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3D Multi-Objective Deployment of an Industri
Wireless Sensor Network for Maritime
Applications Utilizing a Distributed Parallel
Algorithm

Bin Cao, Jianwei Zhao, Po Yang*, Zhihan Lv

Abstract—Effective monitoring marine environment has
become a vital problem in the marine applications. Traditionally,
marine application mostly utilizes oceanographic research vessel
methods to monitor the environment and human parameters. But
these methods are usually expensive and time-consuming, also
limited resolution in time and space. Due to easy deployment and
cost-effective, WSNs have recently been considered as a promising
alternative for next generation IMGs. This paper focuses on
solving theissue of 3D WSN deployment in a 3D engineroom space
of a very large crude-oil carrier (VLCC), in which many power
devices are also considered. To address this 3D WSN deployment
problem for maritime applications, a 3D uncertain cover age model
is proposed with a new 3D sensing model and an uncertain fusion
operator, is presented. The deployment problem is converted into
a multi-objective problems (MOP) in which three objectives are
simultaneously considered: Coverage, Lifetime and Reliability.
Our aim isto achieve extensive Coverage, long Lifetime and high
Reliability. We also propose a distributed parallel cooperative
co-evolutionary multi-objective large-scale evolutionary algorithm
(DPCCMOLSEA) for maritime applications. In the simulation
experiments, the effectiveness of this algorithm is verified in
comparing with five state-of-the-art algorithms. The numerical
outputs demonstrate that the proposed method performs the best
with respect to both optimization performance and computation
time.

Index Terms—wireless sensor network deployment, 3D engine
room, Very large crude-oil carrier (VLCC), Coverage, Lifetime,
Rédiability, Parallel, Multi-objective evolutionary algorithm.

|I. INTRODUCTION

considered as promising alternative for next generation
intelligent maritime grid (IMG) applications. Many studies have
been conducted on industrial WSNs for marine environment
monitoring, including sensors design and deployments [3],
systems architecture and efficiency [4-5], communication and
optimisation techniques [6-7], etc.

Among these issues, the deployment problem of WSNs is a
foundamental challenge for operational management and
security monitoring of Intelligent Maritime Grids (IMGs). But
so far most existing current research in WSNs assumes that
these networks are deployed in a terrestrial 2D environment
and can be optimised by applying probabilistic fusion operator
[11-14] with omni-directional 2D sensing models, like the
disk/Boolean sensing model [8], the Elfes sensing model [9] and
the Li sensing model [10]. While above methods have
demonstrated promising performances on dealing with the
traditional coverage optimisation problem ideal 2D WSN
environment, it is still difficult to achieve practical needs of
WSN deployment in real word 3D cases. Especially, for many
maritime application,

This paper aims at exploring the possibility of utilising
biological inspired optimisation algorithms to efficiently solv
the coverage problem in 3D WSNs for maritime application
this paper, we study the 3D deployment problem of an IWSN in
a 3D engine room space of a very large crudeoil carrier (VLCC),
in which there are many power devices. To better consider the
coverage problem, we propose a 3D directional sensing model
by simultaneously considering the sensing distance and
horizontal and vertical sensing angles, which is probabilistic to
improve precision and practicability. Also, our model has

AS the increasing human activities being undertaken in th@nsidered supporting heterogeneous directional sensor nodes
marine environment, effective and efficient monitoring21] with improved practicability.

marine environment has become a vital problem in the

In this paper, we inspired from the idea of particle swarm

industrial applications. Traditionally, marine application mostlyptimisation[22] and simultaneously deploy sensor nodes and

utilizes oceanographic research vessel methods [1-2] to monitgfay nodes. Consequently, the energy consumptions of relay
the environment and human parameters. But these methodsjges are balanced to maximize the lifetime. For an IWSN,

usually expensive and time-consuming, also limited resolutiqBliability is also crucial. In the work of [23], Wang et al.

in time and space. Recently, due to the advantages of automgtigranteed reliability by ensuring the associations of each node
operation, easy-deployment, real-time mode and cost-effectiyg, multiple relay nodes. In this paper, we also consider the
industrial wireless sensor network (WSNs) have recently begfliability of the IWSN. Instead of making the reliability

objective a constraint, we transform it into an objective to be
optimized. Due to the fact that this model has considered three
above objectives simultaneoustiie deployment problem can



