling speed
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of the swirling motion found from the observations, again
confirming the Alfvén-pulse connection between swirls at
different heights in the solar atmosphere.

Discussion
We have found prevalent short-lived photospheric swirls which
excite Alfvén pulses, which propagate upward into the upper
chromosphere and result in ubiquitous chromospheric swirls (see
Supplementary Discussion 1 and Supplementary Movie 3 for
further discussions and illustrations). The estimation of the
energy flux carried by these Alfvén pulses (see Supplementary
Discussion 2) suggests that these abundant events are potentially
able to carry a considerable amount of non-thermal energy
(1.9–7.7 kWm−2) into the upper chromosphere. Estimates sug-
gest that this energy flux is enough to balance the local radiative
(and other) energy losses20 (of the order of 0.1 kWm−2) in quiet
regions. The average energy flux contribution by these Alfvén
pulses is estimated to be 33–131Wm−2 (see Supplementary
Discussion 2). The exact contribution of these Alfvén pulses to
the global upper chromospheric heating needs to be further
studied by applying ASDA to observational data with higher
spatial and temporal resolutions. Dissipation of these Alfvén
pulses has not been accounted for in the simulation, given the
limited ability to resolve small scale-instabilities and turbulence.
This important topic should be further studied in the future to
illustrate how the energy carried by these pulses would be
deposited to heat the local upper chromosphere. We shall also
note that, in the numerical simulations, the propagation of an
Alfvén pulse was studied in an expanding flux tube. Thus, more
evidence about the excitation of the Alfvén pulses might be
provided, if one could find observationally some (significant)
correlation between photospheric swirls and vertical magnetic
flux tubes. However, currently available solar magnetic field
observations are not suitable for conducting the above study and
high-resolution observations or realistic numerical simulations
are needed (see Supplementary Discussion 3 and Supplementary
Fig. 7 for more details).

Based on the results obtained in this article, we propose future
work that should be focused on to discover the complete energy
channelling scenario by swirls in the solar atmosphere: given that
both swirls and spicules21,22, are mostly located in inter-granular
lanes14,23, our proposed conjecture is that swirls could also excite
spicules through linear (e.g., linear Lorentz force) and/or non-
linear (e.g., non-linear Alfvén pulses) processes to supply both
momentum and energy into the chromosphere and corona.

Methods
Observations. The SOT data employed consist of blue continuum (FG-blue)
images sampled with the wide-band imager with a central wavelength of
4504.5 Å and a band width of 4 Å, and chromospheric images at the Ca II H line
core with a central wavelength of 3968.5 Å. The FG-blue data were collected
between 05:48:03 UT and 08:29:59 UT on the 5 March 2007, and the Ca II H
data between 05:48:06 UT and 07:09:28. Images were targeted at a quiet region
centred at xc = 5.3″, yc = 4.1″. The cadence is ~6.42 s. Each of the images has a
FOV of ~56″ × 28″ (40.1 Mm × 20.1 Mm), with a image size of 1024 × 512 px2

and a pixel size of 0.0545″ (39.2 km). The level-1 fits files were processed with
the fg_prep.pro program available in the SolarSoft IDL packages.

Swirl Detection Using ASDA. For every pixel P in a preprocessed, scientifically
ready image, two dimensionless parameters24 are defined as:

Γ1ðPÞ ¼ bz � 1
N

P
S

nPM ´ vM
jvM j ;

Γ2ðPÞ ¼ bz � 1
N

P
S

nPM ´ ðvM�vÞ
jvM�vj :

ð1Þ

Here, S is a two-dimensional region containing the target point P, with a size of
N pixels. M is a point within S. nPM denotes the normal vector pointing from point
P to M. v is the average velocity vector within the region S and vM is the velocity
vector at point M. Symbols | | and × are for the mode of vectors and the cross
product, respectively. The velocity field is estimated using the Fourier Local
Correlation Tracking (FLCT) method25,26 on successive images from the
observations. z denotes the normal vector perpendicular to the observation surface
pointing towards the observer.

