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ABSTRACT

Context. Surface magnetic fields have been detected in 5-10% of isolated massive stars, hosting outer radiative envelopes. They are
often thought to have a fossil origin, resulting from the stellar formation phase. Yet, magnetic massive stars are scarcer in (close)
short-period binaries, as reported by the BinaMIcS (Binarity and Magnetic Interaction in various classes of Stars) Collaboration.
Aims. Different physical conditions in the molecular clouds giving birth to isolated stars and binaries are commonly invoked. In
addition, we propose that the observed lower magnetic incidence in close binaries may be due to nonlinear tides. Indeed, close
binaries are probably prone to tidal instability, a fluid instability growing upon the equilibrium tidal flow via nonlinear effects. Yet,
stratified effects have hitherto been largely overlooked.

Methods. We theoretically and numerically investigate tidal instability in rapidly rotating, stably stratified fluids permeated by mag-
netic fields. We use the short-wavelength stability method to propose a comprehensive (local) theory of tidal instability at the linear
onset, discussing damping effects. Then, we propose a mixing-length theory for the mixing generated by tidal instability in the non-
linear regime. We successfully assess our theoretical predictions against proof-of-concept, direct numerical simulations. Finally, we
compare our predictions with the observations of short-period, double-lined spectroscopic binary systems.

Results. Using new analytical results, cross-validated by a direct integration of the stability equations, we show that tidal instability
can be generated by nonlinear couplings of inertia-gravity waves with the equilibrium tidal flow in short-period massive binaries,
even against the Joule diffusion. In the nonlinear regime, a fossil magnetic field can be dissipated by the turbulent magnetic diffusion
induced by the saturated tidal flows.

Conclusions. We predict that the turbulent Joule diffusion of fossil fields would occur in a few million years for several short-period

massive binaries. Therefore, turbulent tidal flows could explain the observed dearth of some short-period magnetic binaries.
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1. Introduction

The magnetism of massive stars has sparked the interest of
astronomers for a long time (Babcock 1958). More recently,
large spectropolarimetric surveys of these stars have been under-
taken (Hubrig et al. 2014; Wade et al. 2015; Grunhut et al. 2016).
They have detected surface magnetic fields in 5—10% of pre-main
sequence and main-sequence massive stars (e.g. Alecian et al.
2019; Mathys 2017). In addition, a magnetic dichotomy has been
evidenced between the strong magnetism of chemically peculiar
A/B stars (e.g. Auriere et al. 2007; Sikora et al. 2018) and the
ultra-weak magnetism of Vega-like stars (Lignieres et al. 2009;
Petit et al. 2010, 2011; Blazere et al. 2016). The origin of these
fields is unclear. According to stellar evolution theory, massive
stars host thick outer radiative envelopes, which are stably strati-
fied in density. These envelopes are often assumed to be motion-
less in standard stellar models (e.g. Kippenhahn et al. 1990).
This severely challenges the classical dynamo mechanism (Parker
1979), which requires internal turbulent motions (for instance that
is convection in low-mass stars). Some dynamo mechanisms have
been proposed, such as relying on the convection of the innermost
convective core (Brun et al. 2005; Featherstone et al. 2009) gen-
erating magnetic flux tubes rising buoyantly towards the surface
(MacGregor & Cassinelli 2003; MacDonald & Mullan 2004), on
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differentially rotating flows (Spruit 1999, 2002; Braithwaite 2006;
Jouve et al. 2015) or on baroclinic flows (Simitev & Busse 2017).
However, the relevance of these mechanisms remains elusive and
debated.

The most accepted assumption is that magnetic fields in
massive stars have a fossil origin (Borraetal. 1982; Moss
2001), because they appear relatively stable over the observa-
tional period. The fields would be shaped in the stellar for-
mation phase and survive into later stages of stellar evolution.
The fossil theory is now well supported by the existence of
magnetic configurations stable enough to survive over a stel-
lar lifetime (Braithwaite & Spruit 2004; Braithwaite & Nordlund
2006; Reisenegger 2009; Duez & Mathis 2010; Duez et al. 2010;
Akgiin et al. 2013). Hence, the fossil theory may provide a uni-
fying explanation for the magnetism of intermediate-mass stars
(Braithwaite & Spruit 2017). However, the fossil hypothesis still
suffers from several weaknesses. In particular, we may naively
expect all massive stars to exhibit surface magnetic fields. This
is not consistent with the observations (e.g. Alecian et al. 2019;
Mathys2017). Moreover, the theory does not convincingly explain
the observed magnetic bi-modality (e.g. Auriere et al. 2007). To
solve theseissues, different physical conditions in the star-forming
regions are usually invoked (e.g. Commercon et al. 2010, 2011).
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An efficient way to assess this hypothesis is to survey close
binaries. Although the formation of binaries is not well under-
stood, we can reasonably assume that the two binary compo-
nents were formed together, under similar physical conditions.
Then, observing magnetic fields in the two components of a
(short-period) binary system would provide constraints to dis-
entangle initial condition effects from other possible physical
effects. The BinaMIcS (Binarity and Magnetic Interaction in var-
ious classes of Stars) Collaboration (Alecian et al. 2014a, 2019)
surveyed short-period massive binaries, aiming at providing new
constraints on the magnetic properties of massive stars. About
170 short-period, double-lined spectroscopic binary binary sys-
tems on the main-sequence have been analysed by the BinaMIcS
Collaboration (Alecian et al., in prep.). They have typical orbital
periods of Ty, < 20days and a separation distance between the
two components of D < 1 au.

A magnetic incidence of about 1.5% has been measured in
the BinaMIcS sample. This is much lower than what is typi-
cally found in isolated hot stars (see above). Therefore, radia-
tive stars in short-period binary systems are apparently much
less frequently magnetic than in isolated systems. This con-
firms the general trend observed in other studies, dedicated to
intermediate-mass A-type stars (e.g. Carrier et al. 2002; Mathys
2017). It also extends it to hotter and more massive stars. Note
that magnetic fields have been mostly observed only in one of the
two components of the close binaries (Alecian et al. 2019), with
a notable exception in the € Lupi system (Shultz et al. 2015). If
initial conditions were solely responsible for the presence of a
fossil field, then we would naively expect fossil fields in the two
components of a magnetic binary. This is clearly not a general
trend. Thus, these puzzling observations defy the theories that
are commonly invoked. They lead to scientific questions such as
the following: is it due to formation processes (Commergon et al.
2011; Schneider et al. 2016), that exclude more magnetic fields
in binaries than in single stars? Or is there any other mechanism
in close binaries, responsible for relatively quick dissipation of
magnetic fields?

An alternative scenario is to invoke mixing in radiative
envelopes, that may dissipate the pervading fossil fields dynam-
ically. Identifying mixing sources in radiative stars is a long
standing issue (see the review in Zahn 2008), because mix-
ing also affects the transports of chemical elements and of
angular momentum. Shear-driven turbulence, induced by the
(expected) differential rotation of radiative envelopes (e.g.
Goldreich & Schubert 1967; Rieutord 2006), has been largely
investigated (e.g. Zahn 1974; Mathis et al. 2004, 2018).

A more efficient mixing in short-period stellar binaries may
be provided by tides. Indeed, short-periods binaries are strongly
deformed (e.g. Chandrasekhar 1969; Lai et al. 1993). Tides pro-
ceed in two steps. First, they generate a quasi-hydrostatic tidal
bulge, known as the equilibrium tidal velocity field (Zahn 1966;
Remus et al. 2012). This leads to angular momentum exchange
between the orbital and spinning motions. Second, they induce
dynamical tides (e.g. Zahn 1975; Rieutord & Valdettaro 2010),
that is waves propagating here within the radiative regions.
Radiative envelopes support the propagation of many waves
that are continuously emitted by various mechanisms (e.g.
Gastine & Dintrans 2008a,b; Mathis et al. 2014; Edelmann et al.
2019). Among them, internal gravity waves (Dintrans et al.
1999; Mirouh et al. 2016) do induce mixing processes in radia-
tive regions (Schatzman 1993; Rogers & McElwaine 2017).

However, the aforementioned tidal effects are only lin-
ear processes. They are certainly relevant for the weak tides
observed in the solar system and in extra-solar planets (Ogilvie
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2009). Yet, they may be inefficient to modify fossil fields
on their own. Moreover, nonlinear effects can significantly
modify the outcome of the tidal response, and thereby the
influence of tides on fossil fields. Indeed, the equilibrium
tidal flow can be unstable against tidal instability in stars
(e.g. Rieutord 2004; Le Barsetal. 2010; Barker & Lithwick
2013a,b; Clausen & Tilgner 2014; Barker et al. 2016; Barker
2016; Vidal & Cébron 2017; Vidal et al. 2018). This fluid insta-
bility is the astrophysical version of the generic elliptical insta-
bility, which affects all rotating fluids with elliptically deformed
streamlines (Bayly 1986; Pierrehumbert 1986; Waleffe 1990;
Gledzer & Ponomarev 1992; Le Dizes 2000). The underlying
physical mechanism is nonlinear triadic resonances between two
waves and the background elliptical velocity (Kerswell 2002).
Hence, in stellar interiors, the origin of tidal instability is a res-
onance between rotational waves and the underlying strain field
responsible for the elliptic deformation, that is the equilibrium
tidal flow. The nonlinear saturation of tidal instability can exhibit
a wide variety of nonlinear states in homogeneous fluids, such
as space-filling small-scale turbulence (Le Reunetal. 2017,
Le Reun & Favier 2019) or even global mixing (Grannan et al.
2016; Vidal et al. 2018). Interestingly, Clausen & Tilgner (2014)
investigated the influence of compressibility on the stability lim-
its of tidal instability in stars or planets. They showed that
fluid compressibility has almost no effect on the onset of tidal
instability.

Yet, the fate of tidal instability in stratified fluid interiors is
poorly known. On the one hand, theoretical studies have shown
that an axial density stratification, aligned with the spin angu-
lar velocity, has stabilising effects (Miyazaki & Fukumoto 1991,
1992). Moreover, in the equatorial region, radial stratification
can either increase or decrease the growth rate of the insta-
bility (Kerswell 1993a; Le Bars & Le Dizes 2006; Cébron et al.
2013). On the other hand, three-dimensional numerical simula-
tions suggest that tidal instability is largely unaffected in strat-
ified interiors, for a wide range of stratification (Cébron et al.
2010; Vidal et al. 2018). Therefore, a consistent global picture
of tidal instability in stably stratified interiors is highly desir-
able. Indeed, this is a prerequisite to assess the astrophysical rel-
evance of tidal instability for the stellar mixing in close massive
binaries.

The present study has a twofold purpose. First, we aim to
propose a predictive global theory of tidal instability in idealised
stratified interiors. Such a theory should accurately predict the
onset of instability, reconciling within a single framework previ-
ous theoretical analyses (Miyazaki & Fukumoto 1992; Miyazaki
1993; Kerswell 1993a; Le Bars & Le Dizes 2006) and numeri-
cal studies (Cébron et al. 2010; Le Reun et al. 2018; Vidal et al.
2018). Then, asymptotic predictions for the (nonlinear) tidal
mixing, as found numerically in Vidal et al. (2018), must be
obtained to carry out the astrophysical extrapolation. Second,
we aim to propose a new physical scenario of turbulent Joule
diffusion of fossil fields, compatible with the observed lower
magnetic incidence in short-period massive binaries as analysed
by the BinaMIcS Collaboration (Alecian et al., in prep.). The
paper is organised as follows. In Sect. 2, we present the ide-
alised model. In Sect. 3, we investigate the linear regime of tidal
instability in stratified interiors. In Sect. 4, we develop a mixing-
length theory of the (turbulent) tidal mixing, which is compared
with proof-of-concept simulations. Then, we attempt to propose
a novel scenario for close binaries in Sect. 5, which is applied to
short-period binary systems analysed by the BinaMIcS Collabo-
ration. Finally, we end the paper with a conclusion in Sect. 6 and
outline some perspectives.
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2. Formulation of the problem
2.1. Assumptions

The full astrophysical problem is rather complex. Hence, we
consider an idealised model, for which numerical simulations
can be conducted and compared with theory. We describe here
the main assumptions, as they will be used throughout the paper.
Our model retains the essential features to study tidal instabil-
ity: rotation, stratification, magnetic fields and a tidally deformed
geometry.

We consider a primary self-gravitating body of mass M; and
volume V, filled with an electrically conducting and rotating
fluid. Radiative fluid envelopes are expected to undergo differen-
tial rotation (Goldreich & Schubert 1967), for instance provided
by the contraction occurring during the pre-main-sequence phase
or baroclinic torques (Busse 1981, 1982; Rieutord 2006). How-
ever, differential rotation tends to be smoothed out by hydromag-
netic effects (e.g. Moss 1992). In particular, differential rotation
may sustain magneto-rotational instability, ultimately leading a
state of solid-body rotation (Arlt et al. 2003; Riidiger et al. 2013,
2015) on a few Alfvén timescales (Jouve et al. 2015). Conse-
quently, we assume that the radiative envelope is uniformly
rotating.

Then, the primary is orbited by a companion star of mass M.
We investigate here only short-period, non-coalescing binaries.
Due to the interplay between rotation and gravitational effects,
the shape of each binary component departs from the spheri-
cal geometry. We do not seek here the mutual tidal interactions
between the primary and the secondary. Indeed, at the leading
order, the primary (or the secondary) is a triaxial ellipsoid in
solid-body rotation (e.g. Chandrasekhar 1969; Lai et al. 1993),
as obtained by modelling the other component by a point-mass
companion. Therefore, for the sake of simplicity, we treat the
secondary as a point mass for the orbital dynamics (e.g. Hut
1981, 1982).

The secondary rises an equilibrium tide (Zahn 1966;
Remus et al. 2012) on the fluid primary, with a typical equato-
rial amplitude denoted Sy. An initially eccentric binary system,
with non-synchronised rotating components, evolves towards an
orbital configuration characterised by a circular orbit and, ulti-
mately, the system will be synchronised (Hut 1981, 1982). For
weakly elliptic orbits, Nduka (1971) showed that the ellipsoidal
distortion By points toward the tidal companion at the lead-
ing order. Vidal & Cébron (2017) also showed that weak orbital
eccentricities have little effects on the internal fluid dynamics
of the primary (at the leading order in the eccentricity). Thus,
we assume that the binary system is circularised (or weakly
eccentric), with an equatorial bulge aligned with the orbital
companion.

Then, we consider only the leading-order component of the
tidal potential, associated with the asynchronous tides (Ogilvie
2014). The fluid spin and orbital angular velocities are coplanar
and aligned in the inertial frame. Note that this is the expected
equilibrium state of the system (e.g. Chandrasekhar 1969). The
other tidal components, for instance obliquity tides, are mainly
responsible for additional fluid instabilities that are superim-
posed on tidal instability (e.g. Kerswell 1993b). They can be
neglected in a first attempt.

Within the fluid primary, diffusive effects appear at the sec-
ond order for tidal instability, in the absence of significant
surface diffusive effects at a free boundary (Rieutord 1992;
Rieutord & Zahn 1997). Hence, we assume that the fluid has
a uniform kinematic viscosity v, a radiative (thermal) diffu-
sivity «r (Kippenhahn et al. 1990) and a magnetic diffusivity

Orbit
@Qorb
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Companion (M)

Fluid body (M)

Fig. 1. Sketch of idealised orbital configuration between primary body
of mass M; and secondary one of mass M,. View from above in the
inertial frame. Coplanar and aligned spin and orbital angular velocities
[Qs, Qorb]-

n = 1/(uoo), where o is the electrical conductivity and u the
magnetic permeability of free space. Finally, Clausen & Tilgner
(2014) showed that compressibility has almost no effect on tidal
instability. Therefore, we model density variations departing
from the isentropic profile within the Boussinesq approximation
(Spiegel & Veronis 1960).

2.2. Governing equations

The radiative star is modelled as a tidally deformed, uniformly
rotating and stably stratified fluid domain in the Boussinesq
approximation. The fluid domain, of typical density py =
M, /V, is rotating at the angular velocity € in the inertial frame.
The orbital configuration is illustrated in Fig. 1. The orbital
angular velocity in the inertial frame is denoted Qg 1,, with
Qo # s for a non-synchronised orbit. In the central frame, in
which the boundary shape is stationary, the outer boundary 0V
of the fluid domain describes an ellipsoid (e.g. Chandrasekhar
1969; Lai et al. 1993). Its mathematical expression in Cartesian
coordinates (x,y, z) is

2 2 2

@)+ G) G- <
a b c

where (a,b,c) are the semi-axes. The equatorial ellipticity is

defined by 8y = |a* — b?|/(a* + b?).

In the following, we work in dimensionless variables. To do
so, we choose a typical radius R of the fluid domain as unit of
length, Q;l as a unit of time, QfR/(ozTgo) as unit of the tem-
perature with go a typical value of the gravity field at the outer
boundary and a the thermal expansion coefficient (at constant
pressure). For the magnetic field, we choose R +/ompo as typ-
ical unit. We also introduce the dimensionless orbital frequency
Qo = Qo /. The dimensionless variables are the velocity field
v, the temperature field 7', the magnetic field B and the gravity
field g. They are written without *, to distinguish them from their
dimensional counterparts [v*, T*, B*,g*]. The field variables, at
the position r and time ¢, are governed in the rotating central
frame by momentum, energy and induction equations. They read

d

8—';:—(u-V)v—molz><v—V(P+Pm)+EkV2v
~Tg+(B-V)B, (2a)

T Ek
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Table 1. Typical values of dimensionless numbers for stellar interiors.
CZ: stellar convective zones, e.g. in the Sun (Charbonneau 2014). RZ:
(rapidly) rotating radiative zones (e.g. Rieutord 2006).