be characterized as a multi-objective optimization probletime-consuming, also limited resolution in time and sp&oe
(MOP). Thus, we use multi-objective evolutionary algorithmsnarine environment research, a WSN-based approach can
(MOEAS) to address the deployment problem. Hacioglu et alramatically improve the access to real-time data covering long
[24] considered multiple aspects of energy consumption, apdriods and large geographical areas [32]. According to
Non-dominated Sorting Genetic Algorithih (NSGA-II) [25]  Tateson et al. [33], a WSN-based approach is at least one order
was applied. In the work of [24], Jameii et al. simultaneouslyf magnitude cheaper than a conventional oceanographic
considered coverage, energy consumption and the numberefearch vessel
active sensors, and NSGA-Il was also utilized. Sengupta et alTypically, a WSN-based marine system needs to measure
[26] formulated the deployment problem with respect to thredifferent physical and chemical parametefd/hile the
aspects: lifetime objective, coverage objective and thdevelopment and deployment of an adaptive, scalable and
connectivity constraint; to solve this MOP, they blended fuzzself-healing WSN system need to address a number of critical
Pareto dominance with Multi-objective Evolutionary Algorithmchallenges such as autonomy, scalability, adaptability,
Based on Decomposition (MOEA/D) [27], therein proposingelf-healing and simplicitf34], the design and deployment of a
MOEA/DFD, which outperformed popular MOEAs and severdbasting and scalable WSN for marine environment monitoring
single-objective evolutionary algorithms (EAs). However, thehould take into account the following challenges different from
above works only considered the 2D scenario; to our knowledtimse on land [35 stronger robustness, higher energy
studies having utilized MOEAs to solve the 3D engine roomonsumption, and sensor coverage problem, maintenance of
space deployment problem forantime applications are rare. sensor nodes.
The main contributions of this paper are: There are many concerns relevant to the deployment problem,
1. For the operational management and security monitorimne of which is coverage [36-37]. The authors 88][
of Intelligent Maritime Grids (IMGs), a novel WSN simultaneously considered connectivity, cost and lifetime.
coverage model with 3D sensing model arghuncertain ~ Similarly, in the present paper, in addition to the 3D space
fusion operator is proposed for 3D engine room icoverage, we also consider the lifetime of the IWSN. To
practical maritime applications. prolong the lifetime, Kuila et al. [39] utilized a heterogeneous
2. We consider the deployment problem with heterogeneossucture that contained both sensor nodes and relay nodes
sensors in a 3D engine room space of a VLCC, in whidimultaneously. The energy consumptions of different types of
many power devices are also considered. The deploymewaides were considered simultaneously. The energy consumed
in 3D WSN for maritime applications is transformed into &y each relay node was comprehensively balanced with respect
multi-objective deployment problem with simultaneoudo the sensor nodes that it was in charge of, data aggregation,
consideration of Coverage, Lifetime and Reliability. and extra energy consumption by acting as a hop node for other
3. An evolutionary optimization algorithm is proposed andelay nodes. Consequently, the overall lifetime could be
evaluated for solving above problem. A modified MOEAprolonged to a large extent.
distributed  parallel  cooperative  co-evolutionary
multi-objective  large-scale evolutionary algorithm Among these studies, the deployment problem of WSNs is a
(DPCCMOLSEA), is proposed; in addition to reduce th&ey issue for operational management and security monitoring
computation time, MPI (message passing interfac@f Intelligent Maritime Grids (IMGs). Traditional sensing
parallelism is utilized. models for 2-D sensor nodes are omni-directional and include
The remainder of this paper is organized as follows. Sectitime disk/Boolean sensing model [8], the Elfes sensing model [9]
Il describes the 3D engine room deployment problem arahd the Li sensing model [10]. The most common fusion
related preliminaries. We provide a detailed introduction to theperator is the probabilistic fusion operator [11-12]. The
proposed novel 3D uncertain coverage model in Section lttaditional coverage models of WSNs are based on probability
Section IV describes the three objective functions consideredeasures such as those in the problems of certain coverage
details the Lifetime and Reliability objectives and provides thdiscussed in [13-14]. While above studies have demonstrated
representation of individuals in the population for the MOEAspromising performances on dealing with the coverage
The proposed algorithm is presented in Section V. We repagptimisation in ideal 2D WSN environment, it is still difficult to
our experimental simulations and analyses in Section VI, aaghieve practical needs of WSN deployment in real word 3D

the paper is concluded in Section VII. cases. However, most existing deployment strategies in WSNs
focus on ideal 2D WSN environment, which are hardly to be
Il. LITERATURE REVIEW applied in real maritime application environments. The sensing