It has been demonstrated that, |Γ1| peaks at the centre and |Γ2| is larger than 2/π
within the edge of a swirl24. To find all swirls in a given frame of observations, the
levels of ±2/π of Γ2 are contoured to find out all candidates of swirls; and then
candidates with peak |Γ1| values greater than a given threshold (0.89)14,24 are
confirmed as swirls. The given threshold removes all candidates with expanding/
shrinking speeds larger than half of their rotating speeds14. Detailed tests on a
series of synthetic data and realistic numerical simulation data with varying spatial
resolutions, have been performed and proved ASDA as a proficient and astute
method in accurately detecting solar atmospheric swirls14.

Parameters of swirls. Given the velocity field and edge of a swirl, its effective
radius (R) and average rotating speed (vr) are determined by:

R ¼
ffiffiffi
A
π

q
;

vr ¼
1
k

Pk

i¼1
vi � ni:

ð2Þ

Here, A is the area of the swirl. k is the total number of points at the edge of the
swirl. vi and ni are the velocity and the normal vector perpendicular to the local
radial direction (from the centre of the swirl) of the ith point at the edge,
respectively.

Lifetimes of swirls at a single height of osbervations are estimated following the
method proposed in the ASDA paper14. Suppose, there are two swirls (S1 and S2)
detected in two successive frames. S1 is detected at time t0 and S2 at time t0 + Δt,
where Δt is the cadence of the observation. S1 and S2 will be considered as the same
swirl, if:

c1 þ vc1 � Δt � S2: ð3Þ

Here, c1 is the location of the centre of swirl S1. vc1 is the speed of the centre of
S1. The symbol ⊂ means belonging to. Taking into account that a swirl may
experience changes to its rotational motion through time, we then allow swirls to
be missing from one frame when evaluating their lifetimes, i.e., S1 and S3 are still
considered as the same swirl if c1+ vc1 ⋅ 2Δt⊂S3 is true where S3 is a swirl detected
at time t0 + 2Δt.

Estimation of correlation indices and overlaps. Many difficulties exist in directly
comparing swirls at two different layers L1 and L2 (for example L1 in the photo-
sphere and L2 in the chromosphere) to find their overlaps: first of all, swirls
confirmed by ASDA are only part of all the candidates. A photospheric candidate
might be confirmed as a swirl, but its chromospheric correspondence (if there is
any) could be not due to reasons such as too large expanding speed. This case
would not be rare because of the common flux tube expansion from the photo-
sphere to the chromosphere. Secondly, magnetic field in the low atmosphere is
more or less inclined27, it is unlikely that a photospheric swirl and its chromo-
spheric correspondence stay at exactly the same horizontal location. And, thirdly
the shapes of swirls are found to be irregular, meaning that a photospheric swirl
and its chromospheric correspondence are unlikely to be 100% overlapped, even if
they stay at exactly the same horizontal location.

Fig. 4 Visualization of the numerical simulation. a Snapshot of the simulation at t≈ 93 s. Vertical lines are magnetic field lines of the flux tube, with colours

denoting the strength of the local rotating speed vr. Red-white vertical backgrounds represent the background plasma density in the simulation. The bottom

layer shows part of the SOT FG-blue photospheric intensity observations at 06:03:04 UT when a swirl was detected at the centre of the layer in the

intergranular lane. b–d are the time-distance plots of a perpendicular slit along the z direction located close to the tube centre. vz and δBa represent the

z-direction velocity perturbation and azimuthal magnetic field perturbation, respectively. We find three different pulse fronts in the vz perturbation, and

they travel at local sound (dash-dotted curve), Alfvén (solid curve) and tube (dashed curve) speed, respectively. However, only the Alfvén pulse causes

both obvious perturbations in vr and δBa. No wave train can be found because of the short life (20 s) of the driver. Source data of b–d are provided in the

Source Data file
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To bypass the above difficulties, we have developed the following method to
estimate the correlation and overlaps of two given layers (L1 and L2):

Firstly, binarize the Γ2 maps of L1 and L2, set all points with values larger than 2/
π as 1 and less than −2/π as −1. All other points are set to 0. The resulted binarized
maps are Γ

1
2 and Γ

2
2 for layer L1 and L2, respectively.

Secondly, sum the absolute value of all points in Γ
1
2 as T1, Γ

2
2 as T2 respectively.

