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Subcritical thermal convection of liquid metals in a rapidly rotating sphe re

E. J. Kaplan, N. Schae�er, J. Vidal, and P. Cardin
Univ. Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble

Planetary cores consist of liquid metals (low Prandtl number P r ) that convect as the core cools.
Here we study nonlinear convection in a rotating (low Ekman num ber Ek ) planetary core using
a fully 3D direct numerical simulation. Near the critical thermal forcing (Rayleigh number Ra),
convection onsets as thermal Rossby waves, but as theRa increases, this state is superceded by
one dominated by advection. At moderate rotation, these state s (here called the weak branch
and strong branch, respectively) are smoothly connected. As the planetary core rotates faster, the
smooth transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears
entirely and the strong branch onsets in a turbulent state at Ek < 10� 6 . Here the strong branch
persists even as the thermal forcing drops well below the linear onset of convection (Ra = 0 :7Racrit

in this study). We highlight the importance of the Reynolds st ress, which is required for convection
to subsist below the linear onset. In addition, the P�eclet n umber is consistently above 10 in the
strong branch. We further note the presence of a strong zonal 
ow tha t is nonetheless unimportant
to the convective state. Our study suggests that, in the asym ptotic regime of rapid rotation relevant
for planetary interiors, thermal convection of liquid metals in a sphere onsets through a subcritical
bifurcation.

Self-sustaining magnetic �elds of terrestrial planets are
generated in their liquid metal cores. Left on their own
they would decay from ohmic dissipation, but the slow
cooling of the planets drives the convective 
ows thought
to maintain the �elds [1]. Numerical models of planetary
dynamos [2, 3] are widely used to study these strongly
nonlinear systems. They solve the Navier-Stokes equa-
tion coupled to a temperature equation and to the in-
duction equation that governs the magnetic �eld. For
simplicity, most direct numerical simulations (DNS) of
the dynamos have set the Prandtl numberP r = 1. How-
ever, liquid metals haveP r . 0:1 and the nature of their
convection di�ers from P r = 1 [4{6].

The onset of convection in a full sphere is relevant to
the early history of the Earth's [7] or Moon's [8] core,
and has thus received a great deal of attention (e.g.
[9]). A signi�cant thermal forcing is required to overcome
the stabilizing rotational constraint and drive convective
instabilities[9, 10]. At and near this threshold, convec-
tion onsets in the form of columnar vortices aligned with
the axis of rotation, drifting in the azimuthal direction
[10, 11]. The nonlinear regime has been extensively stud-
ied for P r = 1 [12]. The P r � 1 regime is more di�cult
to tackle [13], but its nonlinear state was recently de-
scribed using a quasigeostrophic model, which relies on
a two dimensional description of the axial vorticity. In
their simpli�ed model, the authors of [5] found �rst clues
of subcritical convection|that is convection below the
linear onset of instability|anticipated by weakly nonlin-
ear theoretical predictions [14, 15].

In the present work on the rotating convection prob-
lem, we use three-dimensional direct numerical simula-
tions to describe the nature of the weak and strong con-
vective branches, especially when the strong branch be-
comes subcritical. We discuss the insights gained from
the di�erences and similarities between the two branches.

FORMULATION OF THE MODEL

We study thermal Boussinesq convection driven by in-
ternal heating in a sphere rotating at constant angular
velocity 
 ẑ . The acceleration due to gravity is radial
and increases linearly, as expected for a constant den-
sity medium, g = g0rr̂ . The radius of the sphere isr o.
The 
uid has kinematic viscosity � , thermal di�usivity
� , density � , heat capacity at constant pressureCp, and
thermal expansion coe�cient � , all of which are constant.
We consider an homogeneous internal volumetric heating
S.