Number Symbol CZ RZ
Ekman Ek 10°1¢ 10718
Prandtl Pr 1076 1076
Magnetic Prandtl ~ Pm 10 107
Magnetic Ekman Em 10710 10712
Brunt—Viisild No/Qs 0 0-100
Lehnert Le 1075 <10

Notes. Note that Ny = 0 in convective envelopes. The order of magni-
tude of the Lehnert number in RZ has been estimated from the typical
values for the scarce short-period magnetic binaries given in Table 4.

V.-v=V:-B=0, (2d)
with P the hydrostatic pressure (including centrifugal effects),
P, = |B|?/2 the magnetic pressure, Q a heat source term and
g = —V @, the (imposed) gravity field in the Boussinesq approx-
imation. In governing Egs. (2), we have introduced as dimen-
sionless numbers the Ekman number Ek = v/(QR?), the Prandtl
number Pr = v/kr, the magnetic Prandtl number Pm = v/n and
the magnetic Ekman number Em = Ek/Pm. Typical values are
given in Table 1 for stellar interiors. The latter are characterised
by weakly diffusive conditions (that is Ek, Ek/Pr, Ek/Pm < 1).
This regime will greatly simplify the analysis of tidal instability.

We do not directly solve full Egs. (2). Indeed, a reference
ellipsoidal state is always first established, on which tidal insta-
bility grows upon and nonlinearly saturates. We expand the
field variables as perturbations (not necessarily small) around a
steady reference ellipsoidal basic state [Uy, To](r) (detailed in
Sect. 2.3). Thus, the dimensionless nonlinear governing equa-
tions for the perturbations [u,®](r,7) and the magnetic field
B(r,t) are

((11—1: +@Vyu=-u-V)Uy—2Qp1; xu—V(p+ Pp)
+EkV’u—-0Og + (B-V)B, (3a)
% +@V)® =-V)T) + i—sz@’ (3b)
86—?+V><(B><u):V><(Uo><B)+EmV23’ (3¢)
V.u=V-B=0,B(r,t=0) = Byr), Gd)

with d/d¢t = 9/dt+ (U, V) the material derivative along the basic
flow p the hydrodynamic pressure and B(r) the (initial) fossil
field. For the proof-of-concept simulations introduced in Sect. 4,
the equations will be supplemented by appropriate boundary
conditions.

2.3. Reference ellipsoidal configuration

We consider a steady reference equilibrium state, for which
isopycnals coincide with isopotentials of the gravitational poten-
tial @g (including centrifugal force, self-gravity and tides). This
assumption is consistent with compressible models (Lai et al.
1993). Hence, we assume that the background temperature pro-
file Ty(r) and the gravity field g, solutions of Egs. (2a) and (2b),
are in barotropic equilibrium (for a well-chosen Q) such that
g %X (VTy) = 0. We do not consider the baroclinic part, which is
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known to increase the growth rate of tidal instability in the equa-
torial plane (Kerswell 1993a; Le Bars & Le Dizes 2006). In the
nonlinear regime, a baroclinic state would certainly sustain tidal
turbulence in stellar interiors. However, we focus here on the less
favourable configuration for the growth of tidal instability (that is
barotropic stratification). This choice is also consistent with the
assumed uniform rotation of the fluid. Indeed, baroclinic torques
are known to sustain differential rotation (e.g. Busse 1981, 1982;
Rieutord 2006). Moreover, considering barotropic stratification
is a relevant assumption when the isopycnals move sufficiently
fast to keep track of the rotating tidal potential (Le Reun et al.
2018). This situation is expected when stratification is large
enough in amplitude compared with the differential rotation
Qg — Qo between the spin and the orbit.

To characterise the strength of stratification, we introduce the
dimensional (local) Brunt—Viisild frequency N in the reference
state. In dimensional variables, the latter is defined by

N? = —arg*-VT}. 4)

The fluid ellipsoid is assumed to be entirely stably stratified in
density (N? > 0). The exact profiles in stellar interiors depend
on the stellar internal processes. However, we want to compare
analytical and numerical computations, which cannot be done
for arbitrary profiles. Thus, we assume that the dimensionless
total gravitational potential is quadratic, such that

2 2 2
= (3) + (G () ®
a b c

Then, we consider the (dimensionless) reference temperature
in barotropic equilibrium 7y = (Ng / Qg) @, with Ny a typical
value of the Brunt—Viisilid frequency at the outer boundary. For
intermediate-mass stars with M; = 3 M (where My, is the solar
mass), a typical value is Ny ~ 1073 57! (e.g. Rieutord 2006),
and typical values of Q' range between 1 and 100 days (Mathys
2017). This give the estimate 0 < Ny/Qg < 100 in radiative stars.
Hence, a barotropic reference configuration is a reasonable start-
ing assumption.

The ellipsoid is initially permeated by an fossil magnetic
field Bo(r) (in dimensionless form). To measure its relative
strength (with respect to rotation), we introduce the (dimension-
less) Lehnert number (Lehnert 1954)

B;
QR pwiro’

where By is the typical (dimensional) strength of the fossil field.
The Lehnert number is the ratio of the Alfvén and rotational
velocities. When Le < 1, the Coriolis force dominates the
Lorentz force in momentum Eq. (2a). The regime Le < 1 is
encountered in many magnetic stars (Table 1). In the Sun, a typ-
ical value is Le ~ 107 (Charbonneau 2014). For the scarce
magnetic binaries which have been observed, the median field
strength is B ~ 1kG (see also values in Table 4). This gives the
typical values Le < 1075—107*. Hence, we focus on the regime
Le < 1 in the following.

Finally, the orbital configuration drives the equilibrium
tidal flow (e.g. Remus et al. 2012). For non-synchronised orbits
(Qp # 1), its leading-order flow components in the central frame
are (e.g. Cébron et al. 2012a; Vidal & Cébron 2017)

Uo(r) = (1 = Qo) [~(1+Bo)y L + (1 = Bo)x 1, )

with [1,,1,,1;] the unit Cartesian vectors. This is an exact
incompressible solution of hydrodynamic momentum Eq. (2a)

Le (6)
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without diffusion. Moreover, it satisfies the non-penetration con-
dition Uy - 1, = 0 at the boundary 9V, with 1, the unit out-
ward normal vector. Note that basic flow (7) is not rigorously
a solution in the presence of an arbitrary magnetic field. Yet,
the large-scale poloidal and toroidal components of By(r) are
unlikely to modify the equilibrium tidal flow in the weak field
regime Le < 1 as often assumed (e.g. Kerswell 1993a, 1994;
Mizerski & Bajer 2011).

3. Onset of tidal instability

We present the stability analysis of tidal instability at the linear
onset. First, we outline the general stability method in Sect. 3.1.
In Sect. 3.2, we carry out an asymptotic analysis to get physi-
cal insight of the instability mechanism. The latter mechanism
is compared and validated with the (numerical) solutions of the
full stability equations in Sect. 3.3, without making any prior
assumption. Finally, we discuss the (laminar) magnetic diffusive
effects in Sect. 3.4.

3.1. Short-wavelength perturbations

In the absence of any driving mechanism, a fossil field By slowly
decays on the Ohmic diffusive timescale (€ Ek/Pm)~'. This
time is larger than the typical lifetime of the least massive stars
on the main-sequence (e.g. Braithwaite & Spruit 2017). How-
ever, Egs. (3) support the propagation of several waves in rotat-
ing radiative interiors, characterised by Le < 1 and Ny/Qg > 1
(see Table 1). They can strongly modify the dynamical evolu-
tion of radiative envelopes. These waves are continuously emit-
ted and, in the presence of tides, they can be nonlinearly coupled
with the equilibrium tidal velocity field U to sustain tidal insta-
bility. Tidal instability is intrinsically a local (small scale) insta-
bility (Kerswell 2002; Cébron et al. 2012a; Barker & Lithwick
2013a,b), but it also exists in global models (e.g. Kerswell
1993a; Grannan et al. 2016; Vidal et al. 2018). The global stabil-
ity analysis is beyond the scope of the present study. However, in
the diffusionless regime, three-dimensional global perturbations
of small enough length scales are excited (e.g. Vidal & Cébron
2017), such that they are not affected by the boundary. Hence,
we can advantageously investigate the growth of tidal instabil-
ity in stellar interiors by performing a local stability analysis. In
Appendix A, we have extended the general local stability theory
to account for combined magnetic and buoyancy effects within
the Boussinesq approximation.

We focus on the subsonic wave spectrum (low Mach num-
ber), made of MAC (Magneto-Archimedean-Coriolis) waves.
Indeed, high-frequency sonic waves are not involved in tidal
(elliptical) instability (Le Duc 2001), though they may be
coupled with tides (e.g. in coalescing binary neutron stars,
see Weinberg 2016). The properties of MAC waves have
already been outlined elsewhere (e.g. Gubbins & Roberts 1987;
Mathis & de Brye 2011; Sreenivasan & Narasimhan 2017).
Note that they have global bounded counterparts, known
as Magneto-Archimedean-Coriolis (MAC) modes. The global
modes are briefly discussed in Appendix B. The wave spectrum
is bounded from below by slow Magneto-Coriolis (MC) waves,
sustained by the Lorentz and Coriolis forces with an angular fre-
quency w; scaling as |w;| o Le? (e.g. Malkus 1967; Labbé et al.
2015). The spectrum is bounded from above by internal gravity
waves (modified by rotation), with an angular frequency |w;| <
N/, for strong stratification (Friedlander & Siegmann 1982a).
In-between, the spectrum exhibits Coriolis waves (Greenspan

1968; Backus & Rieutord 2017) and inertial-gravity (or gravito-
inertial) waves (e.g. Dintrans et al. 1999; Mirouh et al. 2016).

In the weak field limit Le < 1, magnetic effects are negli-
gible (at the leading order) on inertial waves (Schmitt 2010;
Labbé et al. 2015) and gravito-inertial ones, as outlined in
Appendix B. Moreover, only nonlinear couplings of iner-
tial and gravito-inertial waves can trigger tidal instability
with significant growth rates to overcome the leading-order
diffusive effects (Kerswell 1993a, 1994), as we confirm in
Appendix C. This behaviour is also supported by local simu-
lations (Barker & Lithwick 2013a) and global dynamo numer-
ical simulations in homogeneous (Cébron & Hollerbach 2014;
Reddy et al. 2018) and stratified fluids (Vidal et al. 2018). They
showed that even a dynamo magnetic field only barely modifies
the hydrodynamic tidal flows. Therefore, we can consider only
the hydrodynamic Boussinesq stability equations in relevant the
weak field regime Le < 1. The leading-order magnetic effect is
the Joule diffusion. From the values given in Table 1, diffusive
effects can be a priori neglected at the first order of the stabil-
ity theory. We will confirm that this assumption is relevant by
reintroducing them in Sect. 3.4.

We seek three-dimensional local perturbations, solution of
linearised hydrodynamic Egs. (3). To do so, we consider short-
wavelength (WKB) perturbations (Lifschitz & Hameiri 1991;
Friedlander & Vishik 1991). They are local (plane-wave) per-
turbations, barely sensitive to the ellipsoidal boundary 9V,
advected along the fluid trajectories X(¢) of Uy(r). Given basic
tidal flow (7), the Eulerian three-dimensional perturbations are
expressed as

[, ©1(r, 1) = [@, OI(r, 1) exp(ik(t) - 1), k()] = ko, 8)

where k(¢) is the local wave vector with the initial value kg. The
local stability equations are solved in Lagrangian formulation,
yielding the following ordinary differential equations (in dimen-
sionless form)

%’f = Up(X), X(0) = Xo, (%)
%I; = (VU) k, k(0) = ko, (9b)
%i‘; - [(% —I)VU0 +2(% —I)Qolzx T

_ @5(1 _ %)g %)
%? =-@-V)T, ©d)

with D/Dr¢ the Lagrangian time derivative. The solenoidal con-
dition @ - k = 0 is satisfied as long as it holds at the initial time,
that is @(0) - ko = 0 in the Lagrangian description. Equations (9)
do depend on the fluid trajectories X(¢), because the gravity field
g is spatially varying.

Equations (9) are ordinary differential equations along the
Lagrangian trajectories X(#). They are also independent of the
magnitude of ko in the diffusionless limit. We follow Le Dizes
(2000), by restricting the initial wave vector to the unit spherical
surface
ko = sin(fp) cos(¢p) 1, + sin(6p) sin(¢pp) 1, + cos(bp) 1, (10)

where ¢ € [0, 2r] is the longitude and 6, € [0, 7] is the colati-
tude between the spin axis 1, and the wave vector ky. In practice,
Eqgs. (9) are integrated from a range of wave vectors kg and initial
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positions X within the reference ellipsoidal domain. The basic
state is unstable against short-wavelength perturbations if
lim ([2(1. Xo. ko)l +160t, Xo. ko)) = eo. (1)
Then, we determine the maximum (diffusionless) growth rate o
as the fastest growing solution for all initial conditions, that is

the largest Lyapunov exponent. This gives a sufficient condition
for instability.

3.2. Asymptotic analysis

Equilibrium tidal flow (7) admits analytical periodic fluid trajec-
tories X(7) and wave vectors k(t), solution of Egs. (9a) and (9b).
To get physical insight of the instability mechanism, we carry
out an asymptotic analysis in the limit Sy < 1. We expand all

quantities (X, k,%, ®) in successive powers of By (see technical
details in Le Dizes 2000).

3.2.1. Triadic (nonlinear) couplings

It has been recognised for a long time that tidal instability is a
parametric instability in homogeneous (e.g. Bayly 1986; Walefte
1990) and stratified fluids (e.g. Miyazaki & Fukumoto 1992;
Miyazaki 1993). The instability is due to triadic interactions
between pairs of waves that are coupled with the underlying tidal
flow (7). At the leading asymptotic order (8y = 0), a necessary
condition for a parametric tidal instability in rotating fluids is
given by the resonance condition in the central frame (Kerswell
2002; Vidal & Cébron 2017)
lwi —wj+ 6] =2]1 - Qg 12)
where [w;, w;] are the angular frequencies of two free waves
and 6 a small detuning parameter, allowing for imperfect res-
onances (Kerswell 1993a; Le Dizes 2000; Lacaze et al. 2004;
Vidal & Cébron 2017). The latter are due to either diffusive or
topographic effects (6 — O for diffusionless fluids and weakly
deformed spheres 5y < 1). Detuning effects are negligible in
the astrophysical regime (almost diffusionless and with By <«
1). Note that the case of synchronised orbits, characterised by
Qo = 1 (in average), is forbidden by condition (12). Synchro-
nised orbits must be treated separately (see Appendix D).

Among the aforementioned resonances, sub-harmonic reso-
nances are characterised by w; = —w;. Then, resonance condi-
tion (12) reduces (in the diffusionless regime) to
|wil = 1 = Col, (13)
which is a necessary condition for sub-harmonic tidal insta-
bility. Sub-harmonic resonances have been found to be the
most unstable in homogeneous fluids (Kerswell 1993a, 1994;
Le Dizes 2000; Vidal & Cébron 2017), that is generating the
largest growth rates.

We are now in a position to survey the possible nonlinear
couplings of the different types of waves that can trigger tidal
instability. The waves can be combined in several ways to sat-
isfy the resonance condition in non-synchronised systems. For
instance, from condition (13), tidal instability traditionally exists
in the orbital range —1 < €y < 3 when it involves Coriolis
waves (e.g. Craik 1989; Le Dizes 2000; Vidal & Cébron 2017).
We investigate in depth the coupling of hydrodynamic waves,
postponing the discussion of hydromagnetic waves (unimportant
for the present problem) to Appendix C.
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Fig. 2. Domains of existence of sub-harmonic resonances (13), as a
function of Qyp = Qu,/Q and Ny/CQs. In white regions, no waves
can satisfy sub-harmonic resonance condition (13). Stars (yellow area):
hyperbolic waves ;. Right slash (purple area): hyperbolic waves H.
Dots (green area): elliptic waves &;. Back slash (blue area): elliptic
waves &,. The classical allowable region of tidal instability (for neu-
tral fluids) is —1 < Q, < 3. wave-like domains [H;, H-] are illustrated
in Fig. 3. Similarly, wave-like domains [&,, &,] are illustrated in Fig. 4.
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3.2.2. Hydrodynamic waves at the parametric resonance

The behaviour of tidal instability is intrinsically associated with
the properties of the waves involved in the triadic resonances.
The wave-like equation, introduced in Appendix B, is a mixed
hyperbolic-elliptic partial differential equation. In the general
case, a wave-like hyperbolic domain coexists with an ellip-
tic domain, in which the waves are evanescent. At the leading
asymptotic order By = 0, the characteristic curve delimiting the
two domains is (Friedlander & Siegmann 1982b)
Z+ Swi (W] - 4) = W} [(No/ ), (14)
with s the cylindrical radius. The hydrodynamic wave spec-
trum is divided in two main regimes. On the one hand, we have
inertial waves modified by gravity, called inertial-gravity waves
and denoted H. They have hyperbolic turning surfaces given by
Eq. (14). They are sub-divided in two families given by

(15a)
(15b)

H, : (No/Q)* < W} < 4,

Hy 1 0 < w? < min [4, (No/Q)?].
On the other hand, we have gravity waves modified by rotation,
called gravito-inertial waves and denoted &. They have ellip-
soidal turning surfaces given by Eq. (14). They are also divided
in two families, characterised by

& 14 < w? < (No/Q)%,

&y : max [4, (No/Q)*] < w? <4+ (Ng/Q)*.