Define T as the smaller one between T1 and T2.
Thirdly, multiply Γ12 and Γ

2
2 , and obtain the correlation map C. Then, we define

(∑C)/T as the correlation index (CI) between layers L1 and L2. The above
procedures determine that CI can only range between −1 to 1, with a higher CI
value implying a higher correlation between layers L1 and L2. However, the CI of
two given layers cannot give us information of how many swirls are overlapped
between layers L1 and L2. For example, a CI of 0.01 could either mean only 1% of
the swirls in one layer are overlapped with those in the other layer, or all swirls are
overlapped but each swirl has only 1% points overlapped, in extreme cases.

And finally, for a given swirl S detected in layer L1, we map all of its points in to
the C map obtained in the previous step and calculate the percentage of points
which correspond to positive C values as its own correlation index (CIS). Swirl S is
then labelled to have its correspondence (to be overlapped) in layer L2 if CI > 0 and
CIS > th, where CI is the correlation index between layers L1 and L2. th is a positive
value defined by Δ

2=A, where Δ is the pixel size (39.2 km for the utilized SOT

observations) and A is the average area of all swirls (¼ πR
2
, R is the average

effective radius ~290 km), meaning that on average there is at least one point
within swirl S corresponding to a positive correlation.

However, we are aware of that the above processes cannot fully overcome all
difficulties raised above, especially the influence of the inclined magnetic fields. We
suggest that the number of photospheric swirls which were found to have their
correspondences in the chromosphere using the above method should have been
under-estimated.

Numerical simulations. The 3D MHD simulations have been performed using the
Sheffield Advanced Code (SAC)19, which solves the ideal MHD equations with the
presence of arbitrary perturbations in a gravitationally stratified and magnetised
atmosphere. SAC separates background and perturbation variables in order to
accurately resolve perturbations in a stratified atmosphere. This approach has been
developed with the capability to perform simulations even in the non-linear
regime. SAC has been tested and used to study wave propagations along a flux tube
previously10. The governing equations of SAC are briefly recapped in the Sup-
plementary Note 2.

The initial density and temperature profiles of the simulation performed in this
work have been constructed using the VAL IIIC model28. An axisymmetric and
self-similar expanding flux tube, with a magnetic field strength of 800 G at its
footpoint constructed following previous literatures10,29, is then embedded into the
ambient atmosphere. The analytic equations and parameters used for the
construction of the magnetic flux tube are available in the Supplementary Note 2.
The computational domain of the particular simulation is −1.0 ≤ x ≤ 1.0, −1.0 ≤
y ≤ 1.0 and 0.4 ≤ z ≤ 1.6 Mm, simulating from the upper photosphere to the upper
chromosphere. The above domain is resolved with a grid size of (129, 129, 259)
points in the x−, y− and z-direction, respectively. Thus the spatial resolutions in
the x−, y− and z-direction are 15.5, 15.5 and 4.6 km, respectively.

The rotational driver is introduced at the bottom of the flux tube at the
simulation time t= 0, generated from the following formula10:

vr ¼ v0 � exp �
r2

δr2

� �
� exp �

ðz � z0Þ
2

δz2

� �
� sin

πt

P

� �
: ð4Þ

Here, vr is the rotational speed. v0 is the amplitude and set to be 1 km s−1

according to the observations. r and z are the distance to the centre of the flux tube
and height of a point (x, y, z) in the computational domain. δr equals to 300 km,
corresponding to the average effective radius of observed swirls. z0= 450 km and
δz= 25 km is the vertical centre and expansion of the driver. t is the simulation
time and P= 20 s is the lifetime of the driver. v0 is set to 0 after t= 20 s. The above
setup allows the amplitude of the rotational driver to gradually increase to its
maximum before t= 10 s and decrease to 0 at t= 20 s.

Data availability
Raw data of the SOT observations are available at http://sot.lmsal.com/. Observational
data from the SST and derived data supporting the findings of this study are available
from the corresponding author upon reasonable request. The source data underlying all
figures are provided as a Source Data file. Each figure corresponds to one npz file (except
that Supplementary Fig. 5 corresponds to a zip file that consists of four npz files for the
four panels) in the source data file. These npz files can be restored using the NumPy
package in Python. Each npz file contains a variable named as readme providing the
explanations of every variable stored.