During the last few years, WSNs (wireless sensor network) ha%)dels considered in traditional maritime wireless _sensor
been widely studied and utilised in many industrial applicationg?tworks (MWSNS) [15-17] are very simple, mostly with the

related to forest monitoring [28], agriculture monitoring [Zg]geplqyment on a 2D plane.
and healthcare [30-31]. Compared to the practical working " llght of coverage problem of the 3D space, the most common
environment of above applications, marine environmerffays are to extend the 2D solution from 2D ideal plane region of

systems are quite sensitive to the effects of human activitiggerests (Rol) to 3D full space Rdirown et al. [18] provm!ed
olutions for the 3D full-space coverage problem for wireless

Traditionally, marine application mostly utilizes oceanographig.
research vessel methods [1-2] to monitor the environment apgco sensor networks (WVSNs). Yang et al. [19] attempted to

human parameters. But these methods are usually expensiverghndmlze the cost for the target coverage problem in a 3D space



above a 3D terrain. However, the above studies did not consid@per decks).
network lifetime or energy consumption [20]. In real-world

marine environment application, sensor nodes in WSNs hav
limited battery power. The energy consumption of sensor node
is important for sensor networks. The lifetime is a

resultof energy consumption in WSNs. Consequently, so fal
there are no existing practically efficient solutions in literature
for dealing with coverage and deployment problems in comple:
3D surface of WSNs in marine environment application.

This paper aims at exploring the possibility of utilising
biological inspired optimisation algorithms to efficiently solve
the coverage problem in 3D WSNs for maritime application. Ir
this paper, we study the 3D deployment problem of an IWSN i
a 3D engine room space of a very large crudeoil carrier (VLCC)
in which there are many power devices. To better consider tt
coverage problem, we propose a 3D directional sensing mod
by simultaneously considering the sensing distance an
horizontal and vertical sensing angles, which is probabilistic to
improve precision and practicability. Also, our model has
considered supporting heterogeneous directional sensor nodes
[21] with improved practicability. A Line of Sight (LOS)

In this paper, we inspired from the idea of particle swartFor a sensor s attempting to observe a target point t in 3D space,
optimisation [22] and simultaneously deploy sensor nodes afigho obstacle blocks the sight line joining them, then s and t can
relay nodes. Consequently, the energy consumptions of rel@ye” each other, and we say that there exists a Line of Sight
nodes are balanced to maximize the lifetime. For an IWSK.OS); otherwise, the No Line of Sight (NLOS) condition
reliability is also crucial. In the work of [23], Wang et al.prevails between them. The LOS condition is a prerequisite for
guaranteed reliability by ensuring the associations of each nagihsor s to be able to detect point t.

to multiple relay nodes. In this paper, we also consider the "

reliability of the IWSN. Instead of making the reliability B Deployment Positions

objective a constraint, we transform it into an objective to b Sensor Nodes: We restrict the deployment positions of the
optimized. Due to the fact that this model has considered thieéeless sensors, that is, directional wireless sensors are
above objectives simultaneously, the deployment problem cé@ployed at the bulkheads and the upper decks of the engine
be characterized as a multi-objective optimization problef®om. However, not all position points are feasible (e.g.,
(MOP). Thus, we use multi-objective evolutionary algorithm@bstacles exist). To restrict the coordinates of the points, we
(MOEASs) to address the deployment problem. Hacioglu et altilize a penaltyps

[24] considered multiple aspects of energy consumption, and

Fig. 1 Engine room model of a VLCC

Non-dominated Sorting Genetic Algorithm 1l (NSGA-II) [25] ps= rifeasible, penalt (1)
was applied. In the work of [24], Jameii et al. simultaneously
considered coverage, energy consumption and the number, ,of infeasible:

active sensors, and NSGA-Il was also utilized. Sengupta et al. erens 's the number of infeasible s.ens.or po§|tlons and
[26] formulated the deployment problem with respect to thraeenalty denotes the penalty parameter, which is assigned a huge
aspects: lifetime objective, coverage objective and thélue (e.g., 19.

connectivity constraint; to solve this MOP, they blended fuzz$) Relay NodesFor the relay nodes, because they collect
Pareto dominance with Multi-objective Evolutionary AlgorithmMessages from directional sensors, they are also deployed at the
Based on Decomposition (MOEA/D) [27], therein proposin@ulkheads and the upper decks. Similarly, we also have a
MOEA/DFD, which outperformed popular MOEAs and severdp€naltypRfor the relay nodes:

single-objective evolutionary algorithms (EAs). However, the o

above works only considered the 2D scenario; to our knowledge, pR= rjgfeasible, nenalty 2

studies having utilized MOEAs to solve the 3D engine room

space deployment problem for maritime applications are raréy here niFrgfeasibleiS the number of infeasible points of the relay

ll. PRELIMINARIES AND PROBLEM SIMULATION node deployment.