(16a)
(16b)

These properties are quite general, because Eq. (14) depends
solely on the reference state. Therefore, both global modes (e.g.
Dintrans et al. 1999) and local waves propagating upon this ref-
erence configuration exhibit this distinction.

The different families of waves satisfying sub-harmonic res-
onance condition (13) are illustrated in Fig. 2. This is the main
result of the linear theory, as this provides a necessary (and suf-
ficient, see below) condition for the existence of tidal instability
(in both global and local models). Two kinds of tidal instability
can be obtained, depending on the value of key parameter Q. At
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the leading asymptotic order, we have obtained a general expres-
sion for sub-harmonic resonance condition (13) in the local the-
ory, which can be written as

w+ Ngrg [(ﬁgrg — @) cos? ap — cos(2ap)]

COSZ(HO) = ~ N2,2 [N2,2 ~
w? + Nyrg [Ngrg — 2w cos(2ay)]

2 Jon [@(1 - N2+ N2r — 1] )
+ —, —, )
@* + N3rZ [N3rt — 2w cos(2e)]

with the background rotation Qy=Qu/(1 — Qp), No =
(No/Q)/I1 = Qol, @ = 4(1 + Q)?, the initial position X, =
(xo,zo)lz 1o (sin @, cos )T where rq is the initial radius and
w; = Ngrg cos? sin’ ag. The associated wave-like domains
and colatitude angles 6y are shown in Figs. 3 and 4.

The classical allowable range of the instability in homoge-
neous fluids is =1 < Qp < 3 (Craik 1989; Le Dizes 2000).
Within this range, the sub-harmonic condition involves only H
waves, as shown in Fig. 2. For neutral stratification (Ny = 0),
they are inertial waves H,, propagating in the whole fluid cav-
ity (Friedlander & Siegmann 1982b). They have the colatitude
angle at the sub-harmonic resonance (Le Dizes 2000)

1
2 cos(fp) = — =1-0Qy.
1+ Q

(18)

This remains valid in weakly stratified fluids (that is Ny/Qs <
1). Indeed, H, waves are only slightly modified by buoyancy.
They still propagate in the whole fluid domain, as shown in Fig. 3
(left panel). In addition, their colatitude angle 6 is slightly larger
than the value predicted by formula (18) on the polar axis.

When Ny/Qg > 1, H; waves morph into H, waves made
of inertia-gravity waves. These waves are strongly modified by
buoyancy. Their wave-like domain is confined between hyper-
boloids, as shown in Fig. 3 (right panel). Outside the hyperboloid
volume, these waves at the sub-harmonic resonance are evanes-
cent (in global models). The characteristic curve delimiting the
wave-like and evanescent domains, given by Eq. (14), is hyper-
bolic. Along the rotation axis, local waves at the sub-harmonic
resonance do not propagate in the evanescent regions for vertical
positions z. satisfying

1-Qf

>
|Zc| = NO/QS

(19)
This shows that axial stratification has a stabilising effect.

This behaviour is responsible for an equatorial trapping of
the waves in the other directions at the sub-harmonic resonance.
Indeed, the hyperbolic wave-like domain, bounded by (14), con-
verges towards the conical volume delimited by the asymptotic
limit cos(6.) = |1 — Qp|/2 (Friedlander & Siegmann 1982b),
where 6, is the critical colatitude. This is exactly formula (18).
Therefore, expression (18) also defines the position of the critical
latitudes at which the waves at the sub-harmonic resonance have
a group velocity orthogonal to the gravity field (here the radial
direction at the leading order in ), that is a wave vector k o«
g. Hence, these specific waves are insensitive to stratification.
We emphasise that the presence of stratification does not alter
the position of the critical latitudes (Friedlander & Siegmann
1982a,b). When |1 — Q| — 0, the waves at the sub-harmonic
resonance are equatorially trapped according to formula (18).

The orbital range Qy < —1 and ©y > 3 is known as the for-
bidden zone. In this range, tidal instability must involve gravito-
inertial waves & for the sub-harmonic mechanism, whatever the

strength of stratification. Indeed, Fig. 2 clearly shows that the
waves at the sub-harmonic resonance depend only on the value
of the orbital frequency ©Qy. When Ny/Q < 1, the sub-harmonic
condition is never satisfied within this orbital range. Hence, no
tidal instability is triggered.

However, gravito-inertial waves & can be excited at the sub-
harmonic resonance for strong stratification, typically Ny/Qg >
1 when |Qg| increases. Their critical characteristic surfaces,
given by Eq. (14), are ellipsoidal. On the one hand, &, gravito-
inertial waves are trapped in a region that does not encompass
the polar axis, as shown in Fig. 4 (left panel). The minimum
distance between the spin axis and the wave-like domain in the
equatorial plane is given by (Friedlander & Siegmann 1982b)

VIT=QP -4
NO/QS

Therefore, the thickness of the wave-like domain increases when
the ratio Ny/€) increases. On the other hand, & waves at the
sub-harmonic resonance are gravito-inertial waves, trapped in
a region that excludes the central part of the fluid (right panel
of Fig. 4). Along the polar axis, these waves do not propagate
when z is smaller than critical value (19). The size of wave-
like domain increases when the ratio Ny/€), increases. In the
limit Ny/Qg — oo, these waves become almost pure internal
gravity waves, propagating in the whole fluid domain at the
sub-harmonic resonance. This situation has been investigated
numerically in local models (Le Reun et al. 2018), by assuming
Qs =0.

(20)

Xec =

3.2.3. Asymptotic growth rate in the equatorial plane

At the next asymptotic order in [y, we can obtain a concise
explicit formula for the growth rate o of tidal instability, valid
in the equatorial plane zo = 0. Dispersion relation (17) gives, for
ao = m/2 (after simplification),

o+ ﬁgx(z) cos(p) = =1

with xp < 1 the position of the initial trajectory Xy in the equa-
torial plane. In the particular case Qy, = 0, Eq. (21) recovers
Eq. (4.6) of Le Bars & Le Dizes (2006).

Several configurations are possible, depending on the param-
eters. On the one hand, the LHS of Eq. (21) is purely imaginary
when —N;xj > @, when stratification is unstably stratified (with
Ng /Q2 < 0). Then, a centrifugal instability grows upon the ref-
erence configuration, with a maximum (dimensionless) growth
rate (e.g. Le Bars & Le Dizes 2006)

0- —
11— Qol
On the other hand, tidal instability is triggered when all terms in
Eq. (21) are real. Hence, no sub-harmonic instability is possible
when Ngxé < =3-4Q (2+ Q). This defines the forbidden zone
of tidal instability in stably stratified fluids, at a given position
Xo. For neutral fluids (Ny = 0), we recover the classical allow-
able orbital range of tidal instability —1 < Qg < 3. Outside this
range, we find that waves can be involved in triadic resonances
in stratified fluids. Thus, (sub-harmonic) tidal instability could
be triggered in stratified fluids when Qy < —1 and Qg > 3 (range
known as the forbidden zone in neutral fluids). Then, the dimen-
sionless growth rate in the equatorial plane is

o (2Q + 3)?
= — — 0
1=l 16 (1 + Q)2 + 4N2x2

21

(22)

(23)
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Hence, the growth rate o is weakened by stratification when

Ngx(z) increases. This effect was already discussed in the con-
clusion of Le Bars & Le Dizes (2006). They found that elliptical
equipotentials are stabilising contrary to circular equipotentials.
However, in this former case, their equation slightly differs from
Eq. (23). Actually, their formula is erroneous because we will
confirm the validity of expression (23) by direct numerical inte-
gration of the local stability equations (see below). Note also
that Eq. (23) does not recover Eq. (24) of Cébron et al. (2013),
obtained in the limit of a buoyancy force of order S3y. In this limit,
we recover their approximate formula (24) if we use their value
for 6y, artificially set to its hydrodynamic value wcos” 6y = 1
instead of its exact value given by (21).

We show in Fig. 5 the maximum growth rate, computed from
formula (23), for different orbital configurations €)y. Several
points are worthy of comment. First, tidal instability is excited
in the equatorial region when —1 < Q < 3 (in the diffusion-
less limit), that is in the classical orbital range of tidal insta-
bility (Le Dizes 2000). This mechanism occurs for any realistic
value of Ny/Qg < 100 (see Table 1). In this orbital range,
the maximum growth rate is always obtained for neutral flu-
ids (Ny = 0), yielding the usual (dimensionless) growth rate
(Le Dizes 2000)

o (2Q + 3)?
= — 0-
1=l 1601 +Qp)?

(24)

Second, outside the classical orbital range (in the forbidden
zone), we unravel new tidal instabilities, triggered for large
enough values of the Brunt—Viisild frequency (Ny/Qs > 1).
Their growth rate can be larger than one in our dimensionless

A142, page 8 of 27

th

80

Fig. 3. Wave-like domains and colatitude 6,
(degrees) for waves with hyperbolic turning sur-
faces H satisfying sub-harmonic resonance condi-
tion (13). Left panel: H, wave: Qy = 0,No/Q =
0.5. Right panel: H, wave: Qy = 0,Ny/Qs = 2.
Dashed grey hyperbolic curve is given by Eq. (14).
Tilted dashed grey line is the asymptotic curve given
by cosfy = |1 — Qo|/2. Waves at the sub-harmonic
) resonance disappear along the polar axis when z <
60 11 - Qol/(No/Qy).

D =1 =1
T T

Fig. 4. Wave-like domains and colatitude 6,
60 (degrees) for waves with ellipsoidal turning sur-
face & satisfying sub-harmonic resonance condition
45 (13). Left panel: & wave: Qg = 3.4,Ny/Qs = 2.
Right panel: &, wave: Qo = 4, Ny/Qs = 10. Dashed
3() erey ellipsoidal curve is given by Eq. (14). Verti-
©  cal dashed grey line is the asymptotic curve given
15 by s = |1 = Qo> —4/(No/CQ), where s is the
J cylindrical radius from the spin axis. Waves satisfy-
ing the sub-harmonic resonance condition disappear

0 along the polar axis when z < |1 — Qq|/(No/€s).
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Ny /€2

1072 102

Fig. 5. Growth rate o of tidal instability, predicted by formula (23) in
equatorial plane (xop = 0.5,z9 = 0), as a function of Ny/CQ and €.
Colour bar shows the normalised ratio log,,(c0-/By). White areas corre-
spond to marginally stable areas. For neutral fluids, tidal instability is
restricted to the allowable range —1 < Qp < 3 when 8y <« 1. When
Qo = 1 (horizontal white line), the basic state is synchronised (see
Appendix D).

units (not shown), because their typical timescale is N, ! (rather
than Q). Note that these sub-harmonic instabilities have been
reported in local stratified simulations (Le Reun et al. 2018).
Therefore, in the equatorial region, we have shown that
barotropic stratification has (i) a destabilising effect within the
usual forbidden zone (Qy < —1 and Qy > 3), and (ii) a stabilising
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effect when —1 < Q) < 3. However, we emphasise that a baro-
clinic state (that is g X VT # 0) has the opposite effect when
-1 < Qy < 3 (Kerswell 1993a; Le Bars & Le Dizes 2000).
This behaviour can be recovered by our asymptotic analysis,
by assuming an imposed gravity field with a different equatorial
ellipticity 81 # . For such a reference ellipsoidal configuration,
formula (23) becomes

o (2Q + 3)?

_ Bo =B
1=Qol  16(1 +Q)? + 4 N2x2 Q

0 +

Bo + N3x? (25)

This corrects misprints in Eq. (D.1) of Cébron et al. (2012a),
obtained with a different unit of time. For circular isopoten-
tials (8; = 0), formula (25) clearly shows that the growth
rate of tidal instability is enhanced in the equatorial plane.
This is the configuration considered by Kerswell (1993a) and
Le Bars & Le Dizes (2006). Besides, Eq. (25) recovers for-
mula (4.7) of Le Bars & Le Dizes (2006) in their particular case
Qp =0.

3.2.4. Along rotation axis

Similarly, we can obtain an analytical formula along the axis of
rotation. To do so, we consider initial fluid trajectories close to
the spin axis (that is s9 = By < 1). Dispersion relation (17)
simplifies along the polar axis into (with @y = 0)
2.2

cos’f) = — 0 6)
w—Nyz5
Condition (26) shows that the forbidden zone of tidal instabil-
ity coincides with the one for neutral fluid, that is Qy < -1
and Q) > 3. Outside this range, the asymptotic (dimensionless)
growth rate is

o (29 +3)* (1 - N222)
= — = 0
1=l 16(1 + Q)% — 4N222

27

Formula (27) is identical to the ~diffusi0nless growth rate devised

by Miyazaki (1993), denoting Nyz their local value of stratifica-
tion. Hence, an axial stratification is uniformly stabilising along
the polar axis.

3.3. Numerical solutions in the orbital range —1 < Qy < 3

The previous asymptotic analysis shows that stable stratifi-
cation (Nyp/€Qs > 0) has indubitably a stabilising behaviour.
In particular, axial stratification is responsible for a trapping
of the instability in the equatorial region. These observa-
tions agree with existing local analyses (Miyazaki & Fukumoto
1992; Miyazaki 1993; Kerswell 1993a; Le Bars & Le Dizes
2006; Cébron et al. 2012a). However, this is barely consis-
tent with three-dimensional numerical simulations (Vidal et al.
2018), showing that the growth rate at the onset is largely unaf-
fected by stratification. To reconcile these approaches, we inves-
tigate the onset of tidal instability in the whole reference fluid
domain.

To go beyond the analytical formulas in the equatorial plane
and on the polar axis, we solve numerically local stability
Egs. (9). To do so, we have used the local stability code SWAN
(Vidal & Cébron 2017). We have updated it to handle the general
local stability equations, which are described in Appendix A.
Moreover, by solving numerically the full local equations, we

do not assume a priori sub-harmonic condition (13). Hence, we
emphasise that the numerical solutions will assess the general
validity of sub-harmonic condition (13) in stratified fluids, which
has already been confirmed in homogeneous fluids (Kerswell
1993a, 1994; Le Dizes 2000; Vidal & Cébron 2017).

In the astrophysical regime Sy <« 1, the resonance condi-
tion (12) or (13) (if valid), are satisfied numerically for only
a few initial wave vectors ky. Numerically, this is too expan-
sive to survey all the possible configurations for ky. Thus, we
set the equatorial ellipticity to the value By = 0.2. This does
not change in any way the relevance of the following numerical
results, because o is proportional to Sy (when By <« 1). How-
ever, for large values of Sy, the general resonance condition (12)
can be satisfied for a wider range of initial wave vectors kg, due
to geometrical detuning effects (Le Dizes 2000; Vidal & Cébron
2017). Hence, the computations are more tractable numerically.
In practice, we have considered a large enough number of fluid
trajectories X(¢) and ko, sampling the whole ellipsoidal domain
to get representative results.

We have validated the code against analytical formu-
las (23) and (27), obtaining a perfect agreement and cross-
validating the asymptotic analysis (not shown). Then, we only
investigate the stability of equilibrium tidal flow (7) within the
orbital range —1 < Qy < 3, representative of the binary systems
considered in Sect. 5. When stratification is neutral (Ny = 0),
the whole domain is unstable as expected (not shown), with a
homogeneous growth rate predicted by formula (24). We survey
illustrative stably stratified configurations Ny/Qy > 0 in Fig. 6.
Several aspects are worthy of comment. We clearly recover the
trapping of the instability due to axial stratification, outlined by
the weakening of the growth rate in formula (27). In the bulk, the
weakening first occurs near the polar regions, and then spreads
out towards lower latitudes when N, /€Y increases (from top to
bottom panels in Fig. 6). Along the polar axis, it turns out that
the transition between unstable and stable areas occurs at posi-
tion (19). In addition, the equatorial region is still unstable for
the range of Ny/€)s considered, as observed in Fig. 5. Then, the
numerical analysis unravels an unexpected feature compared to
the asymptotic analysis. When Ny/€ increases, tidal instabil-
ity is always triggered in the bulk. Non-vanishing growth rates
exist as long as waves can be nonlinearly coupled, according to
the resonance condition that is valid when 8y <« 1 (bounded
from below and above by the grey dashed curves). An excep-
tion appears here for Qy = —0.5 and Ny/Qs = 5 (top panel of
Fig. 6). This is due the finite value Sy = 0.2 used in the numer-
ics, which is responsible for imperfect resonances in condi-
tion (12) due to geometric detuning effects (e.g. Le Dizes 2000;
Lacaze et al. 2004; Vidal & Cébron 2017). Moreover, the strik-
ing feature is that stratification tends to confine tidal instability
along critical (conical) latitudes (white dashed lines), tilted from
the spin (polar) axis. The tilt angle in the numerics is exactly the
colatitude angle 6, (given our numerical resolution, not shown),
predicted by formula (18) and which maximises the classical
tidal instability for neutral fluids (Ny = 0). This shows that
the equatorial trapping does not affect similarly all the orbits.
When —1 < Qp < 1, the tilt angle 8, given by formula (18)
goes from 6y = 0 to 6, = m/2. Hence, the instability on ret-
rograde orbits (with small values of 6) is less weakened than
on prograde orbits. When Ny/€ > 1, tidal instability is equa-
torially trapped between the conical layers, with growth rates
in the equatorial plane predicted by formula (23). However, on
these conical layers, it turns out that the largest growth rate o
is unaffected by stratification, for any value of Ny/€). Hence,
the maximum growth rate of tidal instability in stratified fluids is
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Fig. 6. Largest normalised growth rate o /83, for several configurations, computed with SWAN for equatorial ellipticity 8y = 0.2. Visualisations
in a meridional section using the normalised axes x/a and z/c, with a = /1 + By, b = /1 —Bo, and ¢ = 1/(ab). White dashed lines, given by
formula (18), show the critical latitudes on which the growth rate is maximum as predicted by (24). For each case, the type of waves involved in
parametric mechanism is specified between brackets. Dashed (grey) curves illustrate the domain of existence of H, waves at the resonance (in the
regime 3y < 1).
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always given by formula (24), for any orbit in the orbital range
-1 <Qy<3.