Code availability
The source code of ASDA written in Python is open-access, available at https://github.
com/PyDL/asda. The Python wrapper for the FLCT is available at https://github.com/
PyDL/pyflct. The source code of SAC is available at http://ascl.net/1306.001 and

https://github.com/SWAT-Sheffield/SAC. The SolarSoft IDL package is available at
https://sohowww.nascom.nasa.gov/solarsoft/. The NumPy package for Python is
available at https://www.numpy.org/. Codes used for the correlation analysis are available
upon reasonable request.

Received: 29 August 2018 Accepted: 18 July 2019

References
1. Hubble, E. P. Realm of the Nebulae (Yale University Press, New Haven, 1936).
2. Attie, R., Innes, D. E. & Potts, H. E. Evidence of photospheric vortex flows at

supergranular junctions observed by FG/SOT (Hinode). AA 493, L13–L16
(2009).

3. Wang, Y., Noyes, R. W., Tarbell, T. D. & Title, A. M. Vorticity and divergence
in the solar photosphere. Astrophys. J. 447, 419–427 (1995).

4. Velli, M. & Liewer, P. Alfvén wave generation in photospheric vortex filaments,
macrospicules, and “Solar Tornadoes”. Space Sci. Rev. 87, 339–343 (1999).

5. Shelyag, S., Fedun, V., Keenan, F. P., Erdélyi, R. & Mathioudakis, M.
Photospheric magnetic vortex structures. Ann. Geophys. 29, 883–887 (2011).

6. Park, S.-H. et al. First simultaneous SST/CRISP and IRIS observations of a
small-scale quiet Sun vortex. AA 586, A25 (2016).

7. Mumford, S. J. & Erdélyi, R. Photospheric logarithmic velocity spirals as MHD
wave generation mechanisms. MNRAS 449, 1679–1685 (2015).

8. Wedemeyer-Böhm, S. & Rouppe van der Voort, L. Small-scale swirl events in
the quiet Sun chromosphere. AA 507, L9–L12 (2009).

9. De Pontieu, B. et al. On the prevalence of small-scale twist in the solar
chromosphere and transition region. Science 346, 1255732 (2014).

10. Fedun, V., Shelyag, S., Verth, G., Mathioudakis, M. & Erdélyi, R. MHD waves
generated by high-frequency photospheric vortex motions. Ann. Geophys. 29,
1029–1035 (2011).

11. Murawski, K. et al. Magnetic swirls and associated fast magnetoacoustic kink
waves in a solar chromospheric flux tube. MNRAS 474, 77–87 (2018).

12. Erdélyi, R. & Fedun, V. Are there Alfvén waves in the solar atmosphere?
Science 318, 1572–1574 (2007).

13. Wedemeyer-Böhm, S. et al. Magnetic tornadoes as energy channels into the
solar corona. Nature 486, 505–508 (2012).

14. Liu, J., Nelson, C. J. & Erdélyi, R. Automated swirl detection algorithm
(ASDA) and its application to simulation and observational data. Astrophys. J.
872, 22–37 (2019).

15. Kosugi, T. et al. The hinode (Solar-B) mission: an overview. Sol. Phys. 243,
3–17 (2007).

16. Scharmer, G. B., Bjelksjo, K., Korhonen, T. K., Lindberg, B. & Petterson, B.
The 1-meter Swedish solar telescope. In Keil, S. L. & Avakyan, S. V. (eds.)
Innovative Telescopes and Instrumentation for Solar Astrophysics. Proc. SPIE.
4853, 41–350 (2003).

17. Goldstein, M. L., Morris, S. A. & Yen, G. G. Problems with fitting to the
power-law distribution. Eur. Phys. J. B 41, 255–258 (2004).

18. Vernazza, J. E., Avrett, E. H. & Loeser, R. Quiet sun EUV brightness
components. Astrophys. J. Suppl. Ser. 45, 635–725 (1981).

19. Shelyag, S., Fedun, V. & Erdélyi, R. Magnetohydrodynamic code for
gravitationally-stratified media. AA 486, 655–662 (2008).

20. Withbroe, G. L. & Noyes, R. W. Mass and energy flow in the solar
chromosphere and corona. Ann. Rev. AA 15, 363–387 (1977).