The dynamic system is nondimensionalized by scaling
lengths with r o, times with r 2

o=� , and temperature with
�Sr 2

o=(6�C p� 2)[5]. The system is governed by the in-
compressible Navier-Stokes equation and an advection-
di�usion equation of the temperature perturbation,

@t u + ( u � r ) u +
2

Ek
ẑ � u = �r p + � u + Ra� r ; (1)

r � u = 0 ; (2)

@t � + u � r � �
2

P r
ru r =

1
P r

�� ; (3)

where u is the velocity �eld, p is the modi�ed pressure,
which includes the centrifugal potential, and � is the
temperature perturbation relative to Ts. The dimension-
less numbers are the Ekman numberEk = �=r 2

o 
, the
Prandtl number P r = �=� , and the Rayleigh number�
Ra = �g 0Sr6

o=6�C p�� 2
�
. At r = r o, the boundary con-

dition for the velocity is no-slip and impenetrable (u = 0)
and the temperature is �xed (� = 0).

This dynamic system is modeled in a 3 step process.
First, for each set of (Ek; P r ), the linear onset of con-
vection Racrit and the associated eigenmode are com-
puted precisely by using thesinge code [16] to �nd the
value of Ra for which the least damped eigenmode of
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the linearized equations has almost zero growth rate (see
supplementary table I). The linear eigenmodes are then
used as initial values of fully 3d simulations, which are
then run until they reach a statistical equilibrium. Hys-
teresis cycles and subcriticality are explored by changing
the thermal forcing or rescaling the �nal 
ow state and
evolving the system to its new equilibrium.

The fully three-dimensional simulations are run with
our spherical codexshells [17, 18]. Most runs employ
a form of hyper-viscosity a�ecting only the 20% high-
est spherical harmonics [19] to speed up computations,
but we have checked that this does not alter the solu-
tions. Similarly, careful spatial and temporal conver-
gence checks have been made, and we were surprised to
�nd that the amplitude of the zonal winds (axisymmetric
azimuthal 
ow) is very sensitive to the bulk radial grid
spacing, although no sharp gradients were seen. We sus-
pect that the balance between the small viscous stress
and the small Reynolds stress requires a high resolution
to be computed accurately with second order �nite dif-
ferences. As a result, simulations were run using up to
576 cores for 1152 radial levels and spherical harmonics
up to degree 199.

The simulations output several useful diagnostic values
over the course of the run. We present the velocity using
the dimensionless P�eclet number (P e = Uro=� ) which
is the ratio between the rate of advection to the rate of
di�usion of temperature. U is de�ned by the square root
of the volume averaged kinetic energy; the zonal P�eclet
number (P ezon ), uses only the azimuthal component of
the 
ow averaged in longitude (m = 0); the convective
P�eclet number ( P econv ) uses them 6= 0 velocity. We also

use the Nusselt number
�

Nu � 1
P r � c

�
which measures

the convective heat transfer from the core to the surface.
(� c is the temperature at the origin).

WEAK AND STRONG BRANCHES

Our studies seek to verify that the subcritical be-
havior found in the quasigeostrophic approximation [5]
is also seen in the fully three dimensional system, for
Ek 2

�
10� 7; 10� 5

�
and P r 2 [0:003; 0:1].

Our results are summarized in Fig. 1, which shows the
P�eclet number ( P e) vs the Rayleigh number (Ra) for the
simulations we've run. Two branches are clearly visible.
a strong branch where theP e number is larger than 10
and a weak branch with lower P e numbers. The advan-
tage of representing the kinetic energies in terms ofP e
is that it collapses all of the simulations onto a single
scale with a clear divide between the strong and weak
branches. A more typical Reynolds number representa-
tion sees values of kinetic energy that are in either the
weak branch or the strong branch depending onP r ; an
example of this is in the supplementary �gure S1. The

FIG. 1. The mean velocity of the 
ows as a function of
Ra=Racrit � 1. The Ek and P r numbers are indicated by
color. The error bars represent 
uctuation levels. Open faced
markers indicate simulations that were initialized from the
strong branch that were observed to either transition to the
weak branch, or decay to zero after a �nite time greater
than � � (the values and 
uctuation levels are taken over
the time before the transition or decay). The solid black
line indicates the onset of the convective instability. The
blue parallelogram, indicating the weak branch, scales as
P e / (Ra � Racrit )1=2 [20].

P e is also important because one of the markers of the
strong branch is a signi�cant cooling of the sphere's core;
P e > 10 indicates that there is enough convective power
to draw thermal energy away from the center. At lower
Ek , the strong branch persists below the linear critical
Rayleigh number.