Therefore, the numerical analysis has confirmed and
extended the asymptotic analysis. In stably stratified interiors,
resonance condition (13) illustrated in Fig. 2 is a necessary
and sufficient condition for tidal instability (when By < 1).
Indeed, we have not found any other resonance yielding larger
growth rates than the ones at the sub-harmonic resonance. In the
orbital range —1 < Qg < 3, tidal instability is triggered by sub-
harmonic resonances of inertia-gravity waves. Moreover, there
is an equatorial trapping of tidal instability between conical lat-
itudes, depending on the orbital configuration according to for-
mula (18). At these latitudes, the wave vector is parallel to the
gravity field, such that the maximum growth rate is unaffected
by the stable stratification.

3.4. Leading-order (laminar) diffusive effects

We reintroduce now the leading-order (laminar) diffusive effects
at the onset of tidal instability. In the diffusive regime, tidal insta-
bility is triggered if the largest diffusionless growth rate o over-
comes the (negative) laminar damping rates due to viscosity 7,,
radiative diffusivity 7, and Joule diffusion 7. Hence, the diffu-
sionless growth rate o ought to be reduced by the laminar damp-
ing rates, yielding the diffusive growth rate

op=0+ (1, + T +7q). (28)

We have confirmed in Sect. 3.3 that tidal instability is a para-
metric instability, involving only inertial and/or gravito-inertial
waves in radiative interiors. Consequently, we can simply esti-
mate the laminar damping rates by computing the damping rates
of the inertial and gravito-inertial waves involved in the triadic
couplings. Indeed, triadic couplings can only give non-vanishing
growth rates (28) if the waves individually exist, that is if they
are not damped by any diffusive effect before being efficiently
nonlinearly coupled. We have shown in Sect. 3.3 that the diffu-
sionless growth rate o is maximum on critical latitudes, where
the wave vector satisfies kg X g = 0 (when 8y < 1). Then, in
the local plane-wave model, the buoyancy term in the local vor-
ticity equation (which is proportional to ko X g) vanishes such
that vorticity and energy equations are uncoupled (in the local
formalism). This means that these waves are locally insensitive
to stratification on the critical latitudes, yielding 7, = 0. Thus, in
the absence of background turbulent motions (see the discussion
in Sect. 3.5), the waves are individually damped by viscosity and
Joule diffusion (in the weak field regime Le < 1).

For the stability computations, we rewrite here the magnetic
field as
B =B)+b, 29)
where the fossil field By is assumed to be steady here. The
pervading fossil magnetic fields are nearly axisymmetric and
dipole-dominated at the leading order, as observed in mag-
netic binaries (e.g. Alecian et al. 2016; Landstreet et al. 2017,
Kochukhov et al. 2018; Shultz et al. 2017, 2018). For the stabil-
ity computations, we assume a fossil field of the form By « 1.,
with a dimensionless strength measured by the Lehnert num-
ber Le. The presence of other field components only slightly
modifies the frequencies of inertial and inertial-gravity waves
at the onset. We also expect the damping rates to have a
similar behaviour in the laminar regime. In the weak field
regime Le < 1, the damping rates have been devised by
Sreenivasan & Narasimhan (2017) in the local theory and by

Kerswell (1994) in the global one. They depend on the wave
properties, that is here the wave vector. Notably, we explain in
Appendix C why the mixed couplings between inertial waves
and slow MC waves cannot lead to tidal instability in short-
period binaries (in the presence of Joule diffusion). Hence, we
remind the reader that only parametric resonances of inertial and
gravito-inertial waves can generate tidal instability in the pres-
ence of magnetic fields.

Then, the viscous and the Joule damping rates in the weak
field regime (Le < 1) in any z-plane read

7, = —|kol* EK,

cos?(6y) |ko|* Em Le?
TQ = — 3 5 11— Qol,
4 cos?(6y) + |kol* Em

(30a)

(30b)

with |ky| the norm of the wave vector at the resonance
(and at the initial time) and cos(fp) given by condition (18).
Expression (30b) is quantitatively valid when By o 1,
(Sreenivasan & Narasimhan 2017). In the regime Pm < 1,
laminar Joule diffusion is the leading-order dissipative effect
(Ital > |r,]). The Joule damping has already been consid-
ered for homogeneous fluids (Kerswell 1994; Herreman et al.
2009, 2010; Cébron et al. 2012a). Note that formula (30b) is
exactly the Joule damping rate of tidal instability in neutral flu-
ids (Ny = 0). Besides, formulas of Herreman et al. (2009) and
Cébron et al. (2012a) are recovered in the limit |ky| > 1, by
using the resonance condition 2 cos 8y = +1 to set §, for Ny = 0.
Formula (30b) has two asymptotic behaviours, depending on the
value of k. They are separated by the condition
2cos(fp)/ Em ~ Em™"/2.

kol = 3D

On the one hand, we obtain a wave-dominated regime when
lko] < Em™'2, in which the Joule damping rate scales as
To o« —EmLe*|ko|*/4. On the other hand, we get a diffusion-
dominated regime when |ko| > Em~'/2. In the latter regime, the
damping rate is independent of the wave vector and scales as
To o« —Le? /Em.

We illustrate in Fig. 7 the evolution of Joule damping rate
(30b) in the different regimes. Tidal instability will survive in
the presence of magnetic fields if o > |rq|. Typical values of the
diffusionless growth rate, given by formula (24), are o ~ O(Bp)
with By € [107#, 107?] in close binaries. We clearly observe that
tidal instability does survive against Joule diffusion, for short-
wavelength perturbations with |ko| < 10*~10°. For larger values
of the wave number, the Joule damping rate always overcomes
the diffusionless growth rate, such that no instability is triggered.

3.5. Other dissipative mechanisms

At the linear onset, the laminar diffusive effects discussed in
Sect. 3.4 are always present, but we have shown that they are
smaller than the largest diffusionless growth rate o. Hence,
these effects can be reasonably neglected at the onset, yielding
op ~ o. However, other diffusive effects do exist in stellar inte-
riors, which may weaken the growth of tidal instability.

Phase mixing is known to provide a significant source of
Joule heating, by dissipating Alfvén (and magneto-sonic) waves
in stellar atmospheres (e.g. Heyvaerts & Priest 1983) or stellar
interiors (Spruit 1999). Yet, phase-mixing is probably irrelevant
for tidal instability in the weak field regime (Le < 1), notably
because Aflvén waves are not involved in tidal instability (see
Appendix C). Whether phase-mixing could increase the dissi-
pation of inertial and gravito-inertial waves in stellar interiors
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Fig. 7. Dimensionless Joule damping —7q/|1 — €| of tidal instability
(solid blue line), as a function of magnitude |ko|. Dashed magenta line is
given by formula (31), delimiting the two hydromagnetic regimes. Red
shaded areas show the typical strength of the diffusionless growth rate
of tidal instability o ~ O(By), with 8y € [107*, 1072] for close binaries.
Computations at Le = 107> and Ek/Pm = 10~'2 for the dimensionless
fossil field By = 1, aligned with the spin axis.

remains unknown and is largely beyond the scope of the present
study.

In the presence of an innermost convective envelope,
inertial and gravito-inertial waves can exhibit singular shear
layers, reminiscent of wave attractors (e.g. Dintrans et al.
1999; Rieutord & Valdettaro 2010, 2018; Mirouh et al. 2016;
Lin & Ogilvie 2017). These global wave patterns are not directly
involved in the parametric mechanism of tidal instability, but they
fill the whole fluid domain and may provide an additional bulk
damping rate for tidal instability. Indeed, these structures can
be destabilised in the nonlinear regime (Jouve & Ogilvie 2014),
possibly yielding small-scale instabilities. Brunet et al. (2019)
showed that the resulting small-scale turbulence in the bulk could
be well modelled by a turbulent eddy diffusion. In particular,
anisotropic shear-driven turbulence may be generated (e.g. Zahn
1992). In such a case, Garaud et al. (2017) and Gagnier & Garaud
(2018) proposed to model the local shear-driven turbulence by
introducing the turbulent viscosity

vi o 0.08«7/J, J = N5/S?, (32)

with «r the radiative diffusivity, J the local gradient Richard-
son number and S the local shearing rate (responsible for the
shear instabilities). The stability criterion for shear instabilities
is apparently JPr =~ 0.007 (Garaud et al. 2017). Then, predic-
tion (32) would yield an upper-bound effective turbulent Ekman
number Ek, < 107'° for speculative stellar values, to use in
expression (30a) for the viscous damping rate. For the range of
wave numbers |ky| given in Fig. 7, we find that the associated tur-
bulent damping rate is smaller than the diffusionless growth rate
o (not shown). Therefore, even in the presence of shear-driven
instabilities, the associated turbulent damping can be ignored at
the onset of tidal instability for the (strong enough) tidal defor-
mations considered in this work (8y ~ 1073-1072, see Table 2).

4. Turbulent mixing due to nonlinear tidal flows

At this stage, we have shown that tidal instability can be
triggered within stably stratified interiors, even against the
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stabilising effect of a background (fossil) magnetic field in the
weak field regime (Le < 1). The next step is to characterise the
saturated regime of tidal flows. Modelling turbulent mixing in
radiative interiors is one of the enduring problems in stellar
dynamics (e.g. Zahn 1974). Several studies have examined the
turbulence in radiative zones (e.g. Zahn 1992; Mathis et al. 2004,
2018; Garaud et al. 2017; Gagnier & Garaud 2018). Yet, these
models focus on shear-driven turbulence. Hence, tidally driven
turbulence in binaries remains to be described. Numerical sim-
ulations have shown that small-scale turbulence can be excited
by tidal instability (Barker & Lithwick 2013a,b; Le Reun et al.
2017), possibly leading to global tidal mixing (Vidal et al. 2018).
Thus, tidal mixing is expected in radiative interiors. We moti-
vate our assumptions in Sect. 4.1. Then, we use dimensional-
type arguments in Sect. 4.2 to develop a phenomenological
description of the nonlinear tidal mixing in radiative interiors
in Sect. 4.3, valid in the orbital range —1 < Qy < 3. Finally,
we assess its validity by using proof-of-concept simulations in
Sect. 4.4.

4.1. Assumptions

As shown in Sect. 3, magnetic effects play a minor role at the
onset of instability in the orbital range —1 < Qp < 3. They
essentially weaken the growth rate of tidal instability, due to
the laminar Joule damping. In the (transient) linear growth, the
fossil field By is not much affected by tidal flows, which are
not expected to generate significant mixing. It only decays on
the slow (laminar) Joule diffusion time, which is much larger
than the timescale for the onset of tidal instability for stellar
parameters. This phenomenon is well-known in global models
of resistive magnetohydrodynamics, also known as free-decay
of magnetic fields (e.g. Moffatt 1978). However, in the saturated
regime, the fossil field would interact nonlinearly with the non-
linear tidal flows, as governed by induction equation

B_B =V x[(Uy+u)xB]+ E—k V’B, (33a)
ot Pm
V-B=0, B(r,t =0) = Byr), (33b)

in which the initial time ¢ = 0 refers now to an initial time just
after the growth of the instability. In Eq. (33a), the nonlinear
velocity field u is governed by momentum Eq. (3a). In the rel-
evant weak field regime Le < 1, nonlinear numerical simula-
tions of the coupled problems showed that magnetic effects do
not weaken the turbulent tidal flows (Barker & Lithwick 2013b;
Cébron & Hollerbach 2014; Vidal et al. 2018). These turbulent
flows generate mixing, that would ultimately increase the Ohmic
diffusion of the fossil field By. Therefore, Ohmic diffusion ought
to be increased (a priori). This is often modelled by introduc-
ing a turbulent magnetic diffusivity (e.g. Kitchatinov et al. 1994;
Yousef et al. 2003; Kipyld et al. 2019). In this configuration,
the initial fossil field is expected to decay on somehow faster
timescales, due to the presence of mixing generated by tidal
instability. This situation strongly differs from the picture of
ideal magnetohydrodynamics, in which the laminar decay of the
fossil field is small (and so can be sometimes neglected). Note
that an initial fossil field may still be in quasi-equilibrium with
tidal flows, if the dissipated field is continuously regenerated by
some kind of dynamo action. However, dynamo action of tidal
flows in strongly stratified interiors remains elusive (Vidal et al.
2018) and will not be investigated here. Consequently, to esti-
mate the fossil field decay due to tidal instability, we must esti-
mate the turbulent magnetic diffusivity generated by the satura-
tion of tidal instability.
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4.2. Mixing-length theory

Estimating a realistic turbulent magnetic diffusivity is challeng-
ing, because no numerical model cannot probe accurately the
stellar conditions. This makes the relevance of numerical results
sometimes elusive. Therefore, we aim to build asymptotic scal-
ing laws for the tidal mixing, based on dimensional-type argu-
ments that embrace both numerical and stellar conditions. To
estimate the local tidal mixing in stratified interiors, we develop
a mixing-length theory, by analogy with mixing-length argu-
ments commonly used for shear-driven turbulence in radiative
interiors of stars (e.g. Zahn 1992; Mathis et al. 2004, 2018).

In turbulent flows, the laminar viscosity is often replaced
by an effective eddy (turbulent) viscosity, usually modelled by
using mixing-length theory in stellar contexts. In hydromag-
netic turbulence, Yousef et al. (2003) and Képyld et al. (2019)
argued that in the weak field regime (Le < 1) the turbulent mag-
netic Prandtl number is not far from unity. Hence, the turbulent
magnetic diffusivity can be a priori modelled by mixing-length
type predictions. This is supported by local hydromagnetic sim-
ulations of the three-dimensional turbulence generated by tidal
instability (Barker & Lithwick 2013b). They showed that weak
magnetic fields can even favour the small-scale tidal turbulence.
Global tidal mixing has also been found in global stratified mod-
els (Vidal et al. 2018). Thus, we may replace any laminar dif-
fusivity (denoted D) by an effective eddy diffusivity (denoted
9y), induced by the nonlinear tidal flows. Then, mixing-length
theory (e.g. Tennekes & Lumley 1972) predicts in dimensional
form (up to a unknown proportional constant)

1

Dt oC gut lt, (34)

where u; and /; are respectively the typical (dimensional) local
velocity and length scale of the turbulent motions. Note that u; is
the typical amplitude of the nonlinear tidal flows. This must not
be confused with the amplitude u,, of the waves that are excited by
the forcing mechanism (see the case of internal gravity waves in
Rogers & McElwaine 2017). Here, u,, is much smaller than u, in
amplitude. Hence, the eddy diffusivity D is alocal property of the
nonlinear flows, rather than a property of the fluid (or of the wave
amplitude). The key point to apply formula (34) is to find accurate
predictions for u; and /; in the nonlinear regime of tidal instability.
On the one hand, we have shown in Sect. 3 that tidal insta-
bility is generated by sub-harmonic resonances of inertial waves,
more or less modified by the gravity field in the orbital range
—1 < Qp < 3. This mechanism holds whatever the strength of
stratification, measured by the ratio Ny /€. Therefore, the turbu-
lent velocity scale u; should not depend (strongly) on the local
strength of stratification Ny/€). This is supported by proof-of-
concept simulations (see Fig. 2b in Vidal et al. 2018), showing
that nonlinear tidal flows exhibit the scaling devised in homo-
geneous fluids (Barker & Lithwick 2013a; Grannan et al. 2016).
This reads
ug ~ a1Bor Qs(1 — Qo) (35)
with 1 < R the local position and @; ~ 0.3-0.5 a dimen-
sionless pre-factor obtained numerically both in homogeneous
(Grannan et al. 2016, estimated from Fig. 4d) and strongly strat-
ified tidal flows (Vidal etal. 2018, estimated from Fig. 2b).
Hence, we reasonably estimate the turbulent velocity u, by using
prescription (35). On the other hand, /; should depend on the
local ratio Ny/€). Several regimes have been found in forced
stratified turbulence (e.g. Brethouwer et al. 2007).