For the maritime application, we regard the 3D engine room IV. UNCERTAIN COVERAGE MODEL
space of a VLCC as a cuboid, inside of which devices aﬁ%

. - e coverage model consists of a sensing model and a fusion

represented by smaller cuboids, as shown in Fig. 1. To perform . L
! . ; . . : operator. The sensing model refers to an individual sensor,
the mathematical simulation, we discretize the engine roonj . : : :
while the fusion operator describes the cooperation among

space, and a 3D matrix is constructed, in which 0 represents ffﬁ&l iple sensors. In the following, we describe our proposed
space and 1 denotes obstacles (e.g., devices, bulkheadscqp rage model in detail.



A Sensing Model

In a 3D space, the sensing probabi(s § of a sensor s to a Whereey (s, 1) is the deflection angjedy (s, t)is its modified
X

target point t can be calculated as given by the equation belo@ue Ity is the modification ratioy™ , x* ,z;* andz; are
parameters used to simulate different sensing characteristics
PS(s = R3s(s)x B( s)x B .9% /.9 (3) and VX + X =1, v*, X €[0,1]. For different parameter
values, the characteristics of the model are shown in Fig.2.
Where P3(s? , PS(s?) and R(s® are the sensing

probabilities associated with the sensing distance, horizon § e ————————— . .
sensing angle and vertical sensing angle, respectively, ¢ - v ; |
PLSOS(S 1) is a two-valued function with the following form: ) Y
081 X 1
1, if LOS Yo
pS =17 4 20771 Ty 1
tos(s 9 {0’ it NLOS 4 = e
m 0.6 A _
9 i
Below, we first describe the distance sensing model and then & o.5 W 1
angle sensing model. o = = ==0.36,1=0.64,7,=0.3,7,=0.3 -
1) Distance-based Sensing Madghe Li sensing modellp)] is B 040, v=0.36,0=0.64,7,=1.0,7,=1.0 i 1
L . . = 1 2 3 v
used. Let the deterministic sensing distance be denoted, by & gk v=0.36,1=0.64,7,=3.0,7,=3.0 L % |
and let the fuzzy distance ber RThe mathematical ’ i
representation is as follows 0.2} T -
1, r(s,t)el0,R] GE b
_ 0 1 I J
PDS(S .0: é ar /r az), r( S )E [ R, B-i— R] (5) 0 nll n._m _"u
0, I’(S,t)E[F{j+ Rf,+00] Angle

Fig. 2 Characteristics of the angular sensing model
Wherer, =r(s,)-R;; =Ry +R —-r(s?); o,0,, 0, and
B. Uncertain Fusion Operator
3, are parameters; and sensors with various characteristics caii
be simulated by adjusting their values. At a given point t in 3D space, the sensing regions of multiple
2) Angular Sensing ModeWe consider two angular SenSIngsensors may overlap. The traditional method for addressing this
dimensions: the horizontal angular range and the Verth%Fuatlon is based on the additivity of probability. However, in a
angular range. By first calculating the sensing probabilities withl actical environment, vanogs sources .qf interference may .e.X'St
respect to these two angles, we can obtain the sensﬁl}d consequentlyz the sensing probability may not be additive.
probabilities corresponding to different 3D angles. erefore, we utilize the Sugeno measulg fo simulate the
The sensing behaviours with respect to both angles a{},lé%ed sensing behavior of multiple sensors. For the sensor set
- i S={s where N is the number of sensors), we can
similar. We define three angle thresholds,, X and ., (s 9 8k ( N )
X X X ) calculate their fused sensing probabllr?g (t) for point t as
where " <yq <y, , and X denote® AN or TILT, referring follows:

to horizontal or vertical directions, respectively. This model can
be described as follows:

Ns
PE () =min@=x{[ [iL+ 2x P(5, -) ()
k=1

X
L ox(s0el0n”] Where-1< 2 <0 is an adjustable parameter that is used

1 Ym0 )Tlx to simulate different environment. The Sugeno measure

s N 5, (s)-5% X X is a type of non-probabilistic measure that possesses the
Ri(sh=1 1-Vixe < x X Ox ($¥e ™ rm ] characteristic of weak additivity, and wheer -1, the
Lm0 Sugeno measure becomes a probabilistic measure.
X i :

0+ 4% xe Sy (s, Sy (s, ey, 7X] To determine whether t can be detected, we define a

threshold Rf to convert the sensing probability

0, &y (s.)elny, _ .
x el el P (t)into the two-valued sensing resiff” (1) :