The weak branch arises from a supercritical bifurca-
tion at Racrit . For Rayleigh numbers near this value,
convection onsets as a thermal Rossby wave [10]. The
thermal anomaly � in the equatorial plane for a typical
case is visible in Fig. 2a [13]. The azimuthal velocityv�

in a single meridional slice is shown in Fig. 2b. Thez in-
variance implied by the quasigeostrophic approximation
is well displayed. Near onset, the 
ow driven by the ther-
mal gradient scales roughly with (Ra � Racrit )1=2 [20], as
shown in Fig. 1.

At large Rayleigh numbers, the weak branch becomes
unstable [5] and the 
ow evolves towards a state where
the velocity is an order of magnitude greater. A snapshot
of a typical strong branch 
ow is shown in Fig. 3. The
di�erence with Fig. 2 is stark. There is strong cooling
near the origin of the sphere, and a noticeable prograde
zonal 
ow near the axis of rotation. There is some de-
parture from z invariance, but the 
ow is still mostly
columnar.

At Ek = 10 � 5 the strong branch is smoothly connected
with the weak branch. Below this Ek the strong branch
onsets with a discontinuity, and is characterized byP e '
10. This state onsets as a subcritical bifurcation atEk �
3� 10� 6, allowing a small hysteresis cycle. The only green
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FIG. 2. Cross sections of the weak branch system at Ek =
10� 6 , P r = 0 :01, Ra = 5 :53 � 107 = 1 :01Racrit showing (a)
the temperature pro�le in the equatorial plane. Streamlines of
the 
ow in the plane are plotted over the temperature pro�le
in pink, and (b) Meridional slices of the azimuthal velocity.

open-faced symbol in Fig. 1 represents a simulation that
persists in the strong branch for 1:5� � (� � = r 2

o=� is the
thermal di�usion time) before suddenly decaying to the
weak branch. At Ek = 10 � 6 the hysteresis persists below
the onset of the weak branch instability.

At lower Ekman numbers (Ek < 10� 6), the weak
branch is absent and the thermal convection operates on
the strong branch always at P e > 10. Indeed, we have
looked very close above the onset forEk = 10 � 7 and
P r = 0 :01: even with an initial perturbation of very low
amplitude (Re � 1) the kinetic energy quickly increased
to reach the strong branch. This demonstrates that
the saturation mechanism leading to the weak branch
at moderate Ekman numbers is lost at higher rotation
rates.

The phase trajectories of several simulations atP r =
0:03; Ek = 3 � 10� 6 are shown in Fig. 4. A simulation
at Ra = 1 :03Racrit , initialized from a weak branch state
is shown in Fig. 4a. The limit cycle is simple and stable;
as the convective power of the 
ow (indicated by P e) in-
creases, the core cools (indicated by an increase inNu),
weakening the convection, letting the core heat up again.
Fig. 4b shows a simulation atRa = 1 :1Racrit , initialized
from a weak branch state. The limit cycle here is more
complex. The transition to the strong branch happens
when other growing modes besides the critical one reach
similar amplitude. Simulations at the same two Rayleigh
numbers, but initialized in the strong branch, are shown
in Fig. 4c & d. Here we see that the phase trajectories
are stochastic rather than approaching a limit cycle. At
Ra = 1 :03Racrit , the system persists in the strong branch
for 1.5� � before suddenly jumping to the weak branch. A
second observation from Fig. 1 is that the 
uctuation lev-
els in the strong branch actually decrease as the thermal
forcing is increased. These 
uctuations are categorically
di�erent from the 
uctuations of the weak branch. Here,

a)

£ (r; Á)
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0.00
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0. 000

1. 543

3. 086
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£ 10 3

FIG. 3. Same as Fig. 2, but for the strong branch of the sys-
tem at Ek = 10 � 6 ; P r = 0 :01; Ra = 5 :42 � 107 = 0 :99Racrit .
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FIG. 4. Phase trajectory of 
ow and core temperature of the

ows for systems at P r = 0 :03; Ek = 3 � 10� 6 , and (a & c)
Ra = 1 :03Racrit and (b & d) Ra = 1 :1Racrit . The top row
column (a & b) shows runs initialized from a weak branch
state, the bottom row (c & d) shows runs initialized from
a strong branch state. The lines get darker as the system
evolves. The arrows in (a & b) indicate the direction of time.

the 
uctuations are stochastic in the phase spaces of the
various diagnostic parameters.