4.3. Phenomenological prescriptions
4.3.1. Weakly stratified regime (Ny/Qs < 1)
In the weakly stratified regime, characterised by Ny/Qs < 1,

H, waves satisfying the sub-harmonic resonance condition are
barely affected by stratification. We estimate /; by balancing
the nonlinear term (z - V)u with the injection term (u - V) Uy
in momentum Eq. (3a). This yields the typical turbulent length
scale in dimensional form /; oc ar. Then, the weakly stratified
regime is characterised by the eddy diffusivity (in dimensional
form)
1 o2, o

Dy gaflﬁorl Q(1 — Qo). (36)
Formula (36) predicts a roughly homogeneous mixing in
the weakly stratified regime, as found in global models
(Grannan et al. 2016; Vidal et al. 2018) in which r, =~ R. This
explains why the tidal mixing computed in Vidal et al. (2018) is
roughly constant as a function of stratification, when Ny/Qg < 1
(see their Fig. 9). However, estimate (36) may be reduced in
this regime due to (compressible) density variations (close to the
isentropic profile when Ny/Qs < 1).

Finally, formula (36) provides a good estimate of the leading-
order term in the eddy diffusivity tensor (e.g. Dubrulle & Frisch
1991; Wirth et al. 1995). In addition, note that rotation would
also support small anisotropic diffusion in the axial direction
(Tilgner 2004; Elstner & Riidiger 2007).

4.3.2. Stratified regimes (Ny/Qs > 1)

We now investigate the stratified regimes Ny/Qs > 1. Stratified
turbulence is highly anisotropic. Indeed, a commonly observed
feature of strongly stratified flows is the formation of quasi-
horizontal layers, often described as pancake structures (e.g.
Billant & Chomaz 2001). Such layers are conspicuous in sim-
ulations of tidal flows in strongly stratified fluids, both in non-
rotating (Le Reun et al. 2018) and rotating fluids (Vidal et al.
2018). Hence, /; depends on both the direction and the strength of
stratification. We introduce two turbulent length scales, respec-
tively l‘tI in the normal direction (that is along the gravity field)
and [} in the other horizontal directions.

Several regimes of stratified turbulence have been devised
in fundamental fluid mechanics (Billant & Chomaz 2001;
Brethouwer et al. 2007). They are characterised by the buoyancy
Reynolds number

G
NGy

(37

Le Reun et al. (2018) investigated the small-scale turbulence
sustained by tides in the regime R < 1, in which vertical vis-
cous shearing is significant. However, radiative interiors are in
the opposite regime R > 1 (Mathis et al. 2018). Moreover, they
neglected rotation, by setting Qg = 0. In such a configuration,
the subspaces of waves [H], H,] at the sub-harmonic resonance
are empty, according to dispersion relations (15). Hence, tidal
instability can only involve sub-harmonic resonances of internal
waves H, in the limit Ny/Q, — oo and |Qy| — oo. Therefore,
their results do not apply for our astrophysical problem, for any
orbit in the range —1 < Qg < 3. In the relevant strongly strat-
ified regime (R > 1), diffusion is unimportant and the turbu-
lence is three-dimensional (Brethouwer et al. 2007). The general
scalings of this regime have been confirmed by turbulence sim-
ulations (e.g. Godeferd & Staquet 2003; Maffioli & Davidson
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2016). Thus, they can be applied to the tidal problem. In addi-
tion, rotational effects are also significant within the orbital range
-1 < Q) < 3, even for large values of Ny/Q > 10. Hence, the
resulting turbulence undergoes the combined action of stratifica-
tion and rotation.

In rotating stratified turbulence, the two turbulent length
scales are related by (Billant & Chomaz 2001)

I (38)

with @ ~ 0.6 a (numerical) pre-factor constrainted from local
turbulent simulations in rapidly rotating and strongly stratified
turbulent regime (Reinaud et al. 2003; Waite & Bartello 2006).
This regime is expected to be valid for radiative interiors, notably
to describe shear-driven turbulence (Mathis et al. 2018). For
strong stratification (Ny/€s > 10), we combine the two balances
obtained by equating (i) the nonlinear term with the buoyancy
force in momentum Eq. (3a) and (ii) the injection term (u - V) T
and the nonlinear term (z - V) ® in energy Eq. (3b). These bal-
ances yield respectively

u?

l_|t| ~ at8o @[ and aTt8o @[ ~ Ng llll,
t

(39)

where O, is the typical dimensional turbulent buoyancy perturba-
tion. We recover from balances (39) the classical scaling for the
turbulent length scale in the normal direction, that is u; ~ l‘tho
(e.g. Billant & Chomaz 2001; Brethouwer et al. 2007). Hence,
the turbulent length scale along the gravity direction is
I~ aBor (1 - Qo)% (with a; ~ 0.3-0.5). (40)
0

Scaling (40) shows that tidal mixing falls in the asymptotic
regime of strongly stratified turbulence (Brethouwer et al. 2007).
Then, we obtain two prescriptions for the eddy diffusivity, the
first one D'll valid in the gravity direction and the second one D
in the perpendicular (horizontal) directions. They yield

1 Q
D o zal B Q1 = QoY =, (412)
3 No
1
D « gafaz B (1 - Qp)?, (41b)

with a1 ~ 0.3-0.5 and a; ~ 0.6 (see above). Prescriptions (41)
show that the eddy diffusivity should have a quadratic depen-
dence with the equatorial ellipticity, in any spatial direction.
Another interesting prediction in this regime is that the turbu-
lent potential and kinetic energies, defined by (in dimensional
variables)

o laggl o
E(0") ~ 5;—5"&, E@) ~ Su,
are comparable in magnitude (Billant & Chomaz 2001). This
can be checked in the numerical simulations (see below).

In-between the two aforementioned stratified regimes, when
1 < Ny/Qs < 10, the situation is unclear. Indeed, Vidal et al.
(2018) found that u - g, which is responsible for tidal mixing in
the normal direction, is largely unaffected by stratification when
No/€Qs < 10 (see their Fig. 4). Hence, we may extend prescrip-
tion (36) for the turbulent mixing up to Ny/Qs < 10. Yet, this
behaviour is not conspicuous in the numerics (see Fig. 9b in
Vidal et al. 2018). This may be due to the rather specific numer-
ical method, which inaccurately probed the intermediate regime
1 < Ny/Qg < 10. Thus, a transition may be also expected
between the two regimes (36) and (41) when 1 < Ny/Q < 10.

(42)

A142, page 14 of 27

4.4. Validation against numerical simulations

We assess the relevance of predictions (36) and (41) by using
direct numerical simulations. To do so, we solve nonlinear and
diffusive Egs. (3) in a global model. We supplement the govern-
ing equations by considering the stress-free conditions

u-1,=0, 1,x [(Vu +(Vu)") 1,1] =0, (43)

and assuming a fixed temperature ® = 0 at the boundary. Stress-
free conditions (43) are known to lead to spurious numerical
behaviours, associated with the evolution of angular momentum in
weakly deformed spheres (Guermond et al. 2013). To circumvent
this numerical problem, we follow Cébron & Hollerbach (2014)
and Vidal et al. (2018) by imposing a zero-angular momentum
for the velocity perturbation. Moreover, the external region is
assumed to be electrically insulating, such that the magnetic field
b matches a potential field at the boundary.

For the computations, we use the proof-of-concept global
numerical model introduced in Vidal et al. (2018). Briefly, the
reference ellipsoidal configuration (described in Sect. 2.3) is
approximated in spherical geometry by an spatially varying
equatorial ellipticity profile e(r,S8y), depending of the elliptic-
ity Bo of the ellipsoidal configuration. This profile is chosen
such that the reference configuration satisfies all the aforemen-
tioned boundary conditions in the spherical geometry. The sim-
ulations have been performed with the open-source nonlinear
code XSHELLS', described in Schaeffer et al. (2017) and val-
idated against standard spherical benchmarks (Marti et al. 2014;
Matsui et al. 2016). A second-order finite difference scheme is
used in the radial direction. The angular directions are discre-
tised using a pseudo-spectral spherical harmonic expansion, pro-
vided by the SHTns library (Schaeffer 2013). The time-stepping
scheme is of second order in time and treats the diffusive terms
implicitly, while the nonlinear and Coriolis terms are handled
explicitly. We refer the reader to Vidal et al. (2018) for additional
methodological details of the tidal problem.

To estimate the turbulent magnetic diffusivity in a global
model, we measure the decay of an initial large-scale magnetic
field (Yousef et al. 2003; Kiépyld et al. 2019) in the presence of
nonlinear tides, to compare it with the free decay rate of the same
magnetic configuration in laminar diffusive models (e.g. Moffatt
1978). We compute the (dimensionless) decay rate o, < 0 of the
volume average of the magnetic energy over the computational
integration time 7 as

.1 1
oy = Tlgg?log(fvzmﬁd(v).
Decay rate (44) is a global estimate in the simulations of the
effective diffusivity ;. Kdpyld et al. (2019) measured in a sim-
ilar way the turbulent diffusivity, obtaining a good quantitative
agreement with mean-field analyses. Then, global decay rate
(44) should have the same scaling law in Sy for all the initial
magnetic fields By, even if the (numerical) pre-factors will be
different. Indeed, all the magnetic components will not obey
the same scaling law in the strongly stratified regime (due to the
anisotropic mixing). Notably, we expect toroidal magnetic fields,
satisfying By - 1,, = 0 (at any position), to be preferentially dissi-
pated in the normal direction. Thus, scaling (41a) should apply
predominantly for toroidal fields. On the contrary, we expect the
dissipation of poloidal magnetic fields (with predominant com-
ponents in the normal direction) to obey scaling (41b) in the hor-
izontal directions. However, we emphasise that the pre-factors

(44)

I https://nschaeff.bitbucket.io/xshells/
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obtained from numerical simulations, performed for conditions
far-removed from the astrophysical regimes, are often irrelevant
for astrophysical problems (compared to mixing-length predic-
tions). We only focus on the dependence in 3y, which should be
generic whatever the topology of the initial magnetic field in the
numerics. Thus, we aim at recovering (i) o, o Sy for weakly
stratified regime (36) and (ii) o, o ﬁ(z) for strongly stratified
regime (41).

In magnetic radiative stars, the initial fossil field is unlikely
force-free (e.g. Duez & Mathis 2010; Duez et al. 2010), except
possibly close to the stellar surface. The exact topology of the
field does depend on the Lorentz force, and only magnetic equi-
libria involving poloidal and toroidal components have been
found (e.g. Braithwaite & Spruit 2017). Then, in addition to
the slow laminar Joule diffusion, Braithwaite & Cantiello (2012)
showed that an initial fossil field can decay due to the propaga-
tion of (slow) Magneto-Coriolis waves (see Appendix B) in the
presence of rotation. Such a magnetic decay occurs on the (rather
slow) dynamical timescale

T™e ~ (QLe?) ™. (45)

Moreover, the field can be also dissipated by the turbulent mix-
ing generated by nonlinear tidal flows. Thus, the initial field
can be dissipated simultaneously by several mechanisms if we
neglect in-situ dynamo mechanisms, that would regenerate the
field against laminar and turbulent diffusion but are highly
debated.

However, we would like the magnetic decay to be insen-
sitive to dynamical evolution (45) in the numerics, to inves-
tigate only the turbulent effects in a well controlled set-up.
Hence, we aim to find a magnetic configuration in which the
initial field would decay solely by laminar Joule diffusion in
the absence of tides. To do so, we can reasonably switch-off
the Lorentz force in momentum equation, to estimate turbulent
magnetic diffusivity (44) for a given initial magnetic field. With-
out magnetic forces, MC waves are no longer sustained in the
system. Moreover, as explained above, the Lorentz force sur-
prisingly plays a negligible role? on the turbulent mixing gener-
ated by nonlinear tidal flows in the (relevant) weak field regime
Le < 1 (Barker & Lithwick 2013b; Cébron & Hollerbach 2014;
Vidal et al. 2018). Consequently, for this particular problem of
tidal instability, neglecting the Lorentz force is advisable in the
numerics.

As a reference configuration, we have assumed Qg =0.
Indeed, we have shown theoretically in Sect. 3 that the under-
lying mechanism of tidal instability does not change in the
range —1<Qy <3, and similarly the turbulent scalings (e.g.
Grannan et al. 2016; Vidal etal. 2018). Hence, investigating
only one orbital configuration is necessary. Then, problem (33a)
reduces here to a kinematic (linear) initial value problem for the
initial field. We emphasise that the exact topology of the initial
field will not be essential here for the numerical model. Indeed,
without the Lorentz force, induction Eq. (33a) is uncoupled to
the momentum equation. To mimic the slow magnetic decay on
the laminar Joule diffusion (in the absence of tides), we have
chosen for the initial fossil field the least-damped, poloidal free
decay magnetic mode of the sphere (see Moffatt 1978, p. 36—40).
This particular magnetic field is an exact solution of the purely
diffusive induction equation. It has the smallest laminar Ohmic
free decay rate o (in dimensionless form), given by

oq = i°Ek/Pm. (46)

2 Even though it is essential for the self-sustained generation of
dynamo magnetic fields.

ay/|oql

0.1 0.15

6()

0.2

—1.25 1

—1.30

o,/ |oal

—1.35 1

T T T T
0 0.0 0.02 20.03 0.04 0.05

6()

Fig. 8. Turbulent diffusion of magnetic field by tidal instability, as a
function of equatorial ellipticity §y. Ratio 0, /|oql, with o, the global
decay rate (44) and o the free decay rate (46) without tides. Simula-
tions at Qy = 0, Ek = 107*, Pr = 1 and Pm = 0.1. Solid lines are
the least-squares fits. Top panel: weakly stratified regime (Ny/Qs = 0),
with o, /|oq| = =3.09 89— 1.00. Bottom panel: strongly stratified regime
(No/Q = 10) with o /|loq| = =3.13 8% — 1.21.

Thus, this is the most suited initial magnetic field to assess the
validity of the turbulent scaling laws. Indeed, slow laminar Joule
diffusion (46) should not be coupled with the expected faster tur-
bulent diffusion in the numerics to get robust results. In practice,
we conducted the simulations at the fixed dimensionless num-
bers Ek = 107%, Pr = 1, and Pm = 0.1. The latter value ensures
that no dynamo magnetic field can grow exponentially. Our spa-
tial discretisation is N; = 224 radial points, [y.x = 128 spheri-
cal harmonic degrees and mp,x = 100 azimuthal wave numbers.
We have integrated the equations on one (dimensionless) Ohmic
diffusive time (Ek/Pm)~', to determine accurately the turbulent
decay rate o-,.

Figure 8 shows the representative results for the two strati-
fied regimes. We observe that the decay rate o, is always larger
than the free decay rate o of the initial fossil field. Then, the
striking feature is that we recover the two scalings as a function
of the ellipticity, as predicted by our mixing-length theory. In
the weakly stratified regime (top panel), numerical decay (44)
agrees well with the linear scaling o, o« Sy, consistent with
mixing-length formula (36). The agreement is even much bet-
ter in the strongly stratified regime (bottom panel), obtaining the
quadratic scaling o7, o ﬁ(z) expected from (41).
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We note that the observed enhancement generated by tidal
instability is rather weak in the simulations. This is not due to the
tidal amplitude, which is already two orders of magnitude larger
than the typical values for binaries (8p ~ 10! in the numerics
and By ~ 1073-1072, see Table 2 below). This simply comes
from the over-estimated value of the laminar Joule diffusion in
the simulations (that is Ek/Pm = 1073). This makes the lami-
nar and turbulent decay rates roughly comparable in amplitude.
Simulations in the astrophysical regime (that is Ek/Pm < 10710)
would show a stronger tidal effect. Yet, our simulations already
support the trend predicted by mixing-length theory (41). For
stellar conditions, the latter predicts that the tidal decay rate
would be much stronger than the laminar Joule decay rate (see
the discussion in Sect. 5).

Finally, the typical ratio of the volume averaged ther-
mal and kinetic (dimensionless) energies, for the simulations
in the strongly stratified regime (bottom panel of Fig. 8), is
E(®)/E(u) = 8.1 + 3.5. This numerical value agrees very well
with the theoretical scaling (42) in the strongly stratified regime
(Billant & Chomaz 2001), yielding E(®)/E(u) ~ No/Qs = 10 in
dimensionless variables. This is another evidence of the validity
of the mixing-length theory.

5. Astrophysical discussion

We have obtained a consistent picture of tidal instability in an
idealised set-up of radiative interiors. This predicts the linear
onset (Sect. 3) and the nonlinear mixing induced by the satu-
rated flows (Sect. 4). For the sake of theoretical and numeri-
cal validations, we have only considered rather idealised stellar
models, described in Sect. 2. Then, the predictions have been
successfully compared with proof-of-concept numerical simula-
tions, paving the way for astrophysical applications.

Indeed, we emphasise that the theory can a priori embrace
more realistic stellar conditions. In particular, the mixing-length
theory is only based on local dimensional arguments, that should
remain valid for more realistic conditions. Therefore, we discuss
now our findings in the context of tidally deformed and stably
stratified (radiative) interiors. Notably, we are in the position to
build a new physical scenario, that may explain the lower inci-
dence of fossil fields in some short-period and non-synchronised
binaries (Alecian et al., in prep.).