(6)
sty (s =|rt xe&x (s



1, PE®=Ff Therefore, the objective function for the Lifetime objective,
PEF (=47 ST (8) f e, has the following form:
S 0. otherwise Litetime » N@s the following form:
The quality of coverage (QoC) can be defined as the average ; _ vl 13
coverage degree of the entire 3D space: Lifetime ™ RN (13)

min

where v°°®®is a scale value used to guarantee that the value of

N
QoC-<3 B () (©)
k=1

Where N is the number of considered discrete points in the 3BLireime iS Within [0; 1), which is set to #0and Lij, is the
space. minimum lifetime of all relay nodes.
V. OPTIMIZATION OBJECTIVES ANDREPRESENTATION OF C. Rdiability
INDIVIDUALS IN THE POPULATION Based on the work of [21], we transform the reliability

The deployment problem is converted into an MOP b9onstraint into an objective that can be optimized. Assuming

simultaneously considering the calculation of the QoC, tHBateach sensor or relay node is connectedf relay nodes,
lifetime and the reliability. For the optimization, MOEAs arethe fitness of the Reliability objectiveas follows:
utilized. In the following, we will discuss these issues in detalil.

Ns — N —
A Coverage >dS/Ns+Y g%/ Wk
We need to guarantee the extensive coverage of the 3D engine fretiabiity = scelllzl (14)
room space. Letfcgeqagcdenote the value of the objective Ur

function for Coverage. It has the following form: —
where d® denotes the average distance of sensor node i to its

fcoverage=1.0-QoC  (10)

nearestN[ '@ relay nodesd? is that distance with respect to

relay node i, N is the number of relay node, and®®®is a
B. Lifetime scale value.

According to the radio model for energy consumption

. . D. Representation of Individuals in the Population
introduced in [29], we have P P

Because there are three rooms (Fig. 1) and because nodes can be
9E 1% d2 d<d deployed at the bulkheads and upper deck of each room, an
EL(19,d) = ot ésd, < G (11) indicator is utilized to denote which plane (a total of 15 planes)
' 19Eq +1%,,d %, d>dy, is considered.

And The directional sensosqS can be represented by the five

E (%) =19, (12) tuple (0°,%°, %5479 ™) . Here, b° indicates the
deployment plane(x°, y°) denotes the position, ar@f*" and

Where k and E are the energy used for transmitting andgm™T are the horizontal and vertical sensing angles
receiving messages, respectivelysithe length of a message; d ) i

is the distance between the transmitter and the receivirfiie  "eSPectively. Each relay nods{' is represented by a three
threshold determining the adoption of the freespace migjel (tuple(bKR, )g(R, ykR)_ Here, bKR indicates the deployment plane,

h Itipath I nfp); he el i
or the multipath modelnfp); Eo represents the eectronlcsand (ka,y,f) denotes the deployment position. Therefore, in

energy; ande and ¢, are the amplifier energy parameters TS ) T _
the optimization algorithm, the set of all individuals in the

population can be represented(y, ..., s » § > -+ $1z )» Whose

for the above two models, respectively.
The lifetime issue 38] mainly considers the relay nodes,

which is detailed as follows: dimensionnDimis Nsx5+ Nkx 3.
The relay nodes gather messages from sensor nodes and
transmit them to the sink node directly or indirectly using other VI.  PROPOSEDALGORITHM

relay nodes as hop nodes. Thus, we should balance the energyo address the 3D multi-objective deployment problem of an
consumptions by comprehensively considering the number ighjustrial wireless sensor network for the maritime application,
messages and the transmission distances. Simply, the negfgstpropose an algorithm called the distributed parallel
relay node nearer to the sink node is chosen as the next hog&jperaﬁve co-evolutionary multi-objective  large-scale
the current relay node; otherwise, messages are direcilyolutionary algorithm (DPCCMOLSEA), which s
transferred to the sink node. implemented in the MPI parallel environment. DPPCCMOLSEA
is based on decomposition. For an MOP, we first separate all
variables into several groups, for each of which we form a



species. Moreover, the computational burden of each specie
allocated to the CPU resources.