SUBCRITICALITY

As Fig. 1 shows, subcritical convection exist in our sys-
tem, as convection on the strong branch can occur below
the linear onset of convection, at Ra < Ra crit . Inter-
estingly at E=Pr = 10 � 4 the subcriticality is small and
fragile: a small perturbation can kick the system back
to rest. This is indicated by the open symbols below
Ra < Ra crit (Fig. 1), where the 
ow transitions to rest
because of its intrinsic 
uctuations, sometimes after sev-
eral thermal di�usion times.

A much more robust subcriticality is observed at
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E=P r = 10 � 5 and P r = 0 :01. There, the strong branch
can be violently perturbed without loosing the convec-
tion. As an example, we can divide 
ow and tempera-
ture anomalies by 10 atRa = 0 :94Racrit and the convec-
tion will quickly recover, while dividing instead by 100
sends the system back to rest. By gradually lowering
Ra, we have observed robust convection at decreasing
Ra down to Ra = 0 :69Racrit and lost the convection
at Ra = 0 :64Racrit , when the P�eclet number dropped
below P e ' 10. Further stress tests were applied at
Ra = 0 :94Racrit . We arti�cially removed all m = 0 (ax-
isymmetric) components, including the zonal 
ow and
zonal temperature anomaly: the convection stayed �rm.
We also kept only the most unstable mode at onset and
its harmonics: the convection endured. When remov-
ing the (u:r )� term, the kinetic energy increases signif-
icantly. Instead, when removing the (u:r )u term, the
subcritical convection dies out.

In the 2D planar geometry studied by Chandrasekhar
[4], Veronis predicted a possible subcriticality in a win-
dow of low rotation rates [21], recently con�rmed numer-
ically [22]. The subcritical behavior is associated with
the presence of large mean 
ows which reduce locally the
e�ective rate of rotation and consequently, the rotational
constraint on the 
ow and the critical Rayleigh number
toward its non rotating value. This mechanism implies a
Rossby numberRo close to unity. In contrast, it is very
small here (Ro = Re:Ek < 10� 3) because of the high ro-
tation rate ( Ek = 10 � 7) and despite the large Reynolds
numbers (Re � 104) observed near the convection onset.
It is thus not surprising that the zonal 
ow is not impor-
tant for subcritical convection. Furthermore, outside the
boundary layers and in the subcritical regime, the root-
mean-square local vorticity 
uctuations never exceed 5%
of the background vorticity 2
. Not only did Veronis
�nd no subcritical motion in this rapidly rotating regime
[23], but the mechanism of lowering the e�ective (local)
rotation rate cannot explain the large amount of subcrit-
icality we found (convection down to Ra = 0 :69Racrit ).

Our numerical experiments highlight the key role of the
Reynolds stress to sustain convection below the linear
onset. However, it is the P�eclet number that is more
conveniently used to characterize the strong branch and
subcriticality. If P e is much larger than 10 at the linear
onset (P e(Racrit ) ' 50), it is possible to have convection
at Ra well below Racrit , as long asP e & 10. Below
that threshold, the strong branch of convection cannot
survive.

Our study also shows the trend of lower and lower sub-
critical Ra=Racrit as Ek=P r is reduced while keeping
P r � 0:01. This suggests an even larger e�ect at plane-
tary core conditions (Ek=P r < 10� 10), currently out of
reach for numerical models.
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0: 01, 10¡ 6

0: 003, 3£ 10¡ 7
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FIG. 5. The averaged zonal velocity P ezon of the 
ows as a
function of the averaged convective velocity P econv . The Ek
and P r numbers are indicated by color. The shape of the
markers indicate the branch the averages were taken over.
The error bars represent 
uctuation levels.