5.1. A new scenario?

We consider a close binary system with a radiative primary of
mass M, and a secondary of mass M. The primary is pervaded
by an initial fossil field By. Note that distinction between the pri-
mary and secondary is only made for convenience, such that the
situation can be reversed in the scenario (if we are interested
in the secondary). The orbital and spin angular velocities are
respectively Qqp and €. We focus on non-synchronised bina-
ries in the orbital range —1 < Qg < 3, where Qy = Qi /€ i
the dimensionless orbital frequency. The orbits are almost cir-
cularised, but small orbital eccentricities e < 1 do not strongly
modify the fate of tidal flows (Vidal & Cébron 2017). We also
focus on binaries with short-period systems, with typical peri-
ods of Ty = 2m/Qs < 10 days. Due to the combined action
of the tides and the spin, the star is deformed into an triax-
ial ellipsoid (Chandrasekhar 1969; Lai et al. 1993; Barker et al.
2016). The latter is characterised by a typical equatorial ellip-
ticity By, estimated from the static bulge theory (Cébron et al.
2012a; Vidal et al. 2018). For the bulge generated onto the pri-
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No/Qs > 1

Fig. 9. Anisotropic turbulent diffusion, generated by tidal instability, of
poloidal (dotted) and toroidal (dashed) field lines of fossil field By. A
possible innermost convective core is represented.

mary, this reads
47)

where R is the typical radius of the primary and D is the typical
distance separating the two bodies. The density stratification of
the radiative envelope is measured by the typical dimensionless
ratio Ny /€, where Ny is the typical Brunt—Viisild frequency. A
representative value for intermediate-mass stars is Ny ~ 107> s~
(e.g. Rieutord 20006), yielding a typical ratio Ny/€s > 10.

The tidal forcing sustains an equilibrium tidal velocity
field (Remus et al. 2012; Vidal & Cébron 2017) in the primary
fluid body. This equilibrium tidal flow can be nonlinearly cou-
pled with inertial-gravity waves, triggering tidal instability. The
dimensional growth rate o™ of tidal instability, which does not
depend on stratification, is given by

_(2Qp +3)
16(1 + Qp)?

*

|Qs - Qorb|ﬂ0’ (48)

with Qy = Qy/(1 — Q). In the saturated regime, tidal instabil-
ity increases the internal mixing (due to turbulence). In strongly
stratified radiative interiors (Ny/€ > 10), the turbulent mixing
generated by tidal instability is anisotropic, characterised by an
eddy turbulent diffusivity Z)‘tl in the direction of the self-gravity

and by D (> D)) in the other (horizontal) directions.

Then, the turbulent mixing will dynamically increase the
Joule decay of the fossil field By. However, the latter field, con-
taining both poloidal and toroidal components (to be in quasi-
static magnetic equilibrium in the initial stage), will undergo an
enhanced anisotropic turbulent Joule diffusion. The mechanism
is illustrated in Fig. 9. On the one hand, the poloidal components,
which are mainly along the normal direction, would be preferen-
tially dissipated by the (large) eddy diffusivity D} in the hori-
zontal directions. On the other hand, the toroidal components,
trapped in the stellar interior because they have only horizontal
components, are preferentially mixed by the (small) eddy dif-
fusivity Z)‘tl in the normal direction. Thus, poloidal and toroidal
field lines are dissipated on different turbulent timescales. For
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Table 2. Physical and orbital characteristics of non-synchronised and non-magnetic binary systems, surveyed by the BinaMIcS Collaboration

(Alecian et al., in prep.).

System M, M, R(M;) R(M) D T, (M) Ts(My)  Tow e Bo
Mo)  (Mo) (Ro) (Ro) (Ro) (days) (days) (days) Body 1 Body 2
° HD 23642 2.22 1.57 1.84 1.57 11.96 2.49 2.45 2.46 0.00 39x1073% 48x1073
v HD 24133 1.39 1.31 1.78 1.49 5.042 0.827 0.783 0.80 0.00 62x107%2 4.1x1072
A HD 24909 3.53 1.72 2.47 1.53 10.59 1.8 1.8 1.74 0.07 93x107° 93x1073
< HD 25638 14.3 10.7 8.91 6.70 23.97 3.01 2.76 2.70 0.00 5.8x107%2 4.4x107?
> HD 25833 5.36  4.90 2.99 2.60 14.67 2.0 1.7 2.03 007 12x10% 91x1073
() HD 32964 2.63 257 1.95 1.92 22.90 5.57 5.55 5.52 0.08 9.0x10* 9.0x10™*
O HD 34364 248 229 1.78 1.82 18.24 3.90 4.01 4.13 000 13x1073% 1.6x1073
O HD 36486 240 840 16.5 6.50 43.00 6.24 2.13 5.73 0.11 3.0x102% 15x1073
O HD 150136 626 39.5 13.1 9.54 38.00 2.9 2.7 2.67 0.00 39x102 38x107?

Notes. The masses [M;, M;] of the primary and the secondary bodies are given in Sun mass unit M. The typical stellar radius R and the typical
distance D between the two bodies is given in Sun radius unit R,. Spin and orbital periods [T, Tob] are expressed in days. Spin and angular velocities
are defined as Qg = 27/T and Qo = 271/ T Note that T has been estimated by assuming aligned spin-orbit systems. Symbols refer to Fig. 10.
References. HD 23642: Groenewegen et al. (2007); HD 24133: Clausen et al. (2010); HD 24909: Degirmenci (1997); HD 25638: Tamajo et al.
(2012); HD 25833: Giménez & Clausen (1994); HD 32964: Makaganiuk et al. (2011); HD 34364: Nordstrom & Johansen (1994); HD 36486:

Shenar et al. (2015); HD 150136: Mahy et al. (2012).

the poloidal components which can be observed at the stellar
surface, tidal instability would yield a global magnetic dissipa-
tion within the stellar interior on a few turbulent timescales 7, (at
the position r; < R), given by

2
n K,

“DF T RO -0 “9

Tt

with the pre-factor K, ~30—-50 estimated by the numerical pre-
factors in formulas (41). Timescale (49) is the (fast) turbulent
timescale in the perpendicular (horizontal) directions. In addi-
tion, the magnetic field would also die out in the presence of rota-
tion on dynamical timescale (45) of the (slow) Magneto-Coriolis
waves, as shown by Braithwaite & Cantiello (2012).

5.2. Non-magnetic binaries

We assess here the relevance of the tidal scenario for short-period
massive binary systems. Non-magnetic and non-synchronised
(Qp # 1) binaries are given in Table 2. They have been sur-
veyed by the BinaMIcS Collaboration (Alecian et al., in prep.).
The predictions of the tidal scenario for these binary systems
are given in Table 3. All these close-binaries are rapidly rotat-
ing and undergo strong tidal effects (in the two bodies), as mea-
sured by the large values of the ellipticity 8y ~ 10731072,
The strong tides should trigger quickly tidal instability, grow-
ing on the typical timescale (c*)~' ~ O(10%) years. This is much
shorter than the lifetime of these stars, about Tyys ~ 10° years
for a star of mass M; = 2 M, on the main sequence. Hence,
tidal instability is likely to be present in these non-synchronised
binaries.

Then, typical values for turbulent timescale (49) are 7, €
[10%,107] years, except for HD 23642 and HD 32964 which are
less affected by tidal instability (smaller Sy). Thus, the turbulent
Joule diffusion of the initial fossil fields may occur on timescales
much shorter than the stellar lifetime, typically 7,/Tys < 1073
for the most favourable systems. Turbulent timescale (49) is also
often smaller that the timescale for the laminar Ohmic diffu-
sion of the magnetic field in the absence of turbulence 7q o
(Q Ek/Pm)~'. As illustrated in Fig. 10, we get 7/1q < 1072
(except for HD 23642 and HD 32964). Similarly, for several sys-

tems, 7 is smaller than the dynamical timescale Tyc proposed by
Braithwaite & Cantiello (2012), given by expression (45).

Therefore, nonlinear tidal flows generated by tidal instability
in non-synchronised close binaries may sustain an enhanced tur-
bulent Joule diffusion of the fossil fields, occurring on timescales
that are often shorter than the stellar lifetime. This may explain
the scarcity of significant magnetic fields at the surface of some
massive stars in short-period binaries.

5.3. Magnetic binaries

We give in Table 4 the orbital properties of some scarce mag-
netic binaries, analysed by the BinaMIcS Collaboration. They
were already known to be magnetic, such as HD 98088 (Babcock
1958; Abt et al. 1968; Carrier et al. 2002), € Lupi (Shultz et al.
2015) and HD 156324 (Alecian et al. 2014b). The aforemen-
tioned tidal scenario would suggest that (strong) magnetic fields
may be anomalies in short-period massive binaries. However,
their existence does not necessarily challenge the tidal scenario.

We note that HD 156324 and HD 98088 are synchronised.
The fate of tidal instability in synchronised orbits (¢ = 1) is
discussed in Appendix D. On the one hand, system HD 156324
is nearly circularised (Shultz et al. 2017), whereas non-circular
orbits are required for the tidal mechanism to operate in syn-
chronised systems (e.g. Vidal & Cébron 2017). Hence, the tidal
mechanism is not currently relevant for HD 156324. This may
explain why the fossil field is still observed. On the other hand,
HD 98088 is not circularised such that nonlinear tidal mixing
would be expected. However, as shown in Appendix D, for-
mula (49) for the typical turbulent timescale ought to be reduced
in synchronised systems, such that (1 — Q)2 ~ 612 where g < 2e
is the dimensionless amplitude of differential rotation due to
the elliptical orbit (Cébron et al. 2012a; Vidal & Cébron 2017).
Based on the accuracy of the measured periods in Table 4, we may
assume ¢ < 1073, such that the turbulent timescale 7, given by
formula (D.9), is expected to be much larger in HD 98088 than
for the systems of Table 3 (for similar values of the equatorial
ellipticity By ~ 107). Therefore, the existence of the (synchro-
nised) magnetic binaries HD 156324 and HD 98088 appears to
be consistent with the tidal scenario. However, the tidal mecha-
nism may have occurred before the synchronisation and/or the
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Table 3. Predictions of tidal scenario for (non-magnetic) close binaries described in Table 2.

System o* (1/year) 7y (years) T/Tq T¢/T™MC
Body 1 Body 2 Body 1 Body 2 Body 1 Body 2 Body 1 Body 2

HD 23642 1.03x 1072  5.07x1073 1.58 x 107 6.88 x 107 146 x 1072 6.44 x 1072 1.5%x 107 6.4 x10%0
HD 24133 146 x 10" 6.11x 107" 2.26x%x10° 1.53x10*  626%x107° 448x10° 63x10™* 4.5x1073
HD 24909 925%x 1072 926x1072 261x10° 261x10° 333x10™* 332x10* 33x10%2 33x1072
HD 25638 1.12x 10**  2.03x 107! 891 x 102 3.60x10* 6.79%107 299x107° 6.8x10° 3.0x1073
HD 25833 478 x 1072 583x 107!  9.68x10° 1.02x10* 1.11x1073 1.37 x 1073 1.1 x 107! 1.4%x 1073
HD 32964 789%x10™*  4.61x107* 122x10° 3.61x10° 501x107! 1.49 x 10t 5.0 x 10*! 1.5 x 10*2
HD 34364 1.14x 1072 7.12x 1073 953x10° 2.25x107 5.60x1073 1.28x 1072  5.6x 107! 1.3 x10%0
HD 36486  220x 107" 432x10"" 118 x10* 3.22x 10> 435x10° 347x107 43x10™* 35x107
HD 150136 598 x 107! 753x1072 349x10° 737x10> 276x10°° 626x1077 28x10* 63x107

Notes. We have taken as representative value for the dimensional Brunt—Viisili frequency Ny = 1073 s7! (e.g. Rieutord 2006). The equatorial
ellipticity By is given by expression (47). The dimensional growth rate o is given by formula (48). The timescale of turbulent Joule diffusion 7,
is given by formula (49) with K, = 30. The laminar Ohmic diffusive timescale is 7q ~ (Q Ek/Pm)~! (in dimensional units of Q) with Ek/Pm ~
107'2. The dynamical timescale associated with the propagation of (slow) Magneto-Coriolis waves is Ty ~ (Q; Le?)™! (Braithwaite & Cantiello

2012), with Le ~ 1073,

logy(7t/70)

107!

1073

Fig. 10. Turbulent magnetic decay 7, (49) of fossil fields , normalised
by laminar Ohmic timescale 7q ~ (Q, Ek/Pm)~!, as a function of
equatorial ellipticity 8y and dimensionless orbital angular frequency
Qo = Qo /€. Non-magnetic close binaries are illustrated by the sym-
bols given in Table 2. Large (white) symbols refer to body 1 of the
considered binary, whereas small (cyan) symbols refer to body 2. Com-
putations at Ek/Pm = 1072 and K,, = 30.

circularisation of the systems. Indeed, observations show that
circularisation and synchronisation processes are effective for
radiative stars (e.g. Giuricin et al. 1984a,b; Zimmerman et al.
2017). On the one hand, the radiative damping of the dynamical
tide has received attention in radiative stars (e.g. Zahn 1975,
1977). On the other hand, synchronisation mechanisms have
been much less studied in radiative interiors (e.g. Rocca
1989, 1987; Witte & Savonije 1999, 2001), and the compari-
son with the observations is less satisfactory (e.g. Mazeh. 2008;
Zimmerman et al. 2017). Understanding these two processes in
radiative stars still deserves further work, notably to consider the
overlooked effects of tidal instability in short-period binaries.
Finally, the case of € Lupi system (e.g. Uytterhoeven et al.
2005; Shultz et al. 2015) is more intricate. Nonlinear tidal mix-
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ing should occur within these stars, with a typical turbulent
timescale 7, ~ 10° years. The fossil field may be currently dis-
sipated by the tidal turbulence, but the process may have not
last long enough to yield vanishing observable fields. Another
possibility is that these magnetic fields are internally regener-
ated by dynamo action, to balance the decay due to the nonlin-
ear tidal flows. Such a (currently speculative) mechanism may
be particularly relevant for the rapidly rotating component of €
Lupi in Table 4. Several dynamo mechanisms may be advocated,
for instance driven by differentially rotating flows (Braithwaite
2006), baroclinic flows (Simitev & Busse 2017) or even tidal
instability (Vidal et al. 2018). Though the dynamo action of tides
in strongly stratified interiors remains elusive, the scaling law
for the magnetic field strength at the stellar surface, proposed
by Vidal et al. (2018), would yield |By| ~ 0.1-1kG. This is the
order of magnitude of the observed surface fields. Thus, under-
standing the origin of the magnetic fields in the € Lupi system
deserves future studies.

6. Conclusion
6.1. Summary

In this work, we have investigated nonlinear tides in short-
period massive binaries, motivated by the puzzling lower mag-
netic incidence of close binaries compared to isolated stars
(Alecian et al. 2019). To do so, we have adopted an idealised
model for rapidly rotating stratified fluids within the Boussinesq
approximation. This model consistently takes into account the
ingredients encountered in massive binaries, namely the com-
bination of rotation and non-isentropic stratification, the tidal
distortion (on coplanar and aligned orbits) and the leading-order
magnetic effects. We have revisited the fluid instabilities trig-
gered by the nonlinear tides in the system (Vidal et al. 2018),
by combining analytical computations and proof-of-concept
simulations.

First, we have studied the linear onset of tidal instability in
non-synchronised, stratified fluid masses. Within a single frame-
work, we have unified all the previous existing stability analy-
ses and we have unravelled new phenomena. We have shown that
tidal instability in radiative stratified interiors is due to parametric
resonances between inertial-gravity waves and the underlying
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Table 4. Physical and orbital characteristics of magnetic binary systems surveyed by the BinaMIcS Collaboration (Folsom et al. 2013; Shultz et al.

2015, 2017, 2018).

System M, M, R(M)) R(My) D TiM) Ti(My) Top Eccentricity Bj(M,) B (M,)
Ms) (Mp)  (Ro) (Ro)  (Ro) (days)  (days) (days) e kG) kG)
HD 156324 85 4.1 3.8 23 132 158 1.58 1.58 0.0 14 <26
HD 98088 219 167 276 177 217 5905 5905  5.905 0.18 3.9 <16
e Lupi (corot) 8.7 7.3 47 3.8 292 230 25 4.56 0.277 0.9 0.6
eLupi (slow) 87 73 4.7 38 292 64 7.1 4.56 0.277 0.9 0.6
eLupi (fast)y 87 7.3 47 3.8 292 040 032 456 0.277 0.9 0.6

Notes. Masses [M;, M,] of primary and secondary bodies are given in Sun mass unit M. The typical stellar radius R and the typical distance D
between the two bodies is given in Sun radius unit Ry. The spin and orbital periods [T, To] are expressed in days. They yield the spin and angular
velocities [Qg = 27/T, Qo = 27/ Tow]. The typical surface magnetic field By, believed to be of fossil origin, is given in kiloGauss (kG) for the
two components. HD 156324 and HD 98088 are synchronised systems (see Appendix D), whereas € Lupi system is not synchronised.

equilibrium tidal flow, for any orbit in the range —1 < Qp <
3. Within this orbital range, tidal instability is weakened by
barotropic stratification on the polar axis (Miyazaki & Fukumoto
1991; Miyazaki 1993) and in the equatorial plane. On the con-
trary, baroclinic stratification does increase the growth rate of tidal
instability (Kerswell 1993a; Le Bars & Le Dizes 2006). However,
the striking feature is that tidal instability onsets with a maxi-
mum growth rate which is unaffected by stratification. The insta-
bility is triggered in volume along three-dimensional conical lay-
ers, whose position depends solely on the orbital parameter €.
In the other orbital range Qyp < —1 and Q, > 3, that is in the
forbidden zone of tidal instability in homogeneous fluids (e.g.
Le Dizes 2000), tidal instability can be generated by parametric
resonances of gravito-inertial waves, provided that stratification is
strong enough for the considered orbital configuration. This pro-
vides a theoretical explanation of the instability mechanism inves-
tigated numerically in Le Reun et al. (2018).