A Overall Structure

The pseudocode of DPCCMOLSEA is provided in Alg.1, an
the overall structure is illustrated in Fig. 3. Similar to ou Y
previous proposed algorithm Distributed Parallel Cooperati\ Variable
Coevolutionary Multi-objective  Evolutionary  Algorithm Group 1
(DPCCMOEA) |1], variables are separated into several grouy

where each group is optimized by a species. However, for t Y
second layer, in DPCCMOEA, individuals are further allocate
to the CPUs owned by each species, and each CPU is in che
of the evolution and fitness evaluations of individuals. For tr
proposed DPCCMOLSEA, in each species, a master CPU
responsible for the evolution of the individuals, while the
computational burden of fitness evaluations is shared by a||t[cpuj [Cpuj (CPU) [CPUJ [CPU] (CPU)
CPUs. The difference is in, in the lower layer, whether th ;

evolution of individuals is conducted by a single master CPU or

[Multi-Obj ective Deployment Problem

" Variable
e G.rom i e
Y

Species i

Y

Variable
Group N,

Y
Species N

Species 1

Fig. 3 Organisation of DPCCMOLSEA for the considered

delegated to all CPUs.

Algorithm 1: DPCCM OL SEA

1.
2.

3.
4.

Separate large numbers of variables to several groups:
Uniformly distribute all M PI resourcesto all groups;
From a speciesin the master CPU for each group;
While The number of fitness evaluations is not exhauste
Do

/*

Evolution */

.Evolve the variablesin the group in each master CPU in

serial for all groupsin paralle;

problem

B. Optimisation

The evolution pattern of DPCCMOEA, borrowed from
MOEA/D [42], is inherited by DPCCMOLSEA. Thus, each
individual refers its neighbourhood for evolution. In
DPCCMOEA, as individuals in each species are separated into
several sets, the neighbourhood relationship is cut off; the
updating process also concerns the neighbourhood, which is
also disrupted. In contrast, DPCCMOLSEA performs the
evolution of all individuals of a species in a single master CPU,

* *
6 Reme{'n'ncr?iﬁﬁresare ener ated through o ossover - / which is the same as in serial algorithms, thus comprehensively
' /*' ! Igv\élu:a\tion 9 ug v '*/ taking advantage of mutual relations among individuals for the

9.

.Master CPUs allocate the generated offsprings, the

fitness evaluations are performed in paralld in all

CPUs, and thefitnessvaluesare collected to the master

CPUs,
/*

Updating subpopulations

*/

. In the master CPUs, based on the fitness values of the

gener ated offsprings, update the species;
I* Synchronizing  subpopulations
*/
All master CPUs communicate with each other;

10. Gather individualsin all species, and generate the final

population by selecting the best individuals

whole species.

C. Crossover

Each species optimizes a group of variables, and differential
evolution (DE) f3] is the optimizer used; specifically,
DE/rand/1 is the detailed form in DPCCMOEA, while in
DPCCMOLSEA, we also experiment with jDE4] and JADE
[49], denoted as DPCCMOLSEA-DE and
DPCCMOLSEAJADE, respectively.

For convenience, each species stores the other variables as
well as the optimized variables. To form a complete solution,
the remaining variables should be integrated. For this, we use
crossover, that is, all the evolved variables in the current
optimized group are reserved in the generated offspring, while
the stored parent and other selected stored solutions are utilized
to generate the remaining variables through crossover. In
DPCCMOEA, half of the remaining variables come from the
stored parent. In DPCCMOLSEA, we use a fixed value of 0:5
for DE/rand/1 and the corresponding adaptive strategies for jDE
and JADE.

VII.

We conduct experiments to verify the effectiveness of the
proposed algorithm for the maritime application of 3D
multi-objective deployment of an industrial wireless sensor
network.

EXPERIMENTAL SIMULATION AND ANALYSIS



A Experimental Setup

The parameter settings for the coverage model are listed
Table I. The proposed algorithm is compared with five MOEA:
Cooperative  Coevolutionary  Generalized  Differentia
Evolution 3 (CCGDES3)46], MOEA/D [42], Multi-Objective
Evolutionary Algorithm Based on Decision Variable Analyse
(MOEA/DVA) [47], NSGA-Il [25] and DPCCMOEA 41].
Each algorithm runs 20 times, and the number of fitne:
evaluations (FEs) for each run is seft® x 5 + Nr x 3) x10%

All algorithms are implemented in C++, and the simulatio
experiment platform is the TianHe-2 supercomputer.

For a fair comparison, the population size (NP) for a
algorithms is set to 120. The number of species in CCGDES3
set to 2, and the species size is 60.

For the components of all algorithms, we summarize:

1. DE is used in CCGDE3, MOEA/D, MOEA/DVA,
DPCCMOEA and DPCCMOLSEA.

2. SBX and polynomial mutation are used in NSGA-II;
polynomial mutation is used in MOEA/D, MOEA/DVA,
DPCCMOEA and DPCCMOLSEAs.