CONCLUSIONS

Subcriticality, like hysteresis, implies the presence of
active nonlinearities. The zonal 
ow in this system is
produced by nonlinear interaction of the convective ve-
locity (Reynolds stress). In Fig. 5 we plot the P ezon as a
function of P econv over the full set of simulations carried
out. The data points seem to align to an inertial scaling
law with a power of 3/2 [20]. This scaling law persists
not only between the di�erent Ek and P r numbers, but
between the strong and weak branches as well. A set
of subcritical runs were rerun with their zonal compo-
nents arti�cially canceled (set to zero at every time step)
with no signi�cant change in the convective 
ow or core
temperatures. These two factors combined show that
the zonal 
ow is only ever a byproduct of the convective

ows and not a driver of any of the dynamics. This is
fundamentally di�erent from the subcriticality predicted
for moderate Ekman numbers (Ek � 1), for which the
mean 
ow weakens the stabilizing e�ect of global rotation
[21, 22].
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TABLE I. Critical parameters at the onset of convection

Ek P r Ra crit mc ! c=


10� 5 0:1 8:440� 106 11 � 0:04024
3 � 10� 6 0:03 2:336� 107 12 � 0:04275
10� 6 0:01 5:475� 107 11 � 0:03895
3 � 10� 7 0:003 1:255� 108 12 � 0:04287

10� 7 0:01 1:01574� 109 27 � 0:01930
10� 7 0:01 1:01567� 109 28 � 0:01941

Supplementary Materials

Linear results

The critical parameters of the linear onset of convec-
tion shown in table I have been determined using the
freely available singe code [16], which has been bench-
marked with the results of Jones et al [9].

For Ek = 10 � 7, P r = 0 :01, the onset of modesm = 27
and m = 28 are very close to each-other, and we list both
for completeness.

Complementary nonlinear results

A more typical measure of the convective velocity is
the Reynolds number (Re = Uro=� ) which is in our case
related to the P�eclet number by Re = P e=P r. Fig. S1a
shows the convective velocity versus thermal forcingsRa.
Near the linear onset of convection, the strong branch

ows seem to align with a single trendline for each ra-
tio Ek=P r that seems to scale withRa3=2. As the Ra
increases, the 
ows depart from this 'scaling law', most
likely as a result of Ekman pumping. Fig. S1b shows
the convective heat transfer as a function of convective
velocity. Large forcings (strong branch) seems to get a
lower exponent than the 2 exponent expected by a weakly
non linear analysis at the onset of convection [20]. These
trendlines should be seen as suggestions to guide the eyes,
rather than hard and fast scaling laws that the data must
conform to.

All the data behind Figs. 5 & S1 and a jupyter
notebook reproducing the �gures is available athttps:
//dx.doi.org/10.6084/m9.figshare.4540846 for any-
body to plot data as needed.

Finally, to complement the �elds shown in �gure 2 and
3, we represent thermal anomaly in the meridional plane
and vertical vorticity in the equatorial plane in �gure S2
and S3.
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FIG. S1. a) The mean velocity of the 
ows as a function of Ra.
The Ek and P r numbers are indicated by color. The shape
of the markers indicate the branch the averages were taken
over. The error bars represent 
uctuation levels. Vertical
lines indicate the critical Rayleigh number Racrit for each
(Ek; P r ). The error bars represent 
uctuation levels, in most
cases these are more than an order of magnitude smaller than
the mean level, and thus not visible in the �gure. b) The
(Nu � 1) plotted against the mean P e of the system.

FIG. S2. Cross sections of the weak branch system at
Ek = 10 � 6 , P r = 0 :01, Ra = 5 :53 � 107 = 1 :01Racrit show-
ing (a) the vertical vorticity pro�le in the equatorial plane.
Streamlines of the 
ow in the plane are plotted over the vor-
ticity pro�le in pink, and (b) Meridional slices of the thermal
anomaly. These complement �gure 2.

https://dx.doi.org/10.6084/m9.figshare.4540846
https://dx.doi.org/10.6084/m9.figshare.4540846
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FIG. S3. Same as Fig. S2, but for the strong branch of the sys-
tem at Ek = 10 � 6 ; P r = 0 :01; Ra = 5 :42 � 107 = 0 :99Racrit .
These complement �gure 3.