21. Kudoh, T. & Shibata, K. Alfvén wave model of spicules and coronal heating.
Astrophys. J. 514, 493–505 (1999).

22. De Pontiou, B., Erdétyl, R. & James, S. P. Solar chromospheric spicules from the
leakage of photospheric oscillations and flows. Nature 430, 536–539 (2004).

23. Simon, G. W. & Zirker, J. B. A search for the footpoints of solar magnetic
fields. Sol. Phys. 35, 331–342 (1974).

24. Graftieaux, L., Michard, M. & Grosjean, N. Combining PIV, POD and vortex
identification algorithms for the study of unsteady turbulent swirling flows.
Meas. Sci. Technol. 12, 1422–1429 (2001).

25. Welsch, B. T., Fisher, G. H., Abbett, W. P. & Regnier, S. ILCT: Recovering
photospheric velocities from magnetograms by combining the induction
equation with local correlation tracking. Astrophys. J. 610, 1148–1156 (2004).

26. Fisher, G. H. & Welsch, B. T. FLCT: a fast, efficient method for performing
local correlation tracking. ASP Conf. Ser. 383, 373–380 (2008).

27. Gosain, S. & Pevtsov, A. A. Resolving Azimuth ambiguity using vertical nature
of solar quiet-sun magnetic fields. Sol. Phys. 283, 195–205 (2013).

28. Vernazza, J. E., Avrett, E. H. & Loeser, R. Structure of the solar chromosphere.
III—Models of the EUV brightness components of the quiet-sun. Astrophys. J.
Suppl. Ser. 45, 635–725 (1981).

29. Gent, F. A., Fedun, V., Mumford, S. J. & Erdélyi, R. Magnetohydrostatic
equilibrium—I. Three-dimensional open magnetic flux tube in the stratified
solar atmosphere. MNRAS 435, 689–697 (2013).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11495-0

8 NATURE COMMUNICATIONS |         (2019) 10:3504 | https://doi.org/10.1038/s41467-019-11495-0 | www.nature.com/naturecommunications

http://sot.lmsal.com/
https://github.com/PyDL/asda
https://github.com/PyDL/asda
https://github.com/PyDL/pyflct
https://github.com/PyDL/pyflct
http://ascl.net/1306.001
https://github.com/SWAT-Sheffield/SAC
https://sohowww.nascom.nasa.gov/solarsoft/
https://www.numpy.org/
www.nature.com/naturecommunications


Acknowledgements
We thank the Science and Technology Facilities Council (STFC, grant numbers ST/
M000826/1, ST/L006316/1) for the support to conduct this research. CJN also
acknowledges support by STFC consolidated grant ST/P000304/1. YW acknowledges
support by NSFC 41774178, 41574165 and 41761134088. Hinode is a Japanese mission
developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and
STFC (UK) as international partners. Hinode is operated by these agencies in co-
operation with ESA and NSC (Norway). The Swedish 1-m Solar Telescope is operated on
the island of La Palma by the Institute for Solar Physics of Stockholm University in the
Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de
Canarias. The Institute for Solar Physics is supported by a grant for research infra-
structures of national importance from the Swedish Research Council (registration
number 2017-00625). The SST data was collected as part of the observing time proposal
awarded in 2012 to RE as the PI. We thank the SOLARNET for the awarding of the
observing time and the data reduction.

Author contributions
J.L. led the development of the code. J.L. and C.J.N. performed the analysis of the data.
J.L. conducted the numerical simulation, with initial advices from B.S., Y.W. and R.E. led
the interpretation of the results. R.E. was the P.I. of the ground-based observations and
has led the overall research. All authors reviewed the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11495-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer Review Information: Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11495-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3504 | https://doi.org/10.1038/s41467-019-11495-0 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-019-11495-0
https://doi.org/10.1038/s41467-019-11495-0
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Evidence of ubiquitous Alfvén pulses transporting energy from the photosphere to the upper chromosphere
	Results
	Chromospheric swirls
	Correlation between photospheric and chromospheric swirls

	Discussion
	Methods
	Observations
	Swirl Detection Using ASDA
	Parameters of swirls
	Estimation of correlation indices and overlaps
	Numerical simulations

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