Second, we have developed a mixing-length theory (e.g.
Tennekes & Lumley 1972) of the anisotropic turbulent mix-
ing, sustained by tidal instability in the orbital regime —1 <
Qo < 3. For strongly stratified interiors, we have modelled the
anisotropic turbulent mixing by introducing two turbulent eddy
diffusivities, one describing the mixing in the direction of the
gravity field and the second in the other (horizontal) directions.
We have shown that these two turbulent diffusivities should
scale as ,8(2), where S is the equatorial ellipticity of the equi-
librium tide. We have assessed these scalings against proof-of-
concept simulations, by using the numerical method introduced
in Vidal et al. (2018).

Finally, we have used the mixing-length theory to extrap-
olate the numerical results towards more realistic stellar con-
ditions. We have built a new physical scenario, predicting an
enhanced Joule diffusion of the fossil fields due to the turbu-
lent mixing induced by tidal instability in short-period (non-
coalescing) massive binaries. We have applied it to a subset of
short-period binaries, analysed by the BinaMIcS Collaboration
(Alecian et al., in prep.). This scenario may (partially) explain
the lower incidence of surface magnetic fields in some short-
period binaries (compared to isolated stars). Indeed, we predict
a turbulent Joule diffusion of the fossil fields occurring in a few
million years for the most favourable systems. This is much
shorter than the (laminar) Joule diffusion timescale of the fos-
sil fields, and similarly than the typical lifetime of these stars.
Therefore, we cannot rule out a priori the tidal mechanism to
explain the scarcity of massive magnetic stars in close binary
systems.

6.2. Perspectives

We have shown that the tidal mechanism is plausible, because
close binaries are known to be strongly deformed by tides. Then,
future studies should strive to assess the likelihood of this new
mechanism with more realistic physical models. Indeed, we have
only handled the key physical ingredients. Many improvements
are worth doing on the numerical and theoretical fronts.

First, the validity of mixing-length predictions for the mag-
netic diffusivity is questionable. Though they are commonly used
in hyromagnetic turbulence (e.g. Yousef et al. 2003; Kipyli et al.
2019), Vainshtein & Rosner (1991) proposed that even weak
large-scale magnetic fields may suppress the turbulent magnetic
diffusion. This behaviour has been obtained in simulations of non-
rotating, two-dimensional turbulence (e.g. Cattaneo & Vainshtein
1991; Cattaneo 1994; Kondi¢ et al. 2016). However, the relevance
of this inhibiting mechanism for three-dimensional, rotating and
tidally driven turbulence remains unclear, notably because Alfvén
waves do not play (a priori) a significant role in the tidal turbu-
lent mixing (contrary to inertial waves). Indeed, this seems in
contradiction with the turbulent hydromagnetic simulations of
Barker & Lithwick (2013b), who showed that a weak magnetic
field can instead sustain small-scale tidal turbulence. Thus, inves-
tigating this effect in tidally forced turbulence seems necessary,
by performing demanding simulations of the consistent rotating
hydromagnetic set-up.

Second, it would be interesting to examine if (secondary)
shear instabilities are sustained by nonlinear tides in the strongly
stratified regime. Shear instabilities are common in radiative
interiors (e.g. Mathis et al. 2004, 2018), which undergo differ-
ential rotation (Goldreich & Schubert 1967). To do so, the usual
diffusionless instability condition for shear instabilities ought to
be modified in radiative interiors, to take the thermal diffusivity
into account (Townsend 1958; Zahn 1974). In the presence of
turbulent tidal flows, secondary shear instabilities may exist if

Ri, Pe, < 1, (50

with Ri; = N} /(ui/I? the turbulent Richardson number and

Pe, = ull‘t‘ / D'tl the turbulent Péclet number. By using our mixing-
length predictions, a typical estimate would be Ri;Pe; ~ 1 in the
strongly stratified regime. Thus, such secondary shear instabil-
ities might be triggered by the nonlinear tidal flows. This may
increase the turbulent diffusion coefficients.

Then, a natural extension would be to investigate consis-
tently the interplay between tidal instability and differential rota-
tion, which would result from in-situ baroclinic torques (e.g.
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Busse 1981, 1982; Rieutord 2006). Whether differential rota-
tion is important for the tidal mixing is elusive, for instance
because differential rotation is damped by several hydromagnetic
effects (Moss 1992; Spruit 1999; Arlt et al. 2003; Riidiger et al.
2013, 2015; Jouve et al. 2015). Nonetheless, elliptical (tidal)
instability does exist in differentially rotating elliptical flows,
as shown in fundamental fluid mechanics (Eloy & Le Dizes
1999; Lacaze et al. 2007). The properties of the waves for more
astrophysically relevant profiles of differential rotation can be
investigated in global models (Friedlander 1989; Mirouh et al.
2016), such that extending the present theory seems achievable.
Closely related to the study of differential rotation is the study of
baroclinic flows (e.g. Kitchatinov 2014; Caleo & Balbus 2016;
Simitev & Busse 2017). We have shown that baroclinic stratifi-
cation does enhance tidal instability, as first noticed by Kerswell
(1993a) and Le Bars & Le Dizes (2006). Thus, we may even
expect a stronger turbulent tidal mixing in baroclinic radiative
interiors.

Radiative stars also host innermost convective cores. Thus,
the outcome of tidal instability in shells should be considered.
The tidal (elliptical) instability does exist in shells, as con-
firmed experimentally and numerically for homogeneous fluids
(Aldridge et al. 1997; Seyed-Mahmoud et al. 2000; Lacaze et al.
2005; Seyed-Mahmoud et al. 2004; Lemasquerier et al. 2017).
Indeed, the local stability theory we have presented remains for-
mally valid in shells. Hence, we do not expect any significant
difference for stratified fluids at the onset. Yet, boundary effects
on the turbulent tidal mixing remain to be determined.

Another daunting perspective is to account for compress-
ibility. Using the Boussinesq approximation seems exaggerated
in global models of stellar interiors (Spiegel & Veronis 1960).
However, the influence of compressibility is apparently negli-
gible at the onset of tidal instability (Clausen & Tilgner 2014).
This is one of the reasons why we have adopted the Boussi-
nesq approximation. Moreover, our mixing-length theory only
invokes local estimates. In particular, we may naively expect
radial turbulent diffusion (41a) to be only governed by the
local value of stratification (rather independently of its origin).
Moreover, compressibility would barely modify the (strongest)
horizontal mixing (41b), because horizontal motions are less
inhibited by compressibility. Therefore, our typical turbulent
timescale (49) may still be relevant in compressible interiors.
Clarifying the effects of compressibility deserves future works,
both in the linear and nonlinear regimes.

Finally, the scarce non-synchronised magnetic binaries
(Carrier et al. 2002; Shultzetal. 2015; Alecianetal. 2019;
Kochukhov et al. 2018) seem to challenge the general trend
of the tidal scenario, predicting a lack of magnetic massive
stars in short-period binaries. These fields do not appear to
be strongly dissipated by the nonlinear tidal flows. If the tidal
mechanism remains valid by including the aforementioned
proposed improvements, they might be dynamically regenerated
in situ by dynamo action. For instance, tides do sustain dynamo
action at small-scale (Barker & Lithwick 2013b) and large-scale
(Cébron & Hollerbach 2014; Reddy et al. 2018) in homogeneous
fluids, and also in weakly stratified interiors (Vidal et al. 2018).
Yet, the dynamo capability of tides remains elusive in strongly
stratified interiors (Vidal etal. 2018). Baroclinic flows are
another possible candidate, because they are dynamo capable
(Simitev & Busse 2017). They may also favour the radial mixing
generated by tidal instability, which is a necessary ingredient for
dynamo action (Kaiser & Busse 2017). This certainly deserves
future works to investigate dynamo magnetic fields in more
realistic models of radiative stars.
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Appendix A: Local (WKB) stability equations

We present the local Wentzel-Kramers-Brillouin (WKB) sta-
bility method. In the local analysis, the unbounded growth of
the perturbations gives sufficient conditions for local instabil-
ity (Friedlander & Vishik 1991; Lifschitz & Hameiri 1991).
The original WKB hydrodynamic stability theory has been
extended by several authors, for instance to take buoyancy
effects into account within the Boussinesq approximation
(Kirillov & Mutabazi 2017).

In the following, we derive the coupled (WKB) stabil-
ity equations for arbitrary, spatially varying Boussinesq and
magnetic background states. We emphasise that their deriva-
tion is intrinsically different from the one of Kelvin wave
stability equations (Craik & Criminale 1986; Craik 1989),
also accounting for magnetic fields (Craik 1988; Fabijonas
2002; Lebovitz & Zweibel 2004; Herremanetal. 2009;
Mizerski & Bajer 2011; Cébronetal. 2012a; Mizerski et al.
2012; Mizerski & Lyra 2012; Bajer & Mizerski 2013) and
buoyancy effects (Cébron et al. 2012a). Indeed, the Kelvin wave
method cannot investigate the stability of arbitrary background
states, contrary to the WKB method.

A.1. Linearised stability equations

We use in the following dimensional variables to devise the gen-
eral stability equations in the diffusionless limit. Contrary to
the main text, the dimensional variables are written here with-
out *, to keep concise mathematical expressions. We consider a
fluid rotating at the angular velocity € and stratified in density
under the arbitrary gravity field g. The fluid has a typical den-
sity pm and is pervaded by an imposed magnetic field By(r, 1).
We expand the velocity, the magnetic field and the temperature
as small Eulerian perturbations [u, b, ®](r, f) around a spatially
varying and time-dependent background state [Uy, Bo, To](r, 1).
In unbounded fluids, the perturbations are governed by the lin-
earised hydromagnetic, Boussinesq equations

((11_1: =—w-V)Up-2QxXu-V(p+pp)
—ar®g+apl[(By:-V)b+(b-V)By], (A.1a)

%:(b-V)UO—(u-V)BO+(BO-V)u, (A.1b)

doe

E = —(u 'V) To, (AIC)

Veu=0, V-b=0, (A.1d)

where d/dr = 9/0t + (U - V) is the material derivative along the
basic flow, p is the hydrodynamic pressure and p, = ap(By « b)
the magnetic pressure. In Egs. (A.1), a is the coefficient of ther-
mal expansion (at constant pressure) in the Boussinesq equation
of state (EoS) 6p/om = —at O, with ép the Eulerian perturbation
in density.

A.2. Short-wavelength perturbations

We seek short-wavelength perturbations in Eulerian description,
with respect to the small asymptotic parameter 0 < &€ < 1. We
introduce the formal asymptotic series

u(r, ) = [u® + 2u| (r,1) exp(i@(r,0)/e) + ..., (A.22)
b(r.1) = [ + &bV (r, 1) explid(r, 1)/e) + ..., (A.2b)
O(r, 1) = [0 + 20| (r,1) expli®(r,n/e) + ..., (A.2¢)

p(r.t) = [p© + ep®| (r, 1) expli®(r, n/e) + ..., (A.2d)

where @ is a real-valued scalar function that represents
the rapidly varying phase of oscillations and [u®,®®, p@]
are slowly varying complex-valued amplitudes. Note that
we have omitted in expansions (A.2) the reminder terms,
assumed to be uniformly bounded in & on any fixed time
interval (Lifschitz & Hameiri 1991; Lebovitz & Lifschitz 1992;
Lifschitz & Lebovitz 1993). We further introduce the local wave
vector, defined by k = V®. The small asymptotic parameter
& < 1 is actually related to the typical scale of the instability
[, which must be much smaller to the typical length scale of the
large-scale background flow Ly. This requires € = [/Ly <« 1
(Nazarenko et al. 1999). In the hydrodynamic and diffusionless
case, its value is arbitrary small.

However, in hydromagnetics, € does affect the magnetic field
because the Lorentz force depends on the length scale. The gen-
eral magnetic configuration leads to a set of partial differen-
tial equations (Friedlander & Vishik 1995; Kirillov et al. 2014),
which must be solved locally in Eulerian description. However,
by assuming (see also for uniform fields Mizerski & Bajer 2011)

By(r) = £ Bo(r), (A.3)

the partial differential equations simplify into ordinary differen-
tial equations (even for spatially varying magnetic fields). This is
the central approximation of the hydromagnetic stability theory,
which is not required in the non-magnetic case. For tidal studies,
we usually set £ = 8y (Le Dizes 2000).

A.3. Eulerian stability equations

We closely follow the mathematical derivation of
Kirillov & Mutabazi (2017), extending it to the hydromag-
netic case. Substituting expansions (A.2) in incompressible
condition (A.1d) and collecting terms of order i/ and £° gives

i/e: [u(o),b(o)] k=0,
V- [u®, 0] = ik [u, 50].

The same procedure applied to governing Egs. (A.l1a)-(A.lc).
First, we have at the order i/e

% [4©, 59,07 = [-p k.0,0].

The dot product of the first Eq. (A.5) with V®, under constraint
(A.4a), gives p©@ = 0. Then, we obtain the Hamilton—Jacobi
equation d®/dr = 0. Finally, taking the spatial gradient of the
previous equation gives the eikonal equation and its initial con-
dition (Lifschitz & Hameiri 1991)

(A.4a)
(A.4b)

(AS)

dk
5 =~ (VU0 k. k(r0) = ko, Ik(r.0) = k. (A.6)

Now, by using the Hamilton—Jacobi Eq. (A.6), and
Egs. (A.l1a)—(A.lc) give at the next asymptotic order &’
—ik|[p™ + a5 By - b = (% +VU+2Q x)u(o)

~ar®9g —iap(By- k)b,
(A.7a)
»©@ _

- = i(By-k)u® + (VUy) b, (A.7b)
de®
- —u® . vT,. (A.7¢c)
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Equations (A.7b) and (A.7c) are transport equations for the
magnetic field and the temperature amplitudes. Applying the
dot product of k with Eq. (A.7a) gives the first order pressure
variable

~ k (d
E QY] O] — 0)
—l[p +apBo-b ]_Iklz-(dt+VU0+2Qx)u

k
(0)

—W-(aT(a g). (A.8)
Then, we differentiate Eq. (A.4a) to get the identity
(Lifschitz & Hameiri 1991)
d dk du®
— (@ k)= — -u®+k-—=0. A9
dr (u ) dr wer dr (A.9)

Finally, we use identity (A.9) to simplify Eq. (A.8), then we sub-
stitute the resulting expression into Eq. (A.7a). After some alge-
bra, we get the transport equation for the velocity amplitude

du® 2kk" kk'
== - I|VU, +2| = - I| Qx| u®
dr [( P ) o (|k|2 ) .
(0) kk™ ; B (V)
-ar® I_W g +iag(Bo-k)b™. (A.10)
The stability equations, given by Egs. (A.7b), (A.7¢),

and (A.10) are dominant for the stability behaviour of
WKB expansions (A.2) for long enough times in the limit
& < 1 (Lifschitz & Hameiri 1991; Friedlander & Vishik 1991;
Lebovitz & Lifschitz 1992; Lifschitz & Lebovitz 1993). The
next order terms are only responsible for transient behaviours
(Rodrigues 2017). Thus, sufficient conditions for local insta-
bility are obtained by solving transport Egs. (A.7b), (A.7c¢),
and (A.10).

A.4. Lagrangian equations along fluid trajectories

WKB stability equations are partial differential equations in
Eulerian description. However, they are generally solved in
Lagrangian description. The WKB perturbations are advected
along the fluid trajectories X(¢) of the background flow U,
passing through the initial point X, at initial time ¢+ = 0. In
Lagrangian formalism, the WKB stability equations are

DX
or - Up(X(1), X(0) = Xy, (A.11a)
D
2K Ok k) = ke, (A11b)
Du®  [(2kkT kk™
=||=—+— -I|V 2= -I|Qx|u®
Dr [( T ) ot (|k|2 ) ]
© kk'\ . = ©
—ar® I_W g+1aB(Bo-k)b , (A.11¢)
o
=i(By-k)u® + (VUy) b, (A.11d)
(0)
% - 4. VT, (A.lle)

with D/Dr¢ the Lagrangian derivative. Therefore, Eqs. (A.11)
are interpreted as ordinary differential equations along the fluid
trajectories of the background flow U, for the amplitudes
@®, 00, £0) 1n addition, the initial conditions satisfy

u®0)- kg =0, b?0)-ky =0, (A.12)
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such the solenoidal conditions for the velocity and the mag-
netic field hold at any time. Sufficient conditions for insta-
bility are obtained when (e.g. Lifschitz & Hameiri 1991;
Lebovitz & Lifschitz 1992; Lifschitz & Lebovitz 1993)

lim (|u<°>| +169) + |®<°>|) = o0 (A.13)
—o0

for given [Xy, ko] and with suitable initial conditions for
[u(O)’ b(O)’ @(0)]_

Appendix B: MAC modes in triaxial ellipsoids

We present a method to compute the three-dimensional hydro-
magnetic eigenmodes of stratified Boussinesq fluids contained
within rigid triaxial ellipsoids. This approach relies on a fully
global, explicit spectral method in ellipsoids, in which the veloc-
ity field is described by polynomial finite-dimensional Galerkin
bases (Vidal & Cébron 2017). The algorithm has been bench-
marked successfully against the Coriolis modes in ellipsoids
(Vantieghem 2014), while the fast and slow hydromagnetic solu-
tions have been validated for the Malkus field in spheres (Malkus
1967; Zhang et al. 2003) and spheroids (Kerswell 1994).