3. MOEA/DVA, DPCCMOEA and DPCCMOLSEAs are
based on the decomposition framework of MOEA/D.

4. Variable analysis and grouping are performed i
MOEA/DVA, DPCCMOEA and DPCCMOLSEAs.

Correspondingly, the detailed parameter settings a

summarized in Table II.

TABLE I: Parameter Settings for the Coverage Model

Symbol Attribute Quantity
Np number of directional sensors 17
Npg number of relay nodes ]
(ex1,@2) distance sensing model parameters (1.0, 0.0) [8]
(B1.82) (1.5, L.0) [8]
R, deterministic sensing distance [15,24] x 2m [16]
Ry furzy sensing distance 1.0 x R4
\,-,X] lower bound on fuzzy sensing angle [w/6.2m /9] [16]
\,-;}; middle bound on fuzzy sensing angle 1.5 = \,l;\'
'}--u\- upper bound on fuzzy sensing angle 2.0 % "'"f\-
[r_j"\- ; Tg\- ) angle sensing model parameters (3.6, 3.6)
(™, ) angle sensing model parameters (0.5,0.5)
ritpan modification ratio 1.0
riTiLT 1.3
A fusion parameter —0.5 [28]
Pl,fh sensing probability threshold 0.9 [28]

! X denotes PAN or TILT.

TABLE II: Parameter Settings for Algorithms

Symbaol Attribute Quantity

F scale factor in DE 0.5

R crossover rate in DE 1.0

Pe SBX crossover probability 10

Din polynomial muration probability 1/nDim

e distribution index of SBX 20

T distribution index of polynomial mutation 20

niche neighborhood size 0.1 x NP

limit replace limit 0.01 x NP

Pite parent selection probability 0.9

Neontr number of control property analyses 20

Npepen  number of interdependence analyses 6 (MOEA/DVA)
1 (others)

B. Results and Analysis

We use the hypervolume (HV) indicato4q] to evaluate the
performance of the algorithms. A higher HV indicator value
indicates a better optimization performance. In addition, the
non-dominated solution sets are visualized.

The evolutionary curves of the average HV indicator values
are shown in Fig. 4, from which we can observe that
DPCCMOLSEASs perform  the best; specifically,
DPCCMOLSEAJADE outperforms all other algorithms. By
comparing DPCCMOEA and DPCCMOLSEASs, we can deduce
that the parallel structure modification is quite beneficial.
Therefore, we can find that the comprehensive utilization of the
mutual relations among all individuals of the species
significantly contributes to the performance improvement. This
is because DPCCMOEA and DPCCMOLSEAs are based on the
optimization framework of MOEA/D, in which each individual
utilizes individuals in the neighborhood as well as the whole
species for evolution. In DPCCMOEA, the evolution of
individuals is distributed as several parts, and the relations
among individuals are broken; in DPCCMOLSEAs, the
evolution of all individuals of a species is conducted on a single
master CPU, thus preserving all the interactions among
individuals.



Table Il lists the statistical test results, including the rankinggpplications there are still other issues requiring further
from the Friedman test and the Wilcoxon test with respect to thevestigation.
best algorithm, DPCCMOLSEA-JADE, from which we can see The first issue is about the oceanographic sensor protection.
that DPCCMOLSEA-JADE is significantly better than all otheTypical marine environments contains over thousands
algorithms (with p-values less than 0:05). When adoptingrganisms related to fouling problems. When oceanographic
different DE optimizers, the performance of DPCCMOLSEAsensors are immersed in seawater, they are susceptible to
varies greatly: JADE is quite effective, while jDE is not venbio-fouling problems which often lead to the long-term
powerful, indistinguishable from DE/rand/The visualizations accuracy issues of marine environmental sensor measurements.
of all the non-dominated solutions generated from the 20 ruSo our model should also consider this issue in our WSN
by each algorithm are provided in the supplementary matericoverage model.
We can see that DPCCMOLSEAs can comprehensivelyThe second issue is about the limited energy of batteries of
optimize all objectives. WSN in maritime system applications. In marine environment

Table IV lists the computation times of all the algorithms. Wmonitoring systems, wireless sensor nodes are often deployed in
can see that because DPCCMOEA and DPCCMOLSEAs enapproachable sea surface areas, and they are mostly planned
parallel algorithms, their computation times are miawer. : . . . —

The speedup ratios are also calculated. The ratio values a B
approximately 79:6% s 87:1% of the ideal speedup, (2. i _
which is the number of CPUs). DPCCMOLSEAs are slightly
slower than DPCCMOEA, which can be ascribed to the paralle o -
structure modification. §