B.1. Assumptions

We work in dimensional variables for the sake of generality, and
use the notations introduced in the main text. We consider a
diffusionless, incompressible electrically conducting fluid, con-
tained within a triaxial ellipsoid of semi-axes (a, b, ¢). The fluid
is stratified under the gravity field g* in the Boussinesq approx-
imation. The fluid is contained within an ellipsoidal container,
which is rotating at the angular velocity € in the inertial frame.
We expand the velocity, the temperature and the magnetic field
as small perturbations [u*,®*, b*](r,t) around an equilibrium
state of rest [0, T(’;, Bil(r).

In the linear approximation, the dimensional governing equa-
tions are

ou* .
prl 2Qxu" -Vp' —ar0®'g”

+a5[(Vx b")x B + (Vx By) x b°|, (B.1a)
Gl

=@ V)T, B.1

Y W - V)T, (B.1b)
a;t = VX (' xB}), (B.Ic)
Veuw =V-b* =0, (B.1d)

with ap = (omuo)~! and p* the hydrodynamic pressure. By tak-
ing the time derivative of Egs. (B.1), we can obtain a single
wave-like equation of second order in time for the velocity per-
turbation u*. This reads

azu* (911* 8Vp* * * % *
—Sa P2X e == @ V) Tig + f (B2
with the Lorentz force
fi=a5(VXBy) x|V x @ xBy)|
+ap |V x (Vx @ x BY))| x B, (B.3)

Note that Egs. (B.1) cannot be recast into a single equation for
the velocity perturbation ™ in the presence of a basic flow Uj. In
this case, the problem must be formulated for the displacement
vector (e.g. Chandrasekhar 1969; Lebovitz 1989).
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Finally, Eq. (B.2) is supplemented by the non-penetration
boundary conditions

w-1,=0, B;-1,=0, (B.4)

with 1,, the unit outward vector normal to the ellipsoidal bound-
ary. We emphasise that alternative boundary conditions for the
background magnetic field cannot be considered with the poly-
nomial Galerkin description, at least to investigate consistently
all the hydromagnetic modes. Allowing a non-zero normal mag-
netic field at the boundary would create a surface electrical
density current, generating a Lorentz force f;, in the form
of a discontinuous Dirac function distributed on the boundary
(Friedlander & Vishik 1990). This would lead to spurious diffu-
sionless solutions for the slow hydromagnetic modes. However,
we would expect the fast hydromagnetic modes (that is Corio-
lis modes) to be only barely affected by the magnetic boundary
condition, because the Lorentz force in momentum Eq. (B.2) has
only second-order effects on the fast modes.

B.2. Galerkin method

We employ a Galerkin method to describe the velocity field. We
seek a Galerkin expansion of the modes in the form

[w, p] (.0 = [@, Pl explionn, & =y,
=1

(B.5)

where w; is the angular frequency, {y;} modal complex coeffi-
cients and {&; (r)} are real-valued basis Galerkin elements. First,
we rewrite Eq. (B.2) in the symbolic form
(-} +iw; Ay + AT = —iew; VP, (B.6)
where [Aj, Ag] are two linear operators. The basis elements
{TFf(r)} are made of linear combinations of Cartesian monomi-
als {)c’yfzk},ur Jj+k<co, Satisfying

V-u =0, w-1,=0 atthe boundary. (B.7)

Several Cartesian expansions have been proposed (see a com-
parison in Vidal & Cébron 2017). Expansion (B.5) is similar to
expansions used in the finite-element method (FEM). However,
compared to the traditional FEM, our basis elements {#; (r)}
are global polynomials, infinitely differentiable in ellipsoids.
The mathematical completeness of the polynomial expansion for
incompressible fluids is then ensured by using the Weierstrass
approximation theorem (Backus & Rieutord 2017; Ivers 2017).
Hence, this method is a rigorous spectral method in ellipsoids.

Then, we truncate series (B.5) at a given polynomial degree
n (such that i + j + k < n). In the absence of any strati-
fied or magnetic effect, the Coriolis operator is exactly closed
within the considered polynomial bases (e.g. Kerswell 1993b;
Backus & Rieutord 2017). Thus, the Coriolis modes are exactly
described by the polynomial description (Vantieghem 2014;
Backus & Rieutord 2017). Note that fast and slow MC modes
also admit exact polynomial descriptions for some background
magnetic fields that are linear in the Cartesian space coordinates
(Malkus 1967; Zhang et al. 2003; Kerswell 1994). For any other
practical configuration, we have to choose a maximum polyno-
mial degree n to ensure a good convergence of the desired modes
(higher-order bases are excited by the buoyancy and Lorentz
forces). We substitute the truncated expansion into Eq. (B.6),
yielding the quadratic eigenvalue problem

(-} Ag +iwi Ay + Ag)y =0, (B.8)

where ¥y = (y1,72,...)" is the eigenvector and [As, A{, Ao]
are three real-valued matrices. Their elements are given by the
Galerkin projections over the ellipsoidal domain

Az,;‘,‘:fﬁf'ff;dq/, (B.9a)

=) E

Avj = f @) - (AT dV, (B.9b)
4%

Agjj = f ) - (Al dV. (B.9¢)
Vv

The projection of the pressure term in Eq. (B.8) vanishes by
virtue of the divergence theorem, such that an explicit decom-
position for the pressure is not required. If the background state
can be written by using Cartesian monomials x'y/z¥, then volume
integrals (B.9) can be computed analytically (see formula (50) in
Lebovitz 1989).

B.3. Hydromagnetic modes

We show in Fig. B.1 the dimensionless eigenfrequency w; of
MAC modes, for the relevant weak field regime Le < 107
We have considered an arbitrary reference configuration to illus-
trate several representative properties of the modes. We iden-
tify three families of waves in neutrally stratified fluids (top
panel of Fig. B.1), in agreement with investigations in spheri-
cal geometries (e.g. Schmitt 2010; Labbé et al. 2015). First, the
high frequency branch represents fast Magneto-Coriolis (MC)
modes (Malkus 1967; Labbé et al. 2015). They are similar to
pure Coriolis (or inertial) modes (Greenspan 1968; Vantieghem
2014; Backus & Rieutord 2017), with a dimensionless spectrum
bounded by |w;| < 2 in the weak field regime Le <« 1. These
modes are regular in space and only weakly affected by large-
scale magnetic fields in weakly deformed spheres (e.g. Schmitt
2010; Labbé et al. 2015). This is consistent with the weak fre-
quency dependence on Le observed in Fig. B.1. Note that they
have a different behaviour compared to the singular modes
localised on attractors (e.g. Rieutord & Valdettaro 1997, 2018),
which only exist in shells because the mathematical problem
is ill-posed (Rieutord et al. 2000). Second, the low frequency
branch represents slow Magneto-Coriolis (MC) modes. Their
typical (dimensionless) frequency scales according to |w;| oc Le?.
In addition, the third intermediate branch represents torsional
Alfvén modes (Labbé et al. 2015), scaling as |w;| o« Le. They are
usually filtered out in reduced models, such as in local models
considering uniform fields. They exist when the current direc-
tion V X B of the basic state is misaligned with the spin rotation
axis.

Then, we show the spectrum of MAC modes in stratified
fluids in the bottom panel of Fig. B.1. The aforementioned
hydromagnetic modes still exist in stably stratified interiors,
yielding fast and slow MAC waves. However, their properties
in the presence of buoyancy and magnetic fields are rather com-
plex in spherical-like domains (Friedlander 1987). On the one
hand, fast MAC modes and gravito-inertial modes are barely
modified by magnetic fields, as illustrated in Fig. B.1 (bot-
tom panel) when Le < 1. However, they strongly depend
on stratification (Friedlander & Siegmann 1982b). On the other
hand, slow MC modes can be strongly affected by the magnetic
field and stratification (Friedlander 1987). Finally, the buoy-
ancy force also sustains high frequency internal gravity modes.
They can be affected by rotation, yielding gravito-inertial modes
(Friedlander & Siegmann 1982b).
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Fig. B.1. Angular frequency |w;| of MAC modes, as a function of
Le in spheres (8y = 0), stratified under gravitational potential (5).

The background (toroidal) magnetic field is By = 0.1 [—z 1, + ylz] +
[—y 1, +x ly] in dimensionless form. From bottom to top: green circles
are slow MC and torsional modes (respectively w; o Le? and w; « Le),
blue squares represent fast MC modes and red stars are gravito-inertial

modes. The truncation polynomial degree is n = 5. Top panel: neutral
fluid (No/Qs = 0). Bottom panel: stratified fluid (Ny/Q = 10).

Appendix C: Mixed resonances of MAC waves

We investigate the possible nonlinear couplings of hydromag-
netic waves for tidal instability. We use the same dimension-
less variables as in the main text. Resonance condition (12)
can only be satisfied if tidal instability involves fast MAC
waves (that is inertial or gravito-inertial waves), coupled with
either fast or Magneto-Coriolis (slow MC) waves (Kerswell
1993a, 1994). Indeed, in the astrophysical regime Le <« 1, the
illustrative spectrum in Fig. B.1 clearly shows that no triadic
couplings are effective in ellipsoids between two slow MC
waves when 1 < Qg < 3. Thus, the couplings of slow MC waves
with the equilibrium tidal flow cannot be advocated in stellar
interiors.
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Second, the mixed couplings between slow and fast hydro-
magnetic waves is not forbidden in diffusionless fluids. In the
weak field regime Le < 1, Kerswell (1993a, 1994) showed that
the typical diffusionless growth rate of tidal instability involving
mixed couplings scales as (in dimensionless form)

o« Le4ﬁo. (C.D

However, this diffusionless growth rate must be larger than the
(laminar) Joule damping rate of the slow MC waves, that is
7o o —Em ko> in the local theory (Rincon & Rieutord 2003;
Sreenivasan & Narasimhan 2017). This gives the typical upper
bound on the wave vector

Le*
[kol” < = fo- (C2)

In short-period binaries, the typical value for the equatorial ellip-
ticity is By ~ 1073 — 1072 (see Table 2). As given in Table 1, we
have also the typical numbers Em < 1071° and Le < 107, Then,
condition (C.2) gives the upper bound |ky| < 1. This is incom-
patible with the short-wavelength stability theory, which requires
|ko| > 1. Physically, this shows that the (laminar) Joule damping
rate is always larger than the diffusionless growth rate in non-
ideal fluids, for any resonance involving slow MC waves in the
regime Le < 1. Therefore, mixed couplings of fast/slow waves
can be discarded for tidal instability in realistic stellar interiors.

Appendix D: Weakly eccentric synchronised orbits
D.1. Libration forcing

We consider synchronous stratified binary systems moving on
weakly eccentric coplanar orbits. Note that the following results
are also relevant for (stratified) moons or gaseous planets orbit-
ing around a massive central body (e.g. Kerswell & Malkus
1998; Cébron et al. 2012a; Lemasquerier et al. 2017). We con-
sider a diffusionless tidal model of the tidally deformed fluid
body, characterised by an equatorial ellipticity Sy. The fluid body
is rotating at the uniform angular velocity €, aligned in the
inertial frame with the orbital angular velocity of the compan-
ion along 1,. We use the dimensionless variables introduced in
Sect. 2, that is taking (Q,)~! as the relevant timescale. Due to
the weak orbital eccentricity e < 1, the orbital angular veloc-
ity has periodic time variations. For the sake of generality, we
assume that the tidal forcing has the following (dimensionless)
expression, at the leading order in the eccentricity

Qo) =1+ gcos(f1), D.1)

where f is the dimensionless frequency of the forcing and ¢ <
2e the dimensionless amplitude. Forcing (D.1) is known as lon-
gitudinal librations. For this tidal forcing, the equilibrium tidal

velocity field has the following form in the central frame

Uo(r.1) = = cos(f1) [~(1 + o)y L + (1 - fo)x 1, (D.2)

Tidal flow (D.2) is prone to libration-driven elliptical insta-
bility (LDEI), which is quite similar to tidal instability
in non-synchronised systems (e.g. Kerswell & Malkus 1998;
Cébron et al. 2012a; Vidal & Cébron 2017; Le Reun & Favier
2019).
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Fig. D.1. Waves at sub-harmonic resonance condition (D.3) for synchro-
nised systems, as a function of (dimensionless) forcing frequency f and
Ny /€. The other notations are identical to the ones introduced in the
main text. White regions: no compatible waves satisfying (D.3). Stars
(yellow area): hyperbolic waves H;. Right slash (purple area): hyper-
bolic waves H,. Dots (green area): elliptic waves &;. Back slash (blue
area): elliptic waves &,. The classical allowable region of the instability
is 0 < f < 4 in neutral fluids.

D.2. Resonance condition of the LDEI

LDEI is a fluid instability due to sub-harmonic resonances
between two waves of angular frequency |w;| interacting with basic
flow (D.2). By analogy with formula (13)innon-synchronised sys-
tems, the sub-harmonic resonance condition becomes

lewil = f/2.

The four kinds of waves [H;, H>,E1, ], introduced Sect. 3.2,
can be nonlinearly coupled in the instability mechanism. We
show the nature of the waves satisfying condition (D.3) in
Fig. D.1.

The classical allowable range of LDEI is 0 < f < 4 (e.g.
Cébron et al. 2012c¢), in which only triadic couplings of inertia-
gravity waves [H;, H,] are involved. In this frequency range, the
instability is trapped along critical latitudes for strong enough
stratification when Ny/€ > 1. Similar to the non-synchronised
configurations, it turns out that the largest growth rate is unaf-
fected by the ratio Ny/€Qs on these critical latitudes. Thus, they
are predicted by the diffusionless formula obtained in neutral flu-
ids (see formula (4) in Cébron et al. 2012c).

In the other frequency range f > 4, LDEI is only due to
triadic couplings of internal-gravity waves [&;, &;] modified by
rotation. Moreover, the instability only exists for strong enough
stratification (Ny/Qs > 1).

(D.3)

D.3. Asymptotic growth rates of the LDEI

As in Sects. 3.2.3 and 3.2.4, the local stability analysis provides
analytical expressions of the diffusionless growth rates in the
equatorial plane and on the rotation (polar) axis. In the equa-
torial plane, the resonance condition (D.3) becomes

4+ N222 cos) = ig, (D.4)
whereas on the rotation axis we have
\/4 cos? 6y + N2x2sin? 6y = i§~ (D.5)

Then, the diffusionless growth rate in the equatorial plane is

2 — N2x2(8, —
0_:(1+f_) 1Bo — N§ 0~(ﬁo Bl .
16 4+N§x(2)

(D.6)
for a general baroclinic background state 8y # ;. On the rota-

tion axis, the diffusionless growth rate is given by

(16 + f2)(1 - AN2x2£72)
g = —
16 (4 — N2x2)

Boer. (D.7)

Naturally, we recover Eq. (4) of Cébron et al. (2012c), obtained
for neutral fluids (Ny = 0). Note that Eq. (25) of Cébron et al.
(2013), obtained in the equatorial plane for a buoyancy force of
the order Sy, is not recovered by Eq. (D.6). Indeed, their Eq. (25)
is approximate because they artificially set 8y to its hydrody-
namic value 2cosfy = =f/2, instead of using its exact value
given by Eq. (D.4). Finally, by analogy with the arguments given
in the main text for non-synchronised systems, the largest diffu-
sionless growth rate in the stellar interior will be insensitive to
the strength of stratification, yielding the value for neutral fluids
(Cébron et al. 2012¢, 2013; Vidal & Cébron 2017) recovered in
formula (D.6) when Ny = 0.

Note finally that formula (30b) also provides exactly the
Joule damping rate of the LDEI in neutral fluids (Ny = 0).
Besides, formulas of Cébron et al. (2012a,b) are recovered in the
limit |kg| > 1 by using the LDEI resonance condition to set 6,
that is cos 6y = +f/4 when Ny = 0.

D.4. Mixing-length theory

We can build a mixing-length theory to get a phenomenolog-
ical prescription of the turbulent mixing in weakly eccentric
synchronised orbits, by analogy with non-synchronised orbits.
The main difference with non-synchronised systems is that the
typical turbulent velocity u, should scale as (Favier et al. 2015;
Grannan et al. 2016)

uy < a1 6Bor L. (D.8)
Then, the turbulent prescription becomes
Koy
Ty & 52 (D.g)
&8, Q

with the numerical pre-factor K, ~ 30 — 50 as in formula (49),
which is based on the numerical pre-factors of formulas (41).
Hence, the timescale for the turbulent Ohmic diffusion of the
fossil field ought to be reduced in synchronised systems (com-
pared to non-synchronised ones) by using formula (D.9).
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