C. Time and Space Complexities E [
Table 1V lists the computation time of all algorithms. As E"“‘ 1
DPCCMOEA and DPCCMOLSEAs are parallel algorithms, E_
their computation time is much lower. The speedup ratio value: §°>ji T
are approximately 79:6% s 87:1% of the ideal speedup (i.e., 72 < || ——ccepes
which is the number of CPUs). DPCCMOLSEASs are slightly ~ **|f = i 1
slower than DPCCMOEA, which can be ascribed to the paralle | = brccmoea |
structure modification. T1 is the time consumption of fitness el o2
evaluations of the objective function, and T2-T1 provides the % : ; , e
time consumptions of the algorithms without the fitness 0 2 4 s 8 10 5

FE < 10°
evaluations, viz., the time complexity of each algorithm. : *

And for each parallel algorithm, there are two values: the first Fig. 4 Evolutionary curves of average HV indicator values
one denotes the time consumption for one MPI process, while obtained by all algorithms
g:; Si?:g (;] C:)yo;? M?Deltvt\)lf: Cne SFS’ZrS"-’nAtZetietsh Ezsogztfat;unmtm?; t; TABLPE III: Average Rankjl.lgs of Algorithms (Friedman) and
time complexities of parallel algorithms are significantly lowe e Wilcron Bk Resulit for BPECMOLEEA-IADE
than serial ones; however, if the time taken by all CPUs
considered, the serial ones are better, which can be attribute:

Algorithm Ranking R+ R~ P-value

the communication load in parallel algorithms. i i 740 / / /

For the space complexity, the population matters the mo DPE;“{%ESIES"‘P}‘DE :‘ZJ] 1“‘:5 "i‘) ihﬁgi —
MOEA/D, MOEA/DVA and NSGA- ! are similar; in CCGDES3, o s s o
variables are separated to two groups, correspondinglyg th DPCCMOEA 5025 2100 000 1.9074F — 6
are two subpopulations, each of which stores the variable grc MOEA/DVA 6.100 2100  00.0 1.90T4E —&
and also the complete individuals with all variables, so the MOEA/D 7.125 2100 00.0  1.9074E — 6
will be more space required; for all parallel algorithms CCGDE3 7.600 2100 00.0  1.9074E -6

analogous to CCGDE3, corresponding to each group
variables, there is a species in the master CPU, while for th‘for long-time operation, therefore, it is not convenient to

evaluation, there is extra space needed for the remaining CPrenace the sensor batteries. So our model should consider the
therefore, in total, the space is doubled. All in all, the spaq|;5ying three aspects: energy harvesting devices, power
compIeX|ty_|s summarized as: parallel algorithms > CCGDE3 management system, and energy storage devices.

other algorithms. Lastly, the system stability and reliability problem of wireless
sensor networks has been widely studied in order to measure
physical parameters correctly and effectively, as well as to
While the proposed novel 3D WSN coverage model witprolong the lifetime of the system dramaticalBpnsidering the
evolutionary optimisation algorithm has demonstrated a go@ggressive and complex environment, it is very important to
performance in targeted objectives Coverage, Lifetime alanalyze the system reliability in a marine environmental
Reliability for environment monitoring of Intelligent Maritime monitoring system using wireless sensor networks.

VIIl. DISCUSSION



TABLE 1IV: Average Computation Times of All Algorithms and the Speedup Ratios of Other Algorithms with Respect to
DPCCMOLSEA

TIME CCGDE3 MOEA/D MOEA/DVA NSGA-II  DPCCMOEA DPCCMOLSEA DPCCMOLSEA- DPCCMOLSEA-
JjDE JADE
MEAN 4.84E+03 4.70E+03  4.42E+03  4.60E+03 TOTE+01 T.72E+01 S.08E+01 8.30E+01
Speedup Ratio | 6.27E+01 6.10E+01  5.73E+01 5.97E+01 9.16E-01 / 1L.OSE+00 1.08E+00
[11] S.J. L, C. F. Xu, W.K.Pan, and Y.H. Pan, “Sensor deployment
IX CONCLUSION optimization for detecting maneuvering targets,” in Proc. 8th Int. Conf.

Inform. Fusion, vol. 2, 2005, pp. 1629-1635.
In this paper, for the operational management and secufiit§] E. Onur, C. Ersoy, and H. Delic, “Sensing coverage and breach paths in
monitoring of Intelligent Maritime Grids (IMGs), we study the surveillance wirelessessor networks,” in Sensor Network Operations, S.
